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Abstract

Recently, we have presented characterizations of (S,N)-implications generated from t-conorms and continuous (strict, strong)
negations. Uninorms were introduced by Yager and Rybalov in 1996 as a generalization of t-norms and t-conorms, thus they
are another fertile source based on which one can define fuzzy implications. (U,N)-implications are a generalization of
(S,N)-implications, where a t-conorm S is replaced by a (disjunctive) uninorm U. In this work we present characterizations
of (U,N)-implications obtained from disjunctive uninorms and continuous negations as well as (U,N)-operations defined from
uninorms and continuous negations.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

(U,N)-implications are a generalization of (S,N)-implications, where a t-conorm S is replaced by a uninorm U. A
similar generalization of R-implications from the setting of t-norms to the setting of uninorms has been done by De
Baets and Fodor [6]. Ruiz and Torrens [18,20] have investigated, quite extensively, fuzzy implications generated from
uninorms [19] and their distributivity.
Despite this interest, fuzzy implications obtained from uninorms are yet to be characterized. Recently, some charac-

terizations of (S,N)-implications were given by the authors in [2]. In this work, along similar lines, we investigate and
characterize (U,N)-operations and (U,N)-implications obtained from continuous negations N.

After introducing the necessary preliminaries on the basic fuzzy logic operations, we list out some of the most
desirable—but relevant to this work—properties of fuzzy implications and investigate their interdependencies. Follow-
ing this, we discuss the class of (U,N)-operations and the properties they satisfy. Finally, based on the above analysis,
we derive characterizations for (U,N)-operations and (U,N)-implications generated from continuous negations.

� Expanded version of a talk presented at the 5th Conference of the European Society for Fuzzy Logic and Technology, EUSFLAT 2007 (Ostrava,
Czech Republic, September 11–14, 2007).
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2. Fuzzy negations and uninorms

To make this work self-contained, we briefly mention some of the concepts and results employed in the rest of the
paper.

Definition 2.1 (see Fodor and Roubens [9, p. 3]; Klement et al. [13, Definition 11.3]). A decreasing function
N : [0, 1] → [0, 1] is called a fuzzy negation, if N (0) = 1, N (1) = 0. A fuzzy negation N is called

(i) strict, if it is strictly decreasing and continuous,
(ii) strong, if it is an involution, i.e., N (N (x)) = x for all x ∈ [0, 1].

It is well known that if [a, b] and [c, d] are two closed subintervals of the extended real line [−∞, +∞] and
f : [a, b] → [c, d] is a monotone function, then the set of discontinuous points of f is a countable subset of [a, b]
(see [17]). In this case we will use the pseudo-inverse f (−1) : [c, d] → [a, b] of a decreasing and non-constant function
f defined by (see [13, Section 3.1])

f (−1)(y) = sup{x ∈ [a, b]| f (x) > y}, y ∈ [c, d].

Lemma 2.2 (Baczyński and Jayaram [2, Proposition 3.13]). If N is a continuous fuzzy negation, then the function
N : [0, 1] → [0, 1] defined by

N(x) =
{
N (−1)(x) if x ∈ (0, 1],

1 if x = 0

is a strictly decreasing fuzzy negation. Moreover,

N(−1) = N ,

N ◦N = id[0,1],

N ◦ N |Ran(N)= idRan(N). (1)

Lemma 2.3 (Baczyński and Jayaram [2, Proposition 3.8]). If N1, N2 are two fuzzy negations such that
N1 ◦ N2 = id[0,1], then

(i) N1 is a continuous fuzzy negation,
(ii) N2 is a strictly decreasing fuzzy negation,
(iii) N2 is a continuous fuzzy negation if and only if N1 is a strictly decreasing fuzzy negation. In both cases N1 = N−1

2 .

Definition 2.4 (see Yager and Rybalov [24], Fodor et al. [10]). An associative, commutative and increasing operation
U : [0, 1]2 → [0, 1] is called a uninorm, if there exists e ∈ [0, 1], called the neutral element of U, such that

U (e, x) = U (x, e) = x, x ∈ [0, 1].

Remark 2.5 (cf. Fodor et al. [10]).

(i) If e = 0, then U is a t-conorm and if e = 1, then U is a t-norm.
(ii) The neutral element e corresponding to a uninorm U is unique.
(iii) For any uninorm U we have U (0, 1) ∈ {0, 1}.
(iv) A uninorm U such that U (0, 1) = 0 is called conjunctive and if U (0, 1) = 1, then it is called disjunctive.
(v) The structure of a uninorm U with the neutral element e ∈ (0, 1) is always the following. It is like a t-norm on the

square [0, e]2, like a t-conorm on the square [e, 1]2 and it takes values between the minimum and the maximum
in the other cases.

There are several different classes of uninorms introduced in the literature. We only mention relevant details and
results, which will be useful in the sequel, connected with the three main classes of uninorms.
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Uninorms verifying that both functions U ( · , 0) and U ( · , 1) are continuous except at the point e, also referred to as
pseudo-continuous uninorms, were characterized by Fodor et al. [10], as follows (see also [6]).

