Combinatorial Games on Graphs

Éric SOPENA
LaBRI, University of Bordeaux
France
Let’s first play...
Let’s first play...

Take your favorite graph, e.g. Petersen graph.
Let’s first play...

Take your favorite graph, e.g. Petersen graph. On her turn, each player chooses a vertex and deletes its closed neighbourhood...
Let’s first play...

Take your favorite graph, e.g. Petersen graph.
On her turn, each player chooses a vertex and deletes its closed neighbourhood...
Let’s first play...

Take your favorite graph, e.g. Petersen graph.
On her turn, each player chooses a vertex and deletes its closed neighbourhood...
Let’s first play...

Take your favorite graph, e.g. Petersen graph. On her turn, each player chooses a vertex and deletes its closed neighbourhood...
Let’s first play...

Take your favorite graph, e.g. Petersen graph.
On her turn, each player chooses a vertex and deletes its closed neighbourhood...

The first player unable to move (empty graph) looses the game...
Let’s first play...

Take your favorite graph, e.g. Petersen graph.
On her turn, each player chooses a vertex and deletes its closed neighbourhood...

Would you prefer to be the **first player**? the **second player**?
Let’s first play...

Take your favorite graph, e.g. Petersen graph.
On her turn, each player chooses a vertex and deletes its closed neighbourhood...

Would you prefer to be the first player? the second player?
Let’s first play...

Take your favorite graph, e.g. Petersen graph.

On her turn, each player chooses a vertex and deletes its closed neighbourhood...

Would you prefer to be the first player? the second player?
Let’s first play...

Take your favorite graph, e.g. Petersen graph.
On her turn, each player chooses a vertex and deletes its closed neighbourhood...

Would you prefer to be the **first player**? the **second player**?
Let’s first play...

Take your favorite graph, e.g. Petersen graph.
On her turn, each player chooses a vertex and deletes its closed neighbourhood...

Would you prefer to be the first player? the second player?

First player wins!
Let’s first play...

Suppose now that the initial graph is the complete graph K_n on n vertices...

Would you prefer to be the first player? the second player?
Let’s first play...

- Suppose now that the initial graph is the complete graph K_n on n vertices...

Would you prefer to be the first player? the second player?

Of course, the first player always wins...
Let’s first play...

- Suppose now that the initial graph is the complete graph K_n on n vertices...

 Would you prefer to be the first player? the second player?

 Of course, the first player always wins...

- And if the initial graph is the path P_n on n vertices?
Let’s first play...

- Suppose now that the initial graph is the complete graph K_n on n vertices...

 Would you prefer to be the first player? the second player?

 *Of course, the first player *always wins*...*

- And if the initial graph is the path P_n on n vertices?

 Would you prefer to be the first player? the second player?
Let’s first play...

- Suppose now that the initial graph is the complete graph K_n on n vertices...

 Would you prefer to be the first player? the second player?

 Of course, the first player always wins...

- And if the initial graph is the path P_n on n vertices?

 Would you prefer to be the first player? the second player?

 Hum hum... seems not so easy...
Let’s first play...

- Suppose now that the initial graph is the complete graph K_n on n vertices...

Would you prefer to be the first player? the second player?

Of course, the first player always wins...

- And if the initial graph is the path P_n on n vertices?

Would you prefer to be the first player? the second player?

Hum hum... seems not so easy...

Easy if n is odd:
Let’s first play...

- Suppose now that the initial graph is the complete graph K_n on n vertices...

 Would you prefer to be the first player? the second player?

 Of course, the first player always wins...

- And if the initial graph is the path P_n on n vertices?

 Would you prefer to be the first player? the second player?

 Hum hum... seems not so easy...

 Easy if n is odd:
Let’s first play...

- Suppose now that the initial graph is the complete graph K_n on n vertices...

 Would you prefer to be the first player? the second player?

 Of course, the first player always wins...

- And if the initial graph is the path P_n on n vertices?

 Would you prefer to be the first player? the second player?

 Hum hum... seems not so easy...

 Easy if n is odd:

 First player wins: *mimicking strategy...*
Let’s first play...

- Suppose now that the initial graph is the complete graph K_n on n vertices...

 Would you prefer to be the first player? the second player?

 Of course, the first player always wins...

- And if the initial graph is the path P_n on n vertices? Would you prefer to be the first player? the second player?

 Hum hum... seems not so easy...

 *In that case, the first player *looses* if and only if either*
 - $n = 4, 8, 14, 20, 24, 28, 34, 38, 42$, or
 - $n > 51$ and $n \equiv 4, 8, 20, 24, 28 \pmod{34}$. \[GUY, SMITH, 1956\]
Let’s first play...

Let us now change the “winning rule” as follows: the first player unable to move wins the game...
Let’s first play...

Let us now change the “winning rule” as follows: the first player unable to move wins the game...

The case of K_n is again easy: the first player always looses...
Let’s first play...

Let us now change the “winning rule” as follows: the first player unable to move wins the game...

The case of K_n is again easy: the first player always looses...

The first player still wins the game on Petersen graph:
Let’s first play...

Let us now change the “winning rule” as follows: the first player unable to move wins the game...

The case of K_n is again easy: the first player always looses...

The first player still wins the game on Petersen graph:
Let’s first play...

Let us now change the “winning rule” as follows: the first player unable to move wins the game...

The case of K_n is again easy: the first player always looses...

The first player still wins the game on Petersen graph:
Let’s first play...

Let us now change the “winning rule” as follows: the first player unable to move wins the game...

The case of K_n is again easy: the first player always looses...

The first player still wins the game on Petersen graph:
Let’s first play...

Let us now change the “winning rule” as follows: the first player unable to move wins the game...

What about the game on the path P_n?
Let’s first play...

Let us now change the “winning rule” as follows: the first player unable to move wins the game...

What about the game on the path P_n?

Again not easy...
Let’s first play...

Let us now change the “winning rule” as follows: the first player unable to move wins the game...

What about the game on the path P_n?

Again not easy...

Really not easy: a well-known open problem since 1935!...
Let’s first play...

Let us now change the “winning rule” as follows: the first player unable to move wins the game...

What about the game on the path P_n?

Again not easy...

Really not easy: a well-known open problem since 1935!

This game is known as **DAWSON’S CHESS** game.

Let’s first play...

DAWSON’S CHESS (Two rows of pawns, capturing is mandatory...)

```
[Diagram of Dawson’s Chess board with two rows of pawns]
```
Let’s first play...

DAWSON’S CHESS *(Two rows of pawns, capturing is mandatory...)*

![Diagram of Dawson’s Chess](image)
Let’s first play...

DAWSON’S CHESS *(Two rows of pawns, capturing is mandatory...)*
Let’s first play...

DAWSON’S CHESS *(Two rows of pawns, capturing is mandatory...)*

Éric Sopena – CALDAM Indo-French Pre-Conference School - Feb. 10-11, 2020
Let’s first play...

Dawson’s Chess *(Two rows of pawns, capturing is mandatory...)*
Let’s first play...

Dawson’s Chess *(Two rows of pawns, capturing is mandatory...)*
Let’s first play...

DAWSON’S CHESS *(Two rows of pawns, capturing is mandatory...)*
Outline
Outline

Starters

A flavour of Combinatorial Game Theory

Impartial games – Sums of games – Sprague-Grundy value – Game-graph...
Outline

Starters
A flavour of Combinatorial Game Theory

Impartial games – Sums of games – Sprague-Grundy value – Game-graph...

Discovery menu

Geography – Nim on graphs
Node-kayles
Proper k-colouring
0.33 – Timber!
Outline

Starters
A flavour of Combinatorial Game Theory

Impartial games – Sums of games – Sprague-Grundy value – Game-graph...

Discovery menu

Geography – Nim on graphs
Node-Kayles
Proper k-colouring
0.33 – Timber!
A flavour of Combinatorial Game Theory
Combinatorial game

A combinatorial game is a 2-player game such that:
A combinatorial game is a 2-player game such that:

- players alternate in turn,
- there is no hidden information and no chance elements,
- the number of positions (configurations) is finite,
- no position can be encountered twice during a game (the game is thus finite).
Combinatorial game

A combinatory game is a 2-player game such that:

- players alternate in turn,
- there is no hidden information and no chance elements,
- the number of positions (configurations) is finite,
- no position can be encountered twice during a game (the game is thus finite).

The game of Nim
Combinatorial game

A combinatorial game is a 2-player game such that:

- players alternate in turn,
- there is no hidden information and no chance elements,
- the number of positions (configurations) is finite,
- no position can be encountered twice during a game (the game is thus finite).
Combinatorial games

Winning rule

- **Normal play**
 The first player unable to move *looses* the game.

- **Misère play**
 The first player unable to move *wins* the game.
Winning rule

- **Normal play**
 The first player unable to move *looses* the game.

- **Misère play**
 The first player unable to move *wins* the game.

The normal version is usually “easier” to deal with...
Rules and options

The set of rules of the game gives, for each position and each player, the options of this position.
Rules and options

The set of rules of the game gives, for each position and each player, the options of this position.
Rules and options

The set of rules of the game gives, for each position and each player, the options of this position.

Impartial vs partisan combinatorial games

The game is impartial if both players have the same options for every position, it is partisan otherwise.
Since the mathematical solution of the game of **Nim** by **C.L. Bouton (1901)**, the theory of combinatorial games has been increasingly developed.

"Nim, a game with a complete mathematical theory."

By Charles L. Bouton.

The game here discussed has interested the writer on account of its seeming complexity, and its extremely simple and complete mathematical theory.*
Combinatorial game theory

Since the mathematical solution of the game of **Nim** by **C.L. Bouton (1901)**, the theory of combinatorial games has been increasingly developed.

Nim, a game with a complete mathematical theory.

By Charles L. Bouton.

The game here discussed has interested the writer on account of its seeming complexity, and its extremely simple and complete mathematical theory.

John H. Conway (1976)

Combinatorial game theory

Since the mathematical solution of the game of **Nim** by **C.L. Bouton** (1901), the theory of combinatorial games has been increasingly developed.

NIM, A GAME WITH A COMPLETE MATHEMATICAL THEORY.

By Charles L. Bouton.

The game here discussed has interested the writer on account of its seeming complexity, and its extremely simple and complete mathematical theory.

