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ABSTRACT
Proofs of some theorems related to cyclic quadrilaterals are provided using coordi-
nate geometry and trigonometry. Through this approach, constructions and proofs
using contradiction are avoided.
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1. Introduction

Many proofs in Euclidean geometry are based on contradiction. For example, Figure
1 was used in [1] to prove the following theorem:
“If a line segment joining two points subtends equal angles at two other points lying
on the same side of the line containing the line segment, the four points lie on a circle
(i.e. they are concyclic)”
The proof given in [1] uses the theorem
“Angles in the same segment of a circle are equal”
So, a theorem is being used to prove its converse in an abstract manner, that may not
be satisfactory to the reader. In these notes, we provide an alternative approach that
relies on high school coordinate geometry, trigonometry and algebra. This involves a
tradeoff between constructions, that are trial based, and algebra with trigonometry,
which may be of interest to students. We show that this approach can be used in
other converse theorems as well, e.g. [1].
“If sum of a pair of opposite angles of a quadrilateral is 180◦, the quadrilateral is cyclic”

2. Preliminaries

Definition 2.1. Let

ui =

(
cos θi
sin θi

)
, θi > θj , i > j, i, j ∈ {1, 2, 3, 4} . (1)
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Figure 1. To show that k = r.

and

pij = pji ≜ u⊤
i uj (2)

=

{
cos (θi − θj) i ̸= j

1 i = j
(3)

Lemma 2.2.

1− pij − pjk + pik

2
√

(1− pij) (1− pjk)
= sign (θi − θj) sign (θk − θj) cos

(
θi − θk

2

)
(4)

1 + pij + pjk + pik

2
√

(1 + pij) (1 + pjk)
= sign (π − |θi − θj |) sign (π − |θk − θj |) cos

(
θi − θk

2

)
(5)
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where

sign(x) =


1 x > 0

0 x = 0

−1 x < 0

(6)

Proof. From (3), using the expression for the difference of cosines and difference of
sines [2],

1− pij − pjk + pik = 1− cos (θi − θj)− cos (θj − θk) + cos (θi − θk)

= 2

[
sin2

(
θi − θj

2

)
+ sin

(
θj − θi

2

)
sin

(
θi + θj

2
− θk

)]
= 2 sin

(
θi − θj

2

) [
sin

(
θi − θj

2

)
− sin

(
θi + θj

2
− θk

)]
= 4 sin

(
θi − θj

2

)
sin

(
θk − θj

2

)
cos

(
θi − θk

2

)
(7)

Similarly, using the expression for the sum of cosines [2],

1 + pij + pjk + pik = 1 + cos (θi − θj) + cos (θj − θk) + cos (θi − θk)

= 2

[
cos2

(
θi − θj

2

)
+ cos

(
θi − θj

2

)
cos

(
θi + θj

2
− θk

)]
= 2 cos

(
θi − θj

2

) [
cos

(
θi − θj

2

)
+ cos

(
θi + θj

2
− θk

)]
= 4 cos

(
θi − θj

2

)
cos

(
θk − θj

2

)
cos

(
θi − θk

2

)
(8)

Substituting from (7),

1− pij − pjk + pik

2
√

(1− pij) (1− pjk)
=

4 sin
(
θi−θj

2

)
sin

(
θk−θj

2

)
cos

(
θi−θk

2

)
2

√
2 sin2

(
θi−θj

2

)√
2 sin2

(
θj−θk

2

) (9)

= sign (θi − θj) sign (θk − θj) cos

(
θi − θk

2

)
(10)

Similarly, substituting from (8),

1 + pij + pjk + pik

2
√

(1 + pij) (1 + pjk)
=

4 cos
(
θi−θj

2

)
cos

(
θk−θj

2

)
cos

(
θi−θk

2

)
2

√
2 cos2

(
θi−θj

2

)√
2 cos2

(
θj−θk

2

) (11)

= sign (π − |θi − θj |) sign (π − |θk − θj |) cos
(
θi − θk

2

)
(12)
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Lemma 2.3. x = ±1 are roots of the quartic equation

(1− p24 − p34 + p23)
2

4(1− p24) (1− p34)
=

(
x2 − xp24 − xp34 + p23

)2
(x2 + 1− 2xp24) (x2 + 1− 2xp34)

(13)

Proof. (1) For

|θ2 − θ4| < π, |θ3 − θ4| < π, (14)

susbtituting x = ±1 in

1− p24 − p34 + p23

2
√

(1− p24) (1− p34)
=

x2 − xp24 − xp34 + p23√
(x2 + 1− 2xp24) (x2 + 1− 2xp34)

(15)

leads to the identities in Lemma 2.2,
(2) For

|θ2 − θ4| > π ∩ |θ3 − θ4| < π or |θ2 − θ4| < π ∩ |θ3 − θ4| > π, (16)

susbtituting x = 1 in

1− p24 − p34 + p23

2
√

(1− p24) (1− p34)
=

x2 − xp24 − xp34 + p23√
(x2 + 1− 2xp24) (x2 + 1− 2xp34)

(17)

leads to the identities in Lemma 2.2, Similarly, susbtituting x = −1 in

1− p24 − p34 + p23

2
√

(1− p24) (1− p34)
= − x2 − xp24 − xp34 + p23√

(x2 + 1− 2xp24) (x2 + 1− 2xp34)
(18)

leads to the identities in Lemma 2.2.

