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Chapter 1

Multi-variable calculus

see Kaplan, Chapter 2: 2.1-2.22, Chapter 3: 3.9,

Here we consider many fundamental notions from the calculus of many variables.

1.1 Implicit functions

The implicit function theorem is as follows:

Theorem

For a given f(x, y) with f = 0 and ∂f/∂y 6= 0 at the point (xo, yo), there corresponds a
unique function y(x) in the neighborhood of (xo, yo).

More generally, we can think of a relation such as

f(x1, x2, . . . , xN , y) = 0, (1.1)

also written as
f(xn, y) = 0, n = 1, 2, . . . , N, (1.2)

in some region as an implicit function of y with respect to the other variables. We cannot
have ∂f/∂y = 0, because then f would not depend on y in this region. In principle, we can
write

y = y(x1, x2, . . . , xN), or y = y(xn), n = 1, . . . , N, (1.3)

if ∂f/∂y 6= 0.
The derivative ∂y/∂xn can be determined from f = 0 without explicitly solving for y.

First, from the definition of the total derivative, we have

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + . . .+

∂f

∂xn
dxn + . . .+

∂f

∂xN
dxN +

∂f

∂y
dy = 0. (1.4)

Differentiating with respect to xn while holding all the other xm, m 6= n, constant, we get

∂f

∂xn
+
∂f

∂y

∂y

∂xn
= 0, (1.5)

13
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so that
∂y

∂xn
= −

∂f
∂xn

∂f
∂y

, (1.6)

which can be found if ∂f/∂y 6= 0. That is to say, y can be considered a function of xn if
∂f/∂y 6= 0.

Let us now consider the equations

f(x, y, u, v) = 0, (1.7)

g(x, y, u, v) = 0. (1.8)

Under certain circumstances, we can unravel Eqs. (1.7-1.8), either algebraically or numeri-
cally, to form u = u(x, y), v = v(x, y). The conditions for the existence of such a functional
dependency can be found by differentiation of the original equations; for example, differen-
tiating Eq. (1.7) gives

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂u
du+

∂f

∂v
dv = 0. (1.9)

Holding y constant and dividing by dx, we get

∂f

∂x
+
∂f

∂u

∂u

∂x
+
∂f

∂v

∂v

∂x
= 0. (1.10)

Operating on Eq. (1.8) in the same manner, we get

∂g

∂x
+
∂g

∂u

∂u

∂x
+
∂g

∂v

∂v

∂x
= 0. (1.11)

Similarly, holding x constant and dividing by dy, we get

∂f

∂y
+
∂f

∂u

∂u

∂y
+
∂f

∂v

∂v

∂y
= 0, (1.12)

∂g

∂y
+
∂g

∂u

∂u

∂y
+
∂g

∂v

∂v

∂y
= 0. (1.13)

Equations (1.10,1.11) can be solved for ∂u/∂x and ∂v/∂x, and Eqs. (1.12,1.13) can be solved
for ∂u/∂y and ∂v/∂y by using the well known Cramer’s1 rule; see Eq. (8.93). To solve for
∂u/∂x and ∂v/∂x, we first write Eqs. (1.10,1.11) in matrix form:

( ∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

)(
∂u
∂x
∂v
∂x

)

=

(−∂f
∂x

− ∂g
∂x

)

. (1.14)

1Gabriel Cramer, 1704-1752, well-traveled Swiss-born mathematician who did enunciate his well known
rule, but was not the first to do so.
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Thus, from Cramer’s rule we have

∂u

∂x
=

∣
∣
∣
∣

−∂f
∂x

∂f
∂v

− ∂g
∂x

∂g
∂v

∣
∣
∣
∣

∣
∣
∣
∣

∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

∣
∣
∣
∣

≡ −
∂(f,g)
∂(x,v)

∂(f,g)
∂(u,v)

,
∂v

∂x
=

∣
∣
∣
∣

∂f
∂u

−∂f
∂x

∂g
∂u

− ∂g
∂x

∣
∣
∣
∣

∣
∣
∣
∣

∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

∣
∣
∣
∣

≡ −
∂(f,g)
∂(u,x)

∂(f,g)
∂(u,v)

. (1.15)

In a similar fashion, we can form expressions for ∂u/∂y and ∂v/∂y:

∂u

∂y
=

∣
∣
∣
∣

−∂f
∂y

∂f
∂v

−∂g
∂y

∂g
∂v

∣
∣
∣
∣

∣
∣
∣
∣

∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

∣
∣
∣
∣

≡ −
∂(f,g)
∂(y,v)

∂(f,g)
∂(u,v)

,
∂v

∂y
=

∣
∣
∣
∣

∂f
∂u

−∂f
∂y

∂g
∂u

−∂g
∂y

∣
∣
∣
∣

∣
∣
∣
∣

∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

∣
∣
∣
∣

≡ −
∂(f,g)
∂(u,y)

∂(f,g)
∂(u,v)

. (1.16)

Here we take the Jacobian2 matrix J of the transformation to be defined as

J =

(
∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

)

. (1.17)

This is distinguished from the Jacobian determinant, J , defined as

J = detJ =
∂(f, g)

∂(u, v)
=

∣
∣
∣
∣

∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

∣
∣
∣
∣
. (1.18)

If J 6= 0, the derivatives exist, and we indeed can form u(x, y) and v(x, y). This is the
condition for existence of implicit to explicit function conversion.

