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Abstract— The network scenario is that of an infrastructure
IEEE 802.11 WLAN with a single AP with which several stations
(STAs) are associated. The AP has a finite size buffer for storing
packets contending for transmission over the wireless medium. In
this scenario, we consider TCP controlled upload and download
file transfers between the STAs and a server on the wireline
LAN (e.g., 100 Mbps Ethernet) to which the AP is connected.
In such a situation, it is known (see, for example, [3], [9]) that
because of packet loss due to finite buffers at the AP, upload
file transfers obtain larger throughputs than download transfers.
We provide an analytical model for estimating the upload and
download throughputs as a function of the buffer size at the AP.
We provide models for the undelayed and delayed ACK cases
for a TCP that performs loss recovery only by timeout, and for
TCP Reno.

Index Terms—TCP over IEEE 802.11 WLANs, TCP unfair-
ness in WLANs, TCP modeling

I. I NTRODUCTION

We consider a scenario in which several stations (STAs)
are associated with a single Access Point (AP). The AP has a
finite amount of FIFO buffer to store packets. In this paper, for
simplicity, we consider associations only at a single Physical
(PHY) rate; e.g., in IEEE 802.11b the PHY rates 11 Mbps,
5.5 Mbps and 2 Mbps are available. We are concerned with
TCP controlled file transfer throughputs when each STA is
either downloading or uploading a single large file via the
AP. The other endpoint of the transfers, or the “server,” is
located on the high speed Ethernet connected to the AP1.
For such a situation, it has been reported that, with finite
buffers at the AP, there is unfairness between the upload and
download transfers with the upload transfers obtaining larger
throughputs [3], [9]. Our objective in this paper is to provide
analytical models that explain this unfairness, thus providing
quantitative insights into the unfairness, and also predictive
models for network engineering.
Relation to the Literature: Bruno et al. [2] analyzed the
scenario of upload and download TCP controlled file transfers
in a single cell infrastructure WLAN when there is no packet
loss at the AP. They assumed that the TCP windows of
all the connections are equal, that the TCP receivers use
undelayed ACKs, and showed that the total TCP throughput
is independent of the number of STAs in the system; further
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1The situation in which the server is located across a wide-area network

will be considered in our future research.

the upload and download transfers each obtain an equal share
of the aggregate throughput. A variation of this approach for
modeling TCP transfers, along with a fixed-point analysis of
EDCA, was employed by Sri Harsha et al. [10] to provide a
combined analytical model for TCP transfers, CBR packet
voice, and streaming video over an infrastructure WLAN.
The delayed ACK case was analyzed by Kuriakose et al. [7].
It is known that, if there is packet loss at the AP due to
finite buffers, then in a situation of simultaneous upload and
download transfers, the upload transfers each obtain a larger
throughput than any of the download transfers. Gong et al.
[3] provide simulation results validating this fact. They also
show that as the AP’s buffer size increases, thus reducing
packet loss at the AP, the throughput unfairness reduces.
Gong et al. also propose queue management strategies in
order to alleviate the throughput unfairness. Among the other
literature, Pilosof et al. [9] analyzed the same problem of
unfairness by assuming an M/M/1/K model for the finite
buffer at the AP. In the present paper, we do not assume any
such conventional queueing model, but develop a model that
combines the earlier models for TCP controlled file transfers
(i.e., [2] and [7]) along with a detailed model of TCP window
evolution under tail-drop loss at the AP.
Outline of the Paper: The analytical model comprises two
steps. In the first step (Sections II and III), we use a simple ex-
tension of the analytical model of [2] to obtain the upload and
download throughputs for a given value ofh, the fraction of
contention cycles in which the AP contends with a download
packet (i.e., a TCP data packet) at the head-of-the-line (HOL)
of its FIFO buffer. In the second step (Section IV), we obtain
the value ofh using a detailed study of TCP window evolution
when the upload connections have a maximum window limit
but the download connections have no such window limit. We
do this for both the undelayed and delayed ACK cases for
the TCP version in which all loss recovery is by timeouts.
We also provide a bound onh for the case when all the
TCP connections have a maximum window limit. Simulation
results that validate our analysis are provided in Section VI.

II. T HROUGHPUTS: UNDELAYED ACK

Consider an infrastructure mode WLAN withN(= Nd +
Nu) STAs associated with the AP at the same PHY rate.
Among these STAs,Nd STAs each have a single download
TCP connection while each of the remainingNu STAs have
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Fig. 1. The network scenario, comprising several STAs associated with
an AP, each uploading (or downloading) a large file to (or from) a server
attached to the high-speed wired LAN.
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Fig. 2. Schematic based on the modeling assumptions discussed in the text.
There is immediate “feedback” due to packets transmitted bythe STAs.

a single upload connection (see Figure 1). All file transfers
are to or from a “server” on the high-speed LAN to which
the AP is connected. TCP ACK transmissions on the WLAN
use the “Basic Access” mode whereas TCP data transmissions
use the “RTS-CTS” mode2.

A. Modeling Observations and Approximations

1) We assume that there are no packet losses because of
wireless channel errors; such packet losses can be accounted
for by extending our analysis. Also, with the standard DCF
parameters, packet drops due to the retransmission threshold
being exceeded in the DCF CSMA/CA MAC are known to
be rare, and hence, are ignored in our model.
2) It is now well known (see [2] or [7]) that when carrying
TCP controlled transfers the AP is the bottleneck and always
contends for the channel. This is understood as follows.
Considering the undelayed ACK case, for one packet sent by
each of the STAs,N packets will need to be transmitted by
the AP. Since DCF is packet fair, this situation is sustainable
only if a very small number of the STAs contends at any time
so that, on the average, half the packets transmitted are from
the AP and the other half from the STAs. Recalling that we are
dealing with the local area network case (so that the number
of packets “in flight” outside the WLAN can be ignored) it
follows that most of the packets in the TCP windows of the
connections reside in the AP’s queue.

