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1 In IEEE 802.11b, for example, the PHY rates 11
2 Mbps are available. In general, STAs can associate w
PHY rates depending on the channel conditions. How
all STAs are associated with the AP at the same PHY

2 The situation in which the server is located across
will be addressed in the future.
The network scenario is that of an infrastructure IEEE 802.11 WLAN with a single AP with
which several stations (STAs) are associated. The AP has a finite size buffer for storing pack-
ets. In this scenario, we consider TCP-controlled upload and download file transfers
between the STAs and a server on the wireline LAN (e.g., 100 Mbps Ethernet) to which
the AP is connected. In such a situation, it is well known that because of packet losses
due to finite buffers at the AP, upload file transfers obtain larger throughputs than down-
load transfers. We provide an analytical model for estimating the upload and download
throughputs as a function of the buffer size at the AP. We provide models for the undelayed
and delayed ACK cases for a TCP that performs loss recovery only by timeout, and also for
TCP Reno. The models are validated in comparison with NS2 simulations.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction it has been reported that, with finite buffers at the AP,
We consider a scenario in which several clients or sta-
tions (STAs) are associated with a single Access Point
(AP). The AP has a finite amount of FIFO buffer. For simplic-
ity, we consider associations only at a single Physical (PHY)
rate.1 We are concerned with TCP-controlled file transfer
throughputs when each STA is either downloading or
uploading a single large file via the AP. The other endpoint
of the transfers, or the ‘‘server,” is located on the high-
speed Ethernet connected to the AP.2 For such a situation,
. All rights reserved.
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there is unfairness between the upload and download
transfers with the upload transfers obtaining larger
throughputs [1,2]. Our objective is to provide analytical
models that explain this unfairness, thus providing quanti-
tative insights into the unfairness, and also predictive
models for network engineering.

Relation to the Literature: Bruno et al. [3] analyzed the
scenario of upload and download TCP-controlled file trans-
fers in a single cell infrastructure WLAN when there is no
packet loss at the AP. They assumed equal TCP windows
for all connections, that the TCP receivers use undelayed
ACKs, and showed that the total TCP throughput is inde-
pendent of the number of STAs in the system; further the
upload and download transfers each obtain an equal share
of the aggregate throughput. A variation of this approach
for modeling TCP transfers, along with a fixed-point analy-
sis of 802.11e EDCA, was employed by Sri Harsha et al. [4]
to provide a combined analytical model for TCP transfers,
CBR packet voice, and streaming video over an infrastruc-
ture WLAN. The delayed ACK case was analyzed by Kuriak-
ose et al. [5].

It is known that, if there is packet loss at the AP due to
finite buffers, then in a situation of simultaneous upload
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Fig. 1. The network scenario, comprising several STAs associated with an
AP, each uploading (or downloading) a large file to (or from) a server
attached to the high-speed wired LAN.
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and download transfers, the upload transfers each obtain a
larger throughput than any of the download transfers.
Gong et al. [1] provide simulation results validating this
fact. They also show that as the AP’s buffer size increases,
thus reducing packet loss at the AP, the throughput unfair-
ness reduces. They also propose queue management strat-
egies to alleviate the throughput unfairness. Pilosof et al.
[2] analyzed the same problem of unfairness by assuming
an M/M/1/K model for the finite buffer at the AP.

In this paper, we do not assume any conventional
queueing model for the AP buffer, but we combine the ear-
lier models for TCP-controlled file transfers in WLANs (i.e.,
[3,5]) with a detailed model of TCP window evolution un-
der tail-drop loss at the AP. A detailed modeling of TCP
window evolution quantifying the unfair division of
throughputs among the upload and download transfers
providing valuable insights is the main contribution of this
paper.

Outline of the Paper: The analytical model comprises
two steps. In the first step (Sections 2 and 3), we use a sim-
ple extension of the analytical model of [3] to obtain the
upload and download throughputs for a given value of h,
the fraction of contention cycles in which the AP contends
with a download packet (i.e., a TCP data packet) at the
head-of-the-line (HOL) of its FIFO buffer. In the second step
(Section 4), we obtain the value of h as a function of AP buf-
fer size, using a detailed study of TCP window evolution
when the upload connections have a maximum window
limit but the download connections have no such window
limit. We do this for both the undelayed and delayed ACK
cases for the TCP version in which all loss recovery is by
timeouts. We also provide a bound on h for the case when
all the TCP connections have a maximum window limit.
Simulation results that validate our analyses are provided
in Section 6.
2. Throughputs: undelayed ACK

Consider an infrastructure mode WLAN with
Nð¼ Nd þ NuÞ STAs associated with the AP at the same
PHY rate. Among these STAs, Nd STAs each have a single
download TCP connection while each of the remaining Nu

STAs have a single upload connection (see Fig. 1). All file
transfers are to or from a ‘‘server” on the high-speed LAN
to which the AP is connected. We analyze the case where
TCP ACK transmissions on the WLAN use the ‘‘Basic Access”
mode whereas TCP data transmissions use the ‘‘RTS–CTS”
mode. This is reasonable since TCP ACKs are small (40 By-
tes), but TCP data packets are much larger (typically,
1 KByte). We remark, however, that other alternatives
can also be easily analyzed within our framework.

2.1. Observations and modeling approximations

(1) We assume that there are no packet losses because
of wireless channel errors; such packet losses can
be accounted for by extending our analysis. We also
do not model packet capture, i.e., simultaneous
attempts on the medium are assumed to result in a
collision. Also, with the standard DCF parameters,
packet drops due to the retransmission threshold
being exceeded in the DCF CSMA/CA MAC are known
to be rare, and hence, are ignored in our model.

(2) It is now well known (see [3] or [5]) that when car-
rying TCP-controlled transfers the AP is the bottle-
neck and always contends for the channel. This is
understood as follows. Considering the undelayed
ACK case, for one packet sent by each of the STAs,
N packets will need to be transmitted by the AP.
Since DCF is packet fair, this situation is sustainable
only if a very small number of the STAs contends at
any time so that, on the average, half the packets
transmitted are from the AP and the other half from
the STAs. Recalling that we are dealing with the local
area network case (so that the number of packets ‘‘in
flight” outside the WLAN can be ignored) it follows
that most of the packets in the TCP windows of the
connections reside in the AP’s queue.

(3) Furthermore, as in [5] (for the undelayed ACK case)
we use the approximation that for large N, an STA
can have at most one packet in its queue, with every
successful transmission from the AP resulting in the
generation of a packet at a previously empty STA,
thus activating a new STA. A TCP data packet (resp.,
TCP ACK) transmitted by the AP results in a TCP ACK
(resp., TCP data packet) being generated at a previ-
ously empty download (resp. upload) STA.

Fig. 2 depicts the model described above. Note that,
since the success or failure of a transmission due to
CSMA/CA contention does not depend on the length of
the packet to be transmitted, Assumptions 2 and 3 above
do not depend on the packet lengths and the PHY rates.
Also, Assumptions 2 and 3 do not depend on the specific
values of Nu and Nd as long as N is large.
2.2. The process ðDk;UkÞ and its analysis

We now develop the stochastic analysis of the number
of contending STAs along lines similar to [3] or [5]. Refer-
ring to Fig. 3, let Gk; k ¼ 0;1;2; . . ., denote the instants
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Fig. 2. Schematic based on the modeling assumptions discussed in the
text. Since the server is attached to the same high speed LAN as the AP, we
assume immediate ‘‘feedback” from the server, due to packets transmit-
ted by the STAs.
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when a successful transmission ends. According to our
assumptions above, the AP always have packets in its
queue, and hence, always contends. Consider the instant
Gk. If the just completed successful transmission is from
the AP then at Gk the number of contending STAs increases
by one (by Assumption 3 in Section 2.1). If the HOL packet
at the AP is a TCP data packet (resp., TCP ACK) then one
more download (resp., upload) STA begins to contend with
a TCP ACK (resp., a TCP data packet). Between Gk and the
next success instant Gkþ1 there is no change in the number
of contending STAs. At Gk, let Dk denote the number of
downloading STAs that are nonempty (i.e., have a TCP
ACK to send), and let Uk denote the number of uploading
STAs that are nonempty (i.e., have a TCP data packet to
send). Since there are no external arrivals, the process
fðDk;UkÞ; k P 0g can only change state at the instants
Gk; k P 0.

