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Abstract—Maximum-likelihood (ML) detectors for single-
input-single-output (SISO) relay systems are well known. In this
paper, closed form expressions for the bit error rate (BER) for
multiple-input-multiple -output (MIMO) relay systems emp loying
ML based decode and forward (DF) cooperative diversity are
obtained. The DF operation at the relay intelligently employs the
multiple antennas available at the relay for receive diversity on
the source-relay link and space-time coding (STC) on the relay-
destination link resulting in an extension of the ML detection
rule for SISO systems to MIMO systems as well. For the
piecewise linear (PL) approximation to the ML detector, exact
expressions for the BER are obtained for single-relay systems
with both the source and relay supporting multiple antennas.
For a multirelay system, each relay having multiple antennas,
approximate expressions for the BER are obtained. This is
done by finding the statistics of conditionally Gaussian (CG)
random variables, that appear in the decision variable. Through
numerical results obtained from the BER expressions, it is shown
that using multiple antennas at the source as well as the relay
leads to significant improvement in BER performance.

Index Terms—MIMO relay, Decode and forward, conditionally
Gaussian, Space-time coding

I. I

Practical constraints on the deployment of traditional multi-
ple input multiple output (MIMO) systems in wireless commu-
nication networks have led to considerable interest in cooper-
ative communication systems, where diversity gain is obtained
by transmission through relays distributed across the wireless
network. Thus, it is no longer necessary for the mobile station
to support multiple antennas, a requirement that is difficult to
satisfy given the constraints on antenna separation at a node.
Consequently, the benefits that were supposed to be offered by
antenna diversity in MIMO systems, are now obtained through
cooperative diversity by antenna sharing between users.

Several practical protocols for relay based transmission
are discussed in [1]. Of these, one of the most popular
relaying techniques employed in cooperative diversity systems
is the decode and forward (DF) protocol, where the relay
makes a decision on the symbol transmitted by the source
before retransmitting to the destination. Maximum-likelihood
(ML) detection for DF cooperative diversity [1]–[7] was first
proposed in [2] followed by a detailed derivation in [3] for
coherent and noncoherent single-input-single-output (SISO)
relay systems. For practical applications, a piecewise linear
(PL) approximation to the ML detector, known as the PL
combiner, was also provided in [3], [4]. While DF based

transmission has been a subject of considerable interest among
researchers, the focus has rarely been on bit error rate (BER)
analysis [8]–[12].

A. Motivation

The BER for the PL combiner for a single relay cooperative
system with noncoherent DF was derived in [4]. This expres-
sion was subsequently used to derive the diversity order of
the corresponding multirelay system. Error rate analysis for the
optimum coherent DF receiver, considered to be a challenging
proposition due to the nonlinearity of the ML detector [4],
was addressed in [13], [14]. A similar attempt was made
in [5] for the Gaussian fading channel, but no closed form
expressions could be obtained. While these contributions are
quite significant, they also lead to certain interesting problems.
Firstly, the bounds on the diversity order derived in [4] are
not supported by numerical results. Secondly, because of the
loss in diversity order due to DF for SISO systems, there
is considerable interest in the design and performance of
MIMO relay systems that are known to have a higher diversity
order [15]. Closed form expressions for the BER for MIMO
relay systems employing two antennas at each relay [6] were
obtained in [16].

B. Main Contributions

In this paper, we obtain

1) a general detection rule for ML-DF MIMO relay sys-
tems. This is done by exploiting receive diversity on
the source-relay link and transmit diversity on the relay-
destination link through space-time coding (STC) [6].

2) exact closed form expression for the BER for the PL
combiner for a single relay with the source as well as
the relay supporting multiple antennas. A novel concept
of conditionally Gaussian (CG) random variables is
developed in the process.

3) closed form approximation for the BER for the PL
combiner for the general MIMO multirelay system.

4) simulation results validating the closed form BER ex-
pressions.

5) numerical results confirming the loss in diversity order
due to DF [4].
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Fig. 1. Multiantenna based relay model for cooperative diversity.

II. S M

We consider the general MIMO relay model in [6] withN
relays (R) between the source (S) and destination (D) as shown
in Figure 1. The source can supportMs transmit antennas,
the rth relay Mr antennas that are used in DF mode, and
the destination hasMd = 1 receive antennas. The modulation
is BPSK and all transmissions are on mutually orthogonal
frequencies to avoid interference at the relays as well as the
destination [4]. Further, the channel is assumed to be quasi-
static with flat fading so that the channel gains remain constant
over a few symbols. Perfect channel state information (CSI)
is assumed both at the relay as well as the destination for the
S-R and R-D links across all paths. ForMs,Mr > 1, the source
and relays use full rate real square orthogonal space-time block
codes (STBCs) for transmission [17].