Theorem 2.6. For a function U : [0, 1]2 → [0, 1] the following statements are equivalent:

(i) U is a conjunctive uninorm with the neutral element e ∈ (0, 1), such that the function U ( · , 1) is continuous on
[0, e).

(ii) There exist a t-norm T and a t-conorm S such that

U (x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
e · T

( x
e
,
y

e

)
if x, y ∈ [0, e],

e + (1 − e) · S
(
x − e

1 − e
,
y − e

1 − e

)
if x, y ∈ [e, 1],

min(x, y) otherwise,

x, y ∈ [0, 1]. (2)

Theorem 2.7. For a function U : [0, 1]2 → [0, 1] the following statements are equivalent:

(i) U is a disjunctive uninorm with the neutral element e ∈ (0, 1), such that the function U ( · , 0) is continuous on
(e, 1].

(ii) There exist a t-norm T and a t-conorm S such that

U (x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
e · T

( x
e
,
y

e

)
if x, y ∈ [0, e],

e + (1 − e) · S
(
x − e

1 − e
,
y − e

1 − e

)
if x, y ∈ [e, 1],

max(x, y) otherwise,

x, y ∈ [0, 1]. (3)

The class of uninorms of the form (2) is denoted by UMin, while the class of uninorms of the form (3) is denoted by
UMax. Note that, even if a t-norm T, a t-conorm S and e ∈ (0, 1) are fixed, a pseudo-continuous uninorm is not uniquely
defined—it can be conjunctive or disjunctive. If U is a conjunctive (disjunctive) uninorm, then we will write U c

T,S,e

(Ud
T,S,e, respectively).
A uninormU such thatU (x, x) = x for all x ∈ [0, 1] is said to be an idempotent uninorm. The class of all idempotent

uninorms will be denoted by UIdem. Martín et al. [14] have characterized all idempotent uninorms, which subsumes the
results of De Baets [5], who first characterized the class of left-continuous and right-continuous idempotent uninorms.
Uninorms that can be represented as in Theorem 2.8 are called representable uninorms and this class will be denoted

by URep.

Theorem 2.8 (Fodor et al. [10]). For a function U : [0, 1]2 → [0, 1] the following statements are equivalent:

(i) U is a strictly increasing uninorm, continuous on (0, 1)2 with the neutral element e ∈ (0, 1), such that U is self-dual,
except in points (0, 1) and (1, 0), with respect to a strong negation N with the fixed point e, i.e.,

U (x, y) = N (U (N (x), N (y))), x, y ∈ [0, 1]2 \ {(0, 1), (1, 0)}.
(ii) U has a continuous additive generator, i.e., there exists a continuous and strictly increasing function

h : [0, 1] → [−∞, ∞], such that h(0) = −∞, h(e) = 0 for e ∈ (0, 1) and h(1) = ∞, which is uniquely
determined up to a positive multiplicative constant, such that

U (x, y) =
{
0 if (x, y) ∈ {(0, 1), (1, 0)},
h−1(h(x) + h(y)) if (x, y) ∈ [0, 1]2 \ {(0, 1), (1, 0)},

or

U (x, y) =
{
1 if (x, y) ∈ {(0, 1), (1, 0)},
h−1(h(x) + h(y)) if (x, y) ∈ [0, 1]2 \ {(0, 1), (1, 0)}.

Particular examples of uninorms as well as the other different classes of uninorms can be found in the recent literature
(see [6,7,10]).
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3. Fuzzy implications

In this work the following equivalent definition proposed by Fodor and Roubens [9, Definition 1.15], (see also
[12, p. 50]) is used.

Definition 3.1. A function I : [0, 1]2 → [0, 1] is called a fuzzy implication, if it satisfies, for all x, y, z ∈ [0, 1], the
following conditions:

if x� y, then I (x, z)� I (y, z), (I1)

if y� z, then I (x, y)� I (x, z), (I2)

I (0, 0) = 1, (I3)

I (1, 1) = 1, (I4)

I (1, 0) = 0. (I5)

The set of all fuzzy implications will be denoted by FI.

Directly from the above definition we see that each fuzzy implication I satisfies the following left and right boundary
conditions, respectively:

I (0, y) = 1, y ∈ [0, 1], (LB)

I (x, 1) = 1, x ∈ [0, 1]. (RB)

Therefore, I satisfies also the normality condition

I (0, 1) = 1. (NC)

Consequently, every fuzzy implication restricted to the set {0, 1}2 coincides with the classical implication. In the
following we list out some of the desirable properties of fuzzy implications (cf. [9,21]):

Definition 3.2. Let I ∈ FI and N be a fuzzy negation. I is said to satisfy

(i) the left neutrality property, if

I (1, y) = y, y ∈ [0, 1], (NP)

