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Abstract—In this paper, bit error rate (BER) expressions

for the λ-MRC receiver for a decode and forward (DF)

cooperative system are obtained for Nakagami-m fading,

where m is not an integer. Previous results were available

only for integer values of m. BER analysis is done by

employing approximate statistics of a gamma conditionally

gaussian (CG) random variable (RV) obtained through the

Loskot-Prony approximation. Numerical results obtained

using the analytical BER expressions are shown to closely

follow the simulation results, despite the cumulative distri-

bution function (CDF) of the gamma CGRV being a high

signal to noise ratio (SNR) appoximation.

Index Terms—BER, Gamma CG distribution,

Nakagami-m fading

I. Introduction

BER expressions for DF cooperative systems,

compared to amplify and forward (AF) cooperation,

are difficult to evaluate, and hence there is con-

siderable interest in finding analytical expressions

for the BER for DF cooperative systems. Exact ex-

pressions for the BER for the piecewise linear (PL)

combiner were first obtained for Rayleigh fading

in [1] and [2] for noncoherent binary frequency

shift keying (BFSK) and binary phase shift keying

(BPSK) respectively. Results for the more general

Nakagami-m fading were first obtained in [3] using

the approach in [2] followed by a simpler approach

in [4]. [4] also included BER expressions for the

λ-MRC receiver proposed in [5].

One common feature of the above literature is

the restriction of the Nakagami fading paramter m,

to being an integer. To the best of our knowledge,

there has not been any attempt to evalute the BER
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Fig. 1. Three node cooperative diversity system.

for popular DF receivers like the λ-MRC or PL

combiner for noninteger values of m.

In this paper, we use a Loskot-Prony [6] approx-

imation for the CDF of a gamma CGRV to obtain

the BER for a λ-MRC cooperative system. This

approximation for the CDF is known to be tight

for high SNR. However, through numerical results,

we show that the related expression for the BER

obtained in this paper using this approxmiate CDF,

exactly follows the simulation results.

In the beginning section, the system model is pre-

sented, followed by BER analysis. Numerical and

simulation results are discussed next. Our conclu-

sions are summarized in the final section, outlining

the scope for future work.

II. SystemModel

The classic three node cooperative system in

Figure 1 is considered, where, without loss of gen-



erality, h represents the Nakagami-m channel gain

with fading figures m and Ω, E the transmit power at

a node, x the transmitted symbol at a node, and the

subscripts s and r the source and relay parameters

respectively.

A. λ-MRC

The decision statistic for the λ-MRC receiver for

BPSK modulation, is given by [4], [5]
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i ∼ G (ci,mi), where G denotes the Gamma dis-

tribution [8]. Assuming equal probability of the

transmitted symbol xs = {1,−1}, from (1), the

average BER for a λ-MRC cooperative system can

be expressed as
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∑
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ε
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2 (1−ε)
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2 P (X + λY < 0|xs = 1, xr) .

(3)

where ε is the BER for the S-R link.

III. BER Analysis for λ-MRC

From (3), we observe that the BER has to be

computed separately for the case of correct and

incorrect decision at the relay.

A. Correct Decision at Relay

The probability of error, given a correct decision

at the relay, can be expressed as

Pe|1 = P (X + λY < 0|xs = 1, xr = 1)

=

∫ ∞

−∞
FX(−λy)pY (y) dy (4)

To obtain the above, the statistics of X and Y are

required. Since X and Y are conditionally Gaussian

[3], their statistics are known for integer values

of the Nakagami fading parameters mi [3], [4].

Using this, the BER in (3) was obtained in [4].

For arbitrary mi, while the exact PDF of X and Y

is known (6), [4], an approximate expression for

the CDF is available only for high SNR (7), using

the Loskot-Prony approximation [6]. Due to space

constraints, the proof of (7) is omitted in this paper.

(4) can be expressed as
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Substituting FX, as > 0 from (6) and (7) in the first

integral in (5), we have
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|a| ,K· (·) is the modified Bessel function of the second kind [7] and

γ (·, ·) is the lower incomplete gamma function [7].
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The above integral is of the form

Im,n (α, β, δ) =

∫ ∞

0

ym+neαyKm (βy) Kn (δy) dy,

{m, n, β, δ} > 0. (9)

This integral does not appear to be tabulated and

is difficult to obtain in closed form. However, from

(5), (6),(7), it is evident that the integral appears in

the final expression for the BER and we will use (9)

repeatedly in the following to represent integrals of

the form in (8). The second integral in (5) can now

be expressed as
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The first integral in (10) can be expressed using

integration by parts as
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upon substituting for FY , ar > 0 from (7). From [9,

(6.619.3)]
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B. Incorrect Decision at Relay

Given that an incorrect decision is made at the

relay, the probability of error can be expressed as
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The third integral in (17) can be expressed using (9)

as,

3
∑

n=1

2an

Γ(mr)

















bn

ǫ2r

(

bn +
κr
ǫr

)

















mr
2 (

1

λ

)mr

× 2c
ms
s

Γ(ms)
√

2πbs















1
√

a2
s + 2bscs















ms− 1
2

×Imr ,ms− 1
2

(

as

bs

+
2bn

λκr
,

2

λkr

√

bn

(

bn +
kr

ǫr

)

,
1

bs

√

(

a2
s + 2bscs

)

)

(22)

With this, all integrals in (17) are evaluated. The

second integral in (16) can be expressed as
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From (9), the second integral in (23) is obtained as
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From (16)-(24), we obtain
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Substituting (15) and (25) in (3), we obtain the final

expression for the BER.

IV. Results

In Figure 2, the analytical and simulated BER are

plotted with respect to the average SNR for the S-

D link. For convenience, we have chosen Er = Es,

i.e. the source and relay transmit with equal power.

(15) and (25) are used to compute the analytical

BER using (3) for two cases, λ = 0.5 and λ = 1.

As we can see, there is an excellent match between

the simulation and analytical results, validating the

expressions derived in the paper. Note that the

Nakagami fading parameters are not integers.

Figure 3 provides some interesting insights into

the diversity order for λ-MRC cooperation. Firstly,
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Fig. 2. Comparison of the simulation and analytical results for m =

3.7,ms = 2.6,mr = 2.6. Both match perfectly.
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Fig. 3. Analytical BER plots for λ = 1. Slopes for the lower two

curves almost identical at high SNR indicating a similar diversity

order.

we note that the middle and bottom curves in Figure

3 have the same slope at high SNR, indicating the

same diversity order. We note that ms+mr = 2.7 for

the middle curve is exactly equal to m = 2.7 for the

bottom curve. This validates the result in [11] where

the diversity order was shown to be min (m,ms + mr)

when λ = 1. Note that the top curve has a diversity

order 2 < 2.7 and its slope is less compared to that

of the other two curves, at high SNR.

V. Conclusions and future work

In this paper, we have obtained a close but

approximate expression for the BER for the λ-

MRC-DF cooperative system. The final expression

contains only one integral in terms of simple, well

defined functions. Numerical results obtained us-

ing this expression match exactly with the actual

simulation results, indicating the usefulness of this

work. A closed form expression for the integral

is a work in progress. Based on the techniques

employed in this paper, it should be possible to find

similar expressions for the BER for the superior PL

combiner, and will be addressed in future work.
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