Conjecture 2.3. The remaining 2 roots of (13) are either complex or negative.

Discussion: Let

f(x) =
x2 − xp24 − xp34 + p23√

(x2 + 1− 2xp24) (x2 + 1− 2xp34)
,

c =
1− p24 − p34 + p23

2
√

(1− p24) (1− p34)
.

(19)

Representative plots1 for

y = f(x)− c, y = f(x) + c and y = [f(x)]2 − c2 (20)

are available in Figures 2 and 3 for respectively. The roots of y = 0 for each of the
functions in (20) are summarized in Table 2.

1Numerous plots were generated, yileding similar results
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Figure 2. θ1 = 354.29585899◦, θ2 = 292.79715691◦, θ3 = 192.4751066◦, θ4 = 163.18664766◦. f(x) = c has

roots at x = ±1. f(x) = −c has complex roots. The quartic has only two real roots at x = ±1. Behaviour of

the roots is similar for other angles satisfying (14)

.

Figure
No.

Angle Constraints Roots of
f(x) = c

Roots of
f(x) = −c

Roots of the
quartic

[f(x)]2 = c2

2

|θ2 − θ4| < π

∩
|θ3 − θ4| < π

x = ±1 Complex

3

|θ2 − θ4| > π

∩
|θ3 − θ4| < π

or

|θ2 − θ4| < π

∩
|θ3 − θ4| > π

x1 = 1, x2 < 0 x1 = −1 Roots of f(x) =
±c

Table 2. Summary of the observations from Figs. 2 and 3
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Figure 3. θ1 = 338.29055322◦, θ2 = 216.93519181◦, θ3 = 117.0226174◦, θ4 = 57.8273199◦. f(x) = c has a

root at x = 1 and one negative root. f(x) = −c has two real roots with a root at x = −1. The quartic has roots

at x = ±1 along with two more real roots. Behaviour of the roots is similar for other angles satisfying (16)

.

Corollary 2.3. x = 1 is the only positive root of

1− p24 − p34 + p23

2
√

(1− p24) (1− p34)
=

x2 − xp24 − xp34 + p23√
(x2 + 1− 2xp24) (x2 + 1− 2xp34)

(21)

Proof. From Lemma 2.3 and Conjecture 2.3, we observe that (15) always has a root
at x = 1 which is the only positive root of (13). The remaining root(s) of (13) and
consequently (15) are either negative or complex. Thus, x = 1 is the only positive root
of (15).

3. Main result

Theorem 3.1. In Figure 4, if

∠BAC = ∠BDC = θ, (22)

then ABCD is a cyclic quadrilateral
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Figure 4. To show that k = r.

Proof. Let

O =

(
0
0

)
(23)

be the circumcentre of △ABC and let r be the radius. Without loss of generality,
assuming that

A = r

(
cos θ1
sin θ1

)
= ru1,B = r

(
cos θ2
sin θ2

)
= ru2 (24)

C = r

(
cos θ3
sin θ3

)
= ru3,D = κ

(
cos θ4
sin θ4

)
= κu4, θ1 > θ2 > θ3 > θ4, (25)
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for ui defined in (1), we need to show that

κ = r. (26)

in Figure 4. The inner product of the vectors AB and AC is defined as [3]

(A−B)⊤ (A−C) = ∥A−B∥ ∥A−C∥ cos∠BAC (27)

which yields

cos∠BAC =
(A−B)⊤ (A−C)

∥A−B∥ ∥A−C∥
(28)

Similarly,

cos∠BDC =
(D−B)⊤ (D−C)

∥D−B∥ ∥D−C∥
(29)

From (22),

∠BAC = ∠BDC (30)

=⇒ cos∠BAC = cos∠BDC (31)

=⇒ (A−B)⊤ (A−C)

∥A−B∥ ∥A−C∥
=

(D−B)⊤ (D−C)

∥D−B∥ ∥D−C∥
(32)

upon substituting from (28) and (29). In (32),

∵ (A−B)⊤ (A−C) = r2 (u1 − u2)
⊤ (u1 − u3) (33)

= r2
(
∥u1∥2 − u⊤

1 u3 − u⊤
1 u2 + u⊤

2 u3

)
(34)

= r2 (1− p12 − p13 + p23) (35)

upon substituting from (24)-(25) and using Lemma 2.1. Similarly,

(D−B)⊤ (D−C) = κ2 − rκp24 − rκp34 + r2p23 (36)

∥A−B∥2 = (A−B)⊤ (A−B) = 2r2 (1− p12) (37)