A. Transmission Scheme

Example 2.1:Let Ms = Mr = 2. The source transmits the
symbolsxs ∈ {1,−1}, x′s ∈ {1,−1} on consecutive time slots
using the Alamouti code [18] on the S-R link according to the
following scheme

(

xs x′s
−x′s xs

)

, (1)

where the rows represent time slots and columns represent
transmit antennas. The relay waits for two time slots and then
makes the decisionsxr andx′r corresponding to the respective
transmitted symbolsxs and x′s according to the combining
scheme in [18]. In this case, the S-R link performs as well as
four branch maximal ratio combining (MRC). The relay then
transmitsxr andx′r on the R-D link, again using the Alamouti
code.
The transmission technique in Example 2.1 can be gener-
alized for cases where the source and relay nodes support

higher number of antennas employing higher order orthogonal
STBCs. In this paper, since we employ full rate real orthogonal
designs,Ms,Mr = 1, 2, 4 or 8. ForMs = 1, MRC is performed
at the relays on the S-R link. We use the alphabetx to represent
a transmitted symbol,h to represent the channel gain on a
given link, n for additive white Gaussian noise,y for the
received symbol at a node andE for the transmit power at
a given node. Fori, j denoting the antenna indices, in a given
time slot1, the received symbols on the S-D, S-R and R-D
links are respectively

yd,s=

Ms
∑

i=1

h(i)
d,sx

(i)
d,s+ n(i)

d,s,

y(i)
r,s=

Ms
∑

j=1

h(i j )
r,s x( j)

d,s + n(i)
r,s, r = 1, 2, . . . ,N,

yd,r=

Mr
∑

i=1

h(i)
d,r x

(i)
d,r + n(i)

d,r , (2)

wherex(i)
d,s ∈ {1,−1} is the symbol transmitted byith antenna

of the source andx(i)
d,r ∈ {1,−1} is the symbol transmitted by

the ith antenna of therth relay. Thus, for Example 2.1, in
the first time slotx(1)

d,s = xs, x
(2)
d,s = x′s. In the second time slot,

x(1)
d,s = −x′s, x

(2)
d,s = xs. The channel experiences Rayleigh fading,

hence the fading coefficients h(i)
d,s ∼ CN(0,Ωd,sEi

s), h
i j
r,s ∼

CN(0,Ωr,sE
j
s) and h(i)

d,r ∼ CN(0,Ωd,rEi
r ) are zero mean com-

plex circularly Gaussian, withEi
s and Ei

r denoting the source
and relay powers at their respectiveith transmit antennas. Also,
n(i)

d,s, n
(i)
r,s, n

(i)
d,r ∼ CN(0,N0).

B. ML Decision at the Destination

At the destination, the ML decision criterion for the symbol
transmitted by the source in the first time slot through the first
antenna may be expressed as (see Appendix A)

X +
N

∑

r=1

f (Yr )
1
>
<

−1
0, (3)

where

X =
4Re

{

∑Ms

i=1 h(i)∗
d,sy(i)

d,s

}

N0
,

Yr =
4Re

{

∑Mr
i=1 h(i)∗

d,r y(i)
d,r

}

N0
, (4)

f (x) = ln
ν + ex

1+ νex
, 0 < ν < 1 (5)

with y(i)
d,s, y

(i)
d,r being the respective received symbols on the S-

D and R-D links in theith time slot. Also,f (Yr ) now has the
parameterνr =

ǫr
1−ǫr for the rth relay, whereǫr is the BER for

the S-R link. To simplify the analysis, we use the suboptimal
ML scheme proposed in [5] by consideringǫr to be the average
BER instead of the instantaneous BER. Expressions forǫr can
be easily obtained from [19, 14.4-15, p.825]. In the rest of
the paper, the fading characteristics in the S-R link have been

1The time domain notation has been dropped to simplify the representation.
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assumed to be similar for all the relays. As a consequence,r
can be ignored andν = ǫ

1−ǫ . We now state a couple of facts
related to the ML decision rule in (3).

1) The decision variablesX and Yr for other symbols
transmitted by the source can be expressed as [17, (8)]

X =
4Re

{

∑Ms

i=1 λih
(i)∗
d,sy(ε(i))

d,s

}

N0
,

Yr =
4Re

{

∑Mr

i=1 λih
(i)∗
d,r y(ε(i))

d,r

}

N0
, (6)

whereλi ∈ {1,−1} denotes a sign change in the linear
combination andε(i) represents a permutation for the
index i. From (36) in Appendix A, we find that forMs =

2, λ1 = −1, λ2 = 1, ε(1) = 2, ε(2) = 1, for the second
symbol transmitted by the source.

2) Real orthogonal designs with full rate allow linear
processing at the receiver, which results in (3) for BPSK
modulation. However, even forMs,Mr < {1, 2, 4, 8}
it is possible to use orthogonal designs with linear
processing but reduced rate [20]–[22]. Thus, (3) with (6)
holds for square orthogonal designs with any number of
transmit antennas at the source or relay. The extension
to rectangular orthogonal designs is straightforward.

C. PL Combiner

Lemma 2.1:The function f (x) in (5) has the following
piecewise linear approximation [3], [4]

f (x) ≈



















ln 1
ν

x ≥ ln 1
ν

t ln ν < x < ln 1
ν

ln ν x < ln ν
. (7)

Using the above approximation in (3), we obtain the PL
combiner for ML-DF systems.

D. Problem Definition

Let xs ∈ {1,−1} be the symbol transmitted by the source in
the first time slot through the first antenna. Assuming equal
probability of the symbols{1,−1}, the average probability of
error for the ML-DF cooperative diversity system for BPSK
can be expressed as

Pe =
∑

x

N
∏

r=1

ǫ
1−xr

2
r (1− ǫr )

1+xr
2 Pr















X +
N

∑

i=1

f (Yi) < 0 | xs = 1, x















,

(8)

wherex = (x1, x2, . . . , xN) is the set of all possible decisions
made at theN relays corresponding to the transmitted symbol
xs. We wish to find a closed form expression forPe in (8).

E. Solution Strategy

Knowledge of the statistics ofX and Yr is essential for
evaluating Pe in (8). A simple approach for finding the
distribution of X and Yr is outlined through the following
example.