(ii) the exchange principle, if

I (x, I (y, z)) = I (y, I (x, z)), x, y, z ∈ [0, 1], (EP)

(iii) the law of left contraposition with respect to N, if

I (N (x), y) = I (N (y), x), x, y ∈ [0, 1], (L-CP)

(iv) the law of right contraposition with respect to N, if

I (x, N (y)) = I (y, N (x)), x, y ∈ [0, 1], (R-CP)

(v) the law of contraposition with respect to N, if

I (x, y) = I (N (y), N (x)), x, y ∈ [0, 1]. (CP)

If I satisfies the law of (left, right) contraposition with respect to N, then we also denote this by CP(N ) (respectively,
by L-CP(N ) and R-CP(N )).
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Lemma 3.3 (Baczyński and Jayaram [2, Lemma 3.2]). Let I : [0, 1]2 → [0, 1] be any function which satisfies (R-CP)
with respect to a continuous fuzzy negation N. Then I satisfies (I1) if and only if I satisfies (I2).

Definition 3.4. Let I : [0, 1]2 → [0, 1] be any function and � ∈ [0, 1). If the function N�
I : [0, 1] → [0, 1] given by

N�
I (x) = I (x, �), x ∈ [0, 1]

is a fuzzy negation, then it is called the natural negation of I with respect to �.

It should be noted that for any I ∈ FI we have (I5), so for � = 0 we have the natural negation NI = N 0
I of I (see

[2]). Also � should be less than 1 for fuzzy implications, since I (1, 1) = 1 by (I4).

Lemma 3.5. Let I : [0, 1]2 → [0, 1] be any function and N�
I be a fuzzy negation for an arbitrary but fixed � ∈ [0, 1).

(i) If I satisfies (I2), then I satisfies (I5).
(ii) If I satisfies (I2) and (EP), then I satisfies (I3) if and only if I satisfies (I4).
(iii) If I satisfies (EP), then I satisfies R-CP(N�

I ).

Proof. (i) Since N�
I is a fuzzy negation and I satisfies (I2) we get

I (1, 0)� I (1, �) = N�
I (1) = 0.

(ii) Let I satisfy (I2) and (EP). If I satisfies (I4), then

1 = I (1, 1) = I (1, N�
I (0)) = I (1, I (0, �)) = I (0, I (1, �)) = I (0, N�

I (1)) = I (0, 0),

i.e., I satisfies (I3). The reverse implication can be shown similarly.
(iii) Since I satisfies (EP), we have

I (x, N�
I (y)) = I (x, I (y, �)) = I (y, I (x, �)) = I (y, N�

I (x)), x, y ∈ [0, 1],

i.e., I satisfies R-CP(N�
I ). �

Lemma 3.6. Let I ∈ FI and N�
I be a fuzzy negation for an arbitrary but fixed � ∈ [0, 1). If N is a fuzzy negation such

that N�
I ◦ N = id[0,1] and I satisfies (EP), then I satisfies L-CP(N ).

Proof. By our assumptions, we get

I (N (x), y)= I (N (x), N�
I ◦ N (y)) = I (N (x), I (N (y), �))

= I (N (y), I (N (x), �)) = I (N (y), N�
I ◦ N (x)) = I (N (y), x),

for all x, y ∈ [0, 1], so I satisfies L-CP(N ). �

Remark 3.7. Under the assumptions of Lemma 3.6, we have:

(i) If N�
I is a strict negation, then I satisfies L-CP((N�

I )
−1).

(ii) If N�
I is a strong negation, then I satisfies L-CP(N�

I ) and CP(N�
I ).

4. (S,N)-implications and their characterizations

In this section, we give a brief introduction to one of the families of fuzzy implications that is very well studied in
the literature.

Definition 4.1 (cf. Trillas andValverde [21],FodorandRoubens [9],AlsinaandTrillas [1],Baczyński and Jayaram[2]).
A function I : [0, 1]2 → [0, 1] is called an (S,N)-implication, if there exist a t-conorm S and a fuzzy negation N such
that

I (x, y) = S(N (x), y), x, y ∈ [0, 1].

If N is a strong negation, then I is called an S-implication.
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The following characterization of some subclasses of (S,N)-implications is from [2], which is an extension of a result
in [21].

Theorem 4.2 (Baczyński and Jayaram [2]). For a function I : [0, 1]2 → [0, 1] the following statements are equiva-
lent:

(i) I is an (S,N)-implication generated from some t-conorm S and some continuous (strict, strong) fuzzy negation N.
(ii) I satisfies (I1), (EP) and the function NI is a continuous (strict, strong) fuzzy negation.

Remark 4.3 (cf. Baczyński and Jayaram [2]).

(i) The representation of (S,N)-implications in Theorem 4.2 is unique.
(ii) The axioms in Theorem 4.2 are independent from each other.
(iii) In Theorem 4.2, the property (I1) can be substituted by (I2).

5. (U,N)-operations and (U,N)-implications

A natural generalization of (S,N)-implications in the uninorm framework is to consider a uninorm in the place of a
t-conorm in Definition 4.1.