2Other alternatives can also easily be analyzed in the same framework.

3) Furthermore, as in [7] (for the undelayed ACK case) we use
the approximation that for largeN , an STA can have at most
one packet in its queue, with every successful transmission
from the AP resulting in the generation of a packet at an
empty STA. A TCP data packet (resp., TCP ACK) transmitted
by the AP results in a TCP ACK (resp., TCP data packet)
being generated at an STA.

Figure 2 depicts the model described above. Note that,
since the success or failure of a CSMA/CA contention does
not depend on the length of the packet to be transmitted,
Assumptions 2 and 3 above do not depend on the specific
values ofNu and Nd (as long asN is large), nor on the
packet lengths and PHY rates.

B. The Process(Dk, Uk) and its Analysis

We now develop the stochastic analysis along lines similar
to [2] or [7].

With reference to Figure 3, letGk, k ∈ {0, 1, 2, · · · }, denote
the instants when a successful transmission ends. According
to our assumptions above, the AP always contends. Consider
the instantGk. If the just completed successful transmission
is from the AP then atGk the number of contending STAs
increases by one. If the HOL packet at the AP is a TCP
data packet (resp., TCP ACK) then one more download (resp.,
upload) STA begins to contend with a TCP ACK (resp., a
TCP data packet). BetweenGk and the next success instant
Gk+1 there is no change in the number of STAs contending.
At Gk, let Dk denote the number of downloading STAs that
are nonempty (i.e., have a TCP ACK to send), and letUk

denote the number of uploading STAs that are nonempty (i.e.,
have a TCP data packet to send). Since there are no external
arrivals, the process(Dk, Uk), k ≥ 0 can only change state at
the instantsGk, k ≥ 0.

We call the time interval[Gk, Gk+1) between two consec-
utive success end instants acontention cycle. Each contention
cycle consists of severalchannel slots. A channel slot is the
time interval between two consecutive attempt opportunities
on the channel. Hence, a channel slot can be an idle back-off
slot, or a collision, or a successful transmission. Clearly, every
contention cycle consists of several idle and collision channel
slots and terminates with a success channel slot.

To model the way the DCF CSMA/CA serves packets from
the queues, we assume that whenm nodes are contending,
either with TCP data packets or with TCP ACKs, each node
contends with a probabilityβm, which is the steady-state
attempt probability whenm saturated nodes are contending
(see [7]), and can be obtained from the approximate analysis
provided in [1] or [5]. Note thatβm will include the effect
of all DCF parameters, such as the back-off windows, and
the retransmission threshold. Thus, according to this model,
if the state of the process(Dk, Uk) is (d, u), then, until the
next success, each of the1+d+u contending nodes attempts
with probability β(1+d+u). The1 arises from the assumption
that the AP always contends.

Define the processZk ∈ {0, 1}, embedded at the instants
Gk, k ≥ 0, by Zk = 1 if the HOL packet at the AP at time
Gk+ (i.e., in the interval[Gk, Gk+1)) is data, and byZk = 0
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Fig. 3. Evolution of channel activity, showing the random timesGk at which successful transmissions end.

otherwise. Now define

h = lim
n→∞

1

n

n−1
∑

k=0

Zk (1)

i.e., the fraction of contention cycles[Gk, Gk+1) in which the
HOL packet at the AP is a data packet.
Some observations abouth: Let An (resp.,Dn) denote the
number of download data packets that arrive at (resp., depart
from) the AP’s HOL position in the time interval[0, Gn). Let
Vj denote the number of contention cycles for which thejth

download packet occupies the HOL position at the AP buffer.
Then we can write

1

n

Dn
∑

j=1

Vj ≤
1

n

n−1
∑

k=0

Zk ≤
1

n

An
∑

j=1

Vj (2)

from which it can easily be shown that

h = λ(d)
E(V ) (3)

where

λ(d) = rate of download packets transmitted

by the AP per contention cycle

= lim
n→∞

An

n
= lim

n→∞

Dn

n
(4)

E(V ) = Average number of contention cycles taken

to successfully transmit

an HOL packet at the AP

= lim
n→∞

1

Dn

Dn
∑

j=1

Vj = lim
n→∞

1

An

An
∑

j=1

Vj (5)

Similarly, as the expected number of channel slots required
to successfully transmit an HOL packet from the AP is
independent of it being a TCP data packet or a TCP ACK
packet, we can also write

1 − h = λ(u)
E(V ) (6)

whereλ(u) is the rate of TCP ACK departures from the AP
per channel slot. From equations (3) and (6) we get

h =
λ(d)

λ(d) + λ(u)
(7)

Thush is also the ratio of the download throughput from
the AP to the total throughput from the AP. In the following
analysis we will use both ofthe two meanings ofh: (i) as
defined by (1), i.e., the fraction of contention cycles in which
the AP contends with a data packet at its HOL position,
and (ii) the fraction of AP services that are data packets (a
meaning provided by (7)).

h/(u+d+2)

(1−h)/(u+d+2)

(d+1,u)(d,u)

(d,u+1) (d+1)/(u+d+3)
(d+1,u+1)

(u+1)/(u+d+3)

h/(u+d+1)
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(u+1)/(u+d+2)   (1−h)/(u+d+1)

Fig. 4. Transition probability diagram of the process(Dk , Uk) for the case
of undelayed ACKs.