John H. Conway (1976)

Elvin R. Berlekamp
John H. Conway

Michael H. Albert
Richard J. Nowakowski
David Wolfe (2007)

Aaron N. Siegel (2013)
Outcomes

The Fundamental Theorem

If G is an impartial game then either the first or the second player can force a win.
Outcomes

The Fundamental Theorem

If G is an impartial game then either the first or the second player can force a win.

Therefore, every position of an impartial combinatorial game is either a *winning position* (1*st*-player wins), or a *losing position* (2*nd*-player wins).
Outcomes

The Fundamental Theorem

If G *is an impartial game then either the first or the second player can force a win.*

Therefore, every position of an impartial combinatorial game is either a **winning position** (1st-player wins), or a **losing position** (2nd-player wins).

Observe that

- G is a **winning position** iff G has *at least one* **losing option**,
- G is a **losing position** iff either G is **empty**, or G has **only winning options**.
Sum of games

Let G1 and G2 be two games. The (disjunctive) sum of G1 and G2 is the game $G1 + G2$, played as follows:
Let G_1 and G_2 be two games. The (disjunctive) sum of G_1 and G_2 is the game $G_1 + G_2$, played as follows:

- on her turn, each player chooses the current position in G_1 or in G_2, and then moves according to the rules of G_1 or G_2, respectively,
Sum of games

Let G_1 and G_2 be two games. The (disjunctive) **sum of G_1 and G_2** is the game $G_1 + G_2$, played as follows:

- on her turn, each player chooses the current position **in G_1 or in G_2**, and then moves according to the rules of G_1 or G_2, respectively,
- the game ends as soon as a player has **no move in any of the two games**.
Sum of games

Let G_1 and G_2 be two games. The (disjunctive) sum of G_1 and G_2 is the game $G_1 + G_2$, played as follows:

- on her turn, each player chooses the current position in G_1 or in G_2, and then moves according to the rules of G_1 or G_2, respectively,
- the game ends as soon as a player has no move in any of the two games.
Sum of games

Let G1 and G2 be two games. The (disjunctive) sum of G1 and G2 is the game $G_1 + G_2$, played as follows:

- on her turn, each player chooses the current position in G1 or in G2, and then moves according to the rules of G1 or G2, respectively,
- the game ends as soon as a player has no move in any of the two games.
Outcome of the sum of two games (normal play)

Knowing the outcome of both games G1 and G2 does not suffice for determining the outcome of G1 + G2...
Outcome of the sum of two games (normal play)

Knowing the outcome of both games G1 and G2 does not suffice for determining the outcome of G1 + G2...

<table>
<thead>
<tr>
<th>G1 \ G2</th>
<th>winning</th>
<th>losing</th>
</tr>
</thead>
<tbody>
<tr>
<td>winning</td>
<td>???</td>
<td>winning</td>
</tr>
<tr>
<td>losing</td>
<td>winning</td>
<td>losing</td>
</tr>
</tbody>
</table>
Sprague-Grundy function (1)

The Sprague-Grundy function (impartial games, normal)
The Sprague-Grundy function (impartial games, normal)

Theorem [R.P. Sprague, 1935 – P.M. Grundy, 1939]

Every game G is “equivalent” to the game of Nim on a heap of n tokens (or a row of n matches) for some positive integer n.
The Sprague-Grundy function (impartial games, normal)

Theorem \([\text{R.P. Sprague, 1935} – \text{P.M. Grundy, 1939}]\)

Every game \(G\) is “equivalent” to the game of \(\text{Nim}\) on a heap of \(n\) tokens (or a row of \(n\) matches) for some positive integer \(n\).

Two games \(G\) and \(H\) are equivalent whenever we can replace any occurrence of \(G\) by \(H\) in any sum of games, without changing the outcome of the sum (in particular, \(G\) and \(H\) have the same outcome)...

The Sprague-Grundy function (impartial games, normal)

Theorem [R.P. Sprague, 1935 – P.M. Grundy, 1939]

Every game \(G \) is “equivalent” to the game of Nim on a heap of \(n \) tokens (or a row of \(n \) matches) for some positive integer \(n \).

Two games \(G \) and \(H \) are equivalent whenever we can replace any occurrence of \(G \) by \(H \) in any sum of games, without changing the outcome of the sum (in particular, \(G \) and \(H \) have the same outcome)...

We then set \(\sigma(G) = n \) (\(n \) is the Sprague-Grundy value of \(G \)).
The Sprague-Grundy function (impartial games, normal)

Theorem [R.P. Sprague, 1935 – P.M. Grundy, 1939]

Every game G is “equivalent” to the game of Nim on a heap of n tokens (or a row of n matches) for some positive integer n.

Two games G and H are equivalent whenever we can replace any occurrence of G by H in any sum of games, without changing the outcome of the sum (in particular, G and H have the same outcome)...

We then set $\sigma(G) = n$ (n is the Sprague-Grundy value of G).

Therefore, a game G is a 2nd-player win if and only if $\sigma(G) = 0$.

(Every heap with $n > 0$ tokens is a winning position.)
Computing the SG-value of an impartial game (1)
Sprague-Grundy function (2)

Computing the SG-value of an impartial game (1)

If the set of options of G is \{G_1, ..., G_k\}, then

\[\sigma(G) = \text{mex} (\sigma(G_1), ..., \sigma(G_k)) \]

where \text{mex}(S) is the smallest positive integer value not in S (in particular, \text{mex}(\emptyset) = 0).
Computing the SG-value of an impartial game (1)

If the set of options of \(G \) is \(\{G_1, ..., G_k\} \), then

\[
\sigma(G) = \text{mex } (\sigma(G_1), ..., \sigma(G_k))
\]

where \(\text{mex}(S) \) is the smallest positive integer value not in \(S \) (in particular, \(\text{mex}(\emptyset) = 0 \)).
Sprague-Grundy function (2)

Computing the SG-value of an impartial game (1)

If the set of options of \(G \) is \(\{G_1, ..., G_k\} \), then

\[
\sigma(G) = \text{mex} (\sigma(G_1), ..., \sigma(G_k))
\]

where \(\text{mex}(S) \) is the smallest positive integer value not in \(S \) (in particular, \(\text{mex}(\emptyset) = 0 \)).
Computing the SG-value of an impartial game (1)

If the set of options of G is $\{G_1, \ldots, G_k\}$, then

$$\sigma(G) = \text{mex} (\sigma(G_1), \ldots, \sigma(G_k))$$

where $\text{mex}(S)$ is the smallest positive integer value not in S (in particular, $\text{mex}(\emptyset) = 0$).
Sprague-Grundy function

Computing the SG-value of an impartial game (1)

If the set of options of G is \{G_1, ..., G_k\}, then

\[\sigma(G) = \text{mex} (\sigma(G_1), ..., \sigma(G_k)) \]

where \text{mex}(S) is the smallest positive integer value not in S (in particular, \text{mex}(\emptyset) = 0).
Computing the SG-value of an impartial game (1)

If the set of options of G is $\{G_1, ..., G_k\}$, then

$$\sigma(G) = \text{mex} (\sigma(G_1), ..., \sigma(G_k))$$

where $\text{mex}(S)$ is the smallest positive integer value not in S (in particular, $\text{mex}(\emptyset) = 0$).
Computing the SG-value of an impartial game (1)

If the set of options of G is \{G_1, ..., G_k\}, then

$$\sigma(G) = \text{mex} \left(\sigma(G_1), ..., \sigma(G_k) \right)$$

where $\text{mex}(S)$ is the smallest positive integer value not in S (in particular, $\text{mex}(\emptyset) = 0$).

is thus a winning position...

Sprague-Grundy function (2)

Computing the SG-value of an impartial game (1)

If the set of options of G is \{G_1, ..., G_k\}, then

\[\sigma(G) = \text{mex} (\sigma(G_1), ..., \sigma(G_k)) \]

where \text{mex}(S) is the smallest positive integer value not in S (in particular, \text{mex}(\emptyset) = 0).

is thus a winning position...
Sprague-Grundy function

Computing the SG-value of an impartial game (2)
Sprague-Grundy function (3)

Computing the SG-value of an impartial game (2)

If G is a sum of games, say $G = G_1 + \ldots + G_k$, then

$$\sigma(G) = \sigma(G_1) \oplus \ldots \oplus \sigma(G_k)$$

where \oplus denotes the xor operation on binary numbers (nim-sum).
Computing the SG-value of an impartial game (2)

If G is a sum of games, say $G = G_1 + ... + G_k$, then

$$\sigma(G) = \sigma(G_1) \oplus ... \oplus \sigma(G_k)$$

where \oplus denotes the xor operation on binary numbers (nim-sum).

$$\sigma = 1 \oplus 3 \oplus 5 \oplus 7 = 001 \oplus 011 \oplus 101 \oplus 111 = 0$$
Sprague-Grundy function

Computing the SG-value of an impartial game (2)

If G is a sum of games, say $G = G_1 + ... + G_k$, then

$$\sigma(G) = \sigma(G_1) \oplus ... \oplus \sigma(G_k)$$

where \oplus denotes the xor operation on binary numbers (nim-sum).

$$\sigma = 1 \oplus 3 \oplus 5 \oplus 7 = 001 \oplus 011 \oplus 101 \oplus 111 = 0$$

This position of Nim is thus a losing position...
The graph of a combinatorial game

Game-graph

With every impartial combinatorial game G, one can associate a graph (the game-graph of G), denoted G_g and defined as follows:

- vertices of G_g are positions of G,
- P_1P_2 is an arc in G_g, whenever P_2 is an option of P_1.

Game-graph

With every impartial combinatorial game G, one can associate a graph (the **game-graph of G**), denoted G_g and defined as follows:

- vertices of G_g are **positions** of G,
- P_1P_2 is an arc in G_g, whenever P_2 is an **option** of P_1.
Playing on the game-graph

Playing on G_g

Every impartial combinatorial game G can be viewed as a game on the oriented graph G_g defined as follows:
Playing on G_g

Every impartial combinatorial game G can be viewed as a game on the oriented graph G_g defined as follows:

- a token is put on the initial vertex (initial position),
- on her turn, each player moves the token along one arc,
- the first player unable to move looses (or wins...).
The game GEOGRAPHY
The game **GEOGRAPHY**

Fiji → Iceland → Denmark → Kiribati → ??
Vertex Geography [suggested by R.M. Karp]

The game is played on an undirected graph G. Initially, a token is placed on some “current vertex” v (**starting position** (G,v)).
VERTEX GEOGRAPHY [suggested by R.M. Karp]

The game is played on an undirected graph G. Initially, a token is placed on some “current vertex” v (starting position (G,v)).

