
Scene Classification in Remote Sensing Images

using Dynamic Kernels

Rajeshreddy Datla∗†, Vishnu Chalavadi† and Krishna Mohan C†

∗Advanced data processing research institute (ADRIN), Dept. of space, Secunderabad, India
†Department of Computer Science and Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India

Email: ∗rajesh@adrin.res.in,†cs16m18p000001@iith.ac.in, †ckm@cse.iith.ac.in

Abstract—Classification of scenes across multi-sensor remote
sensing images with different spatial, spectral, temporal resolu-
tions involves identification of variable length spatial patterns of
objects in a scene. So, it necessitates the use of local representa-
tions from different regions of a scene in order to comprehend
the scene formation. In this paper, we propose a dynamic kernel
based representation to handle the patterns of variable lengths
in the scenes of remote sensing images. These kernels help
to assimilate spatial variability captured using convolutional
features in a Gaussian mixture model. The statistics of GMM
facilitate the dynamic kernels in preserving the local spatial
similarities while handling the changes in spatial content globally
within the same scene. The efficacy of the proposed method using
two variants of the dynamic kernels is demonstrated on three
benchmark scene classification datasets, namely, UCM Land
Use (21 classes), Aerial image dataset (30 classes), and NWPU-
RESISC45 (45 classes). Our experiments show that the mean
interval kernel is better discriminative as it makes use of first
and second-order statistics of GMM.

Index Terms—Remote sensing images, scene classification,
Gaussian mixture model, MAP adaptation, dynamic kernel.

I. INTRODUCTION

With the available remote sensing technology, abundant

volumes of high resolution remote sensing images in large-

scale are available for Earth observation. Due to macroscopic

coverage of satellites, the spatial content of larger regions

on the ground is captured at finer-level in the form of high

resolution images. These images depict the objects along with

their spatial arrangement on the ground and their quick anal-

ysis provides useful insights in the decision making process.

Scene classification is one of the high-level tasks in remote

sensing imagery analysis that distinctly provides class labels

to the scenes that are partitioned from the large images. These

class labels are determined based on the local and global

semantics of the spatial content present in a scene. However,

the acquisition of images from multi-sensors with different

spatial and spectral resolutions produces visual discrepancies

in the spatial content. Also, the spatial pattern of objects

is not uniform and differs across the samples of a specific

scene. Following are the factors that manifest different spatial

patterns of objects in a remote sensing scene: (i) Number

of objects: The number of intended objects varies across the

samples of a scene. For example, buildings are less in sparse

residential scenes compare to dense residential scenes. (ii)

Scale: The same object with different sizes may present in

a scene. (iii) Scene background: Most of the samples in a

specific scene have non-uniform background. Some samples

of freeway scene have with and without trees, with and without

buildings. Also, the scenes of basketball court encompass

different surroundings, e.g., parking area or residential area

or trees. (iv) Proximity: The distance between the objects

vary due to their arbitrary distribution in a scene. (v) Spatial

relation: The irregular patterns of intended objects in a scene

possess non-homogeneous spatial relations. The arrangement

of buildings can be observed from the scenes of sparse,

medium, and dense residential classes. (vi) Visual similarity:

Objects in the scenes of different classes look similar, though

their functionality differ. For instance, the building structure in

church and palace scenes look visually similar. (vii) Arbitrary

spatial arrangement of objects: In general, objects are depicted

at the center of nature scene due to the awareness of the

photographer with the objects. Whereas, the locations of

objects in remote sensing scenes are relatively arbitrary due to

the macroscopic view from larger distance. Further, the com-

plexity increases with the non-uniform imaging conditions,

such as view-angle, illumination, etc.

The convolutional neural network (CNN) features are able

to comprehensively describe the local semantics of the scenes,

due to their model transferability and generalization ability.

Also, various approaches based on CNN architectures have

been developed to improve the performance of scene classi-

fication in remote sensing images [1]–[5]. Motivated by this,

we propose a representation learning approach by leveraging

dynamic kernels to handle the variability in spatial patterns of

the objects. First, we train a single Gaussian mixture model

(GMM) to capture the significant local features by employing

convolutional features. Then, we measure the similarity be-

tween any two scenes by calculating the distance between the

features in the scenes and means of GMM. Kernel methods

achieve a better separability across different scene classes

by projecting distances to higher dimensions [6]. However,

most of these methods are suitable to handle fixed length

patterns that restricts comparison between the two scenes

which contain variable number of local features. So, we exploit

dynamic kernels to transform the variable length patterns of

objects in the scenes into fixed-length patterns or to choose

the best combination of local features.

The use of base kernel in dynamic kernels helps in mea-

suring the similarity between two scenes by calculating the

closeness of their local features. In the probability based
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kernels, the kernel computation is based on the posterior

probability of each local feature corresponding to the GMM.

In matching based kernels, the kernel computation includes

only those local features that are similar to GMM means. This

ensures the retention of key local structures constituting spa-

tial patterns during the kernel computation. These significant

spatial patterns uniquely represent some of the scenes, such

as row houses in dense residential, circular road connectivity

in roundabout scenes. Therefore, dynamic kernels become

obvious choice for representing the similarity between the

scenes of remote sensing images.

The contributions of this paper are summarized as:

• The local structure describing the spatial patterns of

objects is preserved by learning the statistics of GMM.

• Dynamic kernels are exploited to capture global varia-

tions by preserving the local structures while handling

variable spatial patterns of objects in the scenes.