Analyzing the process(Dk, Uk): Based on (7), we assume
that after the HOL packet at the AP is transmitted, the next
HOL packet is a data packet with probabilityh (an ACK
packet with probability1− h), independent of anything else.
We note that this is an approximation; a more detailed model
will require us to keep track of the entire queue of packets in
the AP. With this modeling assumption about the HOL packet
at the AP, and from the contention model introduced earlier
in this section, it can be seen that(Dk, Uk) is a discrete time
Markov chain (DTMC), embedded at the instantsGk, taking
values in{(d, u) : d ∈ {0, 1, · · · , Nd}, u ∈ {0, 1, · · · , Nu}}.

The transition probability structure of the DTMC(Dk, Uk)
is shown in Figure 4. This is a finite state irreducible DTMC.
Let us denote the stationary distribution byπ = π(d, u), d ∈
{0, 1, · · · , Nd}, u ∈ {0, 1, · · · , Nu}. It can easily be seen
(from Kolmogorov’s criterion) that this a reversible DTMC.
Using this observation the explicit expression forπ(d, u) can
be shown to be the following

π(d, u) =
u + d + 1

2e
×

hd(1 − h)u

d!u!
(8)

Write the stationary marginal of the random process
(Dk, Uk) by (D, U). Since the number of download STAs
that are contending changes only at the instantsGk, k ≥ 0,
we observe that the time average number of active download
STAs will be given by (we skip the derivation due to space
constraints)

E(D) =

∞
∑

u=0

∞
∑

d=0

d ×
u + d + 1

2e
×

hd(1 − h)u

d!u!
=

3h

2
(9)

Observing symmetry of equation 8 inu andd, we see that
the time average number of active upload STAs is given by



TABLE I
IEEE 802.11B AND TCP/IPPARAMETERS

Parameter Symbol Value

Data rate 1 R1 2 Mbps
Data rate 2 R2 5.5 Mbps
Data rate 3 R3 11 Mbps
Control rate Cc 2 Mbps
PHY Preamble time TP 144 µS
PHY header TPHY 48 µS
MAC header size LMAC 34 bytes
RTS packet size LRTS 20 bytes
CTS packet size LCTS 14 bytes
MAC ACK packet size LACK 14 bytes
System slot time δ 20 µS
DIFS Time TDIF S 50 µS
SIFS Time TSIF S 10 µS
EIFS Time TEIF S 364 µS
Min. contention window CWmin 31
Max. contention window CWmax 1023
IP header LIPH 20 bytes
TCP header LTCPH 20 bytes
TCP ACK packet size LTCP−ACK 20 bytes
TCP data packet size LTCP−DATA 1500 bytes

E(U) =
3(1 − h)

2
(10)

Thus, the mean number of STAs with packets in them is3
2 .

C. Throughput Analysis

With reference to Figure 3, letXk := Gk − Gk−1. The
process{((D(k), U(k)), Gk), k ≥ 0}, is a Markov renewal
process with cycle lengths{Xk, k ≥ 1}. We can use Markov
regenerative analysis to obtain performance measures suchas
the throughputΘ of the AP ([4]). Fort ≥ 0, let H(t) denote
the total number of AP successes in[0, t]. Let the number of
successful attempts made by the AP in the interval(Gk−1, Gk]
(the kth “cycle”) be denoted byHk ∈ {0, 1}. We view Hk

as a “reward” associated with thekth cycle. Then by Markov
regenerative analysis ([4]) we conclude that

Θ := lim
t→∞

H(t)

t

w.p. 1
=

∑

d,u π(d, u) 1
u+d+1

∑

d,u π(d, u)Ed,uX
(11)

which can be interpreted as the mean reward in a cycle divided
by the expected cycle length. We now compute these two
terms. The numerator of (11) gives the probability that the
AP succeeds in a cycle. Using the expression forπ(d, u) in
(8), we obtain (omitting the algebra)

∑

d,u

π(d, u)

(

1

u + d + 1

)

=
1

2e
ehe(1−h) =

1

2
(12)

This is as expected for TCP transfers with undelayed ACKs,
since the AP must transmit half the number of total packet
transmissions.

The denominator of (11) requiresE(d,u)X , the mean cycle
time starting in the state(d, u). The “back-off” periods shown
in Figure 3 comprise several idle slots in which none of
the nodes attempts. If one or more attempts occur, there
is a collision or success accordingly. As explained earlier,
a contention cycle comprises several channel slots, and we

obtain the mean cycle time by writing down simple recursive
expressions by embedding at channel slot boundaries. If a
channel slot starts in state(d, u) then in the channel slot the
following events can happen.

• The AP succeeds with probabilityPsAP = βu+d+1(1 −
βu+d+1)

u+d

• A download STA succeeds with probabilityPsSTAd =
dβu+d+1(1 − βu+d+1)

u+d

• An upload STA succeeds with probabilityPsSTAu =
uβu+d+1(1 − βu+d+1)

u+d

• The slot goes idle with probabilityPidle = (1 −
βu+d+1)

u+d+1

• There is a collision with the remaining probability
The time spent in collision will be dominated by either RTS

duration or TCP ACK duration. These time intervals are given
by (see Table I)

Tcoll1 = TP + TPHY +
LRTS

Rcontrol

+ TEIF S

Tcoll2 = TP + TPHY +
LMAC + LIPH + LTCP−ACK

Rdata

+ TEIF S

whereTcoll1 is the time spent in collision when RTS is the
longest packet involved in the collision andTcoll2 is the time
spent in collision when a TCP ACK is the longest packet in
the collision.