- On her turn, each player **moves** the token to a neighbour of the current vertex and **deletes the current vertex**.

The vertex having the token becomes the current vertex.
GEOGRAPHY

VERTEX GEOGRAPHY [suggested by R.M. Karp]

The game is played on an undirected graph G. Initially, a token is placed on some “current vertex” v (starting position (G,v)).

- On her turn, each player *moves* the token to a neighbour of the current vertex and *deletes the current vertex*. The vertex having the token becomes the current vertex.
VERTEX GEOGRAPHY [suggested by R.M. Karp]

The game is played on an undirected graph G. Initially, a token is placed on some “current vertex” v \((G,v)\).

- On her turn, each player *moves* the token to a neighbour of the current vertex and *deletes* the current vertex.

The vertex having the token becomes the current vertex.
Vertex Geography [suggested by R.M. Karp]

The game is played on an undirected graph G. Initially, a token is placed on some “current vertex” v (starting position (G,v)).

- On her turn, each player **moves** the token to a neighbour of the current vertex and **deletes the current vertex**. The vertex having the token becomes the current vertex.

Diagram

Initial state (G,v):

```
  v
 / \
/   \
+-----+
  \
  \
  \
  \
  \
```

Move to (G',v'):

```
  v
 / \
/   \
+-----+
  \
  \
  \
  \
  \
```
EDGE GEOGRAPHY

The game is played on an undirected graph G. Initially, a token is placed on some “current vertex” v (starting position (G,v)).

- On her turn, each player moves the token to a neighbour of the current vertex and deletes the traversed edge. The vertex having the token becomes the current vertex.
The game is played on an undirected graph G. Initially, a token is placed on some “current vertex” v (starting position (G,v)).

- On her turn, each player moves the token to a neighbour of the current vertex and deletes the traversed edge.

The vertex having the token becomes the current vertex.
DIRECTED (VERTEX OR EDGE) GEOGRAPHY

The game is played on a directed graph....
DIRECTED (VERTEX OR EDGE) GEOGRAPHY

The game is played on a directed graph....

Playing on a game-graph = DIRECTED VERTEX GEOGRAPHY....
DIRECTED (VERTEX OR EDGE) GEOGRAPHY

The game is played on a directed graph.

Playing on a game-graph = DIRECTED VERTEX GEOGRAPHY...

... on a directed acyclic graph.
DIRECTED (VERTEX OR EDGE) GEOGRAPHY

The game is played on a directed graph....

Playing on a game-graph = DIRECTED VERTEX GEOGRAPHY...

... on an directed acyclic graph.
DIRECTED (VERTEX OR EDGE) GEOGRAPHY

The game is played on a directed graph....

Playing on a game-graph = DIRECTED VERTEX GEOGRAPHY...

... on an directed acyclic graph.
DIRECTED (VERTEX OR EDGE) GEOGRAPHY

The game is played on a directed graph....

Complexity of GEOGRAPHY games (normal play)

(deciding the outcome of a given position)

UNDIRECTED VERTEX: polynomial

UNDIRECTED EDGE: PSPACE-complete

DIRECTED VERTEX: PSPACE-complete

[D. Lichtenstein, M. Sipser, 1980]

DIRECTED EDGE: PSPACE-complete

[T.J. Schaefer, 1978]
DIRECTED (VERTEX OR EDGE) GEOGRAPHY

The game is played on a directed graph....

Complexity of GEOGRAPHY games

But for misère play, all these four games are PSPACE-complete...

[G. RENAUT, S. SCHMIDT, 2015]

The position (G, v) is a winning position for the game Undirected Vertex Geography (normal play) iff every maximum matching (that is, of maximum cardinality) of G saturates v.

The position \((G, v)\) is a winning position for the game UNDIRECTED VERTEX GEOGRAPHY (normal play) iff every maximum matching (that is, of maximum cardinality) of \(G\) saturates \(v\).

The position \((G, v)\) is a winning position for the game Undirected Vertex Geography (normal play) iff every maximum matching (that is, of maximum cardinality) of \(G\) saturates \(v\).

Proof.

- \((\Leftarrow\Rightarrow)\) 2nd-player winning strategy: choose a maximum matching \(M\) that does not saturate \(v\), and always move along an edge in \(M\).
Theorem [A.S. Fraenkel, E.R. Scheinerman, D. Ullman, 1993]

The position \((G, v)\) is a winning position for the game **Undirected Vertex Geography** (normal play) iff every maximum matching (that is, of maximum cardinality) of \(G\) saturates \(v\).

Proof.

- \((\Rightarrow)\) **2nd-player winning strategy:** choose a maximum matching \(M\) that does not saturate \(v\), and always move along an edge in \(M\).
- \((\Leftarrow)\) **1st-player winning strategy:** choose a maximum matching \(M\) (which thus saturates \(v\)) and always move along an edge in \(M\).

 (if no such move is possible, there exists \(M'\) which does not saturate \(v\)...)
Theorem [R.J. Nowakowski, D.G. Poole, 1996]

The position \((C_m \square C_n, v)\) is a winning position for the game Directed Vertex Geography whenever:

- \(m = 2\), or
- \(n \text{ and } m \text{ are both even.}\)
Theorem [R.J. NOWAKOWSKI, D.G. POOLE, 1996]

The position \((C_m \square C_n, v)\) is a winning position for the game \textsc{Directed Vertex Geography} whenever:

- \(m = 2\), or
- \(n\) and \(m\) are both even.

Theorem [R.J. NOWAKOWSKI, D.G. POOLE, 1996]

The position \((C_3 \square C_n, v)\) is a winning position for the game \textsc{Directed Vertex Geography} iff \(n > 0\) and \(n \equiv 0, 2, 4, 6, 10, 11, 13, 15, 16, 17, 19, 21, 22, 23, 25, 27, 28, 32, 34, 36, 38, 40 \pmod{42}\).
Theorem [R.J. NOWAKOWSKI, D.G. POOLE, 1996]

The position \((C_m \square C_n, v)\) is a **winning position** for the game **DIRECTED VERTEX GEOGRAPHY** whenever:

- \(m = 2\), or
- \(n\) and \(m\) are both even.

Theorem [R.J. NOWAKOWSKI, D.G. POOLE, 1996]

The position \((C_3 \square C_n, v)\) is a **winning position** for the game **DIRECTED VERTEX GEOGRAPHY** iff \(n > 0\) and \(n \equiv 0, 2, 4, 6, 10, 11, 13, 15, 16, 17, 19, 21, 22, 23, 25, 27, 28, 32, 34, 36, 38, 40 \pmod{42}\).

Theorem [M.S. HOGAN, D.G. HORROCKS, 2003]

The position \((C_4 \square C_n, v)\) is a **losing position** for the game **DIRECTED VERTEX GEOGRAPHY** iff \(n \equiv 11 \pmod{12}\).
Open Problems.

- For which classes of graphs the outcome of \textsc{Geography} (any variant) is “easy” to determine?

- Can you characterize the winning positions of \textsc{Directed Vertex Geography} on the Cartesian product $C_m \square C_n$ of two directed cycles when $m > 4$?
Playing NIM on graphs
Playing NIM on graphs

Geography Nim on graphs Node-Kayles k-Colouring 0.33 game Timber! Conclusion
Edge NimG [M. Fukuyama, 2003]

- each edge contains a given (non-negative) number of tokens,
- one vertex of the graph is the starting vertex,
Edge Nim [M. Fukuyama, 2003]

- each edge contains a given (non-negative) number of tokens,
- one vertex of the graph is the starting vertex,
- each move consists in a unique action:
 - move to a neighbour of the current vertex and delete any non-negative number of tokens on the traversed edge.
EDGE NIMG

EDGE NIMG [M. FUKUYAMA, 2003]

- each edge contains a given (non-negative) number of tokens,
- one vertex of the graph is the starting vertex,
- each move consists in a unique action:
 - move to a neighbour of the current vertex and delete any non-negative number of tokens on the traversed edge.

EDGE NIMG (on multigraphs) extends ordinary NIM:
EDGE NIMG [M. FUKUYAMA, 2003]

- each edge contains a given (non-negative) number of tokens,
- one vertex of the graph is the starting vertex,
- each move consists in a unique action:
 - move to a neighbour of the current vertex and delete any non-negative number of tokens on the traversed edge.

EDGE NIMG (on multigraphs) extends ordinary NIM:
Edge NimG

Edge NimG [M. Fukuyama, 2003]

- each edge contains a given (non-negative) number of tokens,
- one vertex of the graph is the starting vertex,
- each move consists in a unique action:
 - move to a neighbour of the current vertex and delete any non-negative number of tokens on the traversed edge.

Edge NimG extends Undirected Edge Geography (PSPACE-complete):
Edge NimG [M. Fukuyama, 2003]

- each edge contains a given (non-negative) number of tokens,
- one vertex of the graph is the starting vertex,
- each move consists in a unique action:
 - move to a neighbour of the current vertex and delete any non-negative number of tokens on the traversed edge.

Edge NimG extends Undirected Edge Geography (PSPACE-complete):
EDGE NIMG [M. FUKUYAMA, 2003]

- each edge contains a given (non-negative) number of tokens,
- one vertex of the graph is the starting vertex,
- each move consists in a unique action:
 - move to a neighbour of the current vertex and delete any non-negative number of tokens on the traversed edge.

EDGE NIMG extends UNDIRECTED EDGE GEOGRAPHY (PSPACE-complete):
Edge NimG

Edge NimG [M. Fukuyama, 2003]

- each edge contains a given (non-negative) number of tokens,
- one vertex of the graph is the starting vertex,
- each move consists in a unique action:
 - move to a neighbour of the current vertex and delete any non-negative number of tokens on the traversed edge.