Example 2.2:Let Ms = 1 andMr = 2. From (2) and (4),X
can be expressed as

X =
4xs

N0
|hd,s|2 +

4
N0

Re{h∗d,snd,s}, (9)

wherexs is the symbol transmitted by the source. The condi-
tional mean and variance ofX can be expressed as

E[X | hd,s] =
4
N0

xs|hd,s|2,

var(X | hd,s) =
8
N0
|hd,s|2. (10)

From (9) and (10), we find thatX | hd,s ∼
N

(

4xs
N0
|hd,s|2, 8

N0
|hd,s|2

)

. Significantly, both the conditional
mean and variance ofX are proportional to |hd,s|2.
It is easy to show that evenYr | h(1)

d,r , h
(2)
d,r ∼

N
(

4xr
N0

∑2
i=1 |h

(i)
d,r |2,

8
N0

∑2
i=1 |h

(i)
d,r |2

)

has a similar property. In
general, from (4), we find that

X | hd,s ∼ N
(

4xs

N0
‖hd,s‖2,

8
N0
‖hd,s‖2

)

,

Y | hd,r ∼ N
(

4xr

N0
‖hd,r‖2,

8
N0
‖hd,r‖2

)

, (11)

where hd,s = {h(i)
d,s}

Ms

i=1, hd,r = {h(i)
d,r}

Mr
i=1 and ‖·‖ represents

the Euclidean norm. We refer to such distributions as being
conditionally Gaussian(CG). In the following sections, by
exploiting their conditionally Gaussian nature, we find the
statistics of CG random variables likeX,Yr and their functions
f (Yr ). These are then used to find closed form expressions for
Pe in (8) in the subsequent sections.

III. S  C G D

Without loss of generality, we use the symbolspX for the
probability density function (PDF),FX for the cumulative
distribution function (CDF) andΦX for the characteristic
function (CF) of a random variableX.

Lemma 3.1:Let X | h ∼ N
(

a‖h‖2, b‖h‖2
)

, b > 0, where the

M × 1 random vectorh ∼ CN (0,Ω) ,with Ω = E
[

hhH
]

be-
ing a diagonal matrix,{·}H andE[·] denoting the Hermitian and
expectation operations respectively. Also, letΩl , l = 1, . . . , L
be the distinct diagonal elements ofΩ with multiplicities ml

so that
∑L

l=1 ml = M. The CF ofX is then given by

ΦX( ω) =
1

∏L
l=1

(

1− aωΩl +
b
2ω

2Ωl

)ml
. (12)

Corollary 3.1: The CDF ofX is given by

FX(x) =















F (α1,α2, x) x < 0

1− F (α2,α1, x) x ≥ 0,
(13)

where

F (α1,α2, x) =
L

∑

l=1

(−αl2)2M−ml e−
x
αl2

∏L
k=1 (αk1 − αl2)mk

∏L
k=1
k,l

(αk2 − αl2)mk

∑

q.vml−1=ml−1

ml−1
∏

n=1

1
qn!

×

























1
n
+

1
n

L
∑

k=1

mkα
n
k1

(αk1 − αl2)n
+

1
n

L
∑

k=1
k,l

mkα
n
k2

(αk2 − αl2)n
+

xδn−1

αl2

























qn

(14)
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with q = {qi}ml−1
i=1 , 0 ≤ qn ≤ ml − 1, vml−1 = {i}ml−1

i=1 ,α j =

{αl j }Ll=1, j = 1, 2, (.) denoting the inner product,δ(·) is the
Kronecker delta function and

αl1, αl2 =
aΩl

2



















1± a
|a|

√

1+
2b

a2Ωl



















, l = 1, . . . , L. (15)

Corollary 3.2: The Nth moment of f (X) is

E
[

{ f (X)}N
]

= EN

(

α2,α1, ln
1
ν

)

+ EN (α1,α2, ln ν) , (16)

where

EN

(

α2,α1, ln
1
ν

)

=

L
∑

l=1

N(−1)N(−αl1)2M+N−ml

∏L
k=1 (αk2 − αl1)mk

∏L
k=1
k,l

(αk1 − αl1)mk

∑

q.vml−1=ml−1

1
q1!

×
ml−1
∏

n=2

1
qn!

























1
n
+

1
n

L
∑

k=1

mkα
n
k2

(αk2 − αl1)n
+

1
n

L
∑

k=1
k,l

mkα
n
k1

(αk1 − αl1)n

























qn

×
q1
∑

κ=0

(

q1

κ

)

























1+
L

∑

k=1

mkαk2

(αk2 − αl1)
+

L
∑

k=1
k,l

mkαk1

(αk1 − αl1)

























q1−κ

× Γ
(

κ + N,
1
αl1

ln
1
ν

)

(17)

and Γ(·, ·) is the incomplete Gamma function [23, (4.4.5),
p.197].
Proof: See Appendix B.

IV. BER A

A. Single Relay System

For N = 1, (8) reduces to

Pe =
∑

x∈{1,−1}
ǫ

1−x
2 (1− ǫ) 1+x

2 Pr(X + f (Y) < 0 | xs = 1, x) , (18)

where the subscriptr has been dropped for convenience. The
conditional probability in (18) can then be expressed usingthe
Steiltjes form as

Pr(X + f (Y) < 0 | xs = 1, x) = Pr(X < − f (Y) <| xs = 1, x)

=

∫ ∞

−∞
FX(− f (x))dFY(x). (19)

Using the PL approximation in the above,
∫ ∞

−∞
FX(− f (x))dFY(x)

≈
∫ ln ν

−∞
FX(− ln ν)dFY(x) +

∫ 0

ln ν
FX(x)dFY(x)

+

∫ ln 1
ν

0
FX(−x)dFY(x) +

∫ ∞

ln 1
ν

FX(ln ν)dFY(x)

= FX(− ln ν)FY(ln ν) + FX(ln ν) [1 − FY(− ln ν)]

+

∫ ln 1
ν

ln ν
FX(−x)dFY(x) (20)

after rearranging. Integrating the above by parts and simplify-
ing results in

Pr(X + f (Y) < 0 | xs = 1, x) = FX(ln ν) +
∫ ln 1

ν

ln ν
FY(−x)dFX(x)

(21)

SinceX andY are known to be CG from (11), their respective
CDFs FX and FY are given by (13). LetFX and FY have the
parameters (α1,α2) and (β1, β2) respectively. Substituting the
respective CDFs followed by a change of variables, (21) can
be expressed as

Pr(X + f (Y) < 0 | xs = 1, x) = F (α1,α2, 0)

+

∫ ln 1
ν

0
F (

β2, β1, x
)

dF (α1,α2,−x)

−
∫ ln 1

ν

0
F (

β1, β2,−x
)

dF (α2,α1, x) . (22)

Evaluating the above integrals and simplifying, we obtain (see
Appendix C)

Pr(X + f (Y) < 0 | xs = 1, x) =

F (α1,α2, 0) + F (

β1, β2, 0
)F (α2,α1, 0)

− F (

β1, β2, ln ν
)F (α2,α1,− ln ν)

+ G (

α1,α2; β2, β1
)

+ G (

β1, β2;α2,α1
)

, (23)

where

G (

β1, β2;α2,α1
)

=

Lr
∑

i=1

(−βi2)2Mr−mi

∏Lr
j=1

(

β j1 − βi2

)mj ∏Lr
j=1
j,i

(

β j2 − βi2

)mj

∑

p.vmi−1=mi−1

1
p1!

×
mi−1
∏

t=2

1
pt!





























1
t
+

1
t

Lr
∑

j=1

mjβ
t
j1

(β j1 − βi2)t
+

1
t

Lr
∑

j=1
j,i

mjβ
t
j2

(β j2 − βi2)t





























pt

×
p1
∑

ρ=0

(

p1

ρ

)





























1+
Lr
∑

j=1

mjβ j1

(β j1 − βi2)
+

Lr
∑

j=1
j,i

mjβ j2

(β j2 − βi2)





























p1−ρ
(

− 1
βi2

)ρ

×
Ls
∑

l=1

(−αl1)2Ms−ml

∏L
k=1 (αk2 − αl1)mk

∏Ls

k=1
k,l

(αk1 − αl1)mk

∑

q.vml−1=ml−1

1
q1!

×
ml−1
∏

n=2

1
qn!

























1
n
+

1
n

Ls
∑

k=1

mkα
n
k2

(αk2 − αl1)n
+

1
n

Ls
∑

k=1
k,l

mkα
n
k1

(αk1 − αl1)n

























qn

×
q1
∑

κ=0

(

1
αl1

)κ

























1+
Ls
∑

k=1

mkαk2

(αk2 − αl1)
+

Ls
∑

k=1
k,l

mkαk1

(αk1 − αl1)n

























q1−κ

×
(

αl1βi2

βi2 − αl1

)ρ+κ [(
αl1

βi2 − αl1

)

Γ

(

ρ + κ + 1,

(

1
αl1
− 1
βi2

)

ln
1
ν

)

+ρΓ

(

ρ + κ,

(

1
αl1
− 1
βi2

)

ln
1
ν

)]

, (24)

the subscriptss and r used to represent the source and relay
parameters.
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B. Central Limit Theorem approximation for multiple relays
(large N)

For largeN, using the central limit theorem (CLT) [24], (8)
can be expressed as

Pe =
∑

x

N
∏

r=1

ǫ
1−xr

2
r (1− ǫr )

1+xr
2 Pr(X + Y < 0 | xs = 1, x) , (25)

where Y = N
(

µ, σ2
)

for µ =
∑N

r=1 E
[

f (Yr )
]

, σ2 =
∑N

r=1 var
[

f (Yr )
]

as Yr in (8) are independent, with var[·]
denoting the variance. The first and second moments off (Yr )
may then be obtained from Corollary 3.2 to computeµ and
σ2. Thus, the statistics ofY are now completely known. Note
that the PL approximation is implied through Corollary 3.2.
Using the approach outlined in Section IV,

Pr(X + Y < 0 | xs = 1, x) =
∫ ∞

−∞
FX(−x)pY(x)dx

=

∫ 0

−∞
[1 − F (α2,α1,−x)] pY(x)dx

+

∫ ∞

0
F (α1,α2,−x) pY(x)dx

= FY(0)−
∫ ∞

0
F (α2,α1, x) pY(−x)dx

+

∫ ∞

0
F (α1,α2,−x) pY(x)dx (26)

after substituting forFX(x) from (13). Evaluating the above
integrals and substituting, we obtain (see Appendix D)

Pr(X + Y < 0 | xs = 1, x) = Q
(

µ

σ

)

− P (α2, α1, γ1,−1) + P (α1, α2,−γ2, 1) , (27)

whereγi =
(

1
αli
+
µ

σ2

)

, i = 1, 2 and

P (α2, α1, γ, t) = σe−
µ2

2σ2

×
L

∑

l=1

(−αl1)2M−ml

∏L
k=1 (αk2 − αl1)mk

∏L
k=1
k,l

(αk1 − αl1)mk

∑

q.vml−1=ml−1

1
q1!

×
ml−1
∏

n=2

1
qn!

























1
n
+

1
n

L
∑

k=1

mkα
n
k2

(αk2 − αl1)n
+

1
n

L
∑

k=1
k,l

mkα
n
k1

(αk1 − αl1)n

























qn

×
q1
∑

κ=0

(

q1

κ

) (

t
αl1

)κ

























1+
L

∑

k=1

mkαk2

(αk2 − αl1)
+

L
∑

k=1
k,l

mkαk1

(αk1 − αl1)

























q1−κ

×
(

γσ2
)κ−1



















(γσ) Q(γσ)eγ
2σ2/2

⌊ κ2 ⌋
∑

k=0

κ!
k!(κ − 2k)!(2γ2σ2)k

+
1
√

2π

×
κ

∑

j=1

⌊ j−1
2 ⌋

∑

k=0

⌊ κ− j
2 ⌋

∑

i=0

(

κ

j

)

(−1)k+ j( j − 1)!(κ − j)!
k!( j − 1− 2k)!i!(κ − j − 2i)!(2γ2σ2)k+i





















,

(28)

with Q(x) = 1√
2π

∫ ∞
x

e−y2/2dy. Substituting (27) in (25) results
in a closed form expression for the BER for multiple relays.
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Fig. 2. Theoretical and simulation results for single-relay cooperation. Curves
plotted according to the source and relay antenna specifications listed in the
box in the same order.

V. R  D

A. Simulation Parameters

The channel fading follows the following path loss model
[4]. Ωi, j ∝ 1

L4
i, j
, i, j ∈ {s, r, d} with Li, j being the distance

between the nodesi and j. Also, Ωr,s =
Ωd,s

l4 andΩd,r =
Ωd,s

(1−l)4 ,

wherel = Lr,s

Ld,s
. The average system signal to noise ratio (SNR)

=
Ωd,s(Es+Er )

N0
and the relay to source powerρ = Er

Es
. Also,

when a node (source or relay) supports multiple antennas,
the power allocated to each antenna isEi

Mi
, i ∈ {s, r}. This

particular model is used for the following reasons. Firstly, it
allows some insight into the effect of the relay location on the
BER. Secondly, by keeping the total power distributed across
all the antennas at the source as well as relays constant, a fair
comparison of the performance of MIMO relay systems for
different configurations is possible.

To compute the BER using (23) and (27), the param-
eters (a, b,M,Ω) for the source and relay decision vari-
ables X and Yr are required. For the above simulation
setup, the respective parameters are

(

4xs
N0
,

8Es
MsN0
,Ms,

1
l4 I Ms

)

and
(

4xr
N0
,

8Er
Mr N0
,Mr ,

1
(1−l)4 I Mr

)

, whereI M is the identity matrix of size
M.

B. Single Relay Performance

A comparison of the theoretical and simulation results are
provided in Figure 2 for various values ofMs and Mr , with
N = 1. The variation of the BERPe with respect to the
system SNR is shown for scenarios where the source and relay
support upto 4 antennas. For simulations, the Alamouti code
was employed at nodes that supported 2 antennas. For nodes
supporting 4 antennas, the 4× 4 real orthogonal design [17]
was used. For all cases,l = 0.5, which means that the relay is
located halfway between the source and the destination. Also,
the source and relay powers are considered to be equal. The
theoretical results were obtained from (23) and (18). From



6

0 5 10 15
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

Average SNR (dB)

A
ve

ra
ge

 P
ro

ba
bi

lit
y 

of
 E

rr
or

ρ=1,l=0.5

M
s
=1,M

r
=1

M
s
=2,M

r
=1

M
s
=1,M

r
=2

M
s
=2,M

r
=2

M
s
=4,M

r
=1

M
s
=1,M

r
=4

M
s
=4,M

r
=2

M
s
=2,M

r
=4

Fig. 3. BER plots for various values ofMs and Mr for the single relay
system. Performance improves with increasingMr .
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Fig. 4. Effect of relay location on the BER. S-R link dominates whenMr = 1,
R-D link dominates whenMr = 2.

Figure 2, we can observe that there is an excellent match
between the theoretical and simulation results.

A more detailed plot of the BER with respect to the average
system SNR for the single relay system is available in Figure3
for various values ofMs andMr . From the figure, it is evident
that using multiple antennas at the source and/or the relay
leads to a significant improvement in system performance.

The effect of relay location on the BER performance is
shown in Figure 4. In the high SNR region, the BER per-
formance of systems for whichMs = 1 is much better when
l = 0.3, i.e. when the relay is closer to the source. However,
systems withMs = 2 perform better when the relay is located
closer to the destination atl = 0.7. This behaviour is explained
as follows.

The performance of cooperative systems is dependent on
the strength of the S-R, R-D and S-D links. The S-R link is
stronger when the relay is located closer to the source than the
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Fig. 5. BER plots for different values ofMs and Mr for the multirelay
system. Loss in diversity due to DF.

destination. The behaviour of the R-D link is just the opposite.
For Ms = 1, the BER performance of the system is ultimately
influenced by the strength of the S-R link, which explains the
improved performance forl = 0.3. On the other hand, forMs =

2, due to transmit diversity, the effect of relay location on the
S-R link is relatively very less. Therefore, system performance
is heavily influenced by the R-D link resulting in a better BER
performance forl = 0.7.