1) An AP transmission collides with a transmission by
the download STA with probabilityP1 = βu+d+1(1 −
βu+d+1)

u[1 − (1 − βu+d+1)
d]

2) The AP transmission collides with the transmission by
the upload STA with probability: event is the cause
of collision is P2 = βu+d+1(1 − βu+d+1)

d[1 − (1 −
βu+d+1)

u]
3) Two or more download STAs collide with probability

P3 = (1 − βu+d+1)
u+1 × [1 − (1 − βu+d+1)

d −
dβu+d+1(1 − βu+d+1)

d−1]
4) Two or more upload STAs collide with probabilityP4 =

(1−βu+d+1)
d+1 × [1− (1−βu+d+1)

u −uβu+d+1(1−
βu+d+1)

u−1]
5) The collision is between upload and download STAs

with probability P5 = [1 − (1 − βu+d+1)
u][1 − (1 −

βu+d+1)
d]

As the time interval(Gk−1, Gk] depends on whether the
packet at HOL at the AP was Data or ACK packet, the
expected cycle length can be expressed as

E(d,u) = h E
DATA
(d,u) X + (1 − h)E

ACK
(d,u) X (13)

HereE
DATA
(d,u) andE

ACK
(d,u) denote the expected cycle lengths

given the the packet at HOL at the AP was Data or ACK
respectively. We can see that

E
DATA
(d,u) X = Pidle(δ + E

DATA
(d,u) X)

+ P DATA
coll1 (Tcoll1 + E

DATA
(d,u) X)

+ P DATA
coll2 (Tcoll2 + EDATA

(d,u) X) + PsAP TTCP−DATA

+ PsSTAuTTCP−DATA + PsSTAdTTCP−ACK (14)
E

ACK
(d,u) X = Pidle(δ + E

ACK
(d,u) X)

+ P ACK
coll1 (Tcoll1 + E

ACK
(d,u) X)

+ P ACK
coll2 (Tcoll2 + EACK

(d,u) X) + PsAP TTCP−ACK

+ PsSTAuTTCP−DATA + PsSTAdTTCP−ACK (15)



TABLE II
PARAMETER VALUES FOR EQUATIONS(13), (14), (15)

Parameter Value at11Mbps Value at2, 5.5Mbps

P DATA
coll1 P1 + P2 + P4 + P5 P2 + P4

P DATA
coll2 P3 P1 + P3 + P5

P ACK
coll1 P2 + P4 + P5 P4

P ACK
coll2 P1 + P3 P1 + P2 + P3 + P5

(1−h)/(u+d+2)

(d+1,u)(d,u)

(d,u+1) (d+1)/(u+d+3)
(d+1,u+1)

(u+1)/(u+d+3)

(d+1)/(u+d+2)

(u+1)/(u+d+2)   (1−h)/(u+d+1)

(h/2)/(u+d+1)

(h/2)/(u+d+2)

Fig. 5. Transition probability diagram for the process(Dk , Uk) for the case
of delayed ACKs.

whereTTCP−DATA andTTCP−ACK are the times taken for
transmission of TCP data packet and TCP ACK respectively.
PDATA

coll1 and PDATA
coll2 are the probabilities that the time

spent in collision isTcoll1, and PACK
coll1 and PACK

coll2 are the
probabilities that the time spent in collision isTcoll2. These
values are summarized in Table II. Note thatTcoll2 < Tcoll1

at 11Mbps andTcoll2 > Tcoll1 at 2Mbps and5.5Mbps. Hence
the time spent in collision when RTS and TCP ACK collide
will be different depending on the PHY rate, consequently the
time spent in collision state will be different for different PHY
rates. Solving equations (13), (14), (15) we obtainE(d,u)X .

Substituting the value ofE(d,u)X and the expression for
π(d, u) (from (8)) into (11), we obtain the throughputΘ of
the AP in packets/second. Recalling (6), the total throughput
Θd (resp.Θu) for downloading (resp. uploading) STAs can
then be obtained as

Θd = hΘ ; Θu = (1 − h)Θ (16)

both in packets per second. Multiplication by the user payload
in each packet yields the throughput in bytes per second.

III. T HROUGHPUTS: DELAYED ACK

In the case of upload traffic with delayed ACKs, in steady
state, every TCP ACK from the AP will generate two data
packets at the STA. Thus, our earlier approximation that there
can be at most one packet in the STA queue is no longer
valid. However, assuming validity of the assumption that the
transmission from the AP is always to an empty STA, we
provide a simple upper bound on the throughput by assuming
that whenever an STA wins the contention for the channel,
it transmits both the TCP data packets in its queue. Thus, a
successful STA does not have to contend again for the second

packet, thus reducing the contention time and increasing the
throughput to provide an upper bound.