Definition 5.1. A function I : [0, 1]2 → [0, 1] is called a (U,N)-operation, if there exist a uninorm U and a fuzzy
negation N such that

IU,N (x, y) = U (N (x), y), x, y ∈ [0, 1]. (4)

If I is a (U,N)-operation generated from a uninorm U and a negation N, then we will often denote it by IU,N .

Firstly, observe that if e = 0, then U is a t-conorm and IU,N , as an (S,N)-implication, is always a fuzzy implication,
whose properties and characterizations are quite well known. If e = 1, then U is a t-norm and IU,N is not a fuzzy
implication, since (I3) is violated. Therefore, we consider only the situation when U is a uninorm with the neutral
element e ∈ (0, 1).

Proposition 5.2. If IU,N is a (U,N)-operation obtained from a uninorm U with e ∈ (0, 1) as its neutral element, then

(i) IU,N satisfies (I1), (I2), (I5), (NC) and (EP),
(ii) Ne

IU,N
= N ,

(iii) IU,N satisfies R-CP(N ),
(iv) if N is strict, then IU,N satisfies L-CP(N−1),
(v) if N is strong, then IU,N satisfies CP(N ).

Proof. (i) By the monotonicity of U and N we get that IU,N satisfies (I1) and (I2). Moreover, it can be easily verified
that IU,N satisfies (I5) and (NC). Finally, from the associativity and the commutativity of U we have also (EP).

(ii) For any x ∈ [0, 1], with e ∈ (0, 1) being the identity of U, we have

Ne
IU,N

(x) = IU,N (x, e) = U (N (x), e) = N (x).

(iii) Since IU,N satisfies (EP), from Lemma 3.5(iii) with � = e we have that IU,N satisfies R-CP(N ).
(iv) If N is a strict negation, then from Remark 3.7(i) we see that IU,N satisfies L-CP(N−1).
(v) If N is a strong negation, then from Remark 3.7(ii) we see that IU,N satisfies CP(N ). �

If e ∈ (0, 1), then not for every uninorm U the (U,N)-operation is a fuzzy implication. The next result characterizes
those (U,N)-operations, which satisfy (I3) and (I4).

Theorem 5.3 (cf. De Baets and Fodor [6, p. 98]). For a uninorm U with neutral element e ∈ (0, 1) the following
statements are equivalent:

(i) The function IU,N as defined in (4) is a fuzzy implication.
(ii) U is a disjunctive uninorm, i.e., U (0, 1) = U (1, 0) = 1.
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Proof. (i) �⇒ (ii) If IU,N as defined in (4) is a fuzzy implication, then from (I3) we have

U (0, 1) = U (1, 0) = IU,N (0, 0) = 1.

(ii) �⇒ (i) Assume that U (0, 1) = 1. From Proposition 5.2 it is enough to show only (I3) and (I4):

IU,N (0, 0) = U (N (0), 0) = U (1, 0) = 1, IU,N (1, 1) = U (N (1), 1) = U (0, 1) = 1. �

Remark 5.4. Following the terminology used by Mas et al. [16] for the QL-implications, only if the (U,N)-operation
IU,N is a fuzzy implication we use the term (U,N)-implication.

Example 5.5. In the following, we give examples of (U,N)-implications obtained using the classical strong negation
NC(x) = 1− x for all x ∈ [0, 1], and for different uninorms. Note that IKD is the Kleene–Dienes implication given by

IKD(x, y) = max(1 − x, y), x, y ∈ [0, 1].

(i) Let us consider the disjunctive uninorm ULK from the class UMax generated by the triple (TLK, SLK, 0.5), where
TLK denotes the Łukasiewcz t-norm

TLK(x, y) = max(x + y − 1, 0), x, y ∈ [0, 1],

and SLK denotes the Łukasiewcz t-conorm

SLK(x, y) = min(x + y, 1), x, y ∈ [0, 1].

Then

IULK,NC (x, y) =
⎧⎨
⎩
max(y − x + 0.5, 0) if max(1 − x, y)�0.5,
min(y − x + 0.5, 1) if max(1 − x, y) > 0.5,
IKD(x, y) otherwise,

x, y ∈ [0, 1].

Fig. 1(a) gives the plot of IULK,NC .
(ii) Let us consider the disjunctive uninorm UP from the class UMax generated by the triple (TP, SP, 0.5), where TP

denotes the algebraic product t-norm

TP(x, y) = xy, x, y ∈ [0, 1],

and SP denotes the probabilistic sum t-conorm

SP(x, y) = x + y − xy, x, y ∈ [0, 1].

Then

IUP,NC (x, y) =
⎧⎨
⎩
2y − 2xy if max(1 − x, y)�0.5,
1 − 2x + 2xy if max(1 − x, y) > 0.5,
IKD(x, y) otherwise,

x, y ∈ [0, 1].