We call the time interval ½Gk;Gkþ1Þ between two consec-
utive success end instants a contention cycle. Each conten-
tion cycle consists of several channel slots. A channel slot is
the time interval between two consecutive attempt oppor-
tunities on the channel. Thus, transmission attempts can
occur only at channel slot boundaries. A channel slot is
an idle back-off slot, or a successful transmission, or a col-
lision if 0, or 1, or more than one node(s) transmit(s) in the
beginning of the channel slot. Clearly, every contention cy-
cle consists of several idle and collision channel slots and
terminates with a success channel slot.
Fig. 3. Evolution of channel activity: Shown are the random time instants Gk at
the kth contention cycle ½Gk�1;GkÞ. Each contention cycle consists of one or more
more back-off slot(s). Each contention cycle terminates with a successful transm
To model the way the DCF CSMA/CA serves packets
from the queues, we assume that when m nodes are con-
tending, either with TCP data packets or with TCP ACKs,
each node contends with a probability bm, where bm is
the steady state attempt probability when there are m sat-
urated nodes contending (see [5]). Note that, bm can be eas-
ily obtained from the analysis provided in [6] or [7]. Also
note that, bm includes the effect of all DCF parameters, such
as the back-off windows, and the retransmission threshold.
Thus, according to this model, if the state of the process
ðDk;UkÞ is ðd; uÞ, then, until the next success, each of the
1þ dþ u contending nodes attempts with probability
bð1þdþuÞ. The 1 arises from the assumption that the AP al-
ways contends.

Define the process Zk 2 f0;1g, embedded at the instants
Gk; k P 0, by Zk ¼ 1 if the HOL packet at the AP at time Gkþ
is a TCP data packet (i.e., in the interval ½Gk;Gkþ1Þ the AP
contends to transmit a TCP data packet), and by Zk ¼ 0
otherwise. Now define

h ¼ lim
n!1

1
n

Xn�1

k¼0

Zk; ð1Þ

i.e., h denotes the fraction of contention cycles in which the
HOL packet at the AP is a TCP data packet.

Some observations about h: Let An (resp., Dn) denote the
number of download data packets that arrive at (resp., de-
part from) the AP’s HOL position in the time interval ½0;GnÞ.
Let Vj denote the number of contention cycles for which the
jth download data packet occupies the HOL position at the
AP buffer. Then we can write

1
n

XDn

j¼1

Vj 6
1
n

Xn�1

k¼0

Zk 6
1
n

XAn

j¼1

Vj ð2Þ

from which it can easily be shown that

h ¼ kðdÞEðVÞ; ð3Þ

where

kðdÞ ¼ rate of download packets transmitted by the

AP per contention cycle ¼ lim
n!1

An

n
¼ lim

n!1

Dn

n
; ð4Þ

and

EðVÞ ¼ Average number of contention cycles taken to
successfully transmit an HOL packet at the AP

¼ lim
n!1

1
Dn

XDn

j¼1

Vj ¼ lim
n!1

1
An

XAn

j¼1

Vj: ð5Þ
which successful transmissions end. Xk denotes the (random) duration of
back-off period(s) and collision(s). Each back-off period consists of one or
ission.
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Similarly, as the expected number of contention cycles re-
quired to successfully transmit an HOL packet from the AP
is independent of it being a TCP data packet or a TCP ACK
packet, we can also write

1� h ¼ kðuÞEðVÞ; ð6Þ

where kðuÞ is the rate of TCP ACK departures from the AP
per channel slot. From Eqs. (3) and (6) we get

h ¼ kðdÞ

kðdÞ þ kðuÞ
: ð7Þ

Thus, as expected, h is also the ratio of the download
throughput from the AP to the total throughput from the
AP.

Remark 2.1. In the following analysis we will use both of
the two meanings of h: (i) as defined by (1), i.e., the fraction
of contention cycles in which the AP contends with a data
packet at its HOL position, and (ii) the fraction of AP
services that are data packets (a meaning provided by (7)).

Analyzing the process ðDk;UkÞ: Based on (7), we assume that
after the HOL packet at the AP is transmitted, the next HOL
packet is a data packet with probability h (an ACK packet
with probability 1� h), independent of anything else. We
note that this is an approximation; a more detailed model
will require us to keep track of the entire queue of packets
in the AP. With this modeling assumption about the HOL
packet at the AP, and from the contention model intro-
duced earlier in this section, it can be seen that ðDk;UkÞ is a
discrete time Markov chain (DTMC), embedded at
the instants Gk, taking values in fðd;uÞ : d ¼
0;1;2; . . . ; u ¼ 0;1;2; . . .g. Note that, in reality, we have,
0 6 d 6 Nd and 0 6 u 6 Nu. However, our modeling
assumption that ‘‘every successful transmission by the AP
generates a packet at a previously empty STA” yields the
state space fðd; uÞ : d ¼ 0;1;2; . . . ; u ¼ 0;1;2; . . .g.
The DTMC ðDk;UkÞ has the following transition
probabilities:
h/(u+d+2)

(1−

(d,u)

(d,u+1) (d+1)/(u+d

h/(u+d+1)

(d+1)/(u+d

(u+1)/(u+d+2)(1−h)/(u+d+1)

Fig. 4. Transition probability diagram of the proc
Prððd;u�1Þ=ðd;uÞÞ

¼ PrðAn upload STA wins the contentionÞ ¼ u
uþ dþ1

ð8Þ
Prððd�1;uÞ=ðd;uÞÞ

¼ PrðA download STA wins the contentionÞ ¼ d
uþ dþ1

ð9Þ
Prððd;uþ1Þ=ðd;uÞÞ
¼ PrðThe AP succeeds and transmits to an upload STAÞ

¼ 1�h
uþdþ1

ð10Þ

Prððdþ1;uÞ=ðd;uÞÞ
¼ PrðThe AP succeeds and transmits to a download STAÞ

¼ h
uþdþ1

ð11Þ

The transition probability structure of the DTMC ðDk;UkÞ is
shown in Fig. 4. Let pðd;uÞ; d ¼ 0;1;2; . . . ; u ¼ 0;1;2; . . .

denote its stationary distribution. It can be shown that the
DTMC ðDk;UkÞ satisfies the Kolmogorov’s criterion for
reversibility [8]. Using reversibility, the explicit closed-form
expression for pðd;uÞ can be shown to be (see Appendix A.1)

pðd; uÞ ¼ uþ dþ 1
2e

� hdð1� hÞu

d!u!
: ð12Þ

Write the stationary marginal of the random process
ðDk;UkÞ by ðD;UÞ. Since the number of download STAs that
are contending changes only at the instants Gk; k P 0, we
observe that the time average number of contending
download and upload STAs is given by (see Appendix A.2)

EðDÞ ¼ 3h
2
; ð13Þ

EðUÞ ¼ 3ð1� hÞ
2

: ð14Þ

Thus, the mean number of contending STAs is 3
2.
h)/(u+d+2)

(d+1,u)

+3)
(d+1,u+1)

(u+1)/(u+d+3)