Example 1.1
If

x+ y + u6 + u+ v = 0, (1.19)

xy + uv = 1, (1.20)

find ∂u/∂x.

Note that we have four unknowns in two equations. In principle we could solve for u(x, y) and
v(x, y) and then determine all partial derivatives, such as the one desired. In practice this is not always
possible; for example, there is no general solution to sixth order polynomial equations such as we have
here.

Equations (1.19,1.20) are rewritten as

f(x, y, u, v) x+ y + u6 + u+ v = 0, (1.21)

g(x, y, u, v) = xy + uv − 1 = 0. (1.22)

2Carl Gustav Jacob Jacobi, 1804-1851, German/Prussian mathematician who used these quantities,
which were first studied by Cauchy, in his work on partial differential equations.
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Using the formula from Eq. (1.15) to solve for the desired derivative, we get

∂u

∂x
=

∣
∣
∣
∣

−∂f
∂x

∂f
∂v

− ∂g
∂x

∂g
∂v

∣
∣
∣
∣

∣
∣
∣
∣

∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

∣
∣
∣
∣

. (1.23)

Substituting, we get

∂u

∂x
=

∣
∣
∣
∣

−1 1
−y u

∣
∣
∣
∣

∣
∣
∣
∣

6u5 + 1 1
v u

∣
∣
∣
∣

=
y − u

u(6u5 + 1) − v
. (1.24)

Note when

v = 6u6 + u, (1.25)

that the relevant Jacobian determinant is zero; at such points we can determine neither ∂u/∂x nor
∂u/∂y; thus, for such points we cannot form u(x, y).

At points where the relevant Jacobian determinant ∂(f, g)/∂(u, v) 6= 0 (which includes nearly all of
the (x, y) plane), given a local value of (x, y), we can use algebra to find a corresponding u and v, which
may be multivalued, and use the formula developed to find the local value of the partial derivative.

1.2 Functional dependence

Let u = u(x, y) and v = v(x, y). If we can write u = g(v) or v = h(u), then u and v are said
to be functionally dependent. If functional dependence between u and v exists, then we can
consider f(u, v) = 0. So,

∂f

∂u

∂u

∂x
+
∂f

∂v

∂v

∂x
= 0, (1.26)

∂f

∂u

∂u

∂y
+
∂f

∂v

∂v

∂y
= 0. (1.27)

In matrix form, this is

(
∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

)( ∂f
∂u
∂f
∂v

)

=

(
0
0

)

. (1.28)

Since the right hand side is zero, and we desire a non-trivial solution, the determinant of the
coefficient matrix must be zero for functional dependency, i.e.

∣
∣
∣
∣

∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

∣
∣
∣
∣
= 0. (1.29)
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Note, since detJ = detJT , that this is equivalent to

J =

∣
∣
∣
∣

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣
∣
∣
∣
=
∂(u, v)

∂(x, y)
= 0. (1.30)

That is, the Jacobian determinant J must be zero for functional dependence.

Example 1.2
Determine if

u = y + z, (1.31)

v = x+ 2z2, (1.32)

w = x− 4yz − 2y2, (1.33)

are functionally dependent.
The determinant of the resulting coefficient matrix, by extension to three functions of three vari-

ables, is

∂(u, v, w)

∂(x, y, z)
=

∣
∣
∣
∣
∣
∣
∣

∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

∣
∣
∣
∣
∣
∣

, (1.34)

=

∣
∣
∣
∣
∣
∣

0 1 1
1 0 −4(y + z)
1 4z −4y

∣
∣
∣
∣
∣
∣

, (1.35)

= (−1)(−4y − (−4)(y + z)) + (1)(4z), (1.36)

= 4y − 4y − 4z + 4z, (1.37)

= 0. (1.38)

So, u, v, w are functionally dependent. In fact w = v − 2u2.

Example 1.3
Let

x+ y + z = 0, (1.39)

x2 + y2 + z2 + 2xz = 1. (1.40)

Can x and y be considered as functions of z?

