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Abstract— In this paper, we average Q(‖X‖), where ‖X‖ is
the Euclidean norm of an n × 1 complex circularly Gaussian
vector X. This is done by finding the characteristic function of
the decision variable and subsequently applying the Gil-Pelaez
theorem to obtain a one dimensional real integral. The integral
is then converted to a contour integral which is evaluated using a
variant of the Cauchy’s integral formula to obtain an expression
for E[Q(‖X‖)], where E[ ] is the expectation operator.

I. INTRODUCTION

The average of a Q-function expression is of interest in

finding general expressions for the probability of symbol error

in slowly fading communication channels, where the argument

of the Q-function is a function of a random variable with a

well defined probability density function that depends on the

kind of fading experienced by the channel [1].

In [2], the evaluation of the performance of self-adaptive

systems over a Rayleigh faded multipath channel involves

averaging a Q-function expression whose argument is the

square root of the sum of the squares of a set of independent

and identically distributed (i.i.d) Rayleigh distributed random

variables. The process is repeated for Rician random variables

in the classic work by Lindsey [3] to evaluate the error

probability of multichannel reception of binary signals in

Rician fading.

For averaging the Q-function involving Rayleigh random

variables, alternative techniques such as the Craig’s formula

based approach for evaluating the probability of error for

Nakagami-m fading channels [1] are available. For the case

of Rician random variables, Lindsey’s approach is the only

one that we could find in the available literature.

In this correspondence, we suggest a characteristic function

based approach to find a closed form expression for the

average of a Q-function whose argument is the norm of a

complex circularly Gaussian random vector. This is done by

using the method outlined in [8] and the inversion formula for

the cumulative distribution function [7] to obtain a real integral

involving the characteristic function of the decision variable.

This integral is then converted to a contour integral, which

is then evaluated using the Cauchy’s integral formula [9] for

multiple poles. When the mean of the Gaussian vector is non-

zero, we obtain an infinite series which can be expressed in

closed form using special functions.

Since the square root of the sum of the squares of Rayleigh

and Rician distributed random variables with similar variances

is the norm of a complex circularly Gaussian random vector

with zero and non-zero mean respectively, our results can be

used to find alternative solutions to the problems considered

in [2] and [3]. Another application is in evaluating the perfor-

mance of decorrelating multiuser detectors in fading channels

[4].

Lindsey [3] uses the direct probability density function

based approach to first develop a recursive equation for the

probability of symbol error. Then, the initial condition is

derived. Both steps involve manipulating complicated integrals

with special functions, like the higher order Bessel functions,

as integrands. A thorough knowledge of special functions is

required to understand this approach.

The novelty of our work lies in the characteristic function

based approach, where we convert the real integral to a contour

integral, which is easily evaluated using the method of residues

[9]. As a result, instead of evaluating complicated integrals

involving Bessel functions as in [3], the problem reduces to

finding closed form expressions for certain infinite series. As

will be obvious later, this is relatively easy and makes our

approach much simpler compared to [3].

II. PROBLEM STATEMENT

Let X be an n × 1 complex circularly Gaussian vector

defined by

E[X] = m,

E[(X − m)(X − m)
T
] = 0,

E[(X − m)(X − m)
†
] = 2σ2

In, (1)

where {T } represents the transpose operation, {†} represents

the complex conjugate-transpose and In is the n× n identity

matrix. Let R = ‖X‖2, where ‖X‖=
√

X†X is the Euclidean

norm of the vector X. Then R is non-central chi-square

distributed with 2n degrees of freedom [6] and

E[Q(‖X‖] = E[Q(
√
R)]. (2)

Let V be a Gaussian random variable with zero mean and unit

variance. The Q() function in (2) is then defined as P (V >

x), x > 0, i.e.,

Q(x) =
1√
2π

∫ ∞

x

e
−y2

2 dy, x > 0 (3)



From [8], we obtain

E[Q(
√
R)] = E[P (V >

√
R)] (4)

=
1

2
P (R− V 2 < 0)

=
1

2
P (∆ < 0),

where ∆ = R − V 2. Since R and V are independent, the

characteristic function of ∆ is given by

Φ∆(t) = E[ejt∆] = E[ejtR]E[e−jtV 2

] (5)

= ΦR(t)ΦV 2(−t).