For downloading STAs, ACKs are generated by the STAs
for alternate packets that they receive. We model this proba-
bilistically, as in [7]; when the AP transmits a data packet to
a downloading STA, an ACK is generated at that STA with
probability 1

2 . With h defined as before, the process(Dk, Uk)
is a DTMC with the transition probability structure shown in
Figure 5. The stationary distribution of this DTMC is

π(d, u) =
u + d + 1

e1−(h

2
) (

2 − h
2

)

×

(

h
2

)d
(1 − h)u

d!u!
(17)

for 0 ≤ d ≤ Nd and 0 ≤ u ≤ Nu. The rest of the analysis
follows along the same lines as in Section II. The aggregate
AP throughput in packet per second is again given by (11).
The total throughput for the downloading and uploading STAs
is given by

Θd = hΘ and Θu = 2 ∗ (1 − h)Θ (18)

The factor 2 arises because each ACK transmitted from the
AP acknowledged 2 data packets. The value ofE(d,u)X is
obtained in a manner similar to the undelayed ACK case.

IV. D ETERMINING H: TCP WINDOW ANALYSIS

In this section we obtain expressions forh for both delayed
and undelayed ACK cases when the AP has a finite buffer,
making suitable approximations in the process. Note that this
analyis is valid for the scenario when the STAs have TCP
connections with a system located on the Ethernet to which
the AP is connected, i.e., the delay between that system and
the AP is negligible. In this section, the version of TCP
analyzed does not support fast retransmit and fast recovery;
loss recovery is by timeout, and the window is reset to 1
after a timeout; we call this version “OldTahoe.” TCP Reno
is analyzed in the next section.

A. The Case of Undelayed ACKs

1) Modeling Assumptions and Approximations:a) From
(9) and (10) it can be seen that the average number of active
STAs is 3/2. Hence, for a large number of STAs, and for
sufficiently large upload and download connection windows,it
can be assumed that most of the TCP packets (data or ACKs)
reside in the AP. Here we are also using the fact that the
remote end-point is on the LAN.

b) Assume that the maximum congestion windows for up-
load connections isWmax. Since TCP ACKs are just 40 bytes,
their loss probability is small; also, due to thecumulative
acknowledgementproperty of TCP ACKs, infrequent ACK
losses do not result in the TCP window being reduced. Hence,
we assume that the TCP congestion windows of the upload
connections grow and stay atWmax. Defineµ = NuWmax,
i.e., the total number of packets belonging to the uploading
STAs in the system. Since most of these packets reside
in the AP, we assume that the AP buffer always contains
µLTCP−ACK bytes of TCP ACKs for the upload connections.
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Fig. 6. Model for analyzing the AP buffer in order to obtainh.

c) Thus, if the AP buffer size isB bytes then the buffer
available for the download connections can be assumed to
be B − µLTCP−ACK . In terms of packets, the number of
download data packets that can be accommodated in the AP
is given by

b =
B − µLTCP−ACK

LTCP−DATA

(19)

We denote the capacity of the buffer in terms of packets
by B which is given by

B = µ + b (20)

Also, for simplicity in some calculations to be shown later,
we assume that, fori ∈ {2, 4, 6, · · · },

b = i × Nd (21)

d) In order to analyze the evolution of the TCP window
while accounting for tail-drop loss in the AP buffer, we now
propose a simple for model for the AP buffer and the services
applied to it; see Figure 6. Since the number of active STAs is
small, we ignore the round trip time between a packet being
served at the AP and the corresponding packet (e.g., data
packet for an ACK, and an ACK for a data packet) being
received back at the AP.

e) With the model in Figure 6, let us consider the process of
services to the AP buffer when it just becomes full withµ+b
packets, without any of the connections having suffered a tail-
drop loss. Now all the download TCP connections will lose
packets in the process of serving theseµ+b packets from the
AP. To see this, suppose that the TCP window of download
connectioni is Wi when the AP buffer just becomes full; by
our assumption, theseWi packets will all be in the AP. Hence
we can write

b =

Nd
∑

i=1

Wi (22)

Among these packets, there will be (at least) one packet
that will cause the window to grow. As soon as this packet is
served from the AP, two packets will arrive at the tail of the
AP buffer; one will be accommodated and one will be lost.
Hence after the buffer becomes full, all the download TCP
connections will lose packets in the process of servingµ + b
packets from the AP. We call this theloss phase. In the loss
phase, the TCP connections are assumed to be in congestion

avoidance; this assumption is based on our extensive observa-
tion of download window evolution in simulations, a snapshot
of which is given in Section VI-A.

f) Suppose one of the download connections reach its
maximum TCP window then that connection should not suffer
loss. In simulations it was observed that such connections
stay at the fixed window and do not suffer loss large time
intervals. The reason they ultimately do suffer a loss can
be explained along the lines of the previous remark. Since
modeling this phenomenon is complicated, we have assumed
that the download connections do not have a maximum
window limit. The upload connections do have a maximum
window limit of Wmax. Having no maximum window limit
for a connection is possible in modern TCP implementations
by means of enabling the window scaling option [11]. Later
we will also give a simple upper bound onh when download
connections do have a maximum window limit.

g) Note that if upload connections do not have a maximum
window limit, then, as the loss of a few ACKs does not affect
their window evolution, these windows will grow forever and
the space for download connections will go on reducing.
Hence, it is important to assume a maximum window limit
on the upload connections.

2) The TCP Window Evolution Process:If the AP buffer
occupancy at an instant isx packets, then the interval during
which thesex packets are served will be called around.

The loss phase: There is one round in this phase. We recall
that the loss phase starts after the AP buffer just becomes full
(with µ ACKs andb data packets). While serving all these
packets, each download connection loses a packet (assuming
the congestion avoidance phase). Thus, after this round, there
will still be µ + b packets in the AP buffer. If download
connectioni had the windowWi at the time of losing a packet,
it still has Wi packets in the AP buffer at the end of this
round. Let us assume that among theWi packets that began
the loss phase, it was the last packet that caused the window to
grow and, hence, caused the loss of a packet. This assumption
will be supported later in this section, after explaining the
synchronization process.