∥A−C∥2 = (A−C)⊤ (A−C) = 2r2 (1− p13) (38)

and

∥D−B∥2 = (D−B)⊤ (D−B) = κ2 + r2 − 2κrp24 (39)

∥D−C∥2 = (D−C)⊤ (D−C) = κ2 + r2 − 2κrp34 (40)

8



Substituting from (35) - (40) in (32),

(A−B)⊤ (A−C)

∥A−B∥ ∥A−C∥
=

(D−B)⊤ (D−C)

∥D−B∥ ∥D−C∥
(41)

=⇒ r2 (1− p12 − p13 + p23)√
2r2 (1− p12)

√
2r2 (1− p13)

=
κ2 − rκp24 − rκp34 + r2p23√

κ2 + r2 − 2κrp24
√

κ2 + r2 − 2κrp34
(42)

which can be expressed as

1− p12 − p13 + p23

2
√

(1− p12) (1− p13)
=

x2 − xp24 − xp34 + p23√
(x2 + 1− 2xp24) (x2 + 1− 2xp34)

(43)

upon substituting

x =
κ

r
> 0. (44)

From (4) for i = 2, j = 1, k = 3,

1− p12 − p13 + p23

2
√

(1− p12) (1− p13)
= sign (θ2 − θ1) sign (θ3 − θ1) cos

(
θ2 − θ3

2

)
(45)

= cos

(
θ2 − θ3

2

)
∵ θ1 > θ2 > θ3 (46)

Similarly, for i = 2, j = 4, k = 3 in (4)

1− p24 − p34 + p23

2
√

(1− p24) (1− p34)
= sign (θ2 − θ4) sign (θ3 − θ4) cos

(
θ2 − θ3

2

)
(47)

= cos

(
θ2 − θ3

2

)
, ∵ θ2 > θ3 > θ4 (48)

From (46) and (48),

1− p12 − p13 + p23

2
√

(1− p12) (1− p13)
=

1− p24 − p34 + p23

2
√

(1− p24) (1− p34)
(49)

and (43) can be expressed as

1− p24 − p34 + p23

2
√

(1− p24) (1− p34)
=

x2 − xp24 − xp34 + p23√
(x2 + 1− 2xp24) (x2 + 1− 2xp34)

(50)

By definition, x > 0 from (44). From Corollary 2.3, it follows that

x = 1, (51)

is the only possible a solution of (15) resulting in (26). Hence,D lies on the circumcircle
of △ABC and ABCD is a cyclic quadrilateral.
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4. Application

Interestingly, the approach used in the proof of Theorem 3.1 can be used to prove the
following theorem as well.

Theorem 4.1. In Figure 5, if

∠ABC + ∠ADC = 180◦ (52)

then ABCD is a cyclic quadrilateral.

A
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C

D

O

r

r
r

k

180◦ − θ

θ

Figure 5. To show that k = r.

Proof. We follow the same notations as in Theorem 3.1 and assume that O is the
circumcentre of △ABC. Then we need to show that k = r in Figure 5. Using the inner
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product and (52),

∠ABC = cos θ =
(B−A)⊤ (B−C)

∥B−A∥ ∥B−C∥
(53)

∠ADC = cos (180− θ) = − cos θ =
(D−A)⊤ (D−C)

∥D−A∥ ∥D−C∥
(54)

Thus,

(B−A)⊤ (B−C)

∥B−A∥ ∥B−C∥
= −(D−A)⊤ (D−C)

∥D−A∥ ∥D−C∥
(55)

which can be expressed using (41)-(43) as

1− p12 − p23 + p13

2
√

(1− p12) (1− p23)
= − x2 − xp14 − xp34 + p13√

(x2 + 1− 2xp14) (x2 + 1− 2xp34)
(56)

Substituting i = 1, j = 2, k = 3 in (4)

1− p12 − p23 + p13

2
√

(1− p12) (1− p23)
= sign (θ1 − θ2) sign (θ3 − θ2) cos

(
θ1 − θ3

2

)
= − cos

(
θ1 − θ3

2

)
∵ θ1 > θ2 > θ3

(57)

Similarly, substituting i = 1, j = 4, k = 3 in (4)

1− p14 − p43 + p13

2
√

(1− p14) (1− p43)
= sign (θ1 − θ4) sign (θ3 − θ4) cos

(
θ1 − θ3

2

)
(58)

= cos

(
θ1 − θ3

2

)
∵ θ1 > θ3 > θ4 (59)

Thus, from (57) and (59),

1− p12 − p23 + p13

2
√

(1− p12) (1− p23)
= − 1− p14 − p43 + p13

2
√

(1− p14) (1− p43)
(60)

=⇒ 1− p14 − p43 + p13

2
√

(1− p14) (1− p43)
=

x2 − xp14 − xp34 + p13√
(x2 + 1− 2xp14) (x2 + 1− 2xp34)

(61)

upon substituting (60) in (56). From Corollary 2.3, it follows that

x = 1. (62)

Thus, k = r, D lies on the circumcircle of △ABC and ABCD is a cyclic quadrilateral.
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