Since V is Gaussian, V 2 is chi-square distributed. Hence, we

obtain [6]

ΦR(t) =
e

j‖m‖2t

1−2jσ2t

(1 − 2jσ2t)n
, (6)

ΦV 2(−t) =
1

(1 + 2jt)
1
2

.

Substituting ΦR(t) and ΦV 2(−t) from (6) in (5),

Φ∆(t) =
e

j‖m‖2t

1−2jσ2t

(1 − 2jσ2t)n(1 + 2jt)
1
2

. (7)

Since

j‖m‖2t

1 − 2jσ2t
= −‖m‖2

2σ2
+

‖m‖2

2σ2(1 − 2jσ2t)
, (8)

(7) can be written as

Φ∆(t) =
e−

‖m‖2

2σ2 e
‖m‖2

2σ2(1−2jσ2t)

(1 − 2jσ2t)n(1 + 2jt)
1
2

. (9)

According to the general form1 of the inversion formula of
Gil-Pelaez [7], the cumulative distribution function

F∆(x) = P (∆ < x) (10)

=
1

2
+

1

2πj
× lim

ǫ→0
λ→∞

∫ λ

ǫ

ejtxΦ∆(−t) − e−jtxΦ∆(t)

t
dt.

From (10), we have

P (∆ < 0) =
1

2
+

1

2πj
× lim

ǫ→0
λ→∞

∫ λ

ǫ

Φ∆(−t) − Φ∆(t)

t
dt

=
1

2
+

1

2πj
×c.p.v

∫ ∞

−∞

Φ∆(−t)
t

dt. (11)

where the Cauchy principal value (c.p.v) of the integral in

(11) is being evaluated. From (9) and (11), taking the Cauchy

principal value,

P (∆ < 0) =
1

2
+
e−

‖m‖2

2σ2

2πj

∫ ∞

−∞

e
‖m‖2

2σ2(1+2jσ2t)

t(1 − 2jt)
1
2 (1 + 2jσ2t)n

dt.

(12)

1This form is rarely mentioned, but quite significant, because it tells us that
the cumulative distribution function exists even if the integral is not absolutely
convergent.

Expanding the exponential in the numerator of the integrand

in (12) as a power series and interchanging the order of

integration and summation, we obtain

P (∆ < 0) =
1

2
+

e
−

‖m‖2

2σ2

2πj

∞
∑

p=0

1

p!

(

‖m‖2

2σ2

)p
∫ ∞

−∞

dt

t(1 − 2jt)
1
2 (1 + 2jσ2t)n+p

.

(13)

If we let

In =

∫ ∞

−∞

dt

t(1 − 2jt)
1
2 (1 + 2jσ2t)n

, (14)

(13) can be written as

P (∆ < 0) =
1

2
+
e−

‖m‖2

2σ2

2πj

∞
∑

p=0

1

p!

(‖m‖2

2σ2

)p

In+p (15)

To evaluate P (∆ < 0), we first need to compute the Cauchy

principal value of the integral In and sum the ensuing infinite

series in (15). We note that though In may not converge in

the absolute sense, its Cauchy principle value exists, and is

evaluated in the following section.

III. THE INTEGRAL In

It is easy to verify that

1

t(1 + 2jσ2t)n
=

1

t
− 2jσ2

n
∑

k=1

1

(1 + 2jσ2t)k
. (16)

From (14) and (16), we now have

In =

∫

∞

−∞

1

(1 − 2jt)
1
2

[

1

t
− 2jσ

2

n
∑

k=1

1

(1 + 2jσ2t)k

]

dt, (17)

which, after changing the order of the integral and the

summation can be written as

In =

∫

∞

−∞

dt

t(1 − 2jt)
1
2

− 2jσ2

n
∑

k=1

∫

∞

−∞

dt

(1 − 2jt)
1
2 (1 + 2jσ2t)k

.