C. Multirelay performance

The high SNR performance of cooperative diversity systems
for multiple antennas as well as multiple relays is shown in
Figure 5 for Ms,Mr = 1, 2 and N = 5, 6, 7, 8. The BER
curves plotted in the figures are obtained using the CLT
approximation from (25) and (27). For simplicity, we have
consideredρ = 1 and l = 0.5. The loss in diversity order
due to DF by a factor of 2 is obvious from Figure 5. For
Ms = Mr = 1, this has been rigorously proved in [4]. The
plots for Ms,Mr > 1, indicate that this property may hold
even for MIMO relay systems. To the best of our knowledge,
such numerical results based on the error rate are not available
elsewhere. Using the notation (Ms,Mr ,N) to denote the source
and relay antenna parameters of a MIMO relay system, from
Figure 6, we find that a (1,1,8) system has the same BER
performance as (2,1,4), (1,2,4) and (2,2,2) systems. However,
the (1,1,8) system in Figure 6 has a total (adding source and
relay antennas) number of 9 antennas, (2,1,4) with 6, (1,2,4)
with 9 antennas and a (2,2,2) system with 6 antennas. Thus,
systems with multiple antennas at both the source as well as
relays are more resource optimal and may be preferred in the
design of fixed relay systems.

VI. C

In this paper, we have obtained closed form expressions
for the BER for ML-DF MIMO relay systems, by extending
the ML decision rule for primitive cooperative systems. Exact
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Fig. 6. MIMO compensates for reduced cooperation between relays.

expressions were obtained for single relay systems employing
the PL combiner, a practical alternative to the ML detector
for DF cooperative systems. Using the central limit theorem,
a closed form approximation was obtained for the BER when
multiple relays were employed. From the BER plots, multire-
lay systems were found to suffer from a loss in diversity order
due to DF. On the basis of our numerical results, we conclude
that the performance of cooperative diversity systems can be
significantly enhanced by using multiple antennas at the relays
as well as the source.

A A

The derivation of the decision rule is explained through the
following cases [3], [6].
Ms = Mr = 1: Dropping the superscripts for the transmit
antennas in (2), the ML decision rule at the destination is
given by

x̂s = arg max
xs

ln pyd,s|xs(yd,s | xs) +
N

∑

r=1

ln pyd,r |xs(yd,r | xs), (29)

where xs and xr are the symbols transmitted by the source
and relay respectively andp(·|·)(· | ·) represents the conditional
PDF. Since Pr(xr , xs | xs) = ǫr is the probability of error on
the S-R link,

ln pyd,r |xs(yd,r | xs) = ln
{

pyd,r |xr (yd,r | xr = xs)(1− ǫr )
+pyd,r |xr (yd,r | xr , xs)ǫr

}

. (30)

Sinceyds | hd,s ∼ CN
(

hd,sxs,N0
)

, ydr | hd,r ∼ CN
(

hd,r xr ,N0
)

,
for BPSK modulation, from (2), (29) and (30), the decision
rule is then obtained as [3], [4]

X +
N

∑

r=1

ln
ǫr + (1− ǫr ) exp(Yr )
(1− ǫr ) + ǫr exp(Yr )

1
>
<

−1
0 (31)

where

X =
4Re{h∗d,syd,s}

N0
,

Yr =
4Re{h∗d,ryd,r}

N0
(32)

with {∗} representing the complex conjugate operation.
Ms = Mr = 2: For the transmission scheme in Example (2.1),
the received symbols for the R-D link on consecutive time
slots are obtained from (2) as

y(1)
d,r = h(1)

d,r xr + h(2)
d,r x
′
r + n(1)

d,r ,

y(2)
d,r = h(2)

d,r x
∗
r − h(1)

d,r x
′∗
r + n(2)

d,r r = 1, . . . ,N. (33)

After combining appropriately at the destination using the
Alamouti scheme [18] for the R-D link, we obtain

ỹ(1)
d,r = h(1)∗

d,r y(1)
d,r + h(2)

d,ry
(2)∗
d,r

=
(

|h(1)
d,r |

2 + |h(2)
d,r |

2
)

xr + h(1)∗
d,r n(1)

d,r + h(2)
d,rn

(2)∗
d,r , (34)

ỹ(2)
d,r = h(2)∗

d,r y(1)
d,r − h(1)

d,ry
(2)∗
d,r

=
(

|h(1)
d,r |

2 + |h(2)
d,r |

2
)

x′r − h(1)
d,rn

(2)∗
d,r + h(2)∗

d,r n(1)
d,r . (35)

From the above, it is obvious that the decisions forxr andx′r on
the R-D link can be made independently. This is possible due
to the orthogonality of the Alamouti code [17], [20]. Similarly,
for the S-D link, we have

ỹ(1)
d,s = h(1)∗

d,s y(1)
d,s+ h(2)

d,sy
(2)∗
d,s

=
(

|h(1)
d,s|

2 + |h(2)
d,s|

2
)

xs + h(1)∗
d,s n(1)

d,s+ h(2)
d,sn

(2)∗
d,s . (36)

Noting that

ỹ(1)
ds | h

(1)
d,s, h

(2)
d,s ∼ CN

((

|h(1)
d,s|

2 + |h(2)
d,s|

2
)

xs,
(

|h(1)
d,s|

2 + |h(2)
d,s|

2
)

N0

)

ỹ(1)
dr | h

(1)
d,r , h

(2)
d,r ∼ CN

((

|h(1)
d,r |

2 + |h(2)
d,r |

2
)

xr ,
(

|h(1)
d,r |

2 + |h(2)
d,r |

2
)

N0

)

,

(37)

it is possible to directly use the decision rule in (31) forMs =

Mr = 2 with

X =
4Re{ỹ(1)

d,s}
N0

=
4Re{h(1)∗

d,s y(1)
d,s+ h(2)∗

d,s y(2)
d,s}

N0
,

Yr =
4Re{ỹ(1)

d,r}
N0

=
4Re{h(1)∗

d,r y(1)
d,r + h(2)∗

d,r y(2)
d,r}

N0
(38)

andǫr equivalent to the BER for MRC with diversity order 4
[18]. The above ML decision scheme is valid forMs,Mr >

2 provided linear processing at the relay and/or destination
results in conditionally complex Gaussian decision variables
like (34) and (36). ForMr = 4, the appropriate orthogonal
design is available in [17], [20], [21].