If x = x(z) and y = y(z), then dx/dz and dy/dz must exist. If we take

f(x, y, z) = x+ y + z = 0, (1.41)

g(x, y, z) = x2 + y2 + z2 + 2xz − 1 = 0, (1.42)

df =
∂f

∂z
dz +

∂f

∂x
dx+

∂f

∂y
dy = 0, (1.43)
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dg =
∂g

∂z
dz +

∂g

∂x
dx+

∂g

∂y
dy = 0, (1.44)

∂f

∂z
+
∂f

∂x

dx

dz
+
∂f

∂y

dy

dz
= 0, (1.45)

∂g

∂z
+
∂g

∂x

dx

dz
+
∂g

∂y

dy

dz
= 0, (1.46)

( ∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)( dx
dz
dy
dz

)

=

(−∂f
∂z

−∂g
∂z

)

, (1.47)

then the solution matrix (dx/dz, dy/dz)
T

can be obtained by Cramer’s rule:

dx

dz
=

∣
∣
∣
∣

−∂f
∂z

∂f
∂y

−∂g
∂z

∂g
∂y

∣
∣
∣
∣

∣
∣
∣
∣

∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

∣
∣
∣
∣

=

∣
∣
∣
∣

−1 1
−(2z + 2x) 2y

∣
∣
∣
∣

∣
∣
∣
∣

1 1
2x+ 2z 2y

∣
∣
∣
∣

=
−2y + 2z + 2x

2y − 2x− 2z
= −1, (1.48)

dy

dz
=

∣
∣
∣
∣

∂f
∂x −∂f

∂z
∂g
∂x −∂g

∂z

∣
∣
∣
∣

∣
∣
∣
∣

∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

∣
∣
∣
∣

=

∣
∣
∣
∣

1 −1
2x+ 2z −(2z + 2x)

∣
∣
∣
∣

∣
∣
∣
∣

1 1
2x+ 2z 2y

∣
∣
∣
∣

=
0

2y − 2x− 2z
. (1.49)

Note here that in the expression for dx/dz that the numerator and denominator cancel; there is no
special condition defined by the Jacobian determinant of the denominator being zero. In the second,
dy/dz = 0 if y − x− z 6= 0, in which case this formula cannot give us the derivative.

Now, in fact, it is easily shown by algebraic manipulations (which for more general functions are
not possible) that

x(z) = −z ±
√

2

2
, (1.50)

y(z) = ∓
√

2

2
. (1.51)

This forms two distinct lines in x, y, z space. Note that on the lines of intersection of the two surfaces
that J = 2y − 2x− 2z = ∓2

√
2, which is never indeterminate.

The two original functions and their loci of intersection are plotted in Fig. 1.1. It is seen that the
surface represented by the linear function, Eq. (1.39), is a plane, and that represented by the quadratic
function, Eq. (1.40), is an open cylindrical tube. Note that planes and cylinders may or may not
intersect. If they intersect, it is most likely that the intersection will be a closed arc. However, when
the plane is aligned with the axis of the cylinder, the intersection will be two non-intersecting lines;
such is the case in this example.

Let us see how slightly altering the equation for the plane removes the degeneracy. Take now

5x+ y + z = 0, (1.52)

x2 + y2 + z2 + 2xz = 1. (1.53)

Can x and y be considered as functions of z? If x = x(z) and y = y(z), then dx/dz and dy/dz must
exist. If we take

f(x, y, z) = 5x+ y + z = 0, (1.54)

g(x, y, z) = x2 + y2 + z2 + 2xz − 1 = 0, (1.55)
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Figure 1.1: Surfaces of x+y+z = 0 and x2 +y2 +z2 +2xz = 1, and their loci of intersection.

then the solution matrix (dx/dz, dy/dz)
T

is found as before:

dx

dz
=

∣
∣
∣
∣

−∂f
∂z

∂f
∂y

−∂g
∂z

∂g
∂y

∣
∣
∣
∣

∣
∣
∣
∣

∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

∣
∣
∣
∣

=

∣
∣
∣
∣

−1 1
−(2z + 2x) 2y

∣
∣
∣
∣

∣
∣
∣
∣

5 1
2x+ 2z 2y

∣
∣
∣
∣

=
−2y + 2z + 2x

10y− 2x− 2z
, (1.56)

dy

dz
=

∣
∣
∣
∣

∂f
∂x −∂f

∂z
∂g
∂x −∂g

∂z

∣
∣
∣
∣

∣
∣
∣
∣

∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

∣
∣
∣
∣

=

∣
∣
∣
∣

5 −1
2x+ 2z −(2z + 2x)

∣
∣
∣
∣

∣
∣
∣
∣

5 1
2x+ 2z 2y

∣
∣
∣
∣

=
−8x− 8z

10y − 2x− 2z
. (1.57)

The two original functions and their loci of intersection are plotted in Fig. 1.2.
Straightforward algebra in this case shows that an explicit dependency exists:

x(z) =
−6z ±

√
2
√

13 − 8z2

26
, (1.58)

y(z) =
−4z ∓ 5

√
2
√

13 − 8z2

26
. (1.59)

These curves represent the projection of the curve of intersection on the x, z and y, z planes, respectively.
In both cases, the projections are ellipses.