+2)

ess ðDk;UkÞ for the case of undelayed ACKs.
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2.3. Throughput analysis

With reference to Fig. 3, let Xk :¼ Gk � Gk�1, i.e., Xk is
the random duration of the kth contention cycle. The pro-
cess fððDk;UkÞ;GkÞ; k P 0g, is a Markov renewal process
with cycle lengths fXk; k P 1g. We can use Markov regen-
erative analysis [9] to obtain performance measures such
as the throughput H of the AP. For t P 0, let HðtÞ denote
the total number of AP successes in ½0; t�. Let the number
of successful transmissions made by the AP in the interval
ðGk�1;Gk� (i.e., the kth contention cycle) be denoted by
Hk 2 f0;1g. Recall that, each contention cycle contains a
successful transmission. A successful transmission may
belong either to the AP (i.e., Hk ¼ 1) or to one of the STAs
(i.e., Hk ¼ 0). We view Hk as a ‘‘reward” associated with
the kth cycle. Then by Markov regenerative analysis [9]
we conclude that

H :¼ lim
t!1

HðtÞ
t

¼w:p: 1 EH
EX
¼
P
ðd;uÞpðd;uÞ 1

uþdþ1P
ðd;uÞpðd;uÞEðd;uÞX

; ð15Þ

where EH denotes the expected reward per cycle, EX de-
notes the expected duration of a cycle,

P
ðd;uÞ represents a

double sum over all d P 0; u P 0, and Eðd;uÞX denotes the
expected duration of a cycle starting in the state ðd;uÞ.
The numerator of (15) is also equal to the probability that
the AP succeeds in a randomly chosen cycle. Using the
expression for pðd;uÞ given by (12), we obtain

EH ¼
X
ðd;uÞ

pðd;uÞ 1
uþ dþ 1

� �

¼
X
ðd;uÞ

ðuþ dþ 1Þ
2e

� hdð1� hÞu

u!d!

1
uþ dþ 1

� �

¼ 1
2e

X
ðd;uÞ

hdð1� hÞu

u!d!
¼ 1

2e
eheð1�hÞ ¼ 1

2
: ð16Þ
(d,u)

(d,u+1)

(d+1)/(u+d+2

(1(1−h)/(u+d+1)

(u+1)/(u+d+2)

(h/2)/

(d+1)/(u+d+3)

(h/2)/

(h/2)/(u+d+1)

(h/2)/(u+d+2)

Fig. 5. Transition probability diagram for the process ðDk;UkÞ for the case of delay
as compared to the undelayed ACK case. Also notice the self-loops.
This is expected for TCP transfers with undelayed ACKs, as
the AP must transmit half the number of total packet trans-
missions. Derivation of Eðd;uÞX in terms of packet lengths,
PHY rates and the attempt probabilities can be found in
Appendix C. Substituting the value of Eðd;uÞX and the
expression for pðd;uÞ (from (12)) into (15), we obtain the
throughput H of the AP in packets/second. Recalling (7),
the total throughput Hd (resp. Hu) for downloading (resp.
uploading) STAs can then be obtained as

Hd ¼ hH; Hu ¼ ð1� hÞH; ð17Þ

both in packets per second. Multiplication by the user pay-
load in each packet yields the throughput in bytes per
second.

3. Throughputs: delayed ACK

In the case of upload traffic with delayed ACKs, in stea-
dy state, every TCP ACK from the AP will generate two data
packets at the STA. Thus, our earlier approximation that
there can be at most one packet in the STA queue is no
longer valid. However, assuming validity of the assump-
tion that the transmission from the AP is always to an
empty STA, we provide a simple upper bound on the
throughput by assuming that whenever an STA wins the
contention for the channel, it transmits both the TCP data
packets in its queue. Thus, a successful STA does not have
to contend again for the second packet, thus reducing the
contention time and increasing the throughput to provide
an upper bound.

For downloading STAs, ACKs are generated by the STAs
for alternate packets that they receive. We model this
probabilistically, as in [5]; when the AP transmits a data
packet to a downloading STA, an ACK is generated at that
STA with probability 1

2. With h defined as before, the pro-
cess ðDk;UkÞ is a DTMC with the transition probability
structure shown in Fig. 5, and detailed below.
(d+1,u)

(d+1,u+1)

)

−h)/(u+d+2)

(u+1)/(u+d+3)

(u+d+1)

(u+d+2)

(h/2)/(u+d+3)

(h/2)/(u+d+2)

(h/2)/(u+d+3)

ed ACKs. Notice that the horizontal transitions from left to right are halved
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Fig. 6. Model for analyzing the AP buffer in order to obtain h.
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Prððd; u� 1Þ=ðd;uÞÞ

¼ PrðAn upload STA wins the contentionÞ ¼ u
uþ dþ 1

ð18Þ
Prððd� 1;uÞ=ðd;uÞÞ

¼ PrðA download STA wins the contentionÞ ¼ d
uþ dþ 1
ð19Þ

Prððdþ 1;uÞ=ðd;uÞÞ
¼ PrðAP succeeds and transmits an even

numbered TCP data packet to a download STAÞ

¼ h=2
uþ dþ 1

ð20Þ
Prððd; uÞ=ðd;uÞÞ
¼ PrðAP succeeds and transmits an odd

numbered TCP data packet to a download STAÞ

¼ h=2
uþ dþ 1

ð21Þ

Prððd; uþ 1Þ=ðd;uÞÞ
¼ PrðAP succeeds and transmits to an upload STAÞ

¼ 1� h
uþ dþ 1

ð22Þ

The difference from Eqs. (8)–(11) is in the numerator for
the expression Pððd;uþ 1Þ=ðd;uÞÞ. This captures the above
stated probabilistic model of the fact that a TCP ACK is gen-
erated at a downloading STA only on the receipt of two
data packets from the AP. The stationary distribution of
this DTMC is given by (see Appendix B)

pðd; uÞ ¼ uþ dþ 1

e1� h
2ð Þ 2� h

2

� �� h
2

� �dð1� hÞu

d!u!
: ð23Þ

The rest of the analysis follows along the same lines as in
Section 2. The aggregate AP throughput in packet per sec-
ond is again given by (15). The total throughput for the
downloading and uploading STAs is given by

Hd ¼ hH and Hu ¼ 2ð1� hÞH: ð24Þ

The factor 2 arises because each ACK transmitted from the
AP acknowledges 2 data packets. The value of Eðd;uÞX (recall
the meaning of Eðd;uÞX provided just after (15)) is obtained
in a manner similar to the undelayed ACK case.

4. Determining h: TCP window analysis

In this section we obtain expressions for h for both de-
layed and undelayed ACK cases when the AP has a finite
buffer, making suitable approximations in the process.
Note that, as already stated earlier, our analysis is valid
for the scenario when the STAs have TCP connections with
a server located on the Ethernet to which the AP is con-
nected, i.e., the delay between the server and the AP is neg-
ligible. In this section, the version of TCP analyzed does not
support fast retransmit and fast recovery; loss recovery is
by timeout only, and the window is reset to 1 after a time-
out. We call this version ‘‘OldTahoe.” TCP Reno is analyzed
in the next section.

4.1. The case of undelayed ACKs

4.1.1. Modeling assumptions and approximations

(a) From (13) and (14) it can be seen that the average
number of active STAs is 3/2. Hence, for a large num-
ber of STAs, and for sufficiently large upload and
download connection windows, it can be assumed
that most of the TCP packets (data or ACKs) reside in
the AP (as will be seen later, even 5 STAs, with a max-
imum TCP window of 20 packets suffices to make this
approximation accurate). Here we are also using the
fact that the remote end-point is on the LAN.