The reset phase: Round1: In the beginning of this round
there areµ + b packets in the AP buffer. Consider the first
packet served from the AP buffer pertaining to connectioni.
When the TCP ACK corresponding to this packet goes to the
server and returns as a data packet to the AP, agap is created
in the sequence numbers of the packets corresponding to that
connection. This gap rests between the remainingWi−1 data
packets in the buffer and the newly arrived data packet. These
remainingWi − 1 packets will be served during the services
of µ + b packets from the AP and will return as new data
packets to the AP. Thus after this round, there will be again
b packets in the AP buffer among whichWi packets will
correspond toith download connection. Also, there is a gap
in the sequence numbers before the very first packet of each
download connection.

The reset phase: Round2: The service of the very first
packet from theith download connection informs the receiver
about the packet loss. The receiver returns a duplicate TCP



ACK. In the TCP version we are analyzing, we need a timeout
for resetting the connection window. We assume that in reset
phase round2, during the services of theµ + b packets from
the AP there will be timeout for all the download connections.
This is based on the fact that after the lost packet was sent by
the server,2(µ + b) are to be sent until the end of the reset
phase round2, the time taken for which suffices to cause a
TCP sender timeout. Thus, during this round the windows
of all the download connections will be reset to 1, with the
slow start threshold for download connectioni being set to
W

(i)
th = Wi

2 . Hence, after this round, there will beµ + Nd

packets in the AP buffer with one packet out of theNd packets
belonging to each download connection.

The window evolution is synchronized:After the round 2
in the reset phase, all connection windows are reset to1 and
the ith download connection has a slow start threshold of
W i

th = Wi

2 . Refering to (22), it can be that

Nd
∑

i=1

W
(i)
th = b/2 (23)

For moderate values ofb (the maximum number of download
packets in the AP buffer) it has been observed (see Sec-
tion VI-A) that after some number of occurrences of the loss
phase and the reset phase, there are very small differences
between the slow start thresholds of download connections.
Hence, all the connection windows become synchronized to
the same values, the synchronization instants being the ends of
theroundscorresponding to the loss phase and the reset phase,
and also the phases that will be discussed next. Henceforth,
the analysis has been done assuming all the window evolutions
are synchronized.

The slow start phase:Denote byTk,1 the instant when
the kth reset phase ends. The windows of the download
transfers are modeled as evolving in cycles that start at instants
{Tk,1, k ≥ 0}. At these instants the download windows are
synchronized and have been set to1. Thus, the AP buffer
occupancy isµ + Nd. All the download windows have the
same slow start threshold and all are in the slow start phase.
The first round in a cycle consists of serving all the packets
in the AP; this results in there beingµ + 2Nd packets in
the AP buffer. Call this instantTk,2. In the slow start phase,
after each round all the download connection windows will
be doubled. Thus, during thejth round in the slow start
phase (corresponding to the time interval[Tk,j , Tk,j+1)) the
AP buffer occupancy increases fromµ+2j−1Nd to µ+2jNd;
µ + 2j−1Nd packets are served from the AP during this
interval. Since the download connection windows are assumed
to be synchronized, and have the same slow start thresholds,
they all enter the congestion avoidance phase at the instant
Tk,r+1, wherer is defined by

µ + 2rNd = µ + NdWth = µ + b/2 (24)

yielding

r = log2

(

b

2Nd

)

(25)

TABLE III
CUMULATIVE WINDOW EVOLUTION FOR UNDELAYED ACK.

Phase Buffer at Buffer Buffer services
at Tk,i at Tk,i+1 in [Tk,i, Tk,i+1)

slow µ + Nd µ + 2Nd µ + Nd

start µ + 2Nd µ + 4Nd µ + 2Nd

µ + 4Nd µ + 8Nd µ + 4Nd

.. .. ..
µ + 2r−1Nd µ + 2rNd µ + 2r−1Nd

= µ + b/2
cong. µ + b/2 µ + b/2 + Nd µ + b/2
avoidance µ + b/2 + Nd µ + b/2 + 2Nd µ + b/2 + Nd

.. .. ..
µ + b/2 µ + b/2 + xNd µ + b/2
+(x − 1)Nd = B +(x − 1)Nd

losses µ + b/2 + xNd µ + b/2 + xNd µ + b/2 + xNd

reset µ + b/2 + xNd µ + b/2 + xNd µ + b/2 + xNd

µ + b/2 + xNd µ + Nd µ + b/2 + xNd

By the assumption of window synchronization, all the
download connection windows leave slow start phase at the
end of the same round, and when the buffer is not yet full.
This is consistent with the previously made assumption that
the connections will be in congestion avoidance phase at the
time of buffer overflow.

The congestion avoidance phase:Following the previous
discussion, the buffer occupancy at the beginning of this phase
is µ+b/2. The free space for download connections in the AP
buffer is nowb/2 packets. Due to the linear increase in the
congestion avoidance phase, after thejth round in this phase,
the buffer occupancy will increase fromµ+b/2+(j−1)Nd to
µ+b/2+jNd. At the end of thexth round, the buffer becomes
full, where x is defined byxNd = b/2, yielding x = b

2Nd

,
wherex is an integer due to (21). Following this round, the
loss phase of this cycle begins. This window evolution has
been summarised in a compact form in Table III. Note that
the number of upload packets transmitted by the AP is justµ
in all the rounds.