Fukuyama determined the Sprague-Grundy values of Edge NimG positions whenever G is either a cycle or a tree.
Edge NimG

Edge NimG [M. Fukuyama, 2003]

- each edge contains a given (non-negative) number of tokens,
- one vertex of the graph is the starting vertex,
- each move consists in a unique action:
 - move to a neighbour of the current vertex and delete any non-negative number of tokens on the traversed edge.

Fukuyama determined the **Sprague-Grundy values** of Edge NimG positions whenever G is either a cycle or a tree.

He also determined whether a position is a **winning** or a **losing** position whenever G is bipartite...
L. ERICKSON (2010), studied the case where each edge has exactly one token (UNDIRECTED EDGE GEOGRAPHY), and gave several sufficient conditions for a position to be a winning position.
L. ERICKSON (2010), studied the case where each edge has exactly one token (UNDIRECTED EDGE GEOGRAPHY), and gave several sufficient conditions for a position to be a winning position.

- If G contains two twin vertices v_1 and v_2 (that is, v_1 and v_2 have the same closed neighbourhood) then the position (G, v_1) is a winning position [L. ERICKSON, 2010].
L. Erickson (2010), studied the case where each edge has exactly one token (Undirected Edge Geography), and gave several sufficient conditions for a position to be a winning position.

- If G contains two twin vertices v_1 and v_2 (that is, v_1 and v_2 have the same closed neighbourhood) then the position (G, v_1) is a winning position [L. Erickson, 2010].
L. ERICKSON (2010), studied the case where each edge has exactly one token (UNDIRECTED EDGE GEOGRAPHY), and gave several sufficient conditions for a position to be a winning position.

- If G contains two twin vertices \(v_1 \) and \(v_2 \) (that is, \(v_1 \) and \(v_2 \) have the same closed neighbourhood) then the position \((G, v_1) \) is a winning position [L. ERICKSON, 2010].
L. Erickson (2010), studied the case where each edge has exactly one token (Undirected Edge Geography), and gave several sufficient conditions for a position to be a winning position.

- If G contains two twin vertices v_1 and v_2 (that is, v_1 and v_2 have the same closed neighbourhood) then the position (G, v_1) is a winning position [L. Erickson, 2010].
L. Erickson (2010), studied the case where each edge has exactly one token (Undirected Edge Geography), and gave several sufficient conditions for a position to be a winning position.

- If G contains two twin vertices v_1 and v_2 (that is, v_1 and v_2 have the same closed neighbourhood) then the position (G, v_1) is a winning position [L. Erickson, 2010].
L. Erickson (2010), studied the case where each edge has exactly one token (Undirected Edge Geography), and gave several sufficient conditions for a position to be a winning position.

- If G contains two twin vertices v_1 and v_2 (that is, v_1 and v_2 have the same closed neighbourhood) then the position (G, v_1) is a winning position [L. Erickson, 2010].
L. Erickson (2010), studied the case where each edge has exactly one token (Undirected Edge Geography), and gave several sufficient conditions for a position to be a winning position.

- If G contains two twin vertices v_1 and v_2 (that is, v_1 and v_2 have the same closed neighbourhood) then the position (G, v_1) is a winning position [L. Erickson, 2010].
L. Erickson (2010), studied the case where each edge has exactly one token (Undirected Edge Geography), and gave several sufficient conditions for a position to be a winning position.

- If G contains two twin vertices v_1 and v_2 (that is, v_1 and v_2 have the same closed neighbourhood) then the position (G, v_1) is a winning position [L. Erickson, 2010].
- Therefore, every position (K_n, v), $n \geq 2$, is a winning position.
L. Erickson (2010), studied the case where each edge has exactly one token (Undirected Edge Geography), and gave several sufficient conditions for a position to be a winning position.

- If G contains two twin vertices v_1 and v_2 (that is, v_1 and v_2 have the same closed neighbourhood) then the position (G, v_1) is a winning position [L. Erickson, 2010].
- Therefore, every position (K_n, v), $n \geq 2$, is a winning position.
- Let Q_n denote the n-dimensional hypercube. A position (Q_n, v) is a winning position iff n is odd [L. Erickson, W. Shreve, 2012].
L. Erickson (2010), studied the case where each edge has exactly one token (Undirected Edge Geography), and gave several sufficient conditions for a position to be a winning position.

- If G contains two twin vertices v_1 and v_2 (that is, v_1 and v_2 have the same closed neighbourhood) then the position (G, v_1) is a winning position [L. Erickson, 2010].
- Therefore, every position (K_n, v), $n \geq 2$, is a winning position.
- Let Q_n denote the n-dimensional hypercube. A position (Q_n, v) is a winning position iff n is odd [L. Erickson, W. Shreve, 2012].

Open Problem.

- What about such graphs with an arbitrary number of tokens at each vertex? with at most two tokens?
Vertex NimG [G. Stockman, A. Frieze, J. Vera, 2004]

- each vertex contains a given (non-negative) number of tokens,
- one vertex of the graph is the starting vertex,
VERTEX NimG [G. Stockman, A. Frieze, J. Vera, 2004]

- each vertex contains a given (non-negative) number of tokens,
- one vertex of the graph is the starting vertex,
- each move consists in two actions:
 - delete any non-negative number of tokens on the current vertex, and then
 - move to a neighbour of the current vertex.
Vertex NimG

Vertex NimG [G. Stockman, A. Frieze, J. Vera, 2004]

- each vertex contains a given (non-negative) number of tokens,
- one vertex of the graph is the starting vertex,
- each move consists in two actions:
 - delete any non-negative number of tokens on the current vertex, and then
 - move to a neighbour of the current vertex.

Several variants can thus be considered:

- **delete-then-move** or **move-then-delete**
- loops on vertices are allowed or not (move-then-delete)
- move to an “empty vertex” is allowed or not (delete-then-move)
VERTEX NIMG, delete-then-move, no loop
Vertex NimG, delete-then-move, no loop

- If the number of tokens is *bounded by some constant*, then deciding whether a position is *winning* or *losing* can be done in polynomial time [G. Stockman, A. Frieze, J. Vera, 2004].
Vertex NimG

(2)

Vertex NimG, delete-then-move, no loop

- If the number of tokens is bounded by some constant, then deciding whether a position is winning or losing can be done in polynomial time [G. Stockman, A. Frieze, J. Vera, 2004].

Vertex NimG, move-then-delete, loop on every vertex
Vertex NimG (2)

Vertex NimG, delete-then-move, no loop

- If the number of tokens is bounded by some constant, then deciding whether a position is winning or losing can be done in polynomial time [G. Stockman, A. Frieze, J. Vera, 2004].

Vertex NimG, move-then-delete, loop on every vertex

- If the number of tokens is bounded by some constant \(k \geq 2 \), then deciding whether a position is winning or losing is PSPACE-complete [K.G. Burke, O.C. George, 2014].
Vertex NimG

Vertex NimG, delete-then-move, no loop

- If the number of tokens is **bounded by some constant**, then deciding whether a position is **winning** or **losing** can be done in polynomial time [G. Stockman, A. Frieze, J. Vera, 2004].

Vertex NimG, move-then-delete, loop on every vertex

- If the number of tokens is **bounded by some constant** $k \geq 2$, then deciding whether a position is **winning** or **losing** is PSPACE-complete [K.G. Burke, O.C. George, 2014].

Open Problem.

- What is the computational complexity of **Vertex NimG** on graphs with **optional** loops?
In all versions of NIMG, the game may end with remaining tokens on the graph, contrary to ordinary NIM...
In all versions of NIMG, the game may end with remaining tokens on the graph, contrary to ordinary NIM...

Undirected VertexNim [E. Duchêne, G. Renault, 2014]

- Variant of delete-then-move VertexNimG:
 - delete any non-negative number of tokens on the current vertex, and then
 - move to the next current vertex (having a non-negative number of tokens), *along a path whose internal vertices do not have any token*.

Éric Sopena – CALDAM Indo-French Pre-Conference School - Feb. 10-11, 2020
In all versions of NIMG, the game may end with remaining tokens on the graph, contrary to ordinary NIM...

UNDIRECTED VERTEXNIM [E. DUCHÊNE, G. RENAULT, 2014]

- Variant of delete-then-move VERTEX NIMG:
 - delete any non-negative number of tokens on the current vertex, and then
 - move to the next current vertex (having a non-negative number of tokens), *along a path whose internal vertices do not have any token*.

- The outcome of any UNDIRECTED VERTEXNIM position (loops are allowed) can be computed in *polynomial time*.
DIRECTED VERTEXNIM [E. DUCHÊNE, G. RENAUDT, 2014]
Directed VertexNim [E. Duchêne, G. Renault, 2014]

- The outcome of any Directed VertexNim position (a loop at each vertex, the graph is strongly connected) can be computed in polynomial time.
DIRECTED VERTEXNIM [E. DUCHÊNE, G. RENAUPT, 2014]

- The outcome of any DIRECTED VERTEXNIM position (a loop at each vertex, the graph is strongly connected) can be computed in polynomial time.
- Let C_n be a directed cycle of order n, $n \geq 3$, with at least two tokens at each vertex. For every vertex v, the outcome of the position (C_n, v) can be computed in polynomial time.
DIRECTED VERTEXNIM [E. DUCHÊNE, G. RENAULT, 2014]

- The outcome of any DIRECTED VERTEXNIM position (a loop at each vertex, the graph is strongly connected) can be computed in polynomial time.
- Let C_n be a directed cycle of order n, $n \geq 3$, with at least two tokens at each vertex. For every vertex v, the outcome of the position (C_n, v) can be computed in polynomial time.

Open Problems.

- What about strongly connected graphs with optional loops?
- What about C_n if some vertices have only one token?
- What about the move-then-delete version?
Node-Kayles

Geography | Nim on graphs | Node-Kayles | k-Colouring | 0.33 game | Timber! | Conclusion

Éric Sopena – CALDAM Indo-French Pre-Conference School - Feb. 10-11, 2020
Recall our first game...
Recall our first game...

Take your favorite graph, e.g. Petersen graph.
Recall our first game...

Take your favorite graph, e.g. Petersen graph.
On her turn, each player chooses a vertex and deletes its closed neighbourhood...
Recall our first game...