(b) Assume that the maximum congestion windows for
upload connections is Wmax. Since TCP ACKs are just
40 bytes, their loss probability is small; also, due to
the cumulative acknowledgement property of TCP
ACKs, infrequent ACK losses do not result in the
TCP window being reduced. Hence, we assume that
the TCP congestion windows of the upload connec-
tions grow and stay at Wmax. Define l ¼ NuWmax,
i.e., the total number of packets belonging to the
uploading STAs in the system. Since most of these
packets reside in the AP, we assume that the AP buf-
fer always contains lLTCP�ACK bytes of TCP ACKs for
the upload connections.

(c) Thus, if the AP buffer size is B bytes then the buffer
available for the download connections can be
assumed to be B� lLTCP�ACK . In terms of packets,
the number of download data packets that can be
accommodated in the AP is given by
b ¼ B� lLTCP�ACK

LTCP�DATA
: ð25Þ
We denote the capacity of the buffer in terms of TCP
data packets (for downloading STAs) by B which is
given by
B ¼ lþ b: ð26Þ
Also, for simplicity in some calculations to be shown
later, we assume that, for i 2 f2;4;6; . . .g,
b ¼ i� Nd: ð27Þ
(d) In order to analyze the evolution of the TCP window
while accounting for tail-drop loss in the AP buffer,
we now propose a simple model for the AP buffer
and the service applied to it; see Fig. 6. Since the
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number of active STAs is small, we ignore the round
trip time between a packet being served at the AP
and the corresponding packet (e.g., data packet for
an ACK, and an ACK for a data packet) being received
back at the AP. Thus we assume immediate feedback.

(e) With the model in Fig. 6, let us consider the process
of services to the AP buffer when it just becomes full
with lþ b packets, without any of the connections
having suffered a tail-drop loss. Now all the down-
load TCP connections will lose packets in the process
of serving these lþ b packets from the AP. To see
this, suppose that the TCP window of download con-
nection i is Wi when the AP buffer just becomes full;
by our assumption, these Wi packets will all be in
the AP. Hence we can write
b ¼
XNd

i¼1

Wi: ð28Þ
Among these packets, there will be (at least) one pack-
et that will cause the window to grow. As soon as this
packet is served from the AP, two packets will arrive at
the tail of the AP buffer; one will be accommodated
and one will be lost. Hence, after the buffer becomes
full, all the download TCP connections will lose pack-
ets in the process of servinglþ b packets from the AP.
We call this the loss phase. In the loss phase, the TCP
connections are assumed to be in congestion avoid-
ance; this assumption is based on our extensive
observation of download window evolution in simu-
lations, a snapshot of which is given in Section 6.1.

(f) Suppose one of the download connections reach its
maximum TCP window then that connection should
not suffer loss. In simulations it was observed that
such connections stay at the fixed window and do
not suffer loss for large time intervals. The reason
they ultimately do suffer a loss can be explained
along the lines of the previous

(e) (Also see Section 6.1). Since modeling this phenome-
non is complicated, we have assumed that the down-
load connections do not have a maximum window
limit. The upload connections do have a maximum
window limit of Wmax. Having no maximum window
limit for a connection is possible in modern TCP
implementations by means of enabling the window
scaling option [10]. At the end of this subsection we
also give a simple upper bound on h when download
connections do have a maximum window limit.

(g) Note that if upload connections do not have a max-
imum window limit, then, as the loss of a few ACKs
does not affect their window evolution, these win-
dows will grow forever and the space for download
connections will go on reducing. Hence, it is impor-
tant to assume a maximum window limit on the
upload connections.

4.1.2. The TCP window evolution process
If the AP buffer occupancy at an instant is x packets,

then the interval during which these x packets are served
will be called a round.
The loss phase: There is one round in this phase. We re-
call that the loss phase starts after the AP buffer just be-
comes full (with l ACKs and b data packets). While
serving all these packets, each download connection loses
a packet (assuming the congestion avoidance phase). Thus,
after this round, there will still be lþ b packets in the AP
buffer. If download connection i had the window Wi at
the time of losing a packet, it still has Wi packets in the
AP buffer at the end of this round. Let us assume that
among the Wi packets that began the loss phase, it was
the last packet that caused the window to grow and, hence,
caused the loss of a packet. This assumption will be sup-
ported later in this section, after explaining the synchroni-
zation process.

The reset phase: Round 1: In the beginning of this round
there are lþ b packets in the AP buffer. Consider the first
packet served from the AP buffer pertaining to connection
i. When the TCP ACK corresponding to this packet goes to
the server and returns as a TCP data packet to the AP, a
gap is created in the sequence numbers of the packets cor-
responding to that connection. This gap rests between the
remaining Wi � 1 data packets in the buffer and the newly
arrived data packet. These remaining Wi � 1 packets will
be served during the services of lþ b packets from the
AP and will return as new data packets to the AP. Thus after
this round, there will be again b packets in the AP buffer
among which Wi packets will correspond to the ith down-
load connection. Also, there is a gap in the sequence num-
bers before the very first packet of each download
connection.

The reset phase: Round 2: The service of the very first
packet from the ith download connection informs the re-
ceiver about the packet loss. The receiver returns a dupli-
cate TCP ACK. In the TCP version we are analyzing, a
timeout is needed for resetting the connection window.
We assume that in reset phase round 2, during the services
of the lþ b packets from the AP there will be timeout for
all the download connections. This is based on the fact that
after the lost packet was sent by the server, 2ðlþ bÞ are to
be sent until the end of the reset phase round 2, the time
taken for which suffices to cause a TCP sender timeout.
Thus, during this round the windows of all the download
connections will be reset to 1, with the slow start threshold
for download connection i being set to W ðiÞ

th ¼
Wi
2 . Hence,

after this round, there will be lþ Nd packets in the AP buf-
fer with one packet out of the Nd packets belonging to each
download connection.

The window evolution is synchronized: After the round 2
in the reset phase, all connection windows are reset to 1
and the ith download connection has a slow start threshold
of Wi

th ¼
Wi
2 . Refering to (28), it can be shown that

XNd

i¼1

W ðiÞ
th ¼ b=2: ð29Þ

For moderate values of b, it has been observed (see Section
6.1) that after some number of occurrences of the loss
phase and the reset phase, there are very small differences
between the slow start thresholds of download connec-
tions. Hence, all the connection windows become synchro-
nized to the same values, the synchronization instants
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being the ends of the rounds corresponding to the loss
phase and the reset phase, and also the phases that will
be discussed next. Henceforth, the analysis is carried out
assuming all the window evolutions are synchronized.

The slow start phase: Denote by Tk;1 the instant when the
kth reset phase ends. The windows of the download trans-
fers are modeled as evolving in cycles that start at instants
fTk;1; k P 0g. At these instants the download windows are
synchronized and have been set to 1. Thus, the AP buffer
occupancy is lþ Nd. All the download windows have the
same slow start threshold and all are in the slow start
phase. The first round in a cycle consists of serving all
the packets in the AP; this results in there being lþ 2Nd

packets in the AP buffer. Call this instant Tk;2. In the slow
start phase, after each round all the download connection
windows will be doubled. Thus, during the jth round in
the slow start phase (corresponding to the time interval
½Tk;j; Tk;jþ1Þ) the AP buffer occupancy increases from
lþ 2j�1Nd to lþ 2jNd; lþ 2j�1Nd packets are served from
the AP during this interval. Since the download connection
windows are assumed to be synchronized, and have the
same slow start thresholds, they all enter the congestion
avoidance phase at the instant Tk;rþ1, where r is defined by

lþ 2rNd ¼ lþ NdWth ¼ lþ b=2: ð30Þ

yielding

r ¼ log2
b

2Nd

� �
: ð31Þ

By assuming window synchronization, all the download
connection windows leave slow start phase at the end of
the same round, and when the buffer is not yet full. This
is consistent with the previously made assumption that
the connections are in congestion avoidance phase at the
time of buffer overflow.

