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Abstract—Maximume-likelihood (ML) detectors for single-
input-single-output (SISO) relay systems are well known. i this
paper, closed form expressions for the bit error rate (BER) 6r
multiple-input-multiple -output (MIMO) relay systems emp loying
ML based decode and forward (DF) cooperative diversity are
obtained. The DF operation at the relay intelligently emplgys the
multiple antennas available at the relay for receive divergy on
the source-relay link and space-time coding (STC) on the raly-
destination link resulting in an extension of the ML detectbn
rule for SISO systems to MIMO systems as well. For the
piecewise linear (PL) approximation to the ML detector, exa&t
expressions for the BER are obtained for single-relay systes
with both the source and relay supporting multiple antennas
For a multirelay system, each relay having multiple antenna,
approximate expressions for the BER are obtained. This is
done by finding the statistics of conditionally Gaussian (C$
random variables, that appear in the decision variable. Though
numerical results obtained from the BER expressions, it islsown
that using multiple antennas at the source as well as the reja
leads to significant improvement in BER performance.

Index Terms—MIMO relay, Decode and forward, conditionally
Gaussian, Space-time coding

|. INTRODUCTION

Practical constraints on the deployment of traditionaltmu

ple input multiple output (MIMO) systems in wireless commu
nication networks have led to considerable interest in eoop

ative communication systems, where diversity gain is oletzi
by transmission through relays distributed across thelease

transmission has been a subject of considerable interesigm
researchers, the focus has rarely been on bit error rate \BER
analysis [8]-[12].

A. Motivation

The BER for the PL combiner for a single relay cooperative
system with noncoherent DF was derived in [4]. This expres-
sion was subsequently used to derive the diversity order of
the corresponding multirelay system. Error rate analysisife
optimum coherent DF receiver, considered to be a challgngin
proposition due to the nonlinearity of the ML detector [4],
was addressed in [13], [14]. A similar attempt was made
in [5] for the Gaussian fading channel, but no closed form
expressions could be obtained. While these contributioas a
quite significant, they also lead to certain interestingopgms.
Firstly, the bounds on the diversity order derived in [4] are
not supported by numerical results. Secondly, becauseeof th
loss in diversity order due to DF for SISO systems, there
is considerable interest in the design and performance of
MIMO relay systems that are known to have a higher diversity

jorder [15]. Closed form expressions for the BER for MIMO
relay systems employing two antennas at each relay [6] were
obtained in [16].

network. Thus, it is no longer necessary for the mobile stati B- Main Contributions

to support multiple antennas, a requirement that fadgilt to
satisfy given the constraints on antenna separation at a.n
Consequently, the benefits that were supposed tdtkeeesa by

antenna diversity in MIMO systems, are now obtained through

cooperative diversity by antenna sharing between users.

Several practical protocols for relay based transmission
are discussed in [1]. Of these, one of the most popular

relaying techniques employed in cooperative diversityesys

is the decode and forward (DF) protocol, where the relay
makes a decision on the symbol transmitted by the source

before retransmitting to the destination. Maximum-likelbd

(ML) detection for DF cooperative diversity [1]-[7] was firs
proposed in [2] followed by a detailed derivation in [3] for

coherent and noncoherent single-input-single-outpusCgl
relay systems. For practical applications, a piecewisealin

(PL) approximation to the ML detector, known as the PL 5)
combiner, was also provided in [3], [4]. While DF based

q In this paper, we obtain
0
1) a general detection rule for ML-DF MIMO relay sys-

tems. This is done by exploiting receive diversity on
the source-relay link and transmit diversity on the relay-
destination link through space-time coding (STC) [6].
) exact closed form expression for the BER for the PL
combiner for a single relay with the source as well as
the relay supporting multiple antennas. A novel concept
of conditionally Gaussian (CG) random variables is
developed in the process.
closed form approximation for the BER for the PL
combiner for the general MIMO multirelay system.
simulation results validating the closed form BER ex-
pressions.
numerical results confirming the loss in diversity order
due to DF [4].