In the above, letting

J =

∫ ∞

−∞

dt

t(1 − 2jt)
1
2

, (18)

Jk = 2jσ2

∫ ∞

−∞

dt

(1 − 2jt)
1
2 (1 + 2jσ2t)k

, (19)

we can write (14) as

In = J −
n
∑

k=1

Jk. (20)

In the following subsections, we first show that J and Jk can

be reduced to simple real and contour integrals respectively

and then solve them.



A. The Real Integral

In (18), through a change of variables (from t to −t), we

obtain

J = −
∫ ∞

−∞

dt

t(1 + 2jt)
1
2

. (21)

Adding the expressions for J in (18) and (21),

2J =

∫ ∞

−∞

dt

t(1 − 2jt)
1
2

−
∫ ∞

−∞

dt

t(1 + 2jt)
1
2

(22)

=

∫ ∞

−∞

1

t

[

(1 + 2jt)
1
2 − (1 − 2jt)

1
2

(1 + 4t2)
1
2

]

dt. (23)

Multiplying the numerator and denominator of the integrand

in (23) by
[

(1 + 2jt)
1
2 +(1 − 2jt)

1
2

]

,

J =
1

2

∫

∞

−∞

1

t





(1 + 2jt) − (1 − 2jt)

(1 + 4t2)
1
2

{

(1 + 2jt)
1
2 + (1 − 2jt)

1
2

}



 dt. (24)

Canceling out all common factors,

J = 2j

∫ ∞

−∞

dt

(1 + 4t2)
1
2

{

(1 + 2jt)
1
2 + (1 − 2jt)

1
2

} . (25)

In the above equation, we note that (1− 2j)
1
2 is the complex

conjugate of (1+2j)
1
2 . Hence, the integrand in (25) is real as

well as an even function of t. Thus, we get (see Appendix)

J = 4j

∫

∞

0

dt

(1 + 4t2)
1
2

{

(1 + 2jt)
1
2 + (1 − 2jt)

1
2

} (26)

= jπ. (27)

B. The contour integral

The integral in (19) can be solved easily if it can be

converted to a contour integral. Toward this end, we state the

following Lemma [9].

Lemma 3.1: Let g(x) be a function of a real variable x such

that |g(x)| has a denominator different from zero for all real

x and is of degree in excess of a unit higher than the degree

of the numerator. Then
∫ ∞

−∞

g(x)dx =

∫

C

g(z)dz, (28)

where C is a semicircle in the complex upper half-plane whose

diameter is the real-axis and the integration is in the anti-

clockwise sense.

For the integrand in (19), k ≥ 1 and the degree of the

denominator is greater than that of the numerator by k + 1
2 .

From Lemma 3.1, we get

Jk = 2jσ2

∫

C

dz

(1 − 2jz)
1
2 (1 + 2jσ2z)k

(29)

= (2jσ2)1−k

∫

C

dz

(1 − 2jz)
1
2 (z − j

2σ2 )k
.

We now present a formula for finding the derivatives of an

analytic function [9] and subsequently use it to evaluate Ik.

Lemma 3.2: If g(z) is analytic in a domain D, then it has

derivatives of all orders in D which are then also analytic

functions in D. The value of the (k − 1)th derivative at a

point z0 in D is given by the formula

g(k−1)(z0) =
(k − 1)!

2πj

∫

L

g(z)

(z − z0)k
(k = 1, 2, . . .); (30)

where L is any simple closed path in D which encloses z0 and

whose full interior belongs to D; the curve is traversed in the

counterclockwise sense and g(0)(z0) = g(z0), by definition.

The function

f(z) =
1

(1 − 2jz)
1
2

(31)

is analytic in the upper half-plane and C is a closed path in

it. Since (29) can be written as

Jk = (2jσ2)1−k

∫

C

f(z)

(z − j
2σ2 )k

dz, (32)

and the point j
2σ2 lies within C, using Lemma 3.2, we obtain

Jk =
2πj(2jσ2)1−k

(k − 1)!

dk−1

dzk−1

[

1

(1 − 2jz)
1
2

]

z= j

2σ2

(33)

which, after some simplification, yields

Jk =
2πjσ√
1 + σ2

, k = 1, (34)

=
2πjσ

(k − 1)!