• Efficacy of the proposed approach is demonstrated on

three varieties of scene classification datasets: UCM Land

Use (21 classes), Aerial image dataset (30 classes), and

NWPU-RESISC45(45 classes).

The paper is organized as follows. Section II discusses

the related research works on scene classification in remote

sensing images. Section III describes the proposed approach

to classify the scene of remote sensing images using dynamic

kernels. In Section IV, we discuss the experimental results

and their analysis along with the comparison of state-of-the-

art approaches. We conclude the paper in Section V.

II. RELATED WORK

In this section, we discuss the existing works on scene

classification in remote sensing images. We also briefly sum-

marize the approaches based on dynamic kernels to handle the

patterns of variable length.

A. Scene classification in remote sensing images

Existing methods explored the use of various low-level,

mid-level, and high-level features for scene classification in

remote sensing images [7].

1) Low-level feature-based approaches: The low-level

feature-based representations are highly dependent on the

design of hand-engineered features which mainly focus on the

specific characteristics of images. The most common spatial

cues used in their design are color, spatial, texture, shape,

and structural information, etc. However, the combination

of these spatial cues is often difficult to attain due to the

characteristics of remote sensing images. Some works in [7]–

[11] exploited the global features such as color histograms and

texture descriptors in the scene classification task of remote

sensing images. Whereas the use of local features in describing

an entire scene requires an additional mechanism to encode its

local properties.

2) Mid-level feature-based approaches: The mid-level rep-

resentations help to describe a scene completely by transform-

ing local features into global features. In [7], [12], bag-of-

visual-words (BOVW) with scale-invariant feature transform

(SIFT) features [13], locality constrained linear coding (LLC)

methods, and combination of BOVW and spatial pyramid

matching (SPM) are used in the scene classification of remote

sensing images. Some works [14]–[17] explored part detectors

to obtain an effective sparselets by employing histogram

of oriented gradients (HOG) feature descriptors for scene

classification. Various representations using local and global

features are fused to obtain effective scene classifiers [18],

[19].

3) Convolutional feature-based approaches: Compared to

handcrafted feature or mid-level feature based methods, con-

volutional feature based methods have shown big leap in

the performance of scene classification in remote sensing

images. This is mainly due to the discriminative capability of

convolutional features that provide better transferability and

generalization capability. In [1], [20], [21], effectiveness of

the pre-trained and fine-tuned versions of AlexNet, VGGNet-

16, and GoogLeNet on ImageNet was demonstrated on scene

classification in remote sensing images. The ensemble of

CNNs is exploited to improve the classification performance

over pre-trained CNN models [3], [22]. Further improvements

on scene classification are also achieved by stacking, fusing,

or integrating various CNN features [23]–[27]. In [28], hybrid

deep features are explored for scene representation by fusing

scene-based and object-based features from both scene level

and region level. In [1], an objective function is augmented

besides CNN features to address the issue of intra and inter

class variations in scene classification task. A scale-free con-

volutional neural networks [2] helps to preserve the spatial

content, as the input images undergo resize in compliance to

the deep architectures during fine-tuning process.

Recently, a key filter bank based CNN (KFBNet) [4] pre-

serves global information for scene classification by capturing

the class-specific features from key locations of each scene.

Another framework automatically captures the latent ontolog-

ical structure from the scenes of remote sensing scene im-

ages using multi-granularity canonical appearance pooling [5].

Siamese style architecture is used to extract CNN features to

discover canonical appearance at each grain level. Gaussian

co-variance matrices are derived by computing the second-

order statistics over the obtained CNN features. The use of

second-order statistics achieve better discrimination capability

by adopting suitable normalization factor of the co-variance

matrix during the training.

B. Dynamic kernels

In general, the representation of variable length patterns

in the applications of speech, music, image, video analysis

domains explored the combination of Gaussian mixture model

(GMM) and hidden markov model (HMM). Dynamic ker-

nels [29] are one of the most prominent approaches to obtain

a fixed length representation from variable length patterns.

Lee et al. [30] estimate Gaussian densities to construct a

probabilistic sequence kernel (PSK) which produces discrim-

inative features instead of generative features. In order to im-

prove the computational performance of PSK, Bhattacharyya
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distance-based measure between GMM mixture components

is employed which includes both first and second-order GMM

statistics [31]. In order to model the features from multiple

speakers, a single universal background model (UBM) is

trained. The means and covariances are adapted for each

speaker from the mean and covariances of UBM resulting

in mean interval supervectors. The kernel resulted from su-

pervector is referred to as Gaussian mean interval kernel

which is employed in the classification using support vector

machine (SVM). Further its computational time is reduced

with intermediate matching kernels (IMK) [32]. To select the

nearest local feature vectors from each scene, IMK uses the set

of virtual feature vectors based on GMM mixtures instead of

mean or covariance adaptation. IMK is computationally more

efficient than Gaussian mean interval kernel and probabilistic

sequence kernel (PSK), as the virtual features obtained from

a clip are less than the local features [29]. Also, it was shown

that further reduction in computation time is possible by the

optimal selection of virtual features.

III. PROPOSED METHOD

This section explains the proposed approach for scene

classification in remote sensing images using dynamic kernels.

Fig. 1 shows the block diagram for the proposed method with

various stages, such as extraction of convolutional features,

Gaussian mixture model training, and classification in kernel

space.

A. Extraction of convolutional deep features

In general, fine-tuning over the pre-trained CNN models is

performed to retrain on other datasets and they are useful in

describing both low and high-level characteristics of a scene.