3)

4)



Relay 1

higher number of antennas employing higher order orthogona
STBCs. In this paper, since we employ full rate real orthagon
designsMg, M, = 1,2,4 or 8. ForMg = 1, MRC is performed

at the relays on the S-R link. We use the alphaftetrepresent

a transmitted symbolh to represent the channel gain on a
given link, n for additive white Gaussian noise, for the
received symbol at a node aril for the transmit power at

a given node. For, j denoting the antenna indices, in a given
time slot, the received symbols on the S-D, S-R and R-D
links are respectively

Ms
_ (i) () (1)
Yd.s= Z hd,sxd,s + nd,s’
i=1

Relay 2

Mg 3 ) )
v, yO= > i +nf, r=1.2...N,
Source Destination j=1
Mr . . ”
Yor= Z hg,)r Xg,)r + ng,)r’ (2)
i=1

wherexg,)S € {1, -1} is the symbol transmitted bith antenna

of the source anckg)r € {1,-1} is the symbol transmitted by
the ith antenna of theth relay. Thus, for Example 2.1, in
the first time slotx((jll = Xs, xgzl = X;. In the second time slot,

D = _x x?) = x. The channel i Rayleigh fadi
We consider the general MIMO relay model in [6] wibh Xds X Xgs = Xs e<? anne(i)expenences ay elgij acing.
cdcients hy', ~ CN(0,QqsEY), hs ~

relays (R) between the source (S) and destination (D) asrshok}\?nce the _fadmg : ,
in Figure 1. The source can suppdvs transmit antennas, CNV(0, @ sEq) and h. ~ CN(0,Qq,E}) are zero mean com-
the rth relay M, antennas that are used in DF mode, arfex circularly Gaussian, witlts and E; denoting the source
the destination hadly = 1 receive antennas. The modulatio@nd relay EOWGVS at their respectivie transmit antennas. Also,
is BPSK and all transmissions are on mutually orthogon@fﬂ,)s, nﬁ')s nS,r ~ CN(0, No).

frequencies to avoid interference at the relays as well as th

destination [4]. Further, the channel is assumed to be quasi \L Decision at the Destination

static with flat fading so that the channel gains remain ortst
over a few symbols. Perfect channel state information (CSI
is assumed both at the relay as well as the destination for
S-R and R-D links across all paths. Rdg, M, > 1, the source

Fig. 1. Multiantenna based relay model for cooperative rditge

Il. SysteEm MobDEL

At the destination, the ML decision criterion for the symbol
%nsmitted by the source in the first time slot through thet fir
antenna may be expressed as (see Appendix A)

and relays use full rate real square orthogonal space-tiock b N .
codes (STBCs) for transmission [17]. X+ Z ftv) = 0 3)
r=1 -
A. Transmission Scheme where o
Example 2.1:Let Ms = M, = 2. The source transmits the ¥ - 4Re{2i'fsl hSLyS)S}
symbolsxs € {1,-1},x; € {1,-1} on consecutive time slots - No ’
using the Alamouti code [18] on the S-R link according to the ARel s M {Dx 0
H e{ZI: d,r d,r}
following scheme Y, = N , (4)
0
Xs X/s 1 v+ e*
(_X,S XS), 1) f=InT—=, O<v<1 (5)

where the rows represent time slots and columns represgi, yg)s, yéi)r being the respective received symbols on the S-
transmit antennas. The relay waits for two time slots and thg) and R-D links in theith time slot. Also,f(Y;) now has the
makes the decisions andx; corresponding to the respectiveygrameter, = 2= for therth relay, wheres is the BER for
transmitted symbols¢s and x; according to the combining the S-R link. To Simplify the analysis, we use the suboptimal
scheme in [18]. In this case, the S-R link performs as well §_ scheme proposed in [5] by consideriagto be the average
four branch maximal ratio combining (MRC). The relay theBER instead of the instantaneous BER. Expressions foan
transmitsx- andx on the R-D link, again using the Alamoutipe easily obtained from [19, 14.4-15, p.825]. In the rest of

code. o _ _ the paper, the fading characteristics in the S-R link hawembe
The transmission technique in Example 2.1 can be gener-

alized for cases where the source and relay nodes suppotthe time domain notation has been dropped to simplify theessmtation.



assumed to be similar for all the relays. As a consequance, X = %|hd,s|2 + iRe{hg Ndsh 9)
can be ignored and = ;=. We now state a couple of facts No No ’
related to the ML decision rule in (3). wherexs is the symbol transmitted by the source. The condi-

1) The decision variableX and Y, for other symbols tional mean and variance of can be expressed as
transmitted by the source can be expressed as [17, (8 4
y P (7. @) EIX | hed = X o

_ ARzl Ay} y

8
X No : var(x | ha) = - Ihad” (10)
Mr ) ()% (&(0) .
v :4Re{zi:1/l'hdl,ryd,rl} 6 Fom (9 and (10), we find thatX | has ~
' No ’ N (Felha o £lhad?). Significantly, both the conditional

where 4; € {1,-1} denotes a sign change in the lineafean and variance ofX are proportional to |hgd*.