Thus, in each cycle the evolution of the windows and the
number of packets served is deterministic. Hence, the ratioof
download packets transmitted by the AP to the total packets
transmitted by the AP is constant and can be calculated using
Table III. From (7),h is the same as the value of this fraction.
Thus,h is given by

h =

h

(2r − 1) + x(x−1)
2

+ 3x
i

Nd + (x + 3) b
2

(r + x + 3)µ +
h

(2r − 1) +
x(x−1)

2
+ 3x

i

Nd + (x + 3) b
2

(26)

The value ofh calculated using above procedure can be
substituted into the analysis in section II to obtain the value
of the AP throughput, the download throughput and the upload
throughput for the undelayed ACK case.
A simple upper bound when all the connections have a
maximum window limit:We have thus far assumed that
the upload connections have a maximum window limit but
the download connections have no such limit. When the
download connections also have a maximum window limit,
a simple upper bound can be obtained as follows. Let the
download connections have a maximum window limit of



TABLE IV
CUMULATIVE WINDOW EVOLUTION FOR UNDELAYED ACK, TCP RENO

Phase Buffer at Buffer Buffer services
at Tk,i at Tk,i+1 in [Tk,i, Tk,i+1)

cong. µ + b/2 µ + b/2 + Nd µ + b/2
avoidance µ + b/2 + Nd µ + b/2 + 2Nd µ + b/2 + Nd

.. .. ..
µ + b/2 µ + b/2 + xNd µ + b/2
+(x − 1)Nd = B +(x − 1)Nd

losses µ + b/2 + xNd µ + b/2 + xNd µ + b/2 + xNd

reset µ + b/2 + xNd µ + b/2 + xNd µ + b/2 + xNd

µ + b/2 + xNd µ + b/2 µ + b/2 + xNd

Wmax. The space available for download packets in the AP
buffer is b packets. Assume that⌊ b

Wmax

⌋ connections reach
their maximum window limit and stay there indefinitely. Then
assume that remainingNd − ⌊ b

Wmax

⌋ download connections
follow the window evolution process described above with
b−Wmax⌊

b
Wmax

⌋ space available for their packets in the AP
buffer. Calculatingh with this model will provide an upper
bound onh.

B. The Case of Delayed ACKs
The above analysis for calculatingh can be easily extended

to the delayed ACK case. Now it can be assumed thatB =
µ/2 + b as every alternate data packet is acknowledged for
the upload connections. Replacingµ by µ/2 in the analysis
in the previous section, we obtain

h =

h

(2r − 1) +
x(x−1)

2
+ 3x

i

Nd + (x + 3) b
2

(r + x + 3)µ
2

+
h

(2r − 1) + x(x−1)
2

+ 3x
i

Nd + (x + 3) b
2

(27)

V. EXTENSION TO TCP RENO

The analysis easily extends to the Reno version of TCP. We
first consider the undelayed ACK case, with no limit on the
congestion window for download connections. The analysis is
similar to that in Section IV-A. For the Reno case we assume
that there are no timeouts and the recovery uses only Fast
Retransmit and Fast Recovery mechanisms ([6]). We assume
that there are sufficient number of packets buffered for every
download connection so as to trigger the Fast Retransmit
mechanism. Note that this will lead to absence of the slow
start phase in the cumulative window evolution. Also, we note
that for the Reno case it is not necessary to assume that all
the download windows have the same value at the instants
Tk,i. All that matters is that the cumulative download window
increases linearly fromb/2 to b in the congestion avoidance
phase, with increments ofNd in [Tk,i, Tk,i+1). After the buffer
occupancy reachesb, the loss phase and reset phase occur akin
to the TCP OldTahoe case, the only difference being that at
the end of the reset phase, the buffer occupancy isb/2 instead
of Nd as in the OldTahoe.

The cumulative download window evolution is summarized
in the Table IV. The formula forh in the case of Reno
becomes:

h =

[

x(x−1)
2 + 3x

]

Nd + (x + 3) b
2

(x + 3)µ +
[

x(x−1)
2 + 3x

]

Nd + (x + 3) b
2

(28)
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Fig. 7. Sample path of window evolutions of several connections, in support
of our assumption of synchronization of the window evolution processes.

Following along similar lines as in Section IV-B,h for TCP
Reno for the delayed ACK case is given by

h =

[

x(x−1)
2 + 3x

]

Nd + (x + 3) b
2

(x + 3)µ
2 +

[

x(x−1)
2 + 3x

]

Nd + (x + 3) b
2

(29)

VI. SIMULATION RESULTS

All the simulation results are obtained using ns-2.31.

A. Synchronized Window Evolution

Figure 7 shows a window evolution snapshot forNu =
5, Nd = 5, b = 50 in support of the assumptions and approx-
imations made for the finite buffer analysis in Section IV-A.
We have assumed in Section IV-A1 that the window evolution
is synchronized. From Figure 7 we see that this assumption
holds good most of the time but not always. One reason why
synchronization might fail to occur is the following. Suppose
that two download STAs are active at some moment, and
serving one of these STAs can potentially cause a window
increase in the connection corresponding to that STA. If such
an STA is served before the other STA then two packets will
return to the AP because of the window increase. Now as
the AP has space for two packets, both these packets will be
accommodated in the AP and thus the connection will not lose
packets, even though there areµ+ b packets in the AP buffer.
But we have found that the assumption of a synchronized
window evolution model provides results that are close to the
actual performance. The simulation results in support of this
claim are provided in the following sections.