We devise an effective dynamic kernel based representation

for scene classification by exploiting the convolutional features

from various state-of-the-art CNN architectures. For example

the AlexNet produces a feature map of size 13×13×256 from

”conv5” layer for a 227×227 input image. Similarly, details of

the feature maps of various CNN architectures that are used in

this work are presented in Table I. Subsequently, the extracted

convolutional features are used to train a Gaussian mixture

model (GMM) to capture both local and global features

implicitly. Then the statistics of GMM are transformed to

dynamic kernel space in order to perform scene classification

which is described in the following sub-sections.

TABLE I
DETAILS OF CONVOLUTIONAL FEATURES OF VARIOUS CNN

ARCHITECTURES USED FOR OUR SCENE ATTRIBUTE MODELING.

Architecture Feature layer Feature map size

AlexNet [33] conv5 13× 13× 256

GoogLeNet [34] inception 4(e) 14× 14× 832

VGGNet-16 [35] block5 conv3 14× 14× 512

DenseNet-121 [36] conv5 block16 7× 7× 1024

EfficientNet-B0 [37] top conv 7× 7× 1280

B. Gaussian mixture model (GMM) training

Each sample of a scene can be represented as X =
{x1,x2, ...,xL}, where X is a set of feature vectors & L

denotes number of feature vectors extracted from a sample.

A separate Gaussian mixture model (GMM) is trained by

leveraging the convolutional features for each CNN architec-

ture. The GMM with parameter set λ = {wm, µm, σm} is

represented as

p(xl|λ) =
M
∑

m=1

wm(xl|µm,σm), (1)

where m refers to each GMM component, M denotes number

of GMM components. Also, Gaussian mixture weights wm

with mean (µm) and covariance (σm) of the GMM compo-

nent m satisfy the constraint
∑M

m=1
wm = 1. The standard

Expectation-Maximization (EM) method is used to estimate

the parameter λ of GMM. Iteratively, the EM algorithm

estimates the model parameters such as means, covariances,

and coefficients of GMM.

During Expectation-step, the membership probabilities of

GMM mixtures are computed for the given features. The

Maximization-step re-estimates and maximizes the parameters

by the use of membership probabilities [38]. Hypothetically,

after GMM training, the attributes describing the spatial pat-

tern of objects is captured in each Gaussian component. Also,

the variance of every Gaussian component is responsible for

variations in the spatial patterns of different objects in a scene.

These features can be specific to a particular scene or may

be present across the scenes. Moreover, the large number of

attributes captured in the GMM helps in comparing the scenes

across spatial patterns of various objects, which subsequently

alleviates the intra-class variability.

The trained GMM contains the attributes of all the scenes.

To represent a particular scene, maximum a posteriori (MAP)

adaptation is performed to highlight the contribution of the

features of a sample from the scenes. The probabilistic align-

ment of each feature vector is calculated from a sample scene

for each mixture of the GMM, as the first step in the MAP

adaptation process using

p(m|xl) =
wmp(xl|m)

∑M

m=1
wmp(xl|m)

, (2)

where xl represents the feature vector of a sample scene

and p(xl|m) denotes likelihood of the feature xl arriving

from the mixture m. The probabilistic alignment is used

to compute different dynamic kernels in order to obtain an

efficient representation of fixed length patterns from variable

length patterns as discussed in subsequent sections.

C. Dynamic kernels for variable spatial patterns

Here, we describe the different types of dynamic kernels,

namely, supervector, mean interval, and intermediate matching

kernels.
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Fig. 1. Block diagram of the proposed method for scene classification in remote sensing images using dynamic kernels.

1) Super vector kernel (GMM-SVK): This is a probability

based kernel used to compare two scenes by considering

the probabilistic distributions of their local feature vectors.

This would require the maximum a posteriori of means and

covariances of the GMM for each scene obtained from

µm(X) = αFm(X) + (1− α)µm, (3a)

and

σm(X) = αSm(X) + (1− α)σm. (3b)

For a given scene X, Baum-Welch statistics of first-order

(Fm(X)) and second-order (Sm(X)) are derived using

Fm(X) =
1

nm(X)

L
∑

l=1

p(m|xl)xl, (4a)

and

Sm(X) = diag

(

L
∑

l=1

p(m|xl)xlx
T
l

)

. (4b)

For a given scene, the posterior probability of a GMM mixture

is used in order to adapt the mean and covariance of that

particular GMM mixture. An increase in posterior probability

indicates the close correlation of the attributes describing

spatial patterns captured in the Gaussian component to the at-

tributes describing the spatial patterns in the scene. This shows

that the adaptation of means and covariances of a particular

mixture are influenced by Baum-Welch statistics of first order

(Fm(X)) and second-order (Sm(X)) in comparison to the

original GMM mean (µm) and covariance (σm). The GMM

vector ψm(X) for a scene X is obtained by incorporating the

adapted means from (3a) as

ψm(X) =
[√

wmσ
−

1

2

m µm(X)
]T

. (5)

An (Mf×1)-dimensional GMM supervector is obtained for all

the scenes by concatenating the GMM vectors as sGSV (X) =
[ψ

1
(X)

T
,ψ

2
(X)T , · · · ,ψM (X)T ]T . The supervector kernel

between two scenes Xi and Xj is then given by

KGSV (Xi,Xj) = sGSV (Xi)
T
sGSV (Xj). (6)

The mean adaptation requires M×(Li+Lj) computations in

the construction of supervector kernel (SVK). Also, supervec-

tor and kernel construction requires M×(f2

l +1) computations

for local feature vectors of fl dimension. So, the computation

time of supervector kernel is O(ML+Mf2

l + f2

s ).