Take your favorite graph, e.g. Petersen graph.
On her turn, each player chooses a vertex and deletes its closed neighbourhood...
Take your favorite graph, e.g. Petersen graph.
On her turn, each player chooses a vertex and deletes its closed neighbourhood...
Recall our first game...

Take your favorite graph, e.g. Petersen graph.
On her turn, each player chooses a vertex and deletes its closed neighbourhood...
Recall our first game...

Take your favorite graph, e.g. Petersen graph.

On her turn, each player chooses a vertex and deletes its closed neighbourhood...

The first player unable to move looses the game...
Theorem [T.J. Schaefer, 1978]

Determining whether a given position (graph) is a winning position or a losing position for NODE-KAYLES is PSPACE-complete.
Theorem [T.J. Schaefer, 1978]

Determining whether a given position (graph) is a winning position or a losing position for NODE-KAYLES is PSPACE-complete.

Theorem [H. Bodlaender, D. Kratsch, 2002]

Determining whether a given position G is a winning position or a losing position for NODE-KAYLES is polynomial whenever G is a cocomparability graph, a circular arc graph, a cograph, or has bounded asteroidal number.
Theorem [R. Fleischer, G. Tripfen, 2004]

Determining whether a subdivided star with bounded degree is a winning position or a losing position for NODE-KAYLES is polynomial.
Theorem [R. Fleischer, G. Trippen, 2004]

Determining whether a subdivided star with bounded degree is a winning position or a losing position for NODE-KAYLES is polynomial.

Theorem [H. Bodlaender, D. Kratsch, 2011]

Determining whether a given position G with n vertices is a winning position or a losing position for NODE-KAYLES can be done in time $O(1.6052^n)$, or in time $O(1.4423^n)$ if G is a tree.
Sprague-Grundy sequence

The Sprague-Grundy sequence of NODE-KAYLES on paths is the (infinite) sequence of Sprague-Grundy values:

$$\sigma(P_0) \sigma(P_1) \sigma(P_2) \sigma(P_3) \ldots$$
Sprague-Grundy sequence

The Sprague-Grundy sequence of NODE-KAYLES on paths is the (infinite) sequence of Sprague-Grundy values:

$$\sigma(P_0) \ \sigma(P_1) \ \sigma(P_2) \ \sigma(P_3) \ldots$$

The Sprague-Grundy sequence of NODE-KAYLES on paths is ultimately periodic, with a period of length 34 and a preperiod of length 51:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>3</th>
<th>3</th>
<th>2</th>
<th>2</th>
<th>4</th>
<th>0</th>
<th>5</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>52</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>69</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>86</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>103</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>120</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Éric Sopena – CALDAM Indo-French Pre-Conference School - Feb. 10-11, 2020
Sum of games (reminder)

The (disjunctive) sum of G1 and G2 is the game G1 + G2, played as follows:

- on her turn, each player chooses the current position in G1 or in G2, and then moves according to the rules of G1 or G2, respectively,
- the game ends as soon as a player has no move in any of the two games.
Sum of games (reminder)

The (disjunctive) sum of G_1 and G_2 is the game $G_1 + G_2$, played as follows:

- on her turn, each player chooses the current position in G_1 or in G_2, and then moves according to the rules of G_1 or G_2, respectively,
- the game ends as soon as a player has no move in any of the two games.

Compound games

How to play in $G_1 + \ldots + G_k$?
How to play in $G_1 + \ldots + G_k$?

- **Component selection**
 - one component (**disjunctive sum**),
 - all components (**conjunctive sum**),
 - any number of components, at least one (**selective sum**).
How to play in $G_1 + \ldots + G_k$?

- **Component selection**
 - one component (disjunctive sum),
 - all components (conjonctive sum),
 - any number of components, at least one (selective sum).

- **Ending rule**
 - all components have ended (long rule),
 - one component has ended (short rule).
How to play in $G_1 + ... + G_k$?

- **Component selection**
 - one component (*disjunctive sum*),
 - all components (*conjonctive sum*),
 - any number of components, at least one (*selective sum*).

- **Ending rule**
 - all components have ended (*long rule*),
 - one component has ended (*short rule*).

- **Winning rule**
 - normal play,
 - misère play.
How to play in $G_1 + ... + G_k$?

- **Component selection**
 - one component (**disjunctive sum**),
 - all components (**conjonctive sum**),
 - any number of components, at least one (**selective sum**).

- **Ending rule**
 - all components have ended (**long rule**),
 - one component has ended (**short rule**).

- **Winning rule**
 - normal play,
 - misère play.
Let’s play again...

Let us consider the path P_5 of order 5:
Let’s play again...

Let us consider the path P_5 of order 5:

Disjunctive sum, long rule, normal play

- Component selection: one component
- Ending rule: all components must have ended
- Winning rule: the first player unable to move looses
Let’s play again...

Let us consider the path P_5 of order 5:

![Graph of P_5]

Disjunctive sum, long rule, normal play

- Component selection: one component
- Ending rule: all components must have ended
- Winning rule: the first player unable to move loses

Is P_5 a winning or a losing position?
Let’s play again...

Let us consider the path P_5 of order 5:

Disjunctive sum, long rule, normal play

- Component selection: one component
- Ending rule: all components must have ended
- Winning rule: the first player unable to move looses

Is P_5 a winning or a losing position? winning
Let’s play again... (2)

Let us consider the path P_5 of order 5:

Disjunctive sum, short rule, normal play

- Component selection: one component
- Ending rule: one component has ended
- Winning rule: the first player unable to move looses

Is P_5 a winning or a losing position?
Let’s play again...

Let us consider the path P_5 of order 5:

Disjunctive sum, short rule, normal play

- Component selection: one component
- Ending rule: one component has ended
- Winning rule: the first player unable to move losess

Is P_5 a winning or a losing position? losing
Foreclosed Sprague-Grundy number of paths

- The foreclosed Sprague-Grundy sequence of paths (under normal play) is ultimately periodic:
 - preperiod of length 245,
 - period of length 84.

<table>
<thead>
<tr>
<th>n</th>
<th>$F^+(P_n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–49</td>
<td>001120</td>
</tr>
<tr>
<td>50–99</td>
<td>0225042253</td>
</tr>
<tr>
<td>100–149</td>
<td>4283442234</td>
</tr>
<tr>
<td>150–199</td>
<td>2233425334</td>
</tr>
<tr>
<td>200–249</td>
<td>5533125342</td>
</tr>
<tr>
<td>250–299</td>
<td>5532255342</td>
</tr>
<tr>
<td>300–349</td>
<td>5342253422</td>
</tr>
</tbody>
</table>
Foreclosed Sprague-Grundy number of paths

- The **foreclosed** Sprague-Grundy sequence of paths (under normal play) is **ultimately periodic**:
 - preperiod of length **245**,
 - period of length **84**.

- The number of losing positions is **finite**:
 \[L = \{ 0, 4, 5, 9, 10, 14, 28, 50, 54, 98 \} \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>(F^+(P_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–49</td>
<td>****001120 0112031122 3112334105 3415534255 3225532255</td>
</tr>
<tr>
<td>50–99</td>
<td>0225042253 4423344253 4455341553 4285322853 4285442804</td>
</tr>
<tr>
<td>100–149</td>
<td>4283442234 4253345533 1253322533 2253422534 2253422334</td>
</tr>
<tr>
<td>150–199</td>
<td>2233425334 4533425553 2553425544 2554425344 2234425334</td>
</tr>
<tr>
<td>200–249</td>
<td>5533125342 2533225342 2534225342 2334223342 5334453342</td>
</tr>
<tr>
<td>250–299</td>
<td>5532255342 5344255442 5344253442 5334553342 5342253322</td>
</tr>
<tr>
<td>300–349</td>
<td>5342253422 5342233422 3342533425 3342553225 ...</td>
</tr>
</tbody>
</table>
Foreclosed Sprague-Grundy number of paths

- The foreclosed Sprague-Grundy sequence of paths (under normal play) is ultimately periodic:
 - preperiod of length 245,
 - period of length 84.

- The number of losing positions is finite:
 $$L = \{ 0, 4, 5, 9, 10, 14, 28, 50, 54, 98 \}$$

<table>
<thead>
<tr>
<th>n</th>
<th>$F^+(P_n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–49</td>
<td>****001120 0112031122 3112334105 3415534255 3225532255</td>
</tr>
<tr>
<td>50–99</td>
<td>0225042253 4423344253 4455341553 4285322853 4285442804</td>
</tr>
<tr>
<td>100–149</td>
<td>4283442234 4253345533 1253322533 2253422534 2253422334</td>
</tr>
<tr>
<td>150–199</td>
<td>2233425334 4533425532 2553425544 2554425344 2234425334</td>
</tr>
<tr>
<td>200–249</td>
<td>5533125342 2533225342 2534225342 2334223342 5334453342</td>
</tr>
<tr>
<td>250–299</td>
<td>5532255342 5344255442 5344253442 5334553342 5342253322</td>
</tr>
<tr>
<td>300–349</td>
<td>5342253442 5342233422 3342533425 3342553225 ...</td>
</tr>
</tbody>
</table>
Let’s play again...

Let us consider the path P_5 of order 5:

Conjunctive sum, long rule, normal play

- Component selection: all components
- Ending rule: all components have ended
- Winning rule: the first player unable to move looses

Is P_5 a **winning** or a **losing** position?
Let’s play again...

Let us consider the path P_5 of order 5:

Conjunctive sum, long rule, normal play

- Component selection: all components
- Ending rule: all components have ended
- Winning rule: the first player unable to move looses

Is P_5 a winning or a losing position? losing
Suspense number

- Strategy: losing quickly on losing components and postponing win as long as possible on winning ones...
Conjunctive sum, long rule

Suspense number

- Strategy: losing quickly on losing components and postponing win as long as possible on winning ones...
- The suspense number $S^+(G)$ (normal play) of a position G is the number of coming turns, using this strategy:
Suspense number

- Strategy: losing quickly on losing components and postponing win as long as possible on winning ones...
- The suspense number $S^+(G)$ (normal play) of a position G is the number of coming turns, using this strategy:
 - $S^+(G) = 0$ if G is an ended position,
Suspense number

- Strategy: losing quickly on losing components and postponing win as long as possible on winning ones...