A B

The CF of‖h‖2 can be expressed as [25]

Φ‖h‖2( ω) =
1

∏L
l=1 (1− ωΩl)ml

. (39)

The CF ofX | ‖h‖2 is given by

ΦX|‖h‖2( ω) = exp

{(

aω − b
2
ω2

)

‖h‖2
}

. (40)
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Averaging the above over‖h‖2, we have [26]

ΦX( ω) =
∫ ∞

−∞
exp

{



(

aω + 
b
2
ω2

)

y

}

p‖h‖2(y)dy

= Φ‖h‖2

{



(

aω + 
b
2
ω2

)}

, (41)

which, from (39), can be expressed as (12). Since the CF of
X can be further simplified as

ΦX( ω) =
1

∏L
l=1 (1− ωαl1)ml (1− ωαl2)ml

, (42)

using the Gil-Pelaez inversion formula [27] and the residue
theorem from complex analysis [28], [29], the CDF ofX can
be expressed as

FX(x) =



















Res
z= 1
αl2

− ΦX(z)
z e−xz x < 0

1+ Res
z= 1
αl1

∑ ΦX(z)
z e−xz x ≥ 0.

(43)

The residues in (43) can be directly computed using the Fàa
Di Bruno formula [30], [31] to obtain (13). Using the Steiltjes
integral,

E
[

{ f (X)}N
]

=

∫ ∞

−∞
{ f (x)}N dFX(x)

=

∫ ln ν

−∞
(ln ν)N dFX(x) +

∫ ln 1
ν

ln ν
xndFX(x)

+

∫ ∞

ln 1
ν

(

ln
1
ν

)N

dFX(x)

= (ln ν)N FX (ln ν) +

(

ln
1
ν

)N [

1− FX

(

ln
1
ν

)]

+

∫ ln 1
ν

ln ν
xNdFX(x). (44)

Substituting the expression forFX(x) from (13) in (44),
integrating by parts and simplifying, we obtain

E
[

{ f (X)}N
]

= N
∫ ln 1

ν

0
xN−1F (α2,α1, x) dx

− N
∫ 0

ln ν
xN−1F (α1,α2, x) dx. (45)

Substituting the expression forF (α2,α1, x) from (14) in the
first integral in (45) results in

∫ ln 1
ν

0
xN−1F (α2,α1, x) dx=

L
∑

l=1

(−αl1)2M−ml

∏L
k=1 (αk2 − αl1)mk

∏L
k=1
k,l

(αk1 − αl1)mk

∑

q.vml−1=ml−1

1
q1!

×
ml−1
∏

n=2

1
qn!

























1
n
+

1
n

L
∑

k=1

mkα
n
k2

(αk2 − αl1)n
+

1
n

L
∑

k=1
k,l

mkα
n
k1

(αk1 − αl1)n

























qn

×
q1
∑

κ=0

(

q1

κ

) (

1
αl1

)κ

























1+
L

∑

k=1

mkαk2

(αk2 − αl1)
+

L
∑

k=1
k,l

mkαk1

(αk1 − αl1)

























q1−κ

×
∫ ln 1

ν

0
xκ+N−1e−

x
αl1 dx, (46)

which, upon evaluating the integral yields

N
∫ ln 1

ν

0
xN−1F (α2,α1, x) dx= E

(

α2,α1, ln
1
ν

)

(47)

for E(·, ·, ·) defined in (17). Similarly, it can be shown that

N
∫ 0

ln ν
xN−1F (α1,α2, x) dx= −E (α1,α2, ln ν) . (48)

From (45), (47) and (48), we obtain (16).

A C

From (14), the second integral in (22) can be expressed as

∫ ln 1
ν

0
F (

β1, β2,−x
)

dF (α2,α1, x) =

Lr
∑

i=1

(−βi2)2Mr−mi

∏Lr

j=1

(

β j1 − βi2

)mj ∏Lr

j=1
j,i

(

β j2 − βi2

)mj

∑

p.vmi−1=mi−1

1
p1!

×
mi−1
∏

t=2

1
pt!





























1
t
+

1
t

Lr
∑

j=1

mjβ
t
j1

(β j1 − βi2)t
+

1
t

Lr
∑

j=1
j,i

mjβ
t
j2

(β j2 − βi2)t





























pt

×
p1
∑

ρ=0

(

p1

ρ

)





























1+
Lr
∑

j=1

mjβ j1

(β j1 − βi2)
+

Lr
∑

j=1
j,i

mjβ j2

(β j2 − βi2)





























p1−ρ
(

− 1
βi2

)ρ

×
∫ ln 1

ν

0
xρe

x
βi2 dF (α2,α1, x) . (49)

Integrating by parts,

∫ ln 1
ν

0
xρe

x
βi2 dF (α2,α1, x) = xρe

x
βi2F (α2,α1, x) |ln

1
ν

0

−
∫ ln 1

ν

0

(

1
βi2

xρe
x
βi2 + ρxρ−1e

x
βi2

)

F (α2,α1, x) dx. (50)

From (49) and (50), substituting the expression for
F (α2,α1, x),

∫ ln 1
ν

0
F (

β1, β2,−x
)

dF (α2,α1, x) =

F (

β1, β2,−x
)F (α2,α1, x) |ln

1
ν

0

−
Lr
∑

i=1

(−βi2)2Mr−mi

∏Lr

j=1

(

β j1 − βi2

)mj ∏Lr

j=1
j,i

(

β j2 − βi2

)mj

∑

p.vmi−1=mi−1

1
p1!