Fig. 1(b) gives the plot of IUP,NC .
(iii) Let us consider the disjunctive uninorm UM from the class UMax generated from the triple (TM, SM, 0.5), where

TM denotes the minimum t-norm

TM(x, y) = min(x, y), x, y ∈ [0, 1],

and SM denotes the maximum t-conorm

SM(x, y) = max(x, y), x, y ∈ [0, 1].

Observe, that UM is also an idempotent uninorm. Then

IUM,NC(x, y) =
{
min(1 − x, y) if max(1 − x, y)�0.5,
IKD(x, y) otherwise,

x, y ∈ [0, 1].

Fig. 1(c) gives the plot of IUM,NC .
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Fig. 1. Plots of (U,N)-implications from Example 5.5. (a) IULK,NC , (b) IUP,NC , (c) IUM,NC and (d) IUd
h1

,NC
.

(iv) If we consider the additive generator h1(x) = ln(x/(1 − x)), then we get the following disjunctive representable
uninorm:

Ud
h1 (x, y) =

{
1 if (x, y) ∈ {(0, 1), (1, 0)},

xy

(1 − x)(1 − y) + xy
otherwise, x, y ∈ [0, 1].

In this case e = 1
2 . Now, we have

IUd
h1

,NC
(x, y) =

⎧⎨
⎩
1 if (x, y) ∈ {(0, 0), (1, 1)},
(1 − x)y

x + y − 2xy
otherwise,

x, y ∈ [0, 1].

Fig. 1(d) gives the plot of IUd
h1

,NC
.

Lemma 5.6. Let IU,N be a (U,N)-implication obtained from a uninorm U with e ∈ (0, 1) as its neutral element and a
continuous negation N. Let � ∈ (0, 1) be an arbitrary but fixed number. Then the following statements are equivalent:

(i) N�
IU,N

= N .
(ii) � = e.
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Proof. Let e ∈ (0, 1) be the neutral element of U and � ∈ (0, 1) be an arbitrary but fixed number.

(i) �⇒ (ii) If N�
IU,N

= N , then since N is continuous there exists e′ such that e = N (e′) and hence

N�
IU,N

(e′) = IU,N (e′, �) = U (N (e′), �) = N (e′) = e. But U (N (e′), �) = U (e, �) = �, because e is the neutral
element of U, thus � = e.

(ii) �⇒ (i) This implication is just Proposition 5.2(ii). �

Remark 5.7. It is interesting to note that, unlike (S,N)-implications, (U,N)-implications do not satisfy the left neutrality
property (NP). To see this, let U be a uninorm with the neutral element e ∈ (0, 1) and N be a fuzzy negation. Then,
IU,N (1, e) = U (N (1), e) = U (0, e) = 0 � e.

6. Characterizations of (U,N)-implications and (U,N)-operations

We start our presentation with the following result.

Proposition 6.1. Let I ∈ FI and N be a fuzzy negation. If we define a binary operation UI,N on [0, 1] as follows

UI,N (x, y) = I (N (x), y), x, y ∈ [0, 1], (5)

then

(i) UI,N (x, 1) = UI,N (1, x) = 1 for all x ∈ [0, 1], in particular UI,N (0, 1) = 1,
(ii) UI,N is increasing in both the variables,
(iii) UI,N is commutative if and only if I satisfies L-CP(N ).

In addition, if I satisfies L-CP(N ) with a continuous fuzzy negation N , then

(iv) UI,N is associative if and only if I satisfies (EP),
(v) an arbitrary � ∈ (0, 1) is the neutral element of UI,N if and only if N�

I ◦ N = id[0,1].

Proof. (i) Let x ∈ [0, 1]. By the boundary condition (RB) of I we have UI,N (x, 1) = I (N (x), 1) = 1. Also,
UI,N (1, x) = I (N (1), x) = I (0, x) = 1 again by (LB) of I.

(ii) That UI,N is increasing in both the variables is a direct consequence of the monotonicity of I and N.
(iii) If UI,N is commutative, then I (N (x), y) = UI,N (x, y) = UI,N (y, x) = I (N (y), x) for all x, y ∈ [0, 1], i.e., I

satisfies L-CP(N ). The reverse implication can be obtained by retracing the above steps.
(iv) Let x, y, z ∈ [0, 1]. If I satisfies (EP), then

UI,N (x,UI,N (y, z))= I (N (x), I (N (y), z)) = I (N (x), I (N (z), y))

= I (N (z), I (N (x), y)) = I (N (I (N (x), y)), z)

= I (N (UI,N (x, y)), z) = UI (UI,N (x, y), z).

Conversely, if UI,N is associative and N is continuous, then there exists x ′, y′, z′ ∈ [0, 1] such that x = N (x ′),
y = N (y′) and z = N (z′). Now we obtain

I (x, I (y, z)) = I (N (x ′), I (N (y′), N (z′))) = UI,N (x
′,UI,N (y

′, N (z′))) = UI,N (UI,N (x
′y′), N (z′))

= UI,N (UI,N (y
′, x ′), N (z′)) = UI,N (y

′,UI,N (x
′, N (z′))) = I (y, I (x, z)).