- The suspense number $S^+(G)$ (normal play) of a position G is the number of coming turns, using this strategy:
 - $S^+(G) = 0$ if G is an ended position,
 - if G' is an option of G with maximal even suspense, then $S^+(G) = S^+(G') + 1$,
 - if no such option exists and G'' is an option of G with minimal odd suspense, then $S^+(G) = S^+(G'') + 1$.
Suspense number

- Strategy: losing quickly on losing components and postponing win as long as possible on winning ones...
- The suspense number $S^+(G)$ (normal play) of a position G is the number of coming turns, using this strategy:
 - $S^+(G) = 0$ if G is an ended position,
 - if G' is an option of G with maximal even suspense, then $S^+(G) = S^+(G') + 1$,
 - if no such option exists and G'' is an option of G with minimal odd suspense, then $S^+(G) = S^+(G'') + 1$.

A position G is a winning position iff $S^+(G)$ is odd...
Suspense number of paths

- The suspense sequence of paths (normal play) has a geometric period with geometric ratio 2.
Suspense number of paths

- The suspense sequence of paths (normal play) has a geometric period with geometric ratio 2.

For every \(n \geq 0 \), we have:

- \(S^+(P_k) = 2n \), if \(k = 5(2^n - 1) \),
- \(S^+(P_k) = 2n + 1 \), if \(5(2^n - 1) < k < 5(2^{n+1} - 1) - 1 \),
- \(S^+(P_k) = 2n + 2 \), if \(k = 5(2^{n+1} - 1) - 1 \).
Suspense number of paths

- The suspense sequence of paths (normal play) has a geometric period with geometric ratio 2.

For every $n \geq 0$, we have:

- $S^+(P_k) = 2n$, if $k = 5(2^n - 1)$,
- $S^+(P_k) = 2n + 1$, if $5(2^n - 1) < k < 5(2^{n+1} - 1) - 1$,
- $S^+(P_k) = 2n + 2$, if $k = 5(2^{n+1} - 1) - 1$.

- The set of losing positions is:

$$\{ 5(2^n - 1), n \geq 0 \} \cup \{ 5(2^{n+1} - 1) - 1, n \geq 0 \}$$
Compound NODE-KAYLES on paths

Theorem [A. Guignard, E.S., 2009]

For ten over twelve versions of compound NODE-KAYLES on paths, the set of losing positions can be characterized. The two remaining unsolved versions are the following:

- disjunctive sum, misère play, long rule (Dawson’s problem, 1935),
- disjunctive sum, misère play, short rule.
Theorem [A. GUIGNARD, E.S., 2009]

For ten over twelve versions of compound NODE-KAYLES on paths, the set of losing positions can be characterized.

The two remaining unsolved versions are the following:
- disjunctive sum, misère play, long rule (DAWSON’s problem, 1935),
- disjunctive sum, misère play, short rule.

<table>
<thead>
<tr>
<th>Compound version</th>
<th>Losing set \mathcal{L}</th>
</tr>
</thead>
<tbody>
<tr>
<td>disj. comp., normal play</td>
<td>${0, 4, 8, 14, 19, 24, 28, 34, 38, 42} \cup {54 + 34i, 58 + 34i, 62 + 34i, 72 + 34i, 76 + 34i, i \geq 0}$</td>
</tr>
<tr>
<td>disj. comp., misère play</td>
<td>unsolved</td>
</tr>
<tr>
<td>dim. disj. comp., normal play</td>
<td>${0, 4, 5, 9, 10, 14, 28, 50, 54, 98}$</td>
</tr>
<tr>
<td>dim. disj. comp., misère play</td>
<td>unsolved</td>
</tr>
<tr>
<td>conj. comp., normal play</td>
<td>${0, 4, 5, 9, 10}$</td>
</tr>
<tr>
<td>conj. comp., misère play</td>
<td>${1, 2}$</td>
</tr>
<tr>
<td>cont. conj. comp., normal play</td>
<td>${5(2^n - 1), n \geq 0} \cup {5(2^{n+1} - 1) - 1, n \geq 0}$</td>
</tr>
<tr>
<td>cont. conj. comp., misère play</td>
<td>${7.2^n - 6, n \geq 0} \cup {7.2^n - 5, n \geq 0}$</td>
</tr>
<tr>
<td>sel. comp., normal play</td>
<td>${5n, n \geq 0} \cup {5n + 4, n \geq 0}$</td>
</tr>
<tr>
<td>sel. comp., misère play</td>
<td>${7n + 1, n \geq 0} \cup {7n + 2, n \geq 0}$</td>
</tr>
<tr>
<td>short. sel. comp., normal play</td>
<td>${5n, n \geq 0} \cup {5n + 4, n \geq 0}$</td>
</tr>
<tr>
<td>short. sel. comp., misère play</td>
<td>${1, 2, 8, 9} \cup {5n, n \geq 3} \cup {5n + 4, n \geq 3}$</td>
</tr>
</tbody>
</table>
NODE-KAYLES – Open problems
Open Problems.

What about NODE-KAYLES on

- caterpillars?
- subdivided caterpillars?
- other subclasses of trees?
- ...

Open Problems.

What about NODE-KAYLES on

- caterpillars?
- subdivided caterpillars?
- other subclasses of trees?
- ...

Suggestion.

Consider compound versions of other combinatorial games on graphs?...
PROPER K-COLOURING
PROPER k-COLOURING
A Maker / Breaker version

Non-combinatorial Graph Colouring Game
Non-combinatorial Graph Colouring Game

- Using a set of k colours, on her turn, each player properly colours an uncoloured vertex of a graph G.
A Maker / Breaker version

Non-combinatorial Graph Colouring Game

- Using a set of k colours, on her turn, each player properly colours an uncoloured vertex of a graph G.
- If the whole graph is properly coloured the 1st player wins the game, otherwise the 2nd player wins the game.
A Maker / Breaker version

Non-combinatorial Graph Colouring Game

- Using a set of k colours, on her turn, each player properly colours an uncoloured vertex of a graph G.
- If the whole graph is properly coloured the 1st player wins the game, otherwise the 2nd player wins the game.
- The game chromatic number of G is the least integer k for which the 1st player has a winning strategy.
Non-combinatorial Graph Colouring Game

- Using a set of k colours, on her turn, each player properly colours an uncoloured vertex of a graph G.
- If the whole graph is properly coloured the 1st player wins the game, otherwise the 2nd player wins the game.
- The game chromatic number of G is the least integer k for which the 1st player has a winning strategy.

Most intriguing question

- If the first player wins the game on some graph G using a set of k colours, is it true that she can also win the game on G using a set of $k + 1$ colours?
PROPER K-COLOURING

- An undirected graph G and a set of k colours.
PROPER K-COLOURING

- An undirected graph G and a set of k colours.
- On her turn, each player picks an uncoloured vertex and colours it in a proper way (using a colour that does not appear on any of its neighbours).
PROPER k-COLOURING

PROPER k-COLOURING

- An undirected graph G and a set of k colours.
- On her turn, each player picks an *uncoloured vertex* and colours it *in a proper way* (using a colour that does not appear on any of its neighbours).
- Under normal (resp. *misère*) convention, the first player unable to play loses (resp. wins) the game.
PROPER k-COLOURING

- An undirected graph G and a set of k colours.
- On her turn, each player picks an *uncoloured vertex* and colours it *in a proper way* (using a colour that does not appear on any of its neighbours).
- Under *normal* (resp. *misère*) convention, the first player unable to play *loses* (resp. *wins*) the game.

$G : \quad$![Graph Image]

$C : \quad \{ \bigcirc, \bigcirc \}$
Proper k-colouring

- An undirected graph G and a set of k colours.
- On her turn, each player picks an uncoloured vertex and colours it in a proper way (using a colour that does not appear on any of its neighbours).
- Under normal (resp. misère) convention, the first player unable to play loses (resp. wins) the game.

```
G :
  
  1st player

C : \{\red\bullet, \blue\bullet\}
```
An undirected graph G and a set of k colours.

On her turn, each player picks an uncoloured vertex and colours it in a proper way (using a colour that does not appear on any of its neighbours).

Under normal (resp. misère) convention, the first player unable to play loses (resp. wins) the game.
PROPER K-COLOURING

- An undirected graph G and a set of k colours.
- On her turn, each player picks an *uncoloured vertex* and colours it *in a proper way* (using a colour that does not appear on any of its neighbours).
- Under **normal** (resp. **misère**) convention, the first player unable to play *loses* (resp. *wins*) the game.

Given a connected graph G and a set of 2 colours $\{r, b\}$, each player is able to colour a vertex in a proper way.

End of the game: 2nd player wins!
Playing this game with a unique colour \((k = 1) \) is equivalent to playing \texttt{NODE-KAYLES}...
PROPER K-COLOURING

Playing this game with a unique colour ($k = 1$) is equivalent to playing NODE-KAYLES...
PROPER K-COLOURING

- Playing this game with a unique colour ($k = 1$) is equivalent to playing NODE-KAYLES...
PROPER K-COLOURING

- Playing this game with a unique colour (\(k = 1\)) is equivalent to playing NODE-KAYLES...
PROPER K-COLOURING

- Playing this game with a unique colour ($k = 1$) is equivalent to playing NODE-KAYLES...
Observation.

Playing PROPER k-COLOURING on G *is equivalent to playing* NODE-KAYLES on $G \square K_k$.
NODE-KAYLES vs. PROPER K-COLOURING

Observation.

Playing PROPER K-COLOURING on G is equivalent to playing NODE-KAYLES on G □ K_k.

Example with k = 3:

```
G □ K_3
```

```
..............  ..............

..............  ..............

..............  ..............
```

“colour 1”

“colour 2”

“colour 3”
Observation.

Playing Proper k-colouring on G is equivalent to playing *Node-kayles* on $G \Box K_k$.

Example with $k = 3$:

![Diagram](image-url)
NODE-KAYLES vs. PROPER K-COLOURING

Observation.

Playing PROPER K-COLOURING on G is equivalent to playing NODE-KAYLES on G □ K_k.

Example with k = 3:

```
G □ K₃
```

```
.............   .............
   X           X
```

```
.............   .............
   X   X   X
```

```
.............   .............
   X           X
```

“colour 1”

“colour 2”

“colour 3”
Complexity

Theorem [Beaulieu, Burke, Duchêne, 2013].

For every integer $k \geq 1$, determining whether a position of PROPER k-COLOURING is a winning position or not is $PSPACE$-complete.
PROPER K-COLOURING

Complexity

Theorem [Beaulieu, Burke, Duchêne, 2013].

For every integer $k \geq 1$, determining whether a position of PROPER K-COLOURING is a winning position or not is PSPACE-complete.

Sprague-Grundy values [Beaulieu, Burke, Duchêne, 2013]

- Sufficient conditions for a position to be a winning or loosing position are known for d-dimensional grids when all dimensions are odd, complete d-ary trees when d is odd...
- PROPER K-COLOURING is solved for paths and cycles
Open Problems.
Open Problems.

- What about PROPER K-COLOURING on caterpillars? on complete k-ary trees with k even? on trees?...
Open Problems.

- What about PROPER K-COLOURING on caterpillars? on complete k-ary trees with k even? on trees?...

- Other combinatorial games, based on other types of colourings? (e.g. acyclic, distance-two, or edge-colourings...)
The (partisan) games of COL and SNORT
The (partisan) games of COL and SNOT

The game of COL (attributed to COLIN VOUT)

- A partisan version of the k-COLOURING GAME.
- The first player uses only colour RED, while the second player uses only colour BLUE.
The (partisan) games of COL and SNORT

The game of COL (attributed to COLIN VOUT)

- A partisan version of the k-COLOURING GAME.
- The first player uses only colour RED, while the second player uses only colour BLUE.
- The computational complexity of COL seems to be unknown...
The (partisan) games of COL and SNORT

The game of COL (attributed to COLIN VOUT)

- A partisan version of the k-COLOURING GAME.
- The first player uses only colour RED, while the second player uses only colour BLUE.
- The computational complexity of COL seems to be unknown...

The game of SNORT (proposed by SIMON P. NORTON)

- Same as COL, except that adjacent vertices cannot get distinct colours (a.k.a. CATS & DOGS)...
- Determining the outcome of a SNORT position is PSPACE-complete.
THE 0.33 GAME
THE 0.33 GAME

Geography
Nim on graphs
Node-Kayles
k-Colouring
0.33 game
Timber!
Conclusion
Octal games

- These games are played on heaps of tokens
- On her turn, each player chooses one heap, and remove \(k > 0 \) tokens from this heap, according to the rules of the game
Octal games (Take-and-Break games)

Octal games

- These games are played on heaps of tokens.
- On her turn, each player chooses one heap, and remove \(k > 0 \) tokens from this heap, according to the rules of the game.
- These rules are encoded by a sequence \(0.d_1d_2d_3... \) of octal digits, describing the moves that are allowed on a heap:
 - if you can take \(j \) tokens and leave no heap, set \(J_0 = 1 \)
 - if you can take \(j \) tokens and leave one heap, set \(J_1 = 2 \)
 - if you can take \(j \) tokens and leave two heaps, set \(J_2 = 4 \)
 - then let \(d_j = J_0 + J_1 + J_2 \)
Octal games

- These games are played on heaps of tokens.
- On her turn, each player chooses one heap, and remove $k > 0$ tokens from this heap, according to the rules of the game.
- These rules are encoded by a sequence $0.d_1d_2d_3...$ of octal digits, describing the moves that are allowed on a heap:
 - if you can take j tokens and leave no heap, set $J_0 = 1$
 - if you can take j tokens and leave one heap, set $J_1 = 2$
 - if you can take j tokens and leave two heaps, set $J_2 = 4$
 - then let $d_j = J_0 + J_1 + J_2$
- The ordinary game of Nim is $0.33333...$
Octal games: **DAWSON’S CHESS**

DAWSON’S CHESS

- Played on a *path of order n* (a heap of n tokens)
- On her turn, each player picks one vertex and deletes its **closed neighbourhood**
Octal games: **DAWSON’S CHESS**

DAWSON’S CHESS

- Played on a path of order \(n \) (a heap of \(n \) tokens)
- On her turn, each player picks one vertex and deletes its closed neighbourhood

Octal encoding of DAWSON’S CHESS

- You can delete one vertex iff the graph is \(P_1 \), and thus \(d_1 = 1 \)
Octal games: **DAWSON’S CHESS**

DAWSON’S CHESS

- Played on a path of order n (a heap of n tokens)
- On her turn, each player picks one vertex and deletes its closed neighbourhood

Octal encoding of DAWSON’S CHESS

- You can delete one vertex iff the graph is P_1, and thus $d_1 = 1$
- You can delete two adjacent vertices iff at least one of them is an endpoint, and thus $d_2 = 1 + 2 = 3$
Octal games: **DAWSON’S CHESS**

DAWSON’S CHESS

- Played on a **path of order n** (a heap of n tokens)
- On her turn, each player picks one vertex and deletes its **closed neighbourhood**

Octal encoding of DAWSON’S CHESS

- You can delete one vertex iff the graph is P_1, and thus $d_1 = 1$
- You can delete two adjacent vertices iff at least one of them is an endpoint, and thus $d_2 = 1 + 2 = 3$
- You can always delete three adjacent vertices, and thus $d_3 = 1 + 2 + 4 = 7$
Octal games: DAWSON’S CHESS

DAWSON’S CHESS

- Played on a path of order n (a heap of n tokens)
- On her turn, each player picks one vertex and deletes its closed neighbourhood

Octal encoding of DAWSON’S CHESS

- You can delete one vertex iff the graph is P_1, and thus $d_1 = 1$
- You can delete two adjacent vertices iff at least one of them is an endpoint, and thus $d_2 = 1 + 2 = 3$
- You can always delete three adjacent vertices, and thus $d_3 = 1 + 2 + 4 = 7$
- Therefore, DAWSON’S CHESS is the octal game 0.137
Octal games: JAMES BOND 🎈
The game of JAMES BOND

- Played on a path of order n (a heap of n tokens)
- On her turn, each player deletes three adjacent vertices
The game of JAMES BOND

- Played on a path of order \(n \) (a heap of \(n \) tokens)
- On her turn, each player deletes three adjacent vertices
- The octal encoding of this game is... \(0.007 \)
Octal games: JAMES BOND 😊

The game of JAMES BOND

- Played on a path of order n (a heap of n tokens)
- On her turn, each player deletes three adjacent vertices
- The octal encoding of this game is... 0.007

Sprague-Grundy sequence of JAMES BOND

- About 2^{28} values have been computed:

 0 0 0 1 1 1 2 2 0 3 3 1 1 1 1 0 4 ...

Éric Sopena – CALDAM Indo-French Pre-Conference School - Feb. 10-11, 2020
The game of JAMES BOND

- Played on a path of order n (a heap of n tokens)
- On her turn, each player deletes three adjacent vertices
- The octal encoding of this game is... 0.007

Sprague-Grundy sequence of JAMES BOND

- About 2^{28} values have been computed:

 \[
 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 2 \ 2 \ 0 \ 3 \ 3 \ 1 \ 1 \ 1 \ 0 \ 4 \ \ldots
 \]
- The ultimate periodicity of this sequence is conjectured
Octal games: JAMES BOND 😊

The game of JAMES BOND

- Played on a path of order n (a heap of n tokens)
- On her turn, each player deletes three adjacent vertices
- The octal encoding of this game is... 0.007

Sprague-Grundy sequence of JAMES BOND

- About 2^{28} values have been computed:
 0 0 0 1 1 1 2 2 0 3 3 1 1 1 0 4 ...
- The ultimate periodicity of this sequence is conjectured

Conjecture [Guy, 1996]. The Sprague-Grundy sequence of every finite octal game is ultimately periodic.
Octal games on graphs: 0.33
The game 0.33 on graphs

- Played on an undirected connected graph
- On her turn, each player deletes one vertex, or two adjacent vertices, provided that the remaining graph is still connected
The game 0.33 on graphs

- Played on an undirected connected graph
- On her turn, each player deletes one vertex, or two adjacent vertices, provided that the remaining graph is still connected
The game 0.33 on graphs

- Played on an undirected connected graph
- On her turn, each player deletes one vertex, or two adjacent vertices, provided that the remaining graph is still connected
The game 0.33 on graphs

- Played on an undirected connected graph
- On her turn, each player deletes one vertex, or two adjacent vertices, provided that the remaining graph is still connected
The game 0.33 on graphs

- Played on an **undirected connected graph**
- On her turn, each player deletes **one vertex**, or **two adjacent vertices**, provided that the remaining graph is still **connected**
Octal games on graphs: 0.33

The game 0.33 on graphs

- Played on an undirected connected graph
- On her turn, each player deletes one vertex, or two adjacent vertices, provided that the remaining graph is still connected
Subdivided stars

\[S(p_1, p_2, \ldots, p_k): \]
Subdivided stars

\[S(p_1, p_2, \ldots, p_k): \]

Sprague-Grundy values: reduction

Theorem [BEAUDOU et al., 2018].

For every subdivided star \(S(p_1, p_2, \ldots, p_k) \), we have

\[\sigma(S(p_1, p_2, \ldots, p_k)) = \sigma(S(p_1 \mod 3, p_2 \mod 3, \ldots, p_k \mod 3)). \]
Sprague-Grundy values

All the Sprague-Grundy values are in \{0,\ldots,3\}.

These values can be computed, according to the number of paths and the number of paths of length 2. [Beaudou et al., 2018]
Subdivided bistars

\[S_1 \text{-} k \rightarrow S_2 \]

\[k \text{ internal vertices} \]
0.33 on subdivided bistars

Subdivided bistars

\[
S_1\text{-}k\text{-}S_2
\]

\[
\begin{array}{c}
S_1 \\
\hline
k \text{ internal vertices} \\
\hline
S_2
\end{array}
\]

Sprague-Grundy values

Theorem [Beaudou et al., 2018].

For every subdivided bistar \(S_1\text{-}k\text{-}S_2\), we have

\[
\sigma(S_1\text{-}k\text{-}S_2) = f(\sigma(S_1), \sigma(S_2)).
\]
0.33: Open problems
Open Problem.

- What about 0.33 on trees?
- Is the Sprague-Grundy value of trees bounded?
- What about the misère version?
Open Problem.

- What about 0.33 on trees?
- Is the Sprague-Grundy value of trees bounded?
- What about the misère version?