2) Mean interval kernel (GMM-MIK): The supervector

includes only the GMM statistics of first-order, but not the

second-order. So, a mean interval vector is obtained for every

component m of GMM by including second-order statistics

along with the deviation from the adapted means as

ψm(X) =

(

σm(X)− σm

2

)−
1

2

(

µm(X)− µm

)

. (7)

The adapted parameters and GMM components vary according

to the statistical dissimilarity of mean and covariance. So, the

covariance and mean statistical dissimilarities of the mean

interval vector are indicated in first and second terms of

(7). The GMM mean interval (GMI) supervector is con-

structed by using mean interval vectors across GMM mixtures

as sGMI(X) = [ψ
1
(X)

T
,ψ

2
(X)T , · · · ,ψM (X)T ]T . Subse-

quently, the GMM mean interval kernel between two videos

Xi and Xj is calculated as

KGMI(Xi,Xj) = sGMI(Xi)
T
sGMI(Xj). (8)

The adaptation of mean and covariance requires 2 ×M ×
(Li + Lj) computations for constructing mean interval ker-

nel (MIK). Also, f2

s computations are needed to form the

supervector and kernel of MIK, where fl denotes the dimen-

sion of local features. Hence, the mean interval kernel takes

O(ML+Mf2

l +Mfl +M2f2

s ) computation time.

3) Intermediate matching kernel (GMM-IMK): In addition

to the dynamic kernels described above, there exist a matching

kernel for comparing scenes explicitly using their local simi-

larity features [39]. The construction of matching kernel uses

the similar local features within the pair of scenes as

KMK(Xi,Xj) =

Li
∑

l=1

max
l′

k(xil,xjl′)+

Lj
∑

l′=1

max
l

k(xil,xjl′),

(9)

where k(., .) is a Gaussian kernel, Li & Lj are the number

of feature vectors in scenes Xi and Xj , respectively. But the

matching kernel is too expensive due to the computation of

O(L2) Gaussian kernels, where L denotes the maximal of Li

& Lj .

In order to decrease the computational time of matching

kernels, an intermediate matching kernel (IMK) is explored.

The construction of intermediate matching kernels considers
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a set of fixed virtual features to obtain the closest match for

the sets of the feature vectors. A set of virtual feature vectors

V = {v1,v2, · · · ,vM}, which are closest to the mth virtual

feature vector vm in videos Xi & Xj can be calculated as

x
∗

im = argmin
x∈Xi

D(x,vm) and x
∗

jm = argmin
x∈Xj

D(x,vm).

(10)

The function D(., .) computes the similarity between the

feature vectors in Xi or Xj and the virtual feature vector in

V. This similarity measure will help in determining the spatial

patterns from each sample of the scenes, which matches the

spatial patterns learnt for that particular GMM component.

Every component gives the comparison of two scenes. So,

even the small correlations in the spatial patterns across the

scenes can be measured with the help of a large number of

GMM components. This is useful in resolving the high within-

class variability.

For each of the M pairs, a base kernel is computed by

determining the closeness of the feature vectors. Subsequently,

the sum of all the M base kernels are used to define IMK as

KIMK(Xi,Xj) =
M
∑

m=1

k(xim,xjm). (11)

The virtual feature vectors encompass the information re-

lated to weights, mean vectors, and covariance matrices of

GMM components. The posterior probability of each GMM

component that generates a feature vector using (2) is used as

a similarity measure. Thus, local feature vectors x
∗

ic and x
∗

jm

for scenes Xi and Xj similar to a particular virtual feature

vector represented by a component m are selected as

x
∗

im = argmax
x∈Xi

p(m|x) and x
∗

jm = argmax
x∈Xj

p(m|x). (12)

The computational time of intermediate matching kernel

(IMK) includes: (i) M × (Li + Lj) posterior probabilities for

a mixture component (ii) M × (Li + Lj) comparisons for the

selection of most similar feature vectors (iii) M number of

base kernel computations. These result in a time complexity of

O(ML), where L is the maximal of Li & Lj . The computation

time is reduced, when M is less than Li & Lj .

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we discuss the evaluation of the proposed

method using different kernels, namely, supervector kernel

(GMM-SVK), mean interval kernel (GMM-MIK), and inter-

mediate matching kernel (GMM-IMK) on UC Merced, AID,

and NWPU-RESISC45 datasets.

A. Datasets and Experimental Settings

To show the efficacy of the proposed approach, we consider

three challenging benchmark scene classification datasets as

described in Table II. The feature vectors of 5 CNN architec-

tures (details mentioned in TableI), which define both local

and global semantics are extracted from each scene for GMM

training. In total 20 GMMs are trained, i.e., convolutional

features of 5 CNN models for 4 different mixtures on three

datasets, namely, UC Merced, AID, and NWPU-RESISC45.

B. Evaluation of dynamic kernels

Tables III, IV, and V present the performance of various

kernels on UC Merced, AID, and NWPU-RESISC45 datasets,

respectively by formulating kernel based SVM classifier using

LibSVM [42]. The performance of dynamic kernels is better

with the convolutional features of EfficientNet-B0 and it is

observed that the GMM components beyond 128 do not

contribute to the improvement of classification performance.