B. TCP OldTahoe

Figures 8 and 9 provide a validation of the analysis
performed in Section IV-A.h is plotted vs. the buffer size
expressed asb

2Nd

. For uploads the maximum TCP window is
Wmax = 20. Thus, for example, b

2Nd

= 10, with Nu = Nd =
5, means that the AP buffer can accommodate 100 TCP data
packets and 50 TCP ACKs. It can be seen that the analysis
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Fig. 9. TCP OldTahoe, Undelayed ACK case:h vs. buffer size (expressed
as b

2Nd

) for Nu = Nd = 10

provides a very accurate estimate ofh in spite of our several
simplifying modeling assumptions. We see that for a small
AP buffer, the download transfers can obtain as little as just
10% of the total packet throughput from the AP.

The upload and download throughputs are obtained by mul-
tiplying the aggregate packet throughput from the AP byh;
see (16). For PHY rates of2Mbps,5.5Mbps and11 Mbps, the
throughputΘ in packets/s provided by the simulations was
consistently found to be116, 230, 318, respectively, regardless
of h and the number of STAs, whereas the corresponding
analytically obtained values were117, 231 and320 in terms
of packets/s. Thus, the analysis also provides a very accurate
estimate of the upload and download throughputs.

Discussion:As an illustration, we see that ifb2Nd

= 10 with
Nu = Nd = 5 (see Figure 8), and, keeping the same buffer,
we makeNd = Nu = 10 (see Figure 9), then the download
throughput will drop from about 40% of aggregate throughput
to about 25%.

Figure 10 shows simulation results for the analysis for the
delayed ACK case in Section IV-B. The analytical values of
h were tested against the simulated values forNu = Nd = 5.
Nearly identical results are obtained forNu = Nd = 10,
for example. The deviation of the analytical value from the
simulation is more in this case as while calculatingh we have
considered an upper bound on upload throughput thus overes-
timating the upload throughput. Hence, we underestimate the
download throughput, consequently reducing the value ofh.
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Fig. 10. TCP OldTahoe, Delayed ACKs:h vs. buffer size (expressed as
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) for Nu = Nd = 5
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Fig. 11. TCP OldTahoe, Delayed ACK:Θd + Θu for Nu = Nd = 5

Figure 11 shows the results obtained for the value ofΘd+Θu

for Nu = Nd = 5; almost identical results are obtained for
Nu = Nd = 10.

Discussion: It can be seen from (18) that the upload
and download throughputs are equal whenh = 2

3 . We see
from Figure 10 that forNd = Nu = 5 this situation is
approached for b

2Nd

= 10. Another insight we obtain is that
the aggregate throughput in packets per second (Figure 11) is
almost constant with buffer size, and the bounding approach
we took in our analysis in Section IV-B is seen to yield a very
good approximation.

C. TCP Reno

Figure 12 shows the simulation results obtained forh for
TCP Reno with undelayed ACKs forNu = Nd = 5. Similar
results were obtained forNu = Nd = 8, 10. We notice that
the values ofh for the same value of buffer are a little larger
than with OldTahoe, since the download connection windows
do not drop drastically due to timeouts. Again similar to
OldTahoe, for PHY rates of2Mbps, 5.5Mbps and11 Mbps,
the simulated throughputΘ in packets/s was consistently
found to be116, 230, 318, respectively, regardless ofh and
the number of STAs, whereas the corresponding analytically
obtained values were117, 231 and320 in terms of packets/s.

Figures 13 shows the simulation and analysis results ob-
tained forh with Nu = Nd = 5 for TCP Reno with delayed
ACKs. The plots ofΘd + Θu for Nu = Nd = 5 are
almost identical to Figure 11. Similar results were obtained
for Nu = Nd = 8, 10.
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D. Bounds onh with finite Wmax

All the simulation results in Section VI-B were provided as-
suming no maximum window limit on download connections
but the upload connections had a maximum window limit of
20. At the end of Section IV-A2 we provided a simple upper
bound onh for the case of undelayed ACK and when all
connections have a maximum window limit. Intuitively, we
anticipate that for small values of the AP buffer, theh for
such case would be close to theh obtained with no maximum
window limit only on download connections. In Figure 14,
for the caseNu = Nd = 5, we have plotted the upper bound
on h, the simulated value ofh given the maximum window
limit of 20 on all the connections, and analytical values of
h for the case when there is maximum window limit only
on upload connections. These figures supports the claims we
have made. Nearly identical numerical results are obtainedfor
other values ofNu andNd, such as 8 and 10.

VII. CONCLUSION

The analysis for calculatingh is essentiallyrateless, i.e.,
the value ofh does not change with PHY rate as long as
the number of uploading STAs, the number downloading
STAs, AP buffer size and maximum window limit for upload
connections remain same. Thus we can expect to obtain same
value of h even in the scenario where STAs associate with
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Fig. 14. TCP OldTahoe, Undelayed ACK:h for Nu = Nd = 5,Wmax =
20

the AP with different PHY rates. The analysis for calculating
h made use of only the fact that the average number of active
STAs is small, as stated in Section IV-A1, and has no other
dependence on the underlying MAC layer analysis.

We have thus provided a fairly general analytical model
that (i) explains the observations made by several prior exper-
imental and simulation studies (e.g., [3]), (ii) yields several
new insights into the interaction of the TCP protocol and the
IEEE 802.11 MAC (e.g., beyond those in [2] and [7] ), and
(iii) provides an accurate model that could be used to predict
performance, perhaps for the purpose of network engineering.
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