Conjecture [Beaudou et al., 2018].

For every integer n, *there exists a caterpillar* CT with $\sigma(CT) = n$.
TIMBER!
TIMBER!

Geography Nim on graphs Node-Kayles k-Colouring 0.33 game Timber! Conclusion
TIMBER! [A graph version of the game TOPPLING PEAKS]
TIMBER! [A graph version of the game TOPPLING PEAKS]

- The game is played on a digraph, all of whose arcs are equipped with a domino,
TIMBER! [A graph version of the game TOPPLING PEAKS]

- the game is played on a digraph, all of whose arcs are equipped with a domino,
- on her turn, each player chooses one arc, say xy, and topples its domino in the direction of y...
TIMBER! [A graph version of the game TOPPLING PEAKS]

- the game is played on a **digraph**, all of whose arcs are equipped with a **domino**,
- on her turn, each player **chooses one arc**, say xy, and **topples** its domino **in the direction of y**...
- ...and the toppling process **propagates** (the orientation does not matter).

![Graph Diagram](image)
TIMBER! [A graph version of the game TOPPLING PEAKS]

- The game is played on a digraph, all of whose arcs are equipped with a domino,
- On her turn, each player chooses one arc, say xy, and topples its domino in the direction of y...
- ...and the toppling process propagates (the orientation does not matter).
TIMBER! [A graph version of the game TOPPLING PEAKS]

- the game is played on a digraph, all of whose arcs are equipped with a domino,
- on her turn, each player chooses one arc, say \(xy \), and topples its domino in the direction of \(y \)...
- ...and the toppling process propagates (the orientation does not matter).
Observation.

If the underlying (undirected) graph contains a 2-connected subgraph of order at least 2, then the first player wins the game.
Observation.

If the underlying (undirected) graph contains a 2-connected subgraph of order at least 2, then the first player wins the game.
Observation.

If the underlying (undirected) graph contains a 2-connected subgraph of order at least 2, then the first player wins the game.
Observation.

If the underlying (undirected) graph contains a 2-connected subgraph of order at least 2, then the first player wins the game.
Observation.

If the underlying (undirected) graph contains a 2-connected subgraph of order at least 2, then the first player wins the game.

➢ Therefore, this game is only interesting for trees!
Theorem [R. NOWAKOWSKI et al., 2014]

The number of loosing positions (orientations) in normal play on a path of length \(k = 1, 2, ... \) is \(0, 1, 0, 2, 0, 5, 0, 14, 0, 42, ... \)
Theorem [R. NOWAKOWSKI et al., 2014]

The number of loosing positions (orientations) in normal play on a path of length \(k = 1, 2, \ldots \) is 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, ...

When \(k = 2n \) is even, this number is the \(n^{th} \) Catalan number:

\[
C_n = \frac{1}{n+1} \binom{2n}{n}
\]
Theorem [R. NOWAKOWSKI et al., 2014]

The number of loosing positions (orientations) in normal play on a path of length \(k = 1, 2, \ldots \) is \(0, 1, 0, 2, 0, 5, 0, 14, 0, 42, \ldots \)

When \(k = 2n \) is even, this number is the \(n^{th} \) Catalan number:

\[
C_n = \frac{1}{n+1} \binom{2n}{n}
\]
The number of losing positions (orientations) in normal play on a path of length $k = 1, 2, \ldots$ is $0, 1, 0, 2, 0, 5, 0, 14, 0, 42, \ldots$

When $k = 2n$ is even, this number is the n^{th} Catalan number:

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$
Theorem [R. Nowakowski et al., 2014]

The number of loosing positions (orientations) in normal play on a path of length $k = 1, 2, ...$ is $0, 1, 0, 2, 0, 5, 0, 14, 0, 42, ...$

When $k = 2n$ is even, this number is the n^{th} Catalan number:

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$
Theorem [R. Nowakowski et al., 2014]

The number of losing positions (orientations) in normal play on a path of length $k = 1, 2, \ldots$ is $0, 1, 0, 2, 0, 5, 0, 14, 0, 42, \ldots$

When $k = 2n$ is even, this number is the n^{th} Catalan number:

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$
Theorem [R. Nowakowski et al., 2014]

The number of loosing positions (orientations) in normal play on a path of length $k = 1, 2, \ldots$ is $0, 1, 0, 2, 0, 5, 0, 14, 0, 42, \ldots$

When $k = 2n$ is even, this number is the n^{th} Catalan number:

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

C_n = number of Dyck paths...
Theorem [R. Nowakowski et al., 2014]

In normal play, loosing positions are exactly those positions whose path representation is a Dyck path.
Theorem [R. Nowakowski et al., 2014]

In normal play, loosing positions are exactly those positions whose path representation is a Dyck path.

Proof.
- The empty position is a Dyck path (empty).
Theorem [R. Nowakowski et al., 2014]

In normal play, loosing positions are exactly those positions whose path representation is a Dyck path.

Proof.

- The empty position is a Dyck path (empty).
- Induction step:
Theorem [R. Nowakowski et al., 2014]

In normal play, loosing positions are exactly those positions whose path representation is a Dyck path.

Proof.
- The empty position is a Dyck path (empty).
- Induction step:
Theorem [R. Nowakowski et al., 2014]

In normal play, loosing positions are exactly those positions whose path representation is a Dyck path.

Proof.
- The empty position is a Dyck path (empty).
- Induction step:
Theorem [R. Nowakowski et al., 2014]

In normal play, loosing positions are exactly those positions whose path representation is a Dyck path.

Proof.

- The empty position is a Dyck path (empty).
- Induction step:
Theorem [R. NOWAKOWSKI et al., 2014]

In normal play, loosing positions are exactly those positions whose path representation is a Dyck path.

Proof.

- The empty position is a Dyck path (empty).
- Induction step:

![Diagram of a non-Dyck path](attachment:image.png)
Theorem [R. NOWAKOWSKI et al., 2014]

In normal play, loosing positions are exactly those positions whose path representation is a Dyck path.

Proof.
- The empty position is a Dyck path (empty).
- Induction step:

\[\text{non-Dyck path} \rightarrow 1^{\text{st}} \text{ player} \]
Theorem [R. NOWAKOWSKI et al., 2014]

In normal play, loosing positions are exactly those positions whose path representation is a Dyck path.

Proof.

- The empty position is a Dyck path (empty).
- Induction step:

non-Dyck path \[\rightarrow\] 1st player \[\rightarrow\] Dyck path!
Theorem [R. Nowakowski et al., 2014]

- The outcome of a (directed) tree of order n can be computed in time $O(n^2)$.
- A tree is a losing position if and only if it can be reduced to an empty tree, using two reduction operations.
TIMBER! on trees

Theorem [R. Nowakowski et al., 2014]

- The outcome of a (directed) tree of order n can be computed in time $O(n^2)$.
- A tree is a loosing position if and only if it can be reduced to an empty tree, using two reduction operations.

Open problems

- Is there an efficient algorithm to find the Sprague-Grundy value of a TIMBER! position on a path?
TIMBER! on trees

Theorem [R. NOWAKOWSKI et al., 2014]

- The outcome of a (directed) tree of order n can by computed in time $O(n^2)$.
- A tree is a loosing position if and only if it can be reduced to an empty tree, using two reduction operations.

Open problems

- Is there an efficient algorithm to find the Sprague-Grundy value of a TIMBER! position on a path?
- Which reductions on trees (or on paths) preserve the Sprague-Grundy value? *(One such reduction is known.)*
Theorem [R. Nowakowski et al., 2014]

- The outcome of a (directed) tree of order n can be computed in time $O(n^2)$.
- A tree is a loosing position if and only if it can be reduced to an empty tree, using two reduction operations.

Open problems

- Is there an efficient algorithm to find the Sprague-Grundy value of a TIMBER! position on a path?
- Which reductions on trees (or on paths) preserve the Sprague-Grundy value? (One such reduction is known.)
- Propagation according to the orientation?...
It’s now time to conclude...
To conclude...

Many other types of combinatorial games on graphs:
To conclude...

Many other types of combinatorial games on graphs:

- Graph deletion games
Many other types of combinatorial games on graphs:

- Graph deletion games
- Avoidance / Achievement games (adding edges until some structure appears, or while some structure does not appear...)
To conclude...

Many other types of combinatorial games on graphs:

- Graph deletion games
- Avoidance / Achievement games (adding edges until some structure appears, or while some structure does not appear...)
- PEG DUOTAIRE (2-player version of PEG SOLITAIRE)
Many other types of combinatorial games on graphs:

- Graph deletion games
- Avoidance / Achievement games (adding edges until some structure appears, or while some structure does not appear...)
- **PEG DUOTAIRE** (2-player version of **PEG SOLITAIRE**)
- Take your favourite “graph colouring problem” and consider its combinatorial game version...

 Acyclic, 2-distance and a few others in [G. Beaulieu, K. Burke, E. Duchêne, 2013]
Many other types of combinatorial games on graphs:

- Graph deletion games
- Avoidance / Achievement games (adding edges until some structure appears, or while some structure does not appear...)
- Peg Duotaire (2-player version of Peg Solitaire)
- Take your favourite “graph colouring problem” and consider its combinatorial game version...

 Acyclic, 2-distance and a few others in [G. Beaulieu, K. Burke, E. Duchêne, 2013]

- Partisan games (different options for players, e.g. playing with black or white tokens)
Many other types of combinatorial games on graphs:

- Graph deletion games
- Avoidance / Achievement games (adding edges until some structure appears, or while some structure does not appear...)
- $PEG_{DUOTARIE}$ (2-player version of $PEG\ SOLITAIRE$)
- Take your favourite “graph colouring problem” and consider its combinatorial game version...

 Acyclic, 2-distance and a few others in [G. Beaulieu, K. Burke, E. Duchêne, 2013]

- Partisan games (different options for players, e.g. playing with black or white tokens)
- ...
To conclude...

Human beings are never more ingenious than in the invention of games.

Gottfried Wilhelm Leibniz

We don't stop playing because we grow old; we grow old because we stop playing.

George Bernard Shaw
To conclude...

Human beings are never more ingenious than in the invention of games.

Thank you for your attention...

We don't stop playing because we grow old; we grow old because we stop playing.