×
mi−1
∏

t=2

1
pt!





























1
t
+

1
t

Lr
∑

j=1

mjβ
t
j1

(β j1 − βi2)t
+

1
t

Lr
∑

j=1
j,i

mjβ
t
j2

(β j2 − βi2)t





























pt

×
p1
∑

ρ=0

(

p1

ρ

)





























1+
Lr
∑

j=1

mjβ j1

(β j1 − βi2)
+

Lr
∑

j=1
j,i

mjβ j2

(β j2 − βi2)





























p1−ρ
(

− 1
βi2

)ρ

×
Ls
∑

l=1

(−αl1)2Ms−ml

∏Ls

k=1 (αk2 − αl1)mk
∏L

k=1
k,l

(αk1 − αl1)mk

∑

q.vml−1=ml−1

1
q1!
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×
ml−1
∏

n=2

1
qn!

























1
n
+

1
n

Ls
∑

k=1

mkα
n
k2

(αk2 − αl1)n
+

1
n

Ls
∑

k=1
k,l

mkα
n
k1

(αk1 − αl1)n

























qn

×
q1
∑

κ=0

(

1
αl1

)κ

























1+
Ls
∑

k=1

mkαk2

(αk2 − αl1)
+

Ls
∑

k=1
k,l

mkαk1

(αk1 − αl1)n

























q1−κ

×
∫ ln 1

ν

0

[

1
βi2

xρ+κe
−x

(

1
αl1
− 1
βi2

)

+ ρxρ+κ−1e
−x

(

1
αl1
− 1
βi2

)]

dx,

which can be simplified to obtain

∫ ln 1
ν

0
F (

β1, β2,−x
)

dF (α2,α1, x)

= F (

β1, β2,−x
)F (α2,α1, x) |ln

1
ν

0

− G (

β1, β2;α2,α1
)

. (51)

Integrating by parts, the first integral in (22) can be expressed
using (51) as

∫ ln 1
ν

0
F (

β2, β1, x
)

dF (α1,α2,−x) = G (

α1,α2; β2, β1
)

. (52)

From (22), (51) and (52), we obtain (23).

A D

Substituting the expression forpY(−x),

∫ ∞

0
F (α2,α1, x) pY(−x)dx=

L
∑

l=1

(−αl1)2M−ml

∏L
k=1 (αk2 − αl1)mk

∏L
k=1
k,l

(αk1 − αl1)mk

∑

q.vml−1=ml−1

1
q1!

×
ml−1
∏

n=2

1
qn!

























1
n
+

1
n

L
∑

k=1

mkα
n
k2

(αk2 − αl1)n
+

1
n

L
∑

k=1
k,l

mkα
n
k1

(αk1 − αl1)n

























qn

×
q1
∑

κ=0

(

q1

κ

) (

1
αl1

)κ

























1+
L

∑

k=1

mkαk2

(αk2 − αl1)
+

L
∑

k=1
k,l

mkαk1

(αk1 − αl1)

























q1−κ

× 1
√

2πσ

∫ ∞

0
xκe−

x
αl1 e−

(x+µ)2

2σ2 dx. (53)

Since

exp

(

− x
αl1

)

exp

(

− (x+ µ)2

2σ2

)

= exp

(

− µ
2

2σ2

)

exp

[

−
(

1
αl1
+
µ

σ2

)

x− x2

2σ2

]

, (54)

letting γ =
(

1
αl1
+
µ

σ2

)

, from [32, (3.322.2)],

eµ
2/2σ2

√
2πσ

∫ ∞

0
e−

x
αl1 e−

(x+µ)2

2σ2 dx= eγ
2σ2/2Q (γσ) . (55)

Using the Leibnitz rule, theκth order derivative of the above
with respect toγ yields

1
√

2πσ

∫ ∞

0
xκ exp

(

−γx− x2

2σ2

)

dx

= (−1)κ
κ

∑

j=0

(

κ

j

) [

d j

dγ j
Q(γσ)

] [

dκ− j

dγκ− j
eγ

2σ2/2

]

. (56)

Since [32, (0.432.2)]

d j

dγ j
Q(γσ) =































Q(γσ) j = 0

− σ√
2π

(

−γσ2
) j−1

e−γ
2σ2/2

×∑⌊ j−1
2 ⌋

k=0
( j−1)!

k!( j−1−2k)!(−2γ2σ2)k otherwise

and

dκ− j

dγκ− j
eγ

2σ2/2 =
(

γσ2
)κ− j

eγ
2σ2/2

⌊ κ− j
2 ⌋

∑

k=0

(κ − j)!
k!(κ − j − 2k)!(2γ2σ2)k

,

(57)

from (53), (56) and (57), we obtain
∫ ∞

0
F (α2,α1, x) pY(−x)dx= P (α2, α1, γ1,−1) . (58)

Similarly, the second integral in (26) can be obtained, resulting
in (28).
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