Also, it is observed that mean interval kernels (GMM-MIK)

and supervector kernels provide better classification perfor-

mance than intermediate matching kernels (GMM-IMK). This

can be attributed to the ability of GMM statistics (first-

order and second-order) in GMM-MIK and GMM-SVK which

can effectively capture the contextual information along with

the variable length spatial patterns of objects. Though the

mean interval kernels is not computationally efficient than

intermediate matching kernels, the trade-off can be exercised

in opting them based on the use-case.

C. Scene-wise analysis

The classification accuracy for each scene of UC Merced,

AID, and NWPU-RESISC45 datasets is presented in the

confusion matrices as shown in Fig. 2, Fig. 3, and Fig. 4,

respectively.

UC Merced dataset - The best classification accuracy of

99.88% is achieved for 64 components using GMM-MIK. Fig.

2 shows that the scene-wise classification performance on test

data (20%) which is close to the overall accuracy of scene

classification. Also, it can be observed that our GMM-MIK

is able to correctly classify all the samples from 20 scene

classes. Only one sample from building scene is misclassified

as denseresidetnial.

AID dataset - The dynamic kernel GMM-MIK achieves

better scene classification performance of 96.87% and 99.03%
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Fig. 2. Confusion matrix on 80%− 20% training-test ratio of UCM dataset
using GMM-MIK for 64 mixtures with EfficientNet-B0 convolutional features.
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TABLE II
DETAILS OF THE BENCHMARK DATASETS OF REMOTE SENSING IMAGE SCENE CLASSIFICATION

Dataset Scene Images per Total Image Spatial Training

classes class images sizes resolution (m) ratios

UC Merced dataset [40] 21 100 2100 256× 256 0.3 1 (80%)
AID dataset [41] 30 200 - 400 10000 600× 600 8 - 0.5 2 (20% & 50%)

NWPU-RESISC45 dataset [7] 45 700 31500 256× 256 30 - 0.2 2 (10% & 20%)

TABLE III
OVERALL CLASSIFICATION ACCURACY (%) OF GMM-SVK, GMM-MIK, AND GMM-IMK OVER GMM MIXTURES OF {2k}7

k=4
ON UC MERCED

DATASET (80% TRAINING).

CNN GMM-SVK GMM-MIK GMM-IMK

Model (Number of GMM mixtures) (Number of GMM mixtures) (Number of GMM mixtures)
16 32 64 128 16 32 64 128 16 32 64 128

AlexNet 91.45 92.64 93.83 91.19 92.36 93.80 94.81 92.89 69.22 72.41 74.37 68.56

GoogLeNet 92.91 93.17 94.21 92.88 93.14 94.73 95.42 92.44 72.31 75.17 79.08 76.88

VGG-16 93.18 94.41 95.77 93.90 94.33 95.36 96.12 93.49 72.81 76.70 79.68 77.93

DenseNet-121 94.49 95.62 96.40 93.61 96.44 98.13 99.76 95.66 77.11 80.70 82.58 78.90

EfficientNet-B0 95.62 96.75 96.83 94.84 97.56 98.76 99.88 96.89 80.90 83.12 85.54 82.44

TABLE IV
OVERALL CLASSIFICATION ACCURACY (%) OF GMM-SVK, GMM-MIK, AND GMM-IMK OVER GMM MIXTURES OF {2k}7

k=4
ON AID DATASET.

Training CNN GMM-SVK GMM-MIK GMM-IMK

Ratio Model (Number of GMM mixtures) (Number of GMM mixtures) (Number of GMM mixtures)
16 32 64 128 16 32 64 128 16 32 64 128

AlexNet 77.21 80.70 83.18 78.43 79.17 83.46 84.82 80.21 63.87 67.36 69.17 65.42
GoogLeNet 78.85 81.12 84.07 80.01 81.20 84.16 87.76 84.07 65.18 67.43 69.11 65.44

20% VGG-16 79.68 82.29 84.91 81.10 85.09 87.03 90.71 88.90 66.18 68.13 72.55 67.74
DenseNet-121 89.89 91.79 93.56 91.14 92.07 94.50 96.55 93.44 67.22 68.30 73.10 69.14

EfficientNet-B0 92.34 93.09 95.12 93.45 94.11 95.50 97.64 96.77 70.18 75.3 77.25 75.14

AlexNet 80.23 84.66 86.45 83.21 90.23 92.15 94.02 91.21 65.31 69.22 71.34 66.65
GoogLeNet 81.05 83.12 87.07 84.01 91.20 93.16 96.11 94.87 67.33 69.02 71.56 68.21

50% VGG-16 82.68 84.29 88.10 83.35 92.24 94.02 96.71 95.28 68.90 70.70 73.00 69.12
DenseNet-121 90.21 92.18 93.17 91.62 93.28 95.94 97.82 94.44 70.65 72.81 74.28 71.56

EfficientNet-B0 93.56 95.22 96.78 94.67 96.72 98.11 99.03 97.82 73.29 77.43 80.60 76.37

TABLE V
OVERALL CLASSIFICATION ACCURACY (%) OF GMM-SVK, GMM-MIK, AND GMM-IMK OVER GMM MIXTURES OF {2k}8

k=5
ON NWPU-RESISC45

DATASET.