1.3 Coordinate transformations

Many problems are formulated in three-dimensional Cartesian3 space. However, many of
these problems, especially those involving curved geometrical bodies, are more efficiently

3René Descartes, 1596-1650, French mathematician and philosopher.
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Figure 1.2: Surfaces of 5x+y+z = 0 and x2+y2+z2+2xz = 1, and their loci of intersection.

posed in a non-Cartesian, curvilinear coordinate system. To facilitate analysis involving
such geometries, one needs techniques to transform from one coordinate system to another.

For this section, we will utilize an index notation, introduced by Einstein.4 We will take
untransformed Cartesian coordinates to be represented by (ξ1, ξ2, ξ3). Here the superscript
is an index and does not represent a power of ξ. We will denote this point by ξi, where
i = 1, 2, 3. Because the space is Cartesian, we have the usual Euclidean5 distance from
Pythagoras’6 theorem for a differential arc length ds:

(ds)2 =
(
dξ1
)2

+
(
dξ2
)2

+
(
dξ3
)2
, (1.60)

(ds)2 =

3∑

i=1

dξidξi ≡ dξidξi. (1.61)

Here we have adopted Einstein’s summation convention that when an index appears twice,
a summation from 1 to 3 is understood. Though it makes little difference here, to strictly
adhere to the conventions of the Einstein notation, which require a balance of sub- and
superscripts, we should more formally take

(ds)2 = dξjδjidξ
i = dξidξ

i, (1.62)

4Albert Einstein, 1879-1955, German/American physicist and mathematician.
5Euclid of Alexandria, ∼ 325 B.C.-∼ 265 B.C., Greek geometer.
6Pythagoras of Samos, c. 570-c. 490 BC, Ionian Greek mathematician, philosopher, and mystic to whom

this theorem is traditionally credited.
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where δji is the Kronecker7 delta,

δji = δji = δij =

{
1, i = j,
0, i 6= j.

(1.63)

In matrix form, the Kronecker delta is simply the identity matrix I, e.g.

δji = δji = δij = I =





1 0 0
0 1 0
0 0 1



 . (1.64)

Now let us consider a point P whose representation in Cartesian coordinates is (ξ1, ξ2, ξ3)
and map those coordinates so that it is now represented in a more convenient (x1, x2, x3)
space. This mapping is achieved by defining the following functional dependencies:

x1 = x1(ξ1, ξ2, ξ3), (1.65)

x2 = x2(ξ1, ξ2, ξ3), (1.66)

x3 = x3(ξ1, ξ2, ξ3). (1.67)

We note that in this example we make the common presumption that the entity P is invariant
and that it has different representations in different coordinate systems. Thus, the coordinate
axes change, but the location of P does not. This is known as an alias transformation. This
contrasts another common approach in which a point is represented in an original space,
and after application of a transformation, it is again represented in the original space in an
altered state. This is known as an alibi transformation. The alias approach transforms the
axes; the alibi approach transforms the elements of the space.

Taking derivatives can tell us whether the inverse exists.

dx1 =
∂x1

∂ξ1
dξ1 +

∂x1

∂ξ2
dξ2 +

∂x1

∂ξ3
dξ3 =

∂x1

∂ξj
dξj, (1.68)

dx2 =
∂x2

∂ξ1
dξ1 +

∂x2

∂ξ2
dξ2 +

∂x2

∂ξ3
dξ3 =

∂x2

∂ξj
dξj, (1.69)

dx3 =
∂x3

∂ξ1
dξ1 +

∂x3

∂ξ2
dξ2 +

∂x3

∂ξ3
dξ3 =

∂x3

∂ξj
dξj, (1.70)





dx1

dx2

dx3



 =






∂x1

∂ξ1
∂x1

∂ξ2
∂x1

∂ξ3

∂x2

∂ξ1
∂x2

∂ξ2
∂x2

∂ξ3

∂x3

∂ξ1
∂x3

∂ξ2
∂x3

∂ξ3










dξ1

dξ2

dξ3



 , (1.71)

dxi =
∂xi

∂ξj
dξj. (1.72)

In order for the inverse to exist we must have a non-zero Jacobian determinant for the
transformation, i.e.

∂(x1, x2, x3)

∂(ξ1, ξ2, ξ3)
6= 0. (1.73)

7Leopold Kronecker, 1823-1891, German/Prussian mathematician.
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As long as Eq. (1.73) is satisfied, the inverse transformation exