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Abstract—In this paper, we analyze the performance of maximum-
likelihood (ML) multiuser detection in space-time coded CDMA
systems with imperfect channel estimation. A K-user synchronous
CDMA system which employs orthogonal space-time block codes
with M transmit antennas and N receive antennas is considered.
A least-squares estimate of the channel matrix is obtained by
sending a sequence of pilot bits from each user. The channel ma-
trix is perturbed by an error matrix which depends on the ther-
mal noise as well as the correlation between the signature wave-
forms of different users. Using the characteristic function of the
decision variable, we derive an exact expression, in closed-form,
for the pairwise error probability (PEP) of the joint data vec-
tor of bits from different users. Using this exact PEP expression,
we obtain an upper bound on the average bit error rate (BER).
The analytical BER bounds are compared with the BER obtained
through simulations. The BER bounds are shown to be increas-
ingly tight for large SNR values. It is shown that the degradation
in BER performance due to imperfect channel estimation can be
compensated by using more number of transmit/receive anten-
nas.

Keywords – ML multiuser detection, space-time codes, CDMA, imperfect

channel estimation.

I. INTRODUCTION

Space-time coded transmission using multiple transmit anten-
nas can offer the benefits of transmit diversity and high data
rate transmission on fading channels [1]. Space-time cod-
ing applied to code division multiple access (CDMA) sys-
tems has been of interest [2]. Multiuser detection schemes,
which can significantly enhance the receiver performance and
increase the capacity of CDMA systems, have been exten-
sively studied in the literature, mainly for single transmit an-
tenna systems [3]. Multiuser detection schemes and their per-
formances in space-time coded CDMA systems with multi-
ple transmit antennas has been a topic of recent investigations
[4],[5],[6],[7]. The performance of the systems considered
in [4]-[6] were evaluated mainly through simulations. In [7],
Uysal and Georghiades derived an exact analytical expression
for the pairwise error probability (PEP) and obtained approxi-
mate bit error probability for a space-time coded CDMA sys-
tem. However, the detector considered in [7] is not a mul-
tiuser detector. In [8], Taricco and Biglieri obtained an ex-
pression for the PEP of space-time codes in a single user sys-
tem, assuming perfect channel estimation at the receiver. Us-
ing this PEP, they obtained bounds on the probability of error
for maximum-likelihood (ML) detection. In [9], Garg et al
extended the work in [8] by incorporating imperfect channel
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estimation in the system model, again for the single user sys-
tem.

For a multiuser system, bounds on the bit error probability of
the maximum-likelihood (ML) multiuser detector have been
derived in [3] (Ch. 4.3) for a 1-Tx/1-Rx antenna system. In
[10], we cosidered a space-time coded CDMA system with
multiple transmit and multiple receive antennas where we de-
rived bounds on the bit error probability of the ML multiuser
detector. The analysis in [10] assumed perfect knowledge of
the channel coefficients at the receiver. Our new contribution
in this paper is to analyze the performance when the channel
estimates at the receiver are imperfect. A least-squares esti-
mate of the channel matrix is obtained by sending a sequence
of pilot bits from each user. The channel matrix is perturbed
by an error matrix which depends on the thermal noise as well
as the correlation between the signature waveforms of differ-
ent users.

Using a discrete-time vector model of the received signal in
a space-time coded CDMA system with M transmit and N
receive antennas as in [11], and the characteristic function
of the decision variable, we derive an exact expression, in
closed-form, for the pairwise error probability (PEP) of the
joint data vector of bits from different users. Using this exact
PEP expression, we then obtain an upper bound on the average
bit error rate (BER). We compare the analytical BER bounds
with the BER obtained through simulations, and show that the
BER bounds are increasingly tight for large SNR values. It
is shown that the degradation in BER performance due to im-
perfect channel estimation can be compensated by using more
number of transmit/receive antennas.

The rest of the paper is organized as follows. In Section II,
we present the system model. In Section III, we present the
performance analysis. Section IV presents the results and dis-
cussions. Conclusions are given in Section V.

II. SYSTEM MODEL

Consider a K-user synchronous CDMA system with M trans-
mit antennas per user. Users transmit data blocks with Q bits
per data block. Let biq, i ∈ {1, 2, ..., K}, q ∈ {1, 2, ..., Q},
be the qth bit of the ith user, transmitted in a time interval
of length T . The bits in a data block are mapped on to the
M transmit antennas using orthogonal space-time block codes
(STBC) [12]. We assume that the channel fading is quasi-
static over one data block. Let Aip be the transmit amplitude
on the pth transmit antenna of the ith user, hip the complex
channel gain from the pth transmit antenna of the ith user,
and si represent the unit energy signature waveform of the ith

user. The demodulator on each receive antenna uses a bank of



K matched filters, each matched to a different user’s signature
waveform. Assuming that the signature waveforms of differ-
ent users are synchronous, the received signal at the output of
the jth matched filter for the qth data bit is denoted as yjq ,
where j = 1, 2, ..., K, and q ∈ {1, 2, ..., Q}. We define matrix
R as

R =




1 ρ12 . . . ρ1K

ρ12 1 . . . ρ2K

...
...

...
...

ρ1K ρ2K . . . 1


 , (1)

where ρjk =< si, sj > is the inner product of the signature
sequences of the ith and jth users over the time interval T .
Defining

Hq = diag
[
A1qh1q , . . . , AKqhKq

]
, yq =

[
y1q , . . . , yKq

]T
,

y =
[
yT

1 ,yT
2 , . . . ,yT

Q

]T
, bq =

[
b1q, . . . , bKq

]T
and

b =
[
bT

1 , . . . ,bT
Q

]T
, the received signal vector y can be writ-

ten in the form [11]
y = CHb + η, (2)

where the correlation matrix, C, is given by

C =




R 0 0 0 . . .
0 R 0 0 . . .
0 0 R 0 . . .
...

...
...

...
...

0 . . . 0 0 R


 , (3)

and E
[
ηη

†] = 2σ2C, where η
† denotes the Hermitian of the

complex vector η. The channel matrix H for M = Q = 8 is
given by

H =




H1 H2 H3 H4 H5 H6 H7 H8
−H2 H1 H4 −H3 H6 −H5 −H8 H7
−H3 −H4 H1 H2 H7 H8 −H5 −H6
−H4 H3 −H2 H1 H8 −H7 H6 −H5
−H5 −H6 −H7 −H8 H1 H2 H3 H4
−H6 H5 −H8 H7 −H2 H1 −H4 H3
−H7 H8 H5 −H6 −H3 H4 H1 −H2
−H8 −H7 H6 H5 −H4 −H3 H2 H1


 . (4)

The vector model in (2) can be valid for other values of M ,
provided the matrices, H (of order QK×QK) are defined ap-
propriately. For values of M and Q other than 8 (M, Q < 8),
H is given by the upper leftmost submatrix of order QK×QK
in (4). For the case of M /∈ {1, 2, 4, 8}, M < Q. There-
fore, only the elements Hq , q = 1, 2, ..., M , are non-zero, i.e.,
Hq = 0 for M < q ≤ Q. The entries of the channel matrix H

are assumed to be i.i.d, zero-mean complex circular Gaussian
random variables (Rayleigh fading). Assuming the correlation
matrix C to be positive definite, we do the Cholesky decom-
position of C C = FT F. (5)Then

ŷ = (FT )−1 y = FHb + n, (6)

where E[n] = 0QK×1, E[nn†] = 2σ2IQK , where (.)† repre-
sents the Hermitian operation and I is the identity matrix.

A. Channel Estimation

Each user is assumed to transmit a sequence of Q pilot bits
Lp for the purpose of channel estimation at the receiver. From
(6), the received vector due to the kth set of Q pilot bits per
user is obtained as

ŷk = FHbk + nk, 1 ≤ k ≤ Lp, (7)

Let the matrix Bp of dimension QK×Lp denote the sequence
of composite pilot vectors b1,b2, · · · ,bLp

. Bp is given by

Bp =
[

b1 b2 · · · bLp

]
, (8)

where n1,n2, · · · ,nLp
are complex Gaussian random vectors

such that
E [np] = 0QK×1, E

[
npn

†
p

]
= 2σ2IQK . (9)

The received pilot matrix Ŷp can then be written as

Ŷp = FHBp + Np, (10)

where Np =
[

n1 n2 · · · nLp

]
.

The least-squares estimate of the channel matrix H can be ob-
tained as

Ĥ = F−1ŶpB
T
p

(
BpB

T
p

)−1
. (11)

For the above equation to hold, the matrix
(
BpB

T
p

)
has to be

invertible, i.e., Lp ≥ QK. From (10) and (11),

Ĥ = H + F−1NpB
T
p

(
BpB

T
p

)−1
. (12)

B. ML Criterion

Using the vector representation of the multiuser received sig-
nal in (6), the maximum-likelihood (ML) multiuser detection
criterion can be written as follows. From (11), we obtain the
estimates of the channel gains at the receiver. The ML es-
timate of the transmitted bit vector, b, (comprising the bits
from all users) is then given by

b̃ = arg



min

x

N∑

j=1

‖ŷ(j) − FĤ(j)x‖2



 , (13)

where the superscript (j) in y and Ĥ denote the receive an-
tenna index, and the minx is over all possible bit vectors of
length QK. Substituting (6) in (13)

b̃ = arg

{
min
x

N∑

j=1

‖FH
(j)

(b − x) + n
(j)

− N
(j)
p B

T
p

(
BpB

T
p

)−1
x‖

2

}
.

(14)

III. PERFORMANCE ANALYSIS

In this section, we analyze the bit error performance of the
ML multiuser detection scheme in (14). We first derive an
expression for the pairwise error probability (PEP), P (b →

b̃), and then obtain a bound on the bit error probability. The
PEP is given by

P (b → b̃) = Pr

{
N∑

j=1

‖FH
(j)(b−b̃) + n

(j) − N
(j)
p B

T
p

(
BpB

T
p

)−1
b̃‖2

−‖n(j)−N
(j)
p B

T
p

(
BpB

T
p

)−1
b‖2

< 0

}
. (15)

Define the metric D as

D =

N∑

j=1

‖u(j)‖2 − ‖v(j)‖2, (16)

where

u
(j) = FH

(j)(b − b̃) + n
(j) − N

(j)
p B

T
p

(
BpB

T
p

)−1
b̃

= FH
(j)(b − b̃) + n

(j) − N
(j)
p c̃,

v
(j) = n

(j) − N
(j)
p B

T
p

(
BpB

T
p

)−1
b

= n
(j) − N

(j)
p c,

c̃ = B
T
p

(
BpB

T
p

)−1
b̃,

c = B
T
p

(
BpB

T
p

)−1
b.

(17)



Eqn. (16) can be written in the form

D = V†SV, (18)

where

V =




u
(1)

...
u

(N)

v
(1)

...
v

(N)




, (19)

S =

[
IQKN 0

0 −IQKN .

]
. (20)

The decision variable D in (18) is in Hermitian quadratic form
in the complex Gaussian random vector V. This form, from a
result in [13], allows us to write the characteristic function of
D, ΦD(jω), in closed-form. In order to do that, let

T = E[VV†]. (21)

To evaluate T in the above, we write H(j)b in an alternate
form [2]

H(j)b = Bh(j), (22)
where B is a QK × QK matrix, which for M = Q = 8 is
defined as

B =




B1 B2 B3 B4 B5 B6 B7 B8
B2 −B1 −B4 B3 −B6 B5 B8 −B7
B3 B4 −B1 −B2 −B7 −B8 B5 B6
B4 −B3 B2 −B1 −B8 B7 −B6 B5
B5 B6 B7 B8 −B1 −B2 −B3 −B4
B6 −B5 B8 −B7 B2 −B1 B4 −B3
B7 −B8 −B5 B6 B3 −B4 −B1 B2
B8 B7 −B6 −B5 B4 B3 −B2 −B1


 . (23)

where Bq = Aqdiag{bq}, Aq = diag{A1q, A2q , · · · , AKq},
q = 1, 2, · · · , Q. For values of M and Q other than 8, (M, Q <
8) B is obtained as follows. For M = Q ∈ {1, 2, 4}, B is
given by the upper leftmost submatrix of order QK × QK in
(23). For M /∈ {1, 2, 4, 8}, M < Q. In this case, B is given by
the QK×QK upper leftmost submatrix in (23) with all the en-
tries in the qth column (M < q ≤ Q) as zeros. Defining hq =
[h1q , h2q, · · · , hKq]

T and h = [hT
1 ,hT

2 , · · · ,hT
Q]T , E[h] =

0QK×1 and E[hh†] = ΩIQK . Also, let β =
(
1 + c̃T c̃

)
, κ =(

1 + c̃T c
)

and ε =
(
1 + cT c

)
. With the above definitions,

we obtain

E

[
u

(i)
u

(j)†
]

=

{
0 i 6= j

ΩF(B− B̃)(B − B̃)T
F

T

+2σ2βIQK i = j

(24)

E[u(i)
v

(j)†] =

{
0 i 6= j

2σ2κIQK i = j
(25)

E[v(i)
u

(j)†] =

{
0 i 6= j

2σ2κIQK i = j
(26)

E[v(i)
v

(j)†] =

{
0 i 6= j

2σ2εIQK i = j,
(27)

from which T can be evaluated. Now, the the characteristic
function of D, ΦD(jω) can be written as (Ref. [13], Eqn.
(4.a))

ΦD(jω) =
1

|I2NQK − 2jωσ2G|
, (28)

where G = TS. From (20), (21), (24), (25), we can write G

as

G =

[
IN ⊗

(
Ω

2σ2
F(B − B̃)(B − B̃)T F

T + βIQK

)
−IN ⊗ κIQK

IN ⊗ κIQK −IN ⊗ εIQK

]
. (29)

Defining Ĝ as

Ĝ =

[
( Ω
2σ2 F(B − B̃)(B − B̃)T

F
T + βIQK) −κIQK

κIQK −εIQK

]
, (30)

(28) can be written as

ΦD(jω) =
1

|I2QK − 2jωσ2Ĝ|N
.

=

2QK∏

i=1

1

|1 − 2jωσ2λ̂i|N
. (31)

where λ̂1, · · · , λ̂2QK are the eigenvalues of Ĝ. For the case
when the amplitudes of all bits from all the users are the same,
i.e., Aiq = Ajq = A, i, j = 1, 2, · · · , K, q = 1, 2, · · · , Q, and
M = Q, (31) can be written in the form

ΦD(jω) =
1

|I2K − 2jωσ2G̃|MN

=
2K∏

i=1

1

|1 − 2jωσ2λi|MN
, (32)

where G̃ is given by

G̃ =

[
ΩA2

2σ2 PΛPT + βIK −κIK

κIK −εIK

]
, (33)

where P is the Cholesky decomposition of the R matrix (i.e.,
R = PT P), Λ is given by

Λ =
1

A2

Q∑

i=1

(Bi − B̃i)
2, (34)

and λ1, · · · , λ2K are the eigenvalues G̃. Substituting z =
2jωσ2, we have

ΦD(z) =

2K∏

i=1

1

(1 − zλi)MN
. (35)

From the above characteristic function of D, the PEP in (??)
can be obtained as [16], [9]

P (b → b̃) = −
∑

k

1

(pk − 1)!

dpk−1

dzpk−1

{
(z − λk)pk

ΦD(z)

z

}
, (36)

where λk are the negative eigenvalues of G̃, Re(λk) < 0, and
pk is the multiplicity of λk. We obtain (36) in closed-form as
follows. The characteristic equation of G̃ is given by

det|λI2K − G̃| = det

∣∣∣ (λ − β)IK − γJ κIK

−κIK (λ + ε)IK

∣∣∣ = 0, (37)

where γ = ΩA2

2σ2 is the average SNR, and J = PΛPT . Eqn.
(37) can be shown to reduce to the form [14]

det|(λ − β)(λ + ε)IK − γ(λ + ε)J + κ2IK | = 0. (38)

If µ1, · · · , µL are the L distinct eigenvalues of J, each with
multiplicity vi, i.e.

∑L
i=1 vi = 2K, then (38) reduces to

L∏

i=1

{
λ2 − (β − ε + γµi)λ − (βε − κ2 + γµiε)

}vi
= 0. (39)

From Sylvester’s Law of Inertia [15], the eigenvalues of J

are non-negative (i.e., µi ≥ 0). Hence, the roots of (39) are
all real. Denote the negative roots as λj , with multiplicities
gj , j = 1, 2, · · · , LN and the non-negative roots as ρi, with



multiplicities ri, i = 1, 2, · · · , LP , so that
∑

j gj +
∑

i ri =
2K. With this, we can now follow the steps similar to the ones
in [9], and obtain the closed-form expression for the PEP as

P (b → b̃) =

∑

j

(−λj )
MN(2K−gj )

∏
i
(ρi − λj )MNri

∏
k 6=j

(λk − λj )MNgk

·

∑

(l1, · · · , lMNgj−1)

0 ≤ l1, · · · , lMNgj−1 ≤ MNgj − 1

l1 + 2l2 + · · · + (MNgj − 1)lMNgj−1 = MNgj − 1

MNgj−1∏

m=1

1

lm!

·

[
1

m
+

MN

m

(
∑

i

riρm
i

(ρi − λj )m
+

∑

k 6=j

gkλm
k

(λk − λj )m

)]lm

, (40)

where K is the number of users, M is the number of trans-
mit antennas per user, and N is the number of antennas at the
receiver.

Bound on the Probability of Bit Error

Using the expression for PEP in the above, we obtain an upper
bound on the bit error probability as follows. Let b(j), 1 ≤
j ≤ 2QK be the set of QK-bit vectors comprising of Q bits
from each of the K users. Suppose b(k) was the transmitted
vector. Define

Dm =

N∑

j=1

‖ŷ(j) − FH(j)b(m)‖2, m = 1, 2, · · · , 2QK ,

(41)
where ŷ, F and H are as defined in (13). If b(l) is the received
vector, define

Pexact

(
b(k) → b(l)

)
= Pr




2QK⋂

m=1
m6=l

(Dl < Dm)


 . (42)

It is noted that the PEP in (40) is nothing but

P
(
b(k) → b(l)

)
= Pr (Dl < Dk) . (43)

It is clear that

Pexact

(
b(k) → b(l)

)
≤ P

(
b(k) → b(l)

)
. (44)

Let P (eiq) denote the probability of error for the qth bit of the
ith user, q = 1, 2, · · · , Q and i = 1, 2, · · · , K. P (eiq) is then
given by

P (eiq) =

2QK−1∑

j=1

P (eiq|b
(j)

, b
(j)
iq = 1)P (b(j)

, b
(j)
iq = 1)

+

2QK−1∑

k=1

P (eiq|b
(k)

, b
(k)
iq = −1)P (b(k)

, b
(k)
iq = −1). (45)

P (eiq |b
(j), b

(j)
iq = ±1) and P (b(j), b

(j)
iq = ±1) are then given

by

P

(
eiq |b

(j)
, b

(j)
iq

= 1

)
=

2QK−1∑

k=1

Pexact

(
b
(j)

→ b
(k)

|b
(j)
iq

= 1, b
(k)
iq

= −1

)
, (46)

P

(
eiq |b

(k)
, b

(k)
iq

= −1

)
=

2QK−1∑

j=1

Pexact

(
b
(k)

→ b
(j)

|b
(j)
iq

= 1, b
(k)
iq

= −1

)
, (47)

P (b
(j)

, b
(j)
iq

= 1) = P (b
(k)

, b
(k)
iq

= −1) =
1

2QK
. (48)

From (44) (45),(46),(47) and(48), an upper bound on the bit
error probability P (eiq) is obtained as

P (eiq ) ≤
1

2QK

[
2QK−1∑

j=1

2QK−1∑

k=1

P (b
(j)

→ b
(k)

|b
(j)

iq
= 1, b

(k)

iq
= −1)

+

2QK−1∑

k=1

2QK−1∑

j=1

P (b
(k)

→ b
(j)

|b
(k)
iq

= 1, b
(j)
iq

= −1)

]
. (49)

IV. RESULTS AND DISCUSSION

In this section, we present the numerical results of the error
performance of the ML multiuser detection scheme. Fig. 1
shows the PEP plots for the cases of both perfect channel es-
timation as well as imperfect channel estimation, for a two
user system (K = 2), with two transmit antennas (M = 2)
at each user, and one antenna at the receiver (N = 1). The
correlation coefficient between the two users’ signature wave-
forms, ρ = 0.2. The power imbalance between the two users
is characterized by the near-far ratio (NFR)1. In Fig. 1, the
NFR is taken to be 0 dB (i.e., equal power users). It can be
seen that, as expected, the PEP degrades with imperfect chan-
nel estimation compared to the perfect channel estimates case.
These plots are from the PEP exact expressions given in (40).
We also verified the correctness of these plots through simu-
lation results, which were found to match with the analytical
results. Fig. 2 presents the bit error rate performance obtained
through the analytical bound as well as simulations for K = 2,
M = 2, N = 1 and NFR = 0 dB. Plots for both perfect as well
as imperfect channel estimates are shown. It can be observed
that the analytical bounds become increasingly tight for large
SNR values. Also, imperfect channel estimates are seen to de-
grade the BER performance. For example, at a BER of 10−2,
the performance loss is about 4 dB in the case of imperfect
channel estimation, compared to the perfect channel estima-
tion case. Figs. 3 and 4 shows the bound on the BER as a
function of average SNR for M = 2, N = 1, 2, and N = 2,
M = 1, 2, respectively, both for the cases of perfect as well as
imperfect channel estimates. From Figs. 3 and 4, it is seen that
the degradation in BER performance due to imperfect channel
estimates can be compensated by using more number of re-
ceive/transmit antennas.

V. CONCLUSION

We analyzed the bit error performance of maximum-likelihood
(ML) multiuser detection in space-time coded CDMA sys-
tems. We considered a K-user synchronous CDMA system
which employs orthogonal space-time block coding with M
transmit antennas and N receive antennas. We derived a closed-
form exact expression for the pairwise error probability, using

1We define NFR as 10 log

∑
M

p=1
A2

2p∑
M

p=1
A2

1p

assuming Ω = E|hiq|2 = 1.
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Fig. 1. Pairwise error probability as a function of average SNR for K =
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estimates.
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Fig. 2. Bit error rate performance as a function of average SNR for. K =
2,M = 2, N = 1, NFR = 0 dB. Analytical bound versus simulations. Cases
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Fig. 3. Bit error probability bound as a function of average SNR for different
number of Rx antennas, N = 1, 2. K = 2, M = 2, NFR = 0 dB. Cases of
perfect as well as imperfect channel estimates.
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Fig. 4. Bit error probability bound as a function of average SNR for different
number of Tx antennas, M = 1, 2. K = 2, N = 1, NFR = 0 dB. Cases of
perfect as well as imperfect channel estimates.

which we obtained an upper bound on the bit error probability.
We showed that the analytical BER bounds are increasingly
tight for large SNR values.
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