1
2

3
2 . . .

(2k−3)
2

(1 + σ2)k− 1
2

, 1 < k ≤ n.

Substituting the expressions obtained in (27) and (34) in (20),
we get

In = jπ − 2πjσ√
1 + σ2

[

1 +

n
∑

k=2

1
2
. 3
2

. . .
(2k−3)

2

(k − 1)!(1 + σ2)k−1

]

(35)

= jπ − 2πjσ√
1 + σ2

[

1 +

n−1
∑

k=1

1
2
. 3
2

. . .
(2k−1)

2

k!(1 + σ2)k

]

= 2πj

[

1

2
− σ√

1 + σ2

n−1
∑

k=0

(

2k

k

)

{

1

4(1 + σ2)

}k
]

.

IV. CLOSED FORM EXPRESSION FOR E[Q(‖X‖)]
From (15) and (35),

P (∆ < 0) = 1 − σe
−

‖m‖2

2σ2

√
1 + σ2

∞
∑

p=0

n+p−1
∑

k=0

1

p!

(

‖m‖2

2σ2

)p

(36)

×
(

2k

k

){

1

4(1 + σ2)

}k

.

Let α = ‖m‖2

2σ2 and β = 1
1+σ2 . Then, changing the indices of

summation,

P (∆ < 0) = 1 − e−α
√

1 − β(A+B) (37)



where2

A =

∞
∑

p=0

p
∑

k=0

(

2k

k

){

β

4

}k
αp

p!
, (38)

B =
∞
∑

p=0

n+p−1
∑

k=p

(

2k

k

){

β

4

}k
αp

p!
. (39)

We define the factorial function [10] as

(γ)q =

q
∏

r=1

(γ + r − 1), (γ)0 = 1, γ 6= 0, (40)

where q is a positive integer.

A. The B series

Since
(

2k

k

)

=
4k
(

1
2

)

k

k!
, (41)

we obtain

B =

∞
∑

p=0

n+p−1
∑

k=p

(

1
2

)

k
βk

k!

αp

p!
. (42)

Changing the limits of summation in (42),

B =

∞
∑

p=0

n−1
∑

k=0

(

1
2

)

k+p
βk+p

(k + p)!

αp

p!
(43)

=

n−1
∑

k=0

(

1
2

)

k
βk

k!

∞
∑

p=0

(

1
2 + k

)

p

(k + 1)p

(αβ)p

p!

=

n−1
∑

k=0

(

2k

k

)(

β

4

)k

1F1

(

1

2
+ k; k + 1;αβ

)

,

where 1F1(a; b;x) is the confluent hypergeometric function

[10]. According to Kummer’s formula for the confluent hy-

pergeometric function,

1F1(a; b;x) = ex
1F1(b− a; b;−x). (44)

Using this result in (43), we obtain

B = exp(αβ)

n−1
∑

k=0

(

2k

k

)(

β

4

)k

1F1

(

1

2
; k + 1;−αβ

)

.

(45)

B. The A series

We rewrite (38) as

A =

∞
∑

p=0

∞
∑

k=0

(

1
2

)

k
βk

k!

αp

p!
−

∞
∑

p=0

∞
∑

k=p+1

(

1
2

)

k
βk

k!

αp

p!
(46)

In the above,

∞
∑

p=0

∞
∑

k=0

(

1
2

)

k
βk

k!

αp

p!
=

(

∞
∑

p=0

αp

p!

)(

∞
∑

k=0

(

1
2

)

k
βk

k!

)

. (47)

2We assume that all the infinite series considered henceforth converge.

Since |β| < 1, the second sum on the right hand side of (47)

is the binomial series, i.e.,

∞
∑

k=0

(

1
2

)

k
βk

k!
= (1 − β)

− 1
2 . (48)

Thus,

A =
eα

√
1 − β

− S, (49)

where

S =

∞
∑

p=0

∞
∑

k=p+1

(

1
2

)

k
βk

k!

αp

p!
(50)

=

∞
∑

p=0

∞
∑

k=1

(

1
2

)

k+p
βk+p

(k + p)!

αp

p!
.