Training CNN GMM-SVK GMM-MIK GMM-IMK

Ratio Model (Number of GMM mixtures) (Number of GMM mixtures) (Number of GMM mixtures)
32 64 128 256 32 64 128 256 32 64 128 256

AlexNet 74.73 76.34 79.27 77.03 76.22 79.17 81.31 78.56 50.75 54.73 60.20 53.56
GoogLeNet 75.52 77.34 80.37 76.42 79.19 81.54 83.22 80.33 55.28 57.11 61.17 58.09

10% VGG-16 76.80 78.34 81.05 78.41 83.04 85.03 87.92 85.11 57.04 59.44 62.66 58.78
DenseNet-121 79.60 81.64 83.88 81.02 92.81 93.62 95.02 93.44 60.55 64.69 69.29 66.25

EfficientNet-B0 90.17 91.89 93.56 91.24 93.84 94.72 95.58 95.07 64.57 67.03 71.61 66.02

AlexNet 74.73 76.34 79.27 77.03 76.22 79.17 81.31 78.56 50.75 54.73 60.20 53.56
GoogLeNet 77.00 79.12 82.01 78.11 80.24 82.67 84.91 81.66 57.90 60.29 63.41 61.12

20% VGG-16 78.21 80.01 82.76 79.33 84.82 86.10 88.04 85.98 59.73 62.40 65.11 60.39
DenseNet-121 81.00 82.29 84.52 81.89 93.10 94.17 95.87 93.72 63.41 65.73 70.29 67.60

EfficientNet-B0 92.34 93.02 94.73 92.00 96.14 97.02 98.00 96.56 66.13 69.45 72.48 68.18

with 20% and 50% training data, respectively, for 64 com-

ponents. Fig. 3 presents the confusion matrix using GMM-

MIK on 50% training data. It is evident from the Fig. 3

that the reduction in the confusion of center, church, park,

school scenes from square scene mainly helps in improving

the overall classification accuracy.

NWPU-RESISC45 dataset - Fig. 4 provides confusion ma-

trix by considering 20% NWPU-RESISC45 dataset as training

data to validate GMM-MIK scene-wise. It is observed that

the classification accuracy of all the 45 classes exceeds 90%,

and the accuracy exceeds 96% for 43 classes with GMM-

MIK. Also, our proposed method greatly reduces the confusion

between the scenes of dense residential and medium resi-

dential. However, the confusion between the scenes ofchurch

and palace is the main cause for the overall performance

degradation.
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TABLE VI
CLASSIFICATION ACCURACY (%) OF THE PROPOSED METHOD WITH STATE-OF-THE-ART-METHODS ON THREE BENCHMARK DATASETS

Method UC Merced AID NWPU-RESISC45

Tr = 80% Tr = 20% Tr = 50% Tr = 10% Tr = 20%

Fine-tuned AlexNet + SVM [7] 94.58± 0.11 84.23± 0.10 93.51± 0.10 81.22± 0.19 85.16± 0.18

Fine-tuned GoogLeNet + SVM [7] 96.82± 0.20 87.51± 0.11 95.27± 0.10 82.57± 0.12 86.02± 0.18

Fine-tuned VGGNet-16 + SVM [7] 97.14± 0.10 89.33± 0.23 96.04± 0.13 87.15± 0.45 90.36± 0.18
∗Fine-tuned EfficientNet-B0 + SVM [37] 97.94± 0.16 90.33± 0.17 96.32± 0.18 89.15± 0.35 91.24± 0.16

D-CNN with AlexNet + SVM [1] 96.67± 0.10 85.62± 0.10 94.47± 0.12 85.56± 0.20 87.24± 0.12

D-CNN with GoogLeNet + SVM [1] 97.07± 0.12 88.79± 0.10 96.62± 0.10 86.89± 0.10 90.49± 0.15

D-CNN with VGGNet-16 + SVM [1] 98.93± 0.10 90.82± 0.16 96.89± 0.10 89.22± 0.50 91.89± 0.22

VGG-VD16+MSCP + SVM [21] 98.36± 0.58 91.52± 0.21 94.42± 0.17 85.33± 0.17 88.93± 0.14

VGG-VD16+MSCP+MRA + SVM [21] 98.40± 0.34 92.21± 0.17 96.56± 0.18 85.33± 0.17 88.93± 0.14

VGGNet-16+SF-CNN + SVM [2] 99.05± 0.27 93.60± 0.12 96.66± 0.11 89.89± 0.16 92.55± 0.14

RTN with VGG-D + SVM [43] 98.96 92.44 – 89.90 92.71

MG-CAP with Sqrt-E [5] 99.00± 0.10 93.34± 0.18 96.12± 0.12 90.83± 0.12 92.95± 0.13

KFBNet with VGGNet-16 + SVM [4] 99.76± 0.24 94.27± 0.02 97.19± 0.07 90.27± 0.02 92.54± 0.03

Hydra (DenseNet+ResNet) [22] – – – 92.44± 0.34 94.51± 0.21

KFBNet with DenseNet-121 + SVM [4] 99.88 ± 0.12 95.50± 0.27 97.40± 0.10 93.08± 0.14 95.11± 0.10

Proposed GMM-SVK (EfficientNet-B0) 97.12± 0.18 95.12± 0.18 96.78± 0.12 93.56± 0.14 94.73± 0.17

Proposed GMM-MIK (EfficientNet-B0) 99.88 ± 0.12 97.64 ± 0.26 99.03 ± 0.17 95.58 ± 0.12 98.00 ± 0.13

Proposed GMM-IMK (EfficientNet-B0) 85.54± 0.06 77.25± 0.15 80.60± 0.10 71.61± 0.19 72.48± 0.12
∗Our evaluation.
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Fig. 3. Confusion matrix on 50% − 50% training-test ratio of AID dataset
using GMM-MIK for 64 mixtures with EfficientNet-B0 convolutional features.