(v) Let � ∈ (0, 1) be arbitrary but fixed. If � is the neutral element of UI,N , then for all x ∈ [0, 1] we have
x = UI,N (x, �) = I (N (x), �) = N�

I (N (x)). Conversely, if N�
I ◦ N = id[0,1], then for any x ∈ [0, 1] we get

UI,N (�, x) = UI,N (x, �) = I (N (x), �) = N�
I (N (x)) = x , so � is the neutral element of UI,N . �

If N�
I is a continuous fuzzy negation for an arbitrary but fixed � ∈ (0, 1), then by Lemma 2.2 and previous results

we can consider the modified pseudo-inverse N�
I given by

N�
I (x) =

{ (
N�
I

)(−1) (x) if x ∈ (0, 1],
1 if x = 0,

(6)
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as the potential candidate for the fuzzy negation N in (5). Hence, from Lemma 3.6 with N = N�
I , we obtain the

following result.

Corollary 6.2. If I ∈ FI satisfies (EP) and N�
I , the natural negation of I with respect to an arbitrary but fixed

� ∈ (0, 1), is a continuous fuzzy negation, then I satisfies (L-CP) with N�
I from (6).

Hence, if a fuzzy implication I satisfies (EP) and N�
I is a continuous fuzzy negation for some � ∈ (0, 1), then we

conclude that formula (5) can be considered with the modified pseudo-inverse of the natural negation of I given by (6).

Corollary 6.3. If I ∈ FI satisfies (EP) and N�
I is a continuous fuzzy negation with respect to an arbitrary but fixed

� ∈ (0, 1), then the function UI defined by

UI (x, y) = I (N�
I (x), y), x, y ∈ [0, 1] (7)

is a disjunctive uninorm with the neutral element �, where N�
I is as defined in (6).

Now we are ready to formulate the main result of this work.

Theorem 6.4. For a function I : [0, 1]2 → [0, 1] the following statements are equivalent:

(i) I is an (U,N)-operation generated from some disjunctive uninorm U with the neutral element e ∈ (0, 1) and some
continuous fuzzy negation N.

(ii) I is an (U,N)-implication generated from some uninormUwith the neutral element e ∈ (0, 1) and some continuous
fuzzy negation N.

(iii) I satisfies (I1), (I3), (EP) and the function Ne
I is a continuous negation for some e ∈ (0, 1).

Moreover, the representation (4) of (U,N)-implication is unique in this case.

Proof. That (i) is equivalent to (ii) follows immediately from Theorem 5.3.
(ii) �⇒ (iii) Assume that I is an (U,N)-implication based on a uninorm U with the neutral element e ∈ (0, 1) and

a continuous negation N. Since every (U,N)-implication is a fuzzy implication, I satisfies (I1) and (I3). Moreover, by
Proposition 5.2, it satisfies (EP) and Ne

I = N . In particular Ne
I is continuous.

(iii) �⇒ (ii) Firstly, see that from Lemma 3.5(iii) it follows that I satisfies (R-CP) with respect to the continuous
negation Ne

I . Next, Lemma 3.3 implies that I satisfies (I2). Once again from Lemma 3.5(i) and (ii) we have that I
satisfies (I3)–(I5), and hence I ∈ FI. Further, by virtue of Lemmas 2.2 and 3.6, the implication I satisfies L-CP(Ne

I ).
Because of Corollary 6.3 the function UI defined by (7) is a disjunctive uninorm with the neutral element e. We will
show that IUI ,Ne

I
= I . Fix arbitrarily x, y ∈ [0, 1]. If x ∈ Ran(Ne

I ), then by (1) we have

IUI ,Ne
I
(x, y) = UI (N

e
I (x), y) = I (Ne

I ◦ Ne
I (x), y) = I (x, y).

If x /∈ Ran(Ne
I ), then from the continuity of Ne

I there exists x0 ∈ Ran(Ne
I ) such that N

e
I (x) = Ne

I (x0). Firstly, see that
I (x, y) = I (x0, y) for all y ∈ [0, 1]. Indeed, let us fix arbitrarily y ∈ [0, 1]. From the continuity of Ne

I there exists
y′ ∈ [0, 1] such that Ne

I (y
′) = y, so

I (x, y) = I (x, Ne
I (y

′)) = I (y′, Ne
I (x)) = I (y′, Ne

I (x0)) = I (x0, N
e
I (y

′)) = I (x0, y).