Following the steps in (43), (50) can be written as

S =

∞
∑

k=1

(

2k

k

)(

β

4

)k

1F1

(

1

2
+ k; k + 1;αβ

)

. (51)

The above infinite series has a closed form expression [3]

S =
2 exp( αβ

2
)

√

1 − β
(52)

×
[

exp

{

α

2
(1 + β)

}

Q1(u, w) − 1

2
(1 +

√

1 − β)I0

(

αβ

2

)]

, (53)

where

u =

√

α

2
(2 − β) − 2

β

√

1 − β (54)

w =

√

α

2
(2 − β) +

2

β

√

1 − β,

and Q1(u,w) is the Marcum Q-function [6]. Substituting (52)

in (49) gives us a closed form expression for A. Since we

already have a compact expression for B in (45), replacing

the infinite series for A and B in (36) by their respective

closed form expressions, and noting from (2) and (4) that

E[Q(‖X‖)] =
1

2
P (∆ < 0), (55)

we obtain an exact expression for E[Q(‖X‖)]3.

Corollary: When X is zero mean, from (35) and (36), we

obtain

P (∆ < 0) =
1

2
+

In

2πj
(56)

= 1 − σ√
1 + σ2

n−1
∑

k=0

(

2k

k

)

{

1

4(1 + σ2)

}k

.

Substituting the above in (55) leads to the well known result
[4]

E[Q(‖X‖)] =
1

2

[

1 − σ√
1 + σ2

n−1
∑

k=0

(

2k

k

)

{

1

4(1 + σ2)

}k
]

(57)

3Lindsey, in [3], using a fundamentally different approach, has obtained a
closed form expression in a completely different form.



V. EXAMPLE: AVERAGE PROBABILITY OF ERROR FOR

NAKAGAMI-m FADING CHANNELS

If a random variable α is Nakagami-m distributed, the

random variable γ = α2εb

N0
has the probability density function

[6]

p(γ) =
mm

Γ(m)γ̄
γm−1e−mγ/γ̄ , (58)

where γ̄ = E(α2)εb

N0
. For fading channels, the average proba-

bility of error is given by

Pe =

∫ ∞

0

Q(a
√
γ)pγ(γ)dγ, (59)

where a is a constant that depends on the specific modula-

tion/detection combination [1]. We note that γ has the same

distribution as R (when X has zero mean) with σ2 = γ̄
2m when

m is an integer [6]. Thus, after accounting for the constant a

in (59), the average probability of error for a Nakagami-m

fading channel is obtained as

Pe =
1

2

[

1 −
√

a2γ̄

2m + a2γ̄

m−1
∑

k=0

(

2k

k

)

{

2m

4(2m + a2γ̄)

}k
]

(60)

by substituting σ2 = a2γ̄
2m and replacing n by m in (57). We

note that exactly the same result has been arrived at using a

different approach in [1], equation (5.18).

APPENDIX

Let 1 + 2jt = rejθ, where r = (1 + 4t2)
1
2 and cos θ = 1

r .

Since

(1 + 2jt)
1
2 + (1 − 2jt)

1
2 = 2r

1
2 cos

θ

2
, (61)

and

cos
θ

2
=

√

1

2
(1 + cos θ) (62)

=

√

1

2

(

1 +
1

r

)

,

the integrand in (26)

1

(1 + 4t2)
1
2

{

(1 + 2jt)
1
2 + (1 − 2jt)

1
2

} =
1

2r
√

1+r
2

. (63)

Hence,

J = 4j

∫

∞

0

dt

(1 + 4t2)
1
2

{

(1 + 2jt)
1
2 + (1 − 2jt)

1
2

} (64)

= 2
√

2j

∫

∞

0

dt

(1 + 4t2)
1
2

{

1 + (1 + 4t2)
1
2

} 1
2

.

Substituting t = tan φ
2 in the above,

J =
√

2j

∫ π
2

0

secφ√
1 + secφ

dφ. (65)

Let
√

1 + secφ =
√

2 secψ. Then

secφ√
1 + secφ

dφ =
√

2dψ. (66)

The integral in (65) now becomes

J = 2j

∫ π
2

0

dψ (67)

= jπ.
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