D. Comparison with existing approaches

Table VI provides the comparison of scene classification

performance of the proposed approach with existing methods

on UC Merced, AID, and NWPU-RESISC45 datasets. Our

proposed approach with GMM-MIK outperforms the existing

methods by a margin of 2.14% & 1.63% on training ratios

of 20% & 50% AID dataset, respectively and a margin of

2.5% & 2.89% on training ratios of 10% & 20% NWPU-

RESISC45 dataset, respectively. Also, the average scene clas-

sification performance of GMM-MIK on UC Merced dataset is

99.88%. This shows that GMM-MIK is able to capture global

variations effectively by preserving the local structures while

handling the variable spatial patterns of objects in the scenes.

Thus, the use of both first and second-order GMM statistics

in capturing the global context of spatial patterns provides

valuable information for the scene classification than the local

structure of spatial patterns that are captured by CNN models.
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Fig. 4. Confusion matrix on 20% − 80% training-test ratio of NWPU-
RESISC45 dataset using GMM-MIK for 128 mixtures with EfficientNet-B0
convolutional features.

V. CONCLUSION

In this paper, we propose an approach based on dynamic

kernels to classify scenes of remote sensing images. We

exploit various dynamic kernels over the trained Gaussian

mixture model to capture the variable spatial patterns of

the objects locally while preserving global variations. The

mean interval kernel (GMM-MIK) is shown to be effective

among the other kernels in handling the variable length spatial

patterns of objects in the scenes of remote sensing images.

The employment of both first and second-order statistics

of Gaussian mixture model in the computation of GMM-

MIK provides a valuable information which is useful for

the scene classification task. Intermediate matching kernels

(GMM-IMK) have better computational time complexity, but

they are not very discriminative in comparison to GMM-MIK.

The performance of the proposed approach is demonstrated on
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three varieties of benchmark scene classification datasets. In

future, we would experiment these dynamic kernels in the finer

categorization of objects in remote sensing images.

REFERENCES

[1] G. Cheng, C. Yang, X. Yao, L. Guo, and J. Han, “When deep learning
meets metric learning: Remote sensing image scene classification via
learning discriminative cnns,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 56, no. 5, pp. 2811–2821, 2018.

[2] J. Xie, N. He, L. Fang, and A. Plaza, “Scale-free convolutional neural
network for remote sensing scene classification,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 57, pp. 6916–6928, 2019.

[3] Y. Boualleg, M. Farah, and I. R. Farah, “Remote sensing scene clas-
sification using convolutional features and deep forest classifier,” IEEE

Geoscience and Remote Sensing Letters, vol. 16, pp. 1944–1948, 2019.

[4] F. Li, R. Feng, W. Han, and L. Wang, “High-resolution remote sensing
image scene classification via key filter bank based on convolutional
neural network,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 58, no. 11, pp. 8077–8092, 2020.

[5] S. Wang, Y. Guan, and L. Shao, “Multi-granularity canonical appearance
pooling for remote sensing scene classification,” IEEE Transactions on

Image Processing, vol. 29, pp. 5396–5407, 2020.

[6] C. Burges, “A tutorial on support vector machines for pattern recog-
nition,” Data Mining and Knowledge Discovery, vol. 2, pp. 121–167,
2004.

[7] G. Cheng, J. Han, and X. Lu, “Remote sensing image scene classifi-
cation: Benchmark and state of the art,” Proceedings of the IEEE, vol.
105, no. 10, pp. 1865–1883, 2017.

[8] G. J. Burghouts and J.-M. Geusebroek, “Performance evaluation of
local colour invariants,” Computer Vision and Image Understanding,
vol. 113, no. 1, pp. 48 – 62, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1077314208001008

[9] J.-M. Geusebroek, R. Boomgaard, A. Smeulders, and H. Geerts, “Color
invariance,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, pp. 1338–
1350, 2001.

[10] K. van de Sande, T. Gevers, and C. Snoek, “Evaluating color descriptors
for object and scene recognition,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 32, no. 9, pp. 1582–1596, 2010.

[11] J. dos Santos, O. Penatti, and R. Torres, “Evaluating the potential
of texture and color descriptors for remote sensing image retrieval
and classification.” in VISAPP 2010 - Proceedings of the International

Conference on Computer Vision Theory and Applications, vol. 2, 2010,
pp. 203–208.

[12] Y. Yang and S. Newsam, “Comparing sift descriptors and gabor texture
features for classification of remote sensed imagery,” 2008 15th IEEE

International Conference on Image Processing, pp. 1852–1855, 2008.

[13] G. LoweDavid, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, 2004.

[14] G. Cheng, J. Han, L. Guo, and T. Liu, “Learning coarse-to-fine sparselets
for efficient object detection and scene classification,” in 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2015,
pp. 1173–1181.

[15] “Multi-class geospatial object detection and geographic image clas-
sification based on collection of part detectors,” ISPRS Journal of

Photogrammetry and Remote Sensing, vol. 98, pp. 119 – 132, 2014.

[16] G. Cheng, J. Han, L. Guo, Z. Liu, S. Bu, and J. Ren, “Effective and
efficient midlevel visual elements-oriented land-use classification using
vhr remote sensing images,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 53, no. 8, pp. 4238–4249, 2015.

[17] G. Cheng, P. Zhou, J. Han, J. Han, and K. Li, “Auto-encoder-based
shared mid-level visual dictionary learning for scene classification using
very high resolution remote sensing images,” IET Computer Vision,
vol. 9, 2015.