. . . . H 1 2
combination andk(i) represents a permutation for thdt is easy to show that evenY; | hgﬂhgﬂ

indexi. From (36) in Appendix A, we find that favls = A (% 32, 1h{) 2 £ £2, Ih{|?) has a similar property. In
2,11 = 1L = 1,&1) = 2,¢(2) = 1, for the second general, from (4), we find that

symbol transmitted by the source.

2) Real orthogonal designs with full rate allow linear x|hd,s’“N(%”hd,suz,Ninhd,suz),
processing at the receiver, which results in (3) for BPSK 0 0
modulation. However, even foMs, M, ¢ {1,2,4,8} Y | hgr NN(4—Xr||hdr||2,E||hdr||2), (11)
it is possible to use orthogonal designs with linear ' No ™ No ™
processing but reduced rate [20]-[22]. Thus, (3) with (§)here has = {hg)s}i’\isl’ hay = {hg)r}il\irl and ||| represents

holds for square orthogonal designs with any number gfe Eyclidean norm. We refer to such distributions as being
transmit antennas at the source or relay. The extensigfgitionally Gaussian(CG). In the following sections, by
to rectangular orthogonal designs is straightforward. eypioiting their conditionally Gaussian nature, we find the
statistics of CG random variables like Y, and their functions
C. PL Combiner f(Y;). These are then used to find closed form expressions for

Lemma 2.1:The function f(x) in (5) has the following Pe in (8) in the subsequent sections.
iecewise linear approximation [3], [4
P PP L [1 b 4] I1l. Staristics oF CONDITIONALLY GAUSSIAN DISTRIBUTIONS
£0x) ~ Itn v IXZ In In 1 . Without loss of generality, we use the symbgis for the
() ~ I nv|< x<iny . ) probability density function (PDF)Fx for the cumulative
ny X<y distribution function (CDF) and®x for the characteristic
Using the above approximation in (3), we obtain the Pfunction (CF) of a random variablX.

combiner for ML-DF systems. Lemma 3.1:Let X | h ~ A/ (allh|? blih|[?) ,b > 0, where the
M x 1 random vectoh ~ CN (0,Q),with Q=E [hh”] be-
D. Problem Definition ing a diagonal matrix{-}' andE[] denoting the Hermitian and

Let xs € {1, 1} be the symbol transmitted by the source ifXPectation operations respectively. Also, fatl = 1,...,L
the first time slot through the first antenna. Assuming equif the d|Lst|nct diagonal elements &f with multiplicities m
probability of the symbolg1, —1}, the average probability of SO thatXi_; m = M. The CF ofX is then given by
error for the ML-DF cooperative diversity system for BPSK 1

can be expressed as Px(jw) = M5, (1 - jawe + Bw?)™ (12)
= 2
N 1-xr X N . . .
P, = Z 1—[ 67 (1- e,)lT Prl x + F(Y;) < 0] xs = Lx|, Corollary 3.1: The CDF ofX is given by
x r=l =1 F (o1, 0, X x<0
®) P9 = {7 (002X 13)
1-F (ag,01,X) x>0,
wherex = (Xg, X2,..., Xn) IS the set of all possible decisions
made at theN relays corresponding to the transmitted symb(w ere
Xs. We wish to find a closed form expression fég in (8). F (0, g, X) =
L (~ai)M e e L]

E. Solution Strategy L mc L m Z
Knowledge of the statistics oK and Y; is essential for 1=t k=1 (0 = az) Hkk?tll (e = @)™ gy "om - e O

evaluating Pe in (8). A simple approach for finding the . Un

distribution of X and Y; is outlined through the following 1 12 Mkajy 12 Mg, X0n-1
X[=+= ) ———=— 4= +
example. n nd(ma-a2)" ng (me—a2)"  az
Example 2.2:Let Mg = 1 andM;, = 2. From (2) and (4)X kel

can be expressed as (14)




with q = {q.}I 1 '0o<gn<m-1, V-1 = {i}lm1 ,o0; = after rearranging. Integrating the above by parts and iyapl