From the above fact we get

IUI ,Ne
I
(x, y) = UI (N

e
I (x), y) = UI (N

e
I (x0), y) = I (x0, y) = I (x, y),

so I is a (U,N)-implication.
Finally, assume that there exist two continuous fuzzy negations N1, N2 and two uninorms U1,U2 with neutral

elements e, e′ ∈ (0, 1), respectively, such that I (x, y) = U1(N1(x), y) = U2(N2(x), y) for all x, y ∈ [0, 1]. Fix
arbitrarily x0, y0 ∈ [0, 1]. Observe now that from Proposition 5.2 we get N1 = N2 = Ne

I = Ne′
I . By virtue of

Lemma 5.6 we get that e′ = e. Moreover, since Ne
I is a continuous negation, there exists x1 ∈ [0, 1] such that
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Ne
I (x1) = x0. Thus U1(x0, y0) = U1(Ne

I (x1), y0) = U2(Ne
I (x1), y0) = U2(x0, y0), i.e., U1 = U2. Hence N and U are

uniquely determined. In fact, U = UI defined by (7). �

From the above proof the following result easily follows.

Theorem 6.5. For a function I : [0, 1]2 → [0, 1] the following statements are equivalent:

(i) I is a (U,N)-implication generated from some disjunctive uninorm U with the neutral element e ∈ (0, 1) and some
strict (strong) fuzzy negation N.

(ii) I satisfies (I1), (I3), (EP) and the function Ne
I is a strict (strong) negation.

Remark 6.6.

(i) In Theorems 6.4 and 6.5 the property (I1) can be substituted by (I2) and the property (I3) can be substituted by
(I4).

(ii) In Table 1, we show the mutual independence of the properties from Theorem 6.4. The same examples can be
considered for the mutual independence of axioms in Theorem 6.5. We recognize that the verification of Table 1,
vis-á-vis, the functions and the corresponding properties indicated, may not be obvious. Hence, in the following,
we show that the presented examples in Table 1 are correct. Firstly, observe that if a function F satisfies (NP), then
F(1, �) = � for all � ∈ (0, 1), i.e., N�

F (1) � 0 and hence N�
F is not a fuzzy negation for any � ∈ (0, 1).

(a) It is clear that F1 satisfies (I1), but neither does it satisfy (I3) nor is N�
F1

a continuous fuzzy negation for any
� ∈ (0, 1). Moreover, F1 does not satisfy (EP), since

F1(0.4, F1(0.6, 0.5)) = 0 � 1 = F1(0.6, F1(0.4, 0.5)).

(b) F2 does not satisfy (I1), since F2(0, y) = 0 < y = F2(1, y) for any y ∈ (0, 1). From the same equality we see
that N�

F2
is not a fuzzy negation for any � ∈ (0, 1). Since

F2(0, F2(0.5, 1)) = 1 � 0 = F2(0.5, F2(0, 1)),

F2 does not satisfy (EP).
(c) F3 does not satisfy (I1), since F3(0, y) = 0 < y = F3(1, y) for any y ∈ (0, 1). From the same equality we see

that N�
F3

is not a fuzzy negation for any � ∈ (0, 1). Further, F3(0, 0) = 0, so F3 does not satisfy (I3). Finally,
the minimum satisfies (EP).

(d) F4 does not satisfy (I1), since F4(0, 0.3) = 0 < 1 = F4(1, 0.3). It is easy to see that N 0.5
F4

= NC and also that
F4 does not satisfy (I3). F4 does not satisfy (EP), since

F4(0.5, F4(0.6, 0.5)) = 1 � 0.4 = F4(0.6, F4(0.5, 0.5)).

(e) It is clear that F5 satisfies both (I1) and (I3). F5 does not satisfy (EP), since

F5(0.5, F5(0.8, 0.5)) = 1 � 0 = F5(0.8, F5(0.5, 0.5)).

Moreover, N�
F5

is not a continuous fuzzy negation for any � ∈ (0, 1).
(f) Function F6 is self-explanatory.
(g) Clearly, the function F7 satisfies (I1), N 0.5

F7
= NC, but it does not satisfy (I3). Moreover, since

F7(0.5, F7(0.4, 0.6)) = 0.5 � 0.6 = F7(0.4, F7(0.5, 0.6)),

F7 does not satisfy (EP).
(h) F8 does not satisfy (I1), since F8(0, 0.6) = 0 < 1 = F8(1, 0.6). N�

F8
is not a continuous negation for any

� ∈ (0, 1). However, it can be easily verified that F8 does satisfy both (I3) and (EP).
(i) F9 does not satisfy (I1), since F9(0, 0.6) = 0 < 1 = F9(1, 0.6). It is easy to see that N 0.5

F9
= NC and also that

F9 does satisfy (I3). F9 does not satisfy (EP), since

F9(0.5, F9(0.6, 0.5)) = 0 � 0.4 = F9(0.6, F9(0.5, 0.5)).
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Table 1
The mutual independence of the properties in Theorem 6.4

Function F (I1) (I3) (EP)
N �
F is continuous

for some � ∈ (0, 1)