[18] Q. Zhu, Y. Zhong, B. Zhao, G. Xia, and L. Zhang, “Bag-of-visual-words
scene classifier with local and global features for high spatial resolution
remote sensing imagery,” IEEE Geoscience and Remote Sensing Letters,
vol. 13, no. 6, pp. 747–751, 2016.

[19] J. Zou, W. Li, C. Chen, and Q. Du, “Scene classification using local
and global features with collaborative representation fusion,” Inf. Sci.,
vol. 348, pp. 209–226, 2016.

[20] G. Cheng, Z. Li, X. Yao, L. Guo, and Z. Wei, “Remote sensing
image scene classification using bag of convolutional features,” IEEE

Geoscience and Remote Sensing Letters, vol. 14, no. 10, pp. 1735–1739,
2017.

[21] N. He, L. Fang, S. Li, A. Plaza, and J. Plaza, “Remote sensing
scene classification using multilayer stacked covariance pooling,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 56, no. 12, pp.
6899–6910, 2018.

[22] R. Minetto, M. P. Segundo, and S. Sarkar, “Hydra: An ensemble of
convolutional neural networks for geospatial land classification,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 57, pp. 6530–
6541, 2019.

[23] D. Marmanis, M. Datcu, T. Esch, and U. Stilla, “Deep learning earth
observation classification using imagenet pretrained networks,” IEEE

Geoscience and Remote Sensing Letters, vol. 13, pp. 105–109, 2016.
[24] K. Nogueira, O. A. B. Penatti, and J. A. Santos, “Towards better

exploiting convolutional neural networks for remote sensing scene
classification,” Pattern Recognit., vol. 61, pp. 539–556, 2017.

[25] W. Zhao and S. Du, “Scene classification using multi-scale deeply
described visual words,” International Journal of Remote Sensing,
vol. 37, pp. 4119 – 4131, 2016.

[26] E. Li, J. Xia, P. Du, C. Lin, and A. Samat, “Integrating multilayer
features of convolutional neural networks for remote sensing scene
classification,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 55, pp. 5653–5665, 2017.

[27] S. Chaib, H. Liu, Y. Gu, and H. Yao, “Deep feature fusion for vhr
remote sensing scene classification,” IEEE Transactions on Geoscience

and Remote Sensing, vol. 55, no. 8, pp. 4775–4784, 2017.
[28] C. Sitaula, Y. Xiang, A. Basnet, S. Aryal, and X. Lu, “HDF: Hybrid

deep features for scene image representation,” 2020 International Joint

Conference on Neural Networks (IJCNN), pp. 1–8, 2020.
[29] A. D. Dileep and C. C. Sekhar, “GMM-based intermediate matching

kernel for classification of varying length patterns of long duration
speech using support vector machines,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 25, no. 8, pp. 1421–1432, 2014.
[30] K.-A. Lee, C. H. You, H. Li, and T. Kinnunen, “A GMM-based prob-

abilistic sequence kernel for speaker verification,” in INTERSPEECH,
2007, pp. 294–297.

[31] C. H. You, K. A. Lee, and H. Li, “GMM-SVM kernel with a
bhattacharyya-based distance for speaker recognition,” IEEE Transac-

tions on Audio, Speech, and Language Processing, vol. 18, no. 6, pp.
1300–1312, 2010.

[32] S. Boughorbel, J. P. Tarel, and N. Boujemaa, “The intermediate matching
kernel for image local features,” Proceedings. 2005 IEEE International

Joint Conference on Neural Networks, 2005., vol. 2, pp. 889–894 vol.
2, 2005.

[33] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with
deep convolutional neural networks,” Neural Information Processing

Systems, vol. 25, 01 2012.
[34] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
2015 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 1–9, 2015.
[35] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” CoRR, vol. abs/1409.1556, 2015.
[36] G. Huang, Z. Liu, G. Pleiss, L. Van Der Maaten, and K. Weinberger,

“Convolutional networks with dense connectivity,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, pp. 1–1, 2019.
[37] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for

convolutional neural networks,” ArXiv, vol. abs/1905.11946, 2019.
[38] R. Duda, P. Hart, and D. Stork, “Pattern classification (2nd ed.),” 1999.
[39] C. Wallraven, B. Caputo, and A. B. A. Graf, “Recognition with local

features: the kernel recipe,” Proceedings Ninth IEEE International

Conference on Computer Vision, pp. 257–264 vol.1, 2003.
[40] Y. Yang and S. Newsam, “Bag-of-visual-words and spatial extensions

for land-use classification,” in GIS ’10, 2010.
[41] G.-S. Xia, J. Hu, F. Hu, B. Shi, X. Bai, Y. Zhong, L. Zhang, and X. Lu,

“Aid: A benchmark data set for performance evaluation of aerial scene
classification,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 55, pp. 3965–3981, 2017.

[42] C.-C. Chang and C. Lin, “Libsvm: A library for support vector ma-
chines,” ACM Trans. Intell. Syst. Technol., vol. 2, pp. 1–27, 2011.

[43] Z. Chen, S. Wang, X. Hou, and L. Shao, “Recurrent transformer network
for remote sensing scene categorisation,” in BMVC, 2018.

Authorized licensed use limited to: Indian Institute of Technology Hyderabad. Downloaded on May 18,2022 at 21:39:13 UTC from IEEE Xplore.  Restrictions apply. 


		2021-09-17T13:10:52-0400
	Certified PDF 2 Signature