The congestion avoidance phase: Following the previous
discussion, the buffer occupancy at the beginning of this
phase is lþ b=2. The free space for download connections
in the AP buffer is now b=2 packets. Due to the linear in-
crease in the congestion avoidance phase, after the jth
round in this phase, the buffer occupancy will increase
from lþ b=2þ ðj� 1ÞNd to lþ b=2þ jNd. At the end of
the xth round, the buffer becomes full, where x is defined
by xNd ¼ b=2, yielding x ¼ b

2Nd
, where x is an integer due
Table 1
AP buffer evolution for TCP OldTahoe with Undelayed ACKs.

Phase Buffer at Tk;i

Slow start lþ Nd

lþ 2Nd

lþ 4Nd

. . .

lþ 2r�1Nd

Congestion avoidance lþ b=2
lþ b=2þ Nd

. . .

lþ b=2þ ðx� 1ÞNd

Losses lþ b=2þ xNd

Reset lþ b=2þ xNd

lþ b=2þ xNd
to (27). After this round, the loss phase of this cycle begins.
This AP buffer evolution has been summarized compactly
in Table 1. Note that the number of upload packets trans-
mitted by the AP is just l in all the rounds.

Thus, in each cycle the window evolution and the num-
ber of packets served are deterministic. Hence, the ratio of
download packets transmitted by the AP to the total pack-
ets transmitted by the AP is constant and can be calculated
using Table 1. From (7), h is the same as the value of this
fraction. Thus, h is given by

h ¼
ð2r � 1Þ þ xðx�1Þ

2 þ 3x
h i

Nd þ ðxþ 3Þ b
2

ðr þ xþ 3Þlþ ð2r � 1Þ þ xðx�1Þ
2 þ 3x

h i
Nd þ ðxþ 3Þ b

2

:

ð32Þ

The value of h calculated using the above procedure can be
substituted into the analysis in Section 2 to obtain the va-
lue of the AP throughput, the download throughput and
the upload throughput for the undelayed ACK case.

A simple upper bound when all the connections have a
maximum window limit: We so far assumed that the upload
connections have a maximum window limit but the down-
load connections have no such limit. When the download
connections also have a maximum window limit, a simple
upper bound can be obtained as follows. Let the download
connections have a maximum window limit of Wmax. The
space available for download packets in the AP buffer is b
packets. Assume that b

Wmax

j k
connections reach their maxi-

mum window limit and stay there indefinitely. Then as-
sume that remaining Nd � b

Wmax

j k
download connections

follow the window evolution process described above with
b�Wmax

b
Wmax

j k
space available for their packets in the AP

buffer. Calculating h with this model provides an upper
bound on h.

4.2. The case of delayed ACKs

The above analysis for calculating h can be easily ex-
tended to the delayed ACK case; also recall the discussion
in Section 3. We assume that every alternate TCP DATA
packet gets acknowledged. Now it can be assumed that
B ¼ l=2þ b as the AP stores one ACK corresponding to
two DATA packets for the upload connections. There is an-
other minor modification in the model from Section 4.1.1.
Buffer at Tk;iþ1 Buffer services in ½Tk;i; Tk;iþ1Þ

lþ 2Nd lþ Nd

lþ 4Nd lþ 2Nd

lþ 8Nd lþ 4Nd

. . . . . .

lþ 2rNd ¼ lþ b=2 lþ 2r�1Nd

lþ b=2þ Nd lþ b=2
lþ b=2þ 2Nd lþ b=2þ Nd

. . . . . .

lþ b=2þ xNd ¼ B lþ b=2þ ðx� 1ÞNd

lþ b=2þ xNd lþ b=2þ xNd

lþ b=2þ xNd lþ b=2þ xNd

lþ Nd lþ b=2þ xNd
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In the delayed ACK case, when the AP sends an ACK to an
STA that is performing an upload, the STA generates two
DATA packets, as opposed to one in the undelayed ACK
case. These two DATA packets are assumed to be ‘‘served”
together (recall the first paragraph of Section 3); they then
travel the round trip to the server and return to the AP as a
single ACK, with immediate feedback. Similarly, an ACK
packet sent by a downloading STA returns to the AP as
two DATA packets, again with immediate feedback from
the server.

The analysis steps will be exactly like the undelayed
ACK case except that we replace l by l=2, which is the
number of TCP ACKs corresponding to upload STAs resting
in the AP. Thus replacing l by l=2 in (32), we obtain

h ¼
ð2r � 1Þ þ xðx�1Þ

2 þ 3x
h i

Nd þ ðxþ 3Þ b
2

ðr þ xþ 3Þ l2 þ ð2
r � 1Þ þ xðx�1Þ

2 þ 3x
h i

Nd þ ðxþ 3Þ b
2

:

ð33Þ
Table 3
IEEE 802.11b and TCP/IP parameters.

Parameter Symbol Value

Data rate 1 R1 2 Mbps
Data rate 2 R2 5.5 Mbps
Data rate 3 R3 11 Mbps
Control rate Cc 2 Mbps
PHY preamble time TP 144 ls
PHY header TPHY 48 ls
MAC header size LMAC 34 bytes
RTS packet size LRTS 20 bytes
CTS packet size LCTS 14 bytes
MAC ACK packet size LACK 14 bytes
System slot time d 20 ls
DIFS time TDIFS 50 ls
SIFS time TSIFS 10 ls
EIFS time TEIFS 364 ls
Min. contention window CWmin 31
Max. contention window CWmax 1023
IP header LIPH 20 bytes
TCP header LTCPH 20 bytes
TCP ACK packet size LTCP�ACK 20 bytes
TCP data packet size LTCP�DATA 1500 bytes

20

25

ow
5. Extension to TCP Reno

The analysis easily extends to the Reno version of TCP.
We first consider the undelayed ACK case, with no limit
on the congestion window for download connections. The
analysis is similar to that in Section 4.1. For the Reno case
we assume that there are no timeouts and the recovery
uses only Fast Retransmit and Fast Recovery mechanisms
[11]. We assume that there are sufficient number of pack-
ets buffered for every download connection to trigger the
Fast Retransmit mechanism. This will lead to absence of
the slow start phase in the cumulative window evolution.
Also, we note that for the Reno case it is not necessary to
assume that all the download windows have the same va-
lue at the instants Tk;i. All that matters is that the cumula-
tive download window increases linearly from b=2 to b in
the congestion avoidance phase, with increments of Nd in
½Tk;i; Tk;iþ1Þ. After the buffer occupancy reaches b, the loss
phase and reset phase occur similar to the TCP OldTahoe
case, the only difference being that at the end of the reset
phase, the buffer occupancy is b=2 instead of Nd as in the
OldTahoe. The AP buffer evolution is summarized in Table
2. The formula for h for Reno becomes:

h ¼
xðx�1Þ

2 þ 3x
h i

Nd þ ðxþ 3Þ b
2

ðxþ 3Þlþ xðx�1Þ
2 þ 3x

h i
Nd þ ðxþ 3Þ b

2

: ð34Þ
Table 2
AP buffer evolution for TCP Reno with undelayed ACKs.

Phase Buffer
at Tk;i

Buffer
at Tk;iþ1

Buffer
services
in ½Tk;i; Tk;iþ1Þ

Congestion
avoidance

lþ b=2 lþ b=2þ Nd lþ b=2
lþ b=2þ Nd lþ b=2þ 2Nd lþ b=2þ Nd

. . . . . . . . .

lþ b=2þ ðx� 1ÞNd lþ b=2þ xNd ¼ B lþ b=2þ
ðx� 1ÞNd

Losses lþ b=2þ xNd lþ b=2þ xNd lþ b=2þ xNd

Reset lþ b=2þ xNd lþ b=2þ xNd lþ b=2þ xNd

lþ b=2þ xNd lþ b=2 lþ b=2þ xNd
Following similar lines as in Section 4.2, h for TCP Reno for
the delayed ACK case is given by

h ¼
xðx�1Þ

2 þ 3x
h i

Nd þ ðxþ 3Þ b
2

ðxþ 3Þ l2 þ
xðx�1Þ

2 þ 3x
h i

Nd þ ðxþ 3Þ b
2

: ð35Þ
6. Analytical and simulation results

All the simulation results are obtained using ns-2.31
using parameters summarized in Table 3.

6.1. Synchronized window evolution

Fig. 7 shows a window evolution snapshot for Nu ¼ 5;
Nd ¼ 5; b ¼ 50 in support of the assumptions and approxi-
mations made in Section 4.1. We have assumed a synchro-
nized window evolution in Section 4.1.1. From Fig. 7 we
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Fig. 7. Sample path of window evolutions of several connections, in
support of our assumption of synchronization of the window evolution
processes.
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see that this assumption holds good most of the time but
not always. One reason why synchronization might fail to
occur is the following. Suppose that two download STAs
are active at some moment, and serving one of these can
potentially cause a window increase in the connection cor-
responding to that STA. If such an STA is served before the
other STA then two packets will return to the AP because of
the window increase. Now as the AP has space for two
packets, both these packets will be accommodated in the
AP and thus the connection will not lose packets, even
though there are lþ b packets in the AP buffer. But we
have found that the assumption of a synchronized window
evolution model provides results that are close to the ac-
tual performance. The simulation results in support of this
claim are provided in the following sections.

6.2. TCP OldTahoe

Undelayed ACK Case: Figs. 8–10 provide a validation of
the analysis performed in Section 4.1 for Nd ¼ Nu ¼
5;8;10. Here h is plotted vs. the buffer size expressed as

b
2Nd

. For uploads the maximum TCP window is Wmax ¼ 20.
Thus, for example, b

2Nd
¼ 10, with Nu ¼ Nd ¼ 5, means that

the AP buffer can accommodate 100 TCP data packets
and 100 TCP ACKs. It can be seen that the analysis provides
a very accurate estimate of h in spite of our several simpli-
fying modeling assumptions. We see that for a small AP
buffer, the download transfers can obtain as little as just
10% of the total packet throughput from the AP, and b

2Nd

needs to be 10 for the download throughput to be 40% of
the total packet throughput from the AP.

The upload and download throughputs are obtained by
multiplying the aggregate packet throughput from the AP
by h; see (17). For PHY rates of 2 Mbps, 5.5 Mbps and
11 Mbps, the throughput H in packets/s provided by the
simulations was consistently found to be 116, 230, 318,
respectively, regardless of h and the number of STAs,
whereas the corresponding analytically obtained values
were 117, 231 and 320 in terms of packets/s. Thus, the
analysis also provides a very accurate estimate of the up-
load and download throughputs.
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Fig. 8. TCP OldTahoe, undelayed ACK case: h vs. buffer size (expressed as
b

2Nd
) for Nu ¼ Nd ¼ 5.
Discussion: As an illustration, we see that if b
2Nd
¼ 10

with Nu ¼ Nd ¼ 5 (see Fig. 8), and, keeping the same buffer,
we make Nd ¼ Nu ¼ 10 (see Fig. 10), then the download
throughput will drop from about 40% of aggregate
throughput to about 25%. Our observation of constant
aggregate throughput with increasing number of nodes is
consistent with the earlier work on TCP reported in [3,5].

Delayed ACK Case: Fig. 11 shows simulation results for h
for the delayed ACK case in Section 4.2 for Nu ¼ Nd ¼ 5.
Similar results were obtained for Nu ¼ Nd ¼ 8;10. As for
the case of undelayed ACKs, the values of total throughput
were again found to be almost insensitive to h and the total
number of STAs. From our simulations, these values were
found to be, approximately, 123, 254, 360 packets/s for
the PHY rates of 2, 5.5, 11 Mbps, respectively, very close
to the analytically obtained values of 125, 257, 365,
respectively.

We find that the analysis underestimates the value of h
in this case. This can be explained as follows: We have as-
sumed in Section 4.2 that when an upload ACK is transmit-
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ted by the AP, the resulting two DATA packets at the corre-
sponding STA are served together, back-to-back, after one
contention by the STA (see also the first paragraph of Sec-
tion 3). These two DATA packets instantly reach the server
and return as an ACK into the AP buffer. In practice, how-
ever, one of the upload DATA packets will stay in the
STA, waiting for another contention, so that the number
of upload ACKs in the AP is less than what our analysis as-
sumes. Thus, the number of upload ACKs in the AP is over-
estimated by our model, which results in an underestimate
of the value of h.

Discussion: It can be seen from (24) that the upload and
download throughputs are equal when h ¼ 2

3. We see from
Fig. 11 that for Nd ¼ Nu ¼ 5 this situation is approached for

b
2Nd
¼ 10. Another insight we obtain is that the aggregate

throughput in packets per second is almost constant with
buffer size and the number of nodes. Further, the simplifi-
cation we made for carrying out the analysis with delayed
ACKs in the first paragraph of Section 3 is seen to yield a
very good approximation for throughput.

6.3. TCP Reno

Fig. 12 shows the simulation results obtained for h for
TCP Reno with undelayed ACKs for Nu ¼ Nd ¼ 5. Similar re-
sults were obtained for Nu ¼ Nd ¼ 8;10. We notice that the
values of h for the same value of buffer are a little greater
than with OldTahoe. This can be explained as follows: With
TCP Reno, the cumulative TCP window of downloading
STAs oscillates between b=2 and b. For TCP OldTahoe, be-
cause of repeated resetting of the window 1 and entry into
the slow start phase, the cumulative window has to climb
to b=2 and then it enters the congestion avoidance phase.
Thus, the slow start phase of TCP OldTahoe results in
reducing the throughput obtained by downloading STAs
and hence h. Again similar to OldTahoe, for PHY rates of
2 Mbps, 5.5 Mbps and 11 Mbps, the simulated throughput
H in packets/s was consistently found to be 116, 230,
318, respectively, regardless of h and the number of STAs,
whereas the corresponding analytically obtained values
were 117, 231 and 320 in terms of packets/s.
Fig. 13 shows the simulation and analysis results ob-
tained for h with Nu ¼ Nd ¼ 5 for TCP Reno with delayed
ACKs. Similar results were obtained for Nu ¼ Nd ¼ 8;10.
Again the values of total throughput were found to be al-
most insensitive to h and the total number of STAs. These
values were approximately 125, 257, 365 packets/s for
the PHY rate of 2, 5.5, 11 Mbps, respectively and very close
to the analytical results.

6.4. Bounds on h with finite Wmax

The results in Section 6.2 were provided assuming no
maximum window limit on download connections but
the upload connections had a maximum window limit of
20. At the end of Section 4.1.2 we provided a simple upper
bound on h for the case of undelayed ACK and when all
connections have a maximum window limit. Intuitively,
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we anticipate that for small values of the AP buffer, the
analytical h would be close to the h obtained with no max-
imum window limit only on download connections. Fig. 14
shows the simulated value of h given the maximum win-
dow limit of 20 on all the connections, and analytical val-
ues of h for the case when there is maximum window
limit only on upload connections for Nu ¼ Nd ¼ 5. Similar
results were obtained for Nu ¼ Nd ¼ 8;10. We see that for
small buffer sizes the analytical model with no maximum
limit on the download TCP windows provides an accurate
estimate of h. For other cases, the two analyses provide
bounds on h.

7. Conclusion

The analysis for calculating h is essentially rateless, i.e.,
the value of h does not change with PHY rate as long as
the number of uploading STAs, the number downloading
STAs, AP buffer size and maximum window limit for up-
load connections remain same. Thus, we can expect to ob-
tain the same value of h even in the scenario where STAs
associate with the AP with different PHY rates. The analysis
for calculating h made use of only the fact that the average
number of active STAs is small, as stated in Section 4.1.1,
and has no other dependence on the underlying MAC layer
analysis.

Since, for a given the PHY rate, there is no variation in
aggregate throughput with the number of STAs (see Sec-
tions 6.2 and 6.3), it motivates the processor sharing model
for the case of randomly arriving short file transfers. The
model will consist of N ¼ Nu þ Nd connections and a server
serving packets at H ¼ Hu þHd packets/second. Each
download STA will get service at the rate hH

Nd
packets/s and

each upload STA will get service with ð1�hÞH
Nu

packets/s. With
this model, the mean time taken to complete the file trans-
fers can be predicted [11]; we leave the study of the accu-
racy of such a model as future work.

We have thus provided a fairly general analytical model
that (i) explains the observations made by several prior
experimental and simulation studies (e.g., [1]), (ii) yields
several new insights into the interaction of the TCP proto-
col and the IEEE 802.11 MAC (e.g., beyond those in [3,5] ),
and (iii) provides an accurate model that could be used to
predict performance, perhaps for the purpose of network
engineering.

Appendix A. DTMC for the undelayed ACK case

Consider the DTMC ðDk;UkÞ characterized by the follow-
ing transition probabilities:

Prððd� 1;uÞ=ðd;uÞÞ ¼ d
uþ dþ 1

ð36Þ

Prððd;u� 1Þ=ðd;uÞÞ ¼ u
uþ dþ 1

ð37Þ

Prððdþ 1;uÞ=ðd;uÞÞ ¼ h
uþ dþ 1

ð38Þ

Prððd;uþ 1Þ=ðd;uÞÞ ¼ 1� h
uþ dþ 1

ð39Þ

The Markov chain is depicted in Fig. 4. The following lem-
mas will be used in the analysis [8].

Lemma 7.1. A Markov chain is reversible if and only if there
exists a probability distribution p on S, where S is the set of all
the states of the Markov chain, such that, for all i, and j 2 S,

pipij ¼ pjpji ð40Þ

where pij denotes the transition probability from state i to
state j.

Lemma 7.2. A Markov chain is reversible if, in every closed
(circular) path formed by its states, the product of the transi-
tion probabilities in the clockwise direction is equal to the
product of the transition probabilities in the anti-clockwise
direction.
A.1. Stationary state distribution

Using Lemma 7.2, the DTMC in Fig. 4 can be easily seen
to be reversible. Recall that, pðd;uÞ denotes the stationary
state probability of the state ðd;uÞ. Using Lemma 7.1, we
can write

pðd; u� 1Þ1� h
uþ d

¼ pðd;uÞ u
uþ dþ 1

: ð41Þ

Hence,

pðd; uÞ
pðd; u� 1Þ ¼

ð1� hÞðuþ dþ 1Þ
uðuþ dÞ : ð42Þ

Applying (42) repetitively, we get

pðd; uÞ
pðd; u� 1Þ � � � � �

pðd;1Þ
pðd;0Þ ¼

ð1� hÞu

u!
� uþ dþ 1

dþ 1
ð43Þ

or

pðd; uÞ
pðd; 0Þ ¼

ð1� hÞu

u!
� uþ dþ 1

dþ 1
: ð44Þ

Similarly, we can obtain
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pðd;uÞ
pð0; uÞ ¼

hd

d!
� uþ dþ 1

uþ 1
: ð45Þ

Substituting u ¼ 0 in the above equation gives

pðd;0Þ
pð0; 0Þ ¼

hd

d!
� ðdþ 1Þ: ð46Þ

Multiplying Eqs. (44) and (46) we get

pðd;uÞ
pð0; 0Þ ¼ ðuþ dþ 1Þ � hdð1� hÞu

d!u!
: ð47Þ

Now using the normalization equation

X1
d¼0

X1
u¼0

pðd; uÞ ¼ 1; ð48Þ

we get

X1
d¼0

X1
u¼0

ðuþ dþ 1Þ h
dð1� hÞu

d!u!
� pð0;0Þ ¼ 1: ð49Þ

Thus, we can write

1
pð0;0Þ ¼

X1
d¼0

hd

d!

X1
u¼0

ðuþ dþ 1Þ ð1� hÞu

u!

¼
X1
d¼1

hd

ðd� 1Þ!
X1
u¼0

ð1� hÞu

u!

(

þ
X1
d¼0

hd

d!

X1
u¼1

ð1� hÞu

ðu� 1Þ! þ
X1
d¼0

hd

d!

X1
u¼0

ð1� hÞu

u!

)

¼ eð1�hÞehfhþ ð1� hÞ þ 1g ¼ 2e: ð50Þ

) pð0;0Þ ¼ 1
2e
: ð51Þ

Substituting pð0;0Þ ¼ 1
2e in Eq. (47), we get

pðd; uÞ ¼ uþ dþ 1
2e

� hdð1� hÞu

d!u!
: ð52Þ
A.2. Mean number of active download and upload STAs

The mean number of active download STAs is given
by

EðDÞ ¼
X1
u¼0

X1
d¼0

d� uþ dþ 1
2e

� hdð1� hÞu

d!u!

¼ 1
2e

X1
u¼0

ð1� hÞu

u!

X1
d¼0

ðd2 þ dðuþ 1ÞÞ � hd

d!

¼ 1
2e

X1
u¼0

ð1� hÞueh

u!
fðh2 þ hÞ þ ðuþ 1Þhg

¼ 1
2e

eheð1�hÞfh2 þ hþ hð1� hÞ þ hg ¼ 3h
2
: ð53Þ

Observing symmetry of Eq. (52) in u and d, it can be easily
seen that the mean number of active upload STAs is given
by

EðUÞ ¼ 3ð1� hÞ
2

: ð54Þ
Appendix B. DTMC for the delayed ACK case

The DTMC ðDk;UkÞ for this case is characterized by fol-
lowing equations:

Prððd� 1;uÞ=ðd; uÞÞ ¼ d
uþ dþ 1

ð55Þ

Prððd; u� 1Þ=ðd; uÞÞ ¼ u
uþ dþ 1

ð56Þ

Prððdþ 1;uÞ=ðd; uÞÞ ¼
h
2

uþ dþ 1
ð57Þ

Prððd; uÞ=ðd;uÞÞ ¼
h
2

uþ dþ 1
ð58Þ

Prððd; uþ 1Þ=ðd; uÞÞ ¼ 1� h
uþ dþ 1

ð59Þ

This DTMC is depicted in Fig. 5. Using Lemma 7.2, it can be
verified to be reversible. Eq. (47) now changes to

pðd;uÞ
pð0; 0Þ ¼ ðuþ dþ 1Þ �

h
2

� �dð1� hÞu

d!u!
: ð60Þ

Following the same analysis steps as in the undelayed ACK
case, we can write

1
pð0;0Þ ¼

X1
d¼0

h
2

� �d

d!

X1
u¼0

ðuþ dþ 1Þ ð1� hÞu

u!

¼ eð1�hÞ
X1
d¼1

h
2

� �d

ðd� 1Þ!þ ð1� hÞ
X1
d¼0

h
2

� �d

d!
þ
X1
d¼0

h
2

� �d

d!

( )

¼ eð1�hÞe
h
2ð Þ h

2
þ ð1� hÞ þ 1

� �
¼ e1� h

2ð Þ 2� h
2

� �
:

) pð0;0Þ ¼ 1

e1� h
2ð Þ 2� h

2

� � : ð61Þ

Hence,

pðd; uÞ ¼ uþ dþ 1

e1� h
2ð Þ 2� h

2

� �� h
2

� �dð1� hÞu

d!u!
: ð62Þ
Appendix C. Derivation of Eðd;uÞX

The denominator of (15) requires Eðd;uÞX, i.e., the mean
cycle time starting in the state ðd;uÞ. As explained earlier,
a contention cycle comprises several channel slots, and
we obtain the mean cycle time by writing down simple
recursive expressions by embedding at channel slot
boundaries. The ‘‘back-off” periods shown in Fig. 3 com-
prise several idle slots in which none of the nodes at-
tempts. If one or more attempts occur at a channel slot
boundary, there is a success or collision accordingly. Start-
ing in the state ðd;uÞ, the state remains ðd;uÞ until a suc-
cessful transmission ends. The following events can
happen at the channel slot boundaries:

� The slot goes idle with probability
Pidle ¼ ð1� buþdþ1Þ

uþdþ1.
� The AP succeeds with probability

PAP
succ ¼ buþdþ1ð1� buþdþ1Þ

uþd.
� A download STA succeeds with probability

Pd
succ ¼ dbuþdþ1ð1� buþdþ1Þ

uþd.



Table 4
Parameter values for Eqs. (64) and (65).

Parameter Value at 11 Mbps Value at 2 Mbps
and 5.5 Mbps

PDATA
coll1 PAP;d

coll þ PAP;u
coll þ Pu

coll þ Pd;u
coll PAP;u

coll þ Pu
coll

PDATA
coll2 Pd

coll PAP;d
coll þ Pd

coll þ Pd;u
coll

PACK
coll1 PAP;u

coll þ Pu
coll þ Pd;u

coll
Pu

coll

PACK
coll2 PAP;d

coll þ Pd
coll PAP;d

coll þ PAP;u
coll þ Pd

coll þ Pd;u
coll
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� An upload STA succeeds with probability
Pu

succ ¼ ubuþdþ1ð1� buþdþ1Þ
uþd.

� There is a collision with the remaining probability.

When two or more transmissions collide, the duration
of collision is given by the duration of the longest trans-
mission. Hence, we distinguish among the various possibil-
ities of collisions depending on whether a download STA or
an upload STA is involved in the collisions, and also
whether the AP, if involved in the collision, has a TCP data
packet or a TCP ACK at the HOL position. This is due to the
fact that, the time spent in collision can be dominated by
either the duration of RTS or the duration of TCP ACK
depending on the PHY rates. Let Tcoll1 (resp. Tcoll2) denote
the duration of a collision given that the RTS (resp. the
TCP ACK) is the longest packet involved in the collision.
Then, Tcoll1 and Tcoll2 are given by (see Table 3)

Tcoll1 ¼ TP þ TPHY þ
LRTS

Rcontrol
þ TEIFS

Tcoll2 ¼ TP þ TPHY þ
LMAC þ LIPH þ LTCP�ACK

Rdata
þ TEIFS

Note that Tcoll2 < Tcoll1 at 11 Mbps and Tcoll2 > Tcoll1 at
2 Mbps and 5.5 Mbps. The various possibilities of collisions
can now be summarized as follows:

� An AP transmission collides with a transmission by the
download STA (and upload STAs are not involved
in the collision) with probability
PAP;d

coll ¼ buþdþ1ð1� buþdþ1Þ
u½1� ð1� buþdþ1Þ

d�.
� The AP transmission collides with a transmission by the

upload STA (and download STAs are not involved in the
collision) with probability
PAP;u

coll ¼ buþdþ1ð1� buþdþ1Þ
d½1� ð1� buþdþ1Þ

u�.
� Two or more download STAs collide (and neither the AP

nor the upload STAs are involved in the collision) with
probability
Pd

coll ¼ ð1� buþdþ1Þ
uþ1 � ½1� ð1� buþdþ1Þ

d � buþdþ1ð1�
buþdþ1Þ

d�1�.
� Two or more upload STAs collide (and neither the AP nor

the download STAs are involved in the collision) with
probability
Pu

coll ¼ ð1� buþdþ1Þ
dþ1 � ½1� ð1� buþdþ1Þ

u�
ubuþdþ1ð1� buþdþ1Þ

u�1�.
� Both download and upload STAs are involved in the

collision (AP may or may not be involved) with probabil-
ity
Pd;u

coll ¼ ½1� ð1� buþdþ1Þ
u�½1� ð1� buþdþ1Þ

d�.

As the time interval ðGk�1;Gk� depends on whether the
packet at HOL at the AP was Data or ACK packet, the ex-
pected cycle length can be expressed as

Eðd;uÞX ¼ h EDATA
ðd;uÞ X þ ð1� hÞ EACK

ðd;uÞX: ð63Þ

where EDATA
ðd;uÞ and EACK

ðd;uÞ denote the expected cycle lengths
starting in the state ðd;uÞ given that the HOL packet at
the AP is a TCP data packet or TCP ACK, respectively. Let
PDATA

coll1 (resp. PDATA
coll2 ) denote the probability that the time

spent in collision is Tcoll1 (resp. Tcoll2) given that the AP’s
HOL position contains a TCP data packet. Let PACK

coll1 (resp.
PACK

coll2) denote the probability that the time spent in collision
is Tcoll1 (resp. Tcoll2) given that the AP’s HOL position con-
tains a TCP ACK. As noted earlier, the above probabilities
depend on the PHY rates and have been summarized in Ta-
ble 4.

Table 4 can be explained as follows. Consider the
11 Mbps case when the AP’s HOL position contains a TCP
data packet. Since Tcoll2 < Tcoll1 at 11 Mbps, the time spent
in collision is Tcoll2 iff neither the AP nor any upload STA
is involved in the collision. If either the AP or any of the up-
load STAs is involved in the collision, then the time spent in
collision is Tcoll1. Thus, in this case, we have

PDATA
coll2 ¼ Pd

coll

and

PDATA
coll1 ¼ PAP;d

coll þ PAP;u
coll þ Pu

coll þ Pd;u
coll:

Other entries in Table 4 can be similarly explained.
Applying a renewal argument, EDATA

ðd;uÞ and EACK
ðd;uÞ can be

recursively written as follows:

EDATA
ðd;uÞ X ¼ Pidle dþ EDATA

ðd;uÞ X
� 	

þ PDATA
coll1 Tcoll1 þ EDATA

ðd;uÞ X
� 	

þ PDATA
coll2 Tcoll2 þ EDATA

ðd;uÞ X
� 	

þ PAP
succTTCP�DATA

þ Pu
succTTCP�DATA þ Pd

succTTCP�ACK ð64Þ

EACK
ðd;uÞX ¼ Pidle dþ EACK

ðd;uÞX
� 	

þ PACK
coll1 Tcoll1 þ EACK

ðd;uÞX
� 	

þ PACK
coll2 Tcoll2 þ EACK

ðd;uÞX
� 	

þ PAP
succTTCP�ACK

þ Pu
succTTCP�DATA þ Pd

succTTCP�ACK ð65Þ

where TTCP�DATA and TTCP�ACK denote the times taken for
transmission of TCP data packet and TCP ACK, respectively.
Eqs. (63)–(65) provide Eðd;uÞX. The attempt probabilities
needed to compute various probabilities can be obtained
by a saturated analysis as in [6] or [7], and the various time
durations can be obtained using the parameter values
summarized in Table 3.
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