F1(x, y) =
{
1 if x < y
0 otherwise

C × × ×

F2(x, y) =
⎧⎨
⎩

1 if x = 0 and y = 0
y if x = 1
0 otherwise

× C × ×

F3 = TM × × C ×

F4(x, y) =
⎧⎨
⎩

0 if (x, y) ∈ [0, 0.5)2 ∪ (0.5, 1]2

1 − x if y = 0.5
1 otherwise

× × × C

F5(x, y) =
{
1 if x, y ∈ [0, 0.5]
0 otherwise

C C × ×
F6 = 0 C × C ×

F7(x, y) =
{
1 − x if y = 0.5
min(1 − x, y) otherwise

C × × C

F8(x, y) =
{
1 if (x, y) ∈ [0, 0.5)2 ∪ (0.5, 1]2

0 otherwise
× C C ×

F9(x, y) =
⎧⎨
⎩

1 if (x, y) ∈ [0, 0.5)2 ∪ (0.5, 1]2

1 − x if y = 0.5
0 otherwise

× C × C

F10(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

0 if (x, y) ∈ [0, 0.5)2 ∪ (0.5, 1]2

1 − x if y = 0.5
y if x = 0.5
1 otherwise

× × C C

F11(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1 if (x, y) ∈ [0, 0.5)2 ∪ (0.5, 1]2

1 − x if y = 0.5
y if x = 0.5
0 otherwise

× C C C

F12(x, y) =
{
min(1 − x, y) if x� y
max(1 − x, y) if x > y

C × C C

F13(x, y) = 1 − x C C × C

F14(x, y) =
{
1 if x = 0 and y = 0
yx if x > 0 or y > 0

C C C ×

(j) Although N 0.5
F10

= NC and F10 satisfies (EP), it does not satisfy either (I3) or (I1), since

F10(0, 0.3) = 0 < 1 = F10(1, 0.3).

(k) F11 does not satisfy (I1), since F11(0, 0.6) = 0 < 1 = F11(1, 0.6). Interestingly, N 0.5
F11

= NC and F11 satisfies
both (EP) and (I3).

(l) Clearly, the function F12 does not satisfy (I3), but it satisfies both (EP) and (I1). Moreover, N 0.5
F12

= NC.
(m) F13 satisfies both (I1) and (I3), and once again, N�

F13
= NC for any � ∈ [0, 1). It does not satisfy (EP), since

F13(0, F13(0.5, 0)) = 1 � 0.5 = F13(0.5, F13(0, 0)).

(n) Finally, F14 is the Yager implication (see [22]), which is a fuzzy implication that satisfies both (EP) and (NP)
(cf. [2,3]).
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The following characterization of (U,N)-operations can now be obtained along similar lines as above.

Theorem 6.7. For a function I : [0, 1]2 → [0, 1] the following statements are equivalent:

(i) I is a (U,N)-operation generated from some uninorm U with the neutral element e ∈ (0, 1) and some continuous
fuzzy negation N.

(ii) I satisfies (I1), (EP) and the function Ne
I is a continuous negation for some e ∈ (0, 1).

Once again, in the above theorem, the property (I1) can be substituted by (I2) and all properties in point (ii) are
mutually independent from each other.

7. Concluding remarks

In thiswork,we have characterized (U,N)-operations and (U,N)-implications obtained fromuninorms and continuous
negations. Toward this end, we have investigated some desirable algebraic properties of fuzzy implications and obtained
some characterization results. Unfortunately, the characterization of (U,N)-implications obtained from non-continuous
negations is still unavailable. It should be noted that (U,N)-implications are closely related to e-implications investigated
by Khaledi et al. [11], whose characterization is also still unknown.
Similar to uninorms, t-operators, usually denoted by F, were proposed by Mas et al. [15]. They are currently known

as nullnorms (see [4]), since like uninorms, these are commutative, associative and increasing binary operations on the
unit interval [0, 1], but unlike uninorms where the neutral element gets the focus, here the emphasis is on the annihilator
k ∈ [0, 1] such that F(1, 0) = F(0, 1) = k. It immediately follows that if k = 0, then F is a t-norm, while k = 1
implies that F is a t-conorm. Unfortunately, nullnorms do not exactly turn out to be a fertile field for generating fuzzy
implications the usual way. For example, consider the generalization of (S,N)-implications to the setting of nullnorms,
with any fuzzy negation N, defined as

IF,N (x, y) = F(N (x), y), x, y ∈ [0, 1].

Then

IF,N (0, 0) = F(N (0), 0) = F(1, 0) = k.

Now, if IF,N were to satisfy (I3), i.e., IF,N (0, 0) = 1, it would fix F to be a t-conorm. Hence IF,N reduces to an
(S,N)-implication.
Recently, there has been a lot of interest on non-commutative fuzzy conjunctions and disjunctions. One of the earliest

studies along these lines was done by Fodor and Keresztfalvi [8]. Such operations again have proven to be a fertile
ground for obtaining fuzzy implications. For example, (S,N)-type implications from copulas/co-copulas were obtained
by Yager [23]. Characterization of this family of fuzzy implications seems worthy of an attempt and will be taken up
in our future endeavors.
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