{mjl;, ] = 1,2, () denoting the inner producty, is the ing results in
Kronecker delta function and In &
a0, a b Pr(X+ f(Y) <0| xs=1,X) = Fx(Inv) + jl;v Fy(=x)dFx(X)
ml,mng 1ia 1+a2—£2| , |=1,...,L. (15) (21)
Corollary 3.2: The Nth moment off(X) is SinceX andY are knovx_/n to be CG from (11), their respective
e CDFsFx andFy are given by (13). LeFx andFy have the

1 parametersd, o) and @1, 2) respectively. Substituting the
N]
E [{f(X)} ] =&n (az’ az, In ;) +&n (o, 02,Inv),  (16) aspective CDFs followed by a change of variables, (21) can

be expressed as
where

1 Pr(X+ f(Y) <0 xs=1,X) = F (a1, 02,0)
SN oo, Ol1, In=]= |n 2
v + F (Ba, Br, X) dF (0ta, 0z, —X)
2’ 1, 1, 2,
L N(=L)N(—ayqp)?M+N-m 1 0
Z Z @ In 2

1=1 l_[IIZ:l (a'kz - a/”-)m< nk:l (akl - a’ll)m( 0.Vm-1=m-1 — F (Bl, ﬁz, —X) dF ((12, a1, X) (22)
0

k#l
On

. T__ll 1 } Z mya?, 1 Z may, Evaluati-ng the above integrals and simplifying, we obtae(
[1gt|n (i — a,ll)n (@ — )" Appendix C)
el - Pr(X + f(Y) <0] X = 1,%) =
(ql) 1+ Z Mk Z Mk F (a1, 02,0) + F (B1, B2, 0) F (a2, a1, 0)
(a'k2 - a’ll) (a'kl _all) - T(Bl,ﬁz,m V)T(Otz, o1, —In V)

k;&l

11 + G (a1, a2; B2, B1) + G (B1. B2; a2, a1) ,  (23)
XF(K+ N,a—ln ;) (17) where

and I'(-,-) is the incomplete Gamma function [23, (4.4.5), G (B1, B2; 0z, 1) =

197
Eroof]See Appendix B. i (- ﬁiz)ZM’_m _ Z 1
S (B - B2) " 11y (B2 = B2) " g mm-1 P
IV. BER AnaLysIs J*' o
A. Single Relay System R 1 Jﬂjl Le
For N =1, (8) reduces to E f { (ﬂll _ﬂlz)t Z (512 _lglz)t
Pe= > €7(1-FPr(X+f(Y) <0x=1%. (18) o b

xe{1,-1}

P1 iBj1 iBj2 1y
where the subscript has been dropped for convenience. The™ Z( ) Z Bi1 - Bi2) * Z Bz - Biz) (_,3_,2
conditional probability in (18) can then be expressed usiireg p=0 ’;.l

Steiltjies form as Ls (—ang)?Msm 1
Pr(X+ f(Y) <0 xs=1,%) = Pr(X < =f(Y) <| xs = 1, %) X,Zl:nkl(akz Cl|1)m‘l—l (a'kl_a'll) AV 1=m - 1ql
- [ Etonr. a9, s . )"
—00 Q’k Q’k
Using the PL approximation in the above, % ln:! ﬁ ﬁ Z (axe — a2|1)n Z (ak — al|1)“
(- TR/ s
j:m nv 0 8 Z( ) Z (a:zk f kju) Z (akr?(_azlll)n
N f Fx(=Inv)dFy(x) + f Fx()dFy(X)
—00 Iny
In 1 00 @Bz Y ( a1 ) ( (i _i) })
o [ FxeRaR + [ FxindR (ae) G2l (- g
ni 1 1 1
= Fx(= Inv)Fy(Inv) + Fx(Inv) [1 Fy(=Inv)] +pF(p +K, (a_u - /ﬂ)l ;)] (24)

In 2
+ fn Fx(-X)dFy(x) (20) the subscripts andr used to represent the source and relay
Iny parameters.



B. Central Limit Theorem approximation for multiple relay:
(large N)

For largeN, using the central limit theorem (CLT) [24], (8)
can be expressed as

10"

Analy (PL)

O  Sim

1 +
Pe=> [ ]&? (1-&)* Pr(X+Y<0|x%=1x), (25)

where Y = N(uo?) for u = TN E[f(Y)].0? =
Zerlvar[f(Yr)] as Y, in (8) are independent, with vaf[
denoting the variance. The first and second momentg4f)
may then be obtained from Corollary 3.2 to computand
o?. Thus, the statistics of are now completely known. Note
that the PL approximation is implied through Corollary 3.2

Using the approach outlined in Section IV, o 1 2 3 4 5 6 7 8 9 10
SNR (dB)

Average Probability of Error

00

PrX+Y < 0| xs=1,x) = f Fx(=x)pv(x)dx

=00 Fig. 2. Theoretical and simulation results for single-yyetaoperation. Curves
0 plotted according to the source and relay antenna speifisatisted in the
= f [1 - F (a2, 01, —X)] py(X)dx box in the same order.
+ F (01, 02, =X X)dx
jc: (0, a2, =) pr(X) V. REesurts AND Discussion
= FY(O)_f F (02, a1, X) py(=X)dx A. Simulation Parameters
o 0 The channel fading follows the following path loss model
+f F (01, aiz, —X) py(X)dx (26) [4]. Qij « L4 ,i,j € {sr,d} with Li; being the distance
0
o ) between the nodesandj Also, Qs = Q = andQq, = (fd|§4,
after substituting forFx(x) from (13). Evaluating the above wherel = b5 Th ; It io (SNR
integrals and substituting, we obtain (see Appendix D) o eE £ L. | 1€ average system S|gna 0 noise ratio ( )
= % and the relay to source power = Also,
Pr(X+Y <0|x=1Xx) = Q(ﬁ) when a node (source or relay) supports mqupTe antennas,
the power allocated to each antennaﬁm € {sr}. This

- P (@2, @1,71.-1) + P (1. a2.~y2. 1), (27) particular model is used for the following reasons. Fitsily
allows some insight into thefiect of the relay location on the

_ 1 - . L
wherey; = (E + oz ) i =12 and BER. Secondly, by keeping the total power distributed a&ros
, all the antennas at the source as well as relays constarit, a fa
P (a2, a1,y,t) = o€ 2 comparison of the performance of MIMO relay systems for
L (—ang)?M-m different configurations is possible.
% - an - Z 1 To compute the BER using (23) and (27), the param-
= Tl (e — @)™ [Ty (@ — i)™ g, 52, 9 eters & b, M, Q) for the source and relay decision vari-
kel o ables X and Y; are required. For the above simulation
m-1 4 1, meat, mea, setup, the respective parameters (g, o, Ms, 1v,) and
X JE— p— p—
ln:! ! nt Z (@ — a,ll)n Z (@ — 1) (‘,‘\j;' rv?Erﬁo M, 2 |)4|M ) wherel y is the identity matrix of size
k;tl
i—«
& Mkake S Myak1
— |1+ + B. Single Relay Performance
Z( )(all) Z (2 — an1) ; (i — ai1) g _ y , , ,
kel A comparison of the theoretical and simulation results are

e s 5 p 1 lEerVid](_ed'li'?} Figur_e 2 forfvarzioulg,Evsljues_d&rz:lS and My, witu
X (yor o o)e - + = 1. The variation of the e With respect to the
(7 ) {(7 )b ; Ki(k = 201 (2y%0)<  ar system SNR is shown for scenarios where the source and relay
PR ki | , support upto 4 antennas. For simulations, the Alamouti code
~ (K) DG - D - ) . was employed at nodes that supported 2 antennas. For nodes
K = 1= 2Kk — | = 2)1(2y%02)<1 |” supporting 4 antennas, thex44 real orthogonal design [17]
(28) Wwas used. For all casels= 0.5, which means that the relay is
located halfway between the source and the destinatiow, Als
with Q(x) = f ‘yz/zdy Substituting (27) in (25) results the source and relay powers are considered to be equal. The
in a closed form expression for the BER for multiple relaystheoretical results were obtained from (23) and (18). From

=1 k=0 i=0
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Fig. 3. BER plots for various values dfls and M, for the single relay Fig. 5. BER plots for dferent values ofMis and M, for the multirelay
system. Performance improves with increasivig system. Loss in diversity due to DF.

0

10 destination. The behaviour of the R-D link is just the oppmsi
For Mg = 1, the BER performance of the system is ultimately
influenced by the strength of the S-R link, which explains the
improved performance fdr= 0.3. On the other hand, favig =

2, due to transmit diversity, theffect of relay location on the
S-R link is relatively very less. Therefore, system perfante

is heavily influenced by the R-D link resulting in a better BER
performance fot = 0.7.

Average Probability of Error

C. Multirelay performance

The high SNR performance of cooperative diversity systems
for multiple antennas as well as multiple relays is shown in
Figure 5 for Mg, M; = 1,2 andN = 5,6,7,8. The BER

-15

0 . 0 15 0 P 0 curves plotted in the figures are obtained using the CLT
Average SNR (dB) approximation from (25) and (27). For simplicity, we have
consideredo = 1 andl = 0.5. The loss in diversity order

Fig. 4. Hfect of relay location on the BER. S-R link dominates widdn=1, due to DF by a factor of 2 is obvious from Figure 5. For

R-D link dominates wherM, = 2. Ms = M, = 1, this has been rigorously proved in [4]. The
plots for Ms, M; > 1, indicate that this property may hold

gyen for MIMO relay systems. To the best of our knowledge,

Figure 2, we can observe that there is an excellent mat h ical its based on th ‘ t Bleail
between the theoretical and simulation results. such numerical resufts based on the error rate aré no ha

A more detailed plot of the BER with respect to the avera ésewhere. Using the notatioklg, M;, N) to denote the source

system SNR for the single relay system is available in Figure !"d relay antenna parameters of a MIMO relay system, from

for various values oMs and M,. From the figure, it is evident Flg?re 6, we flnd2 TT al(]z"i'g) sci/stzerznzhas tthe same BER
that using multiple antennas at the source/andhe relay tpher olrm1a8nce ats( e sz (1, ,G)han (t’t’ I) sg(sj_ems. Hexyev d
leads to a significant improvement in system performance. € (1,1,8) system in Figure as a total (adding source an

The dtfect of relay location on the BER performance iéelay antennas) number of 9 antennas, (2,1,4) with 6, (L.2,4

shown in Figure 4. In the high SNR region, the BER pely_vith 9 antennas and a (2,2,2) system with 6 antennas. Thus,
formance of systems for whicMs = 1 is much’ better when SYStems with multiple antennas at both the source as well as
.=

| = 0.3, i.e. when the relay is closer to the source. Howevé lays are more resource optimal and may be preferred in the

systems withMg = 2 perform better when the relay is locate esign of fixed relay systems.
closer to the destination &t 0.7. This behaviour is explained
as follows. VI. CONCLUSIONS

The performance of cooperative systems is dependent onn this paper, we have obtained closed form expressions
the strength of the S-R, R-D and S-D links. The S-R link i®r the BER for ML-DF MIMO relay systems, by extending
stronger when the relay is located closer to the source tiean the ML decision rule for primitive cooperative systems. &xa



where

_ 4Rdh; Yus)
= N ,
4Rehy Yar}
. Y, = — or’?l (32)
g No
w
S with {«} representing the complex conjugate operation.
3 Ms = M, = 2: For the transmission scheme in Example (2.1),
2 the received symbols for the R-D link on consecutive time
& slots are obtained from (2) as
g D) _ p@y o 1@y 4 @
dr — hd,rxr + hd,rxf + nd,r’
2 2) 1)+ 2
v = hx —hx;+n?) r=1.. N (33)
P After combining appropriately at the destination using the
1075 : m " = s Alamouti scheme [18] for the R-D link, we obtain
Average SNR (dB)
D — @+ D) (2),(2)
dr — hd,r yd,r + hd,r d,r
Fig. 6. MIMO compensates for reduced cooperation betwelayse = (Ihglzlz + IthzzIz) Xr + hglz* nglz + hgzznézz*’ (34)
9@ _ K@\ (1) _ (1) ()
ar = Ndr Yar = harYar
expressions were obtained for single relay systems emygoyi = (|h$2|2 + |h§f2|2) X — hﬁ}?ﬂif?* + hgzz*nglz (35)

the PL combiner, a practical alternative to the ML detectq_rrom the above, it is obvious that the decisions{oandx; on

The R-D link can be made independently. This is possible due

a clqsed form approximation was obtained for the BER W,heIB the orthogonality of the Alamouti code [17], [20]. Sirmilg
multiple relays were employed. From the BER plots, mult|r%r the S-D link. we have

lay systems were found to Sar from a loss in diversity order

due to DF. On the basis of our numerical results, we conclude )7&11 = hgll* dlz; + hﬁfi le*
that _t_he performance of cooperative diversity systems @n b _ (|hfjl,l|2 + |héz,l|2) Xe + hgllnéll + hézl”ézl (36)
significantly enhanced by using multiple antennas at treysel .
as well as the source. Noting that
oD 1 pd K@ (1),2 (2),2 (1),2 (2),2
F5a 1 h5L ) ~ O ((IDG27 + Ih§2%) xs, (ISP + Ih§U%) No)
APFENDIX A Tar 1y, b5 ~ A ((IG17 + 10G71%) ;. (I + 1) No)
The derivation of the decision rule is explained through the (37)
following cases [3], [6]. it is possible to directly use the decision rule in (31) fdg =
Ms = M; = 1: Dropping the superscripts for the transmiM; = 2 with
a_ntennas in (2), the ML decision rule at the destination is 4qugll} 4Rdhgll*ygll+hgzl*ygzl}
given by - s s /d, s Jds
No No
N o (L)%, (1) (2)+,(2)
. ARdY;7}  AReh;Tys’ +h }
R = Arg Man Py, (Vas | %) + D 1N Py Ve | %5), (29) Vo= — = (38)
* r=1 0 0

ande equivalent to the BER for MRC with diversity order 4
ﬁ8]. The above ML decision scheme is valid fists, M; >

2 provided linear processing at the relay Amddestination
results in conditionally complex Gaussian decision vadeghb
like (34) and (36). ForM, = 4, the appropriate orthogonal
design is available in [17], [20], [21].

where X5 and x, are the symbols transmitted by the sourc
and relay respectively ang.(- | -) represents the conditional
PDF. Since P # Xs | Xs) = & is the probability of error on
the S-R link,

IN Py, xYar | Xs) =1In {pyd.r\x,()’d,r [ % =Xs)(1- &)
+Pyg,ix Var | X # Xs)fr}- (30) ApPPENDIX B

i The CF of||h||? can be expressed as [25
Sinceyqs | has ~ CN (hy.sXs, No) . Yar | har ~ CN (har X, No), lIhl] p [25]

for BPSK modulgtion, from (2), (29) and (30), the decision Dpe(jw) = —p 1 —. (39)
rule is then obtained as [3], [4] [Tz (1= jwld)

The CF ofX | ||h||? is given by

N
X 4 Z In & +(1-¢&)exp(Y;) % 0 (31) DOy (Jw) = exp{(Jaw - ng) ||h||2} (40)
r=1

(1 - Er) + & eXp(Yr) -1



Averaging the above ovelh||?, we have [26] which, upon evaluating the integral yields
Ox(jw) = f ) exp{f (aw + ngz) y} Pinie(y)dy N f " XNIF (0, a1, X) dx = & (Otz, ag,In %) (47)
- 0
= Dy {] (aw + ]ng)}, (41) for &(-,-,-) defined in (17). Similarly, it can be shown that
which, from (39), can be expressed as (12). Since the CF of N ’ XNIF (aq, 0p, X) dX = =8 (01, a2, IN V). (48)
X can be further simplified as Inv
Dy(j) = 1 , 42) From (45), (47) and (48), we obtain (16).

[Tz (1 - jwa)™ (1 - jwa)™
using the Gil-Pelaez inversion formula [27] and the residue ] )
theorem from complex analysis [28], [29], the CDFXfcan From (14), the second integral in (22) can be expressed as
be expressed as

ArppenDIX C

Ini

Res _ ®x(@)g-xz <0 " F (Br. Ba» —X) AF (0tz, 01, X) =
= = z 0
Fx() {1 + 7y 2e x>0, (43) S (—ﬁiz)ZM"“‘ 5 1
11 —_—
The residues in (43) can be directly computed using the Faa =1 ( Bi1 —,3|2 (,312 —ﬁuz) PV 1=m -1 P!
Di Bruno formula [30], [31] to obtain (13). Using the Stedl§ J*' o
integral,
N i 1, } S mBL 1 3 B2
E[1f001] = [ 1f (91" dFx9 Lot t 24 BB |t L4 B o)
Inv \ In 2 . . pi—p
= j:w (ln V) dFX(X) + jl;v X dFX(X) “ i(pl) 14 i mlﬂll + i mjﬂlz (_i)/)
+f (In :_L) dF (0 =\p i (Bj1 — Biz) Jj:&:IL (Bj2 — Bi2) Biz
1 v
N 1\ 1 " e
— (an)N Fy (|nV) + (ln _) [1 — Fy (In _)] X o xPefiz dF (0~2, a1, X). (49)
4 v

In 1 Integrating by parts,
+ f xNdFx(x). (44)
|

ny
Substituting the expression fofx(x) from (13) in (44),
integrating by parts and simplifying, we obtain

In % 1
X0 &7 AT (az, a1, X) = X F (0iz, 01, X) |y *
0

In
Inl —f (ixpe% +pxp1el$)9f(a2, ag, X)dx  (50)
NT _ " N-1 o \Bi2
E [(f(X)} ]_Nf XNLF (02, ag, X) dX
0 From (49) and (50), substituting the expression for

0
-N f NAF (g, 00, ) dx (a5) T (@200,
Iny Ini

Substituting the expression fdt (a2, a1, X) from (14) in the " F (B, B2, —X) AF (02, 01z, X) =
first integral in (45) results in 0

F (Br B2, —X) F (a2, 00, X) Iy *

In 2

B m; m —
L (—ajg)?M-m 1 i1 l_[lj'Ll (.le —,Biz) ' l_[ljf;; (ﬁjz —ﬁiz) ! oy =1 pa!
i (@ — )™ [T (@a - an)™ <2 ! " P

kel K q m-1 1 L Lr

-1 n %
TS e Z et ot i S amh Do
n=2 n! (a2 = a'|1)” (aky — ar)” Jil
P1—p
e m;Bj1 o miBi ( 1 )”
qQu L L iB N i8] 1
Z ( )( ) 1+ Z e, Z e o( ) Z (Bj1 — Bi2) jz]:. (Bj2 = Bi2) Biz
an 1 (a’kz - a’|1) 1 (akl - a'|1) i
kel . o

n N-15 5 X Z (zan) 1
+N-15; il
o[0T @8 LTI (e )™ [T o o) gy o O

kel



y mfli 1 . }i myal, Z meaf " Uiir?g the Lteibnitz_ rlgle, theth order derivative of the above
hep G| N N (e - ) (2 — ann)" With respect foy yields
k;tl 00 X2
QK —_— X exp(—yx - —) dx
x N (i) Z Mkakz Z Mkak1 \/Efffo ?
lo4 k2 — k1 — an)" p
g (2 — ann) = (i — an1) = (1) Z( )[dyl Qyor )H &’ Z/z}. (56)
In% 1 +K _X(L_-_l) +x—1 _X(L_-i)
XL _zxp e \m Fiz) 4 oy Tre e Az) | dx Since [32, (0.432.2)]
|
which can be simplified to obtain di Qbvo) 122 1=0
Q) = |5 (ro?) e
n ’ X ZLJZ ! g-1) otherwise
F (1. B2 —X) dF (02, 01, %) 0 RT-207277)
o and
=F (B1. P2, =) F (02, a1, )|y g 15 k- )
~GBLpzaza). (61) ——e 2= (yo?) @2 -
G(BrPriozon). (1) (ro % =20
Integrating by parts, the first integral in (22) can be expeeds (57)

using (51) as

from (53), (56) and (57), we obtain

f F ((12, o1, X) py(—X)dX =P (a'g, a1,7%1, —1) . (58)
0

Similarly, the second integral in (26) can be obtained, lt&gy

Ini
F (B2, B1, X) dF (a1, 02, —=X) = G (a1, 02; B2, f1) . (52)
From (22), (51) and (52), we obtain (23).
ApPENDIX D
- . (1]
Substituting the expression fax/(—X),
oo (2]
[ 7 (a9 Pt =
OL 2M 3]
(=anp)™ ™™ Z 1
' Ty (2 — a1)™ l—l%ll (ara — @)™ g, 421 O ”
+
tn
m-1
1 1 My, My 5]
X —_— — —
ln:! ot |7 Z (e —an) Z CREe
ety
Q1—K (6]

mMeage
k2 — 1)

Mkaia
kL — @11)

an

G

) 1+Z(a

(7]

L
+ ),
= (@
o

1 f‘x’ _x _pew?
X Xe me 22 dx (53
Voo s ©9
Since [9]
ool )
exp|-— | exp| - >
a1 20 [10]
2 2
u 1 7 X
= exp(—@)exp[— (a_u + ;) X— @}, (54)
[11]
letting y = (X + %), from [32, (3.322.2)],
/207 oo N ” [12]
e e zr2 dx= " o 55
= . Qho).  (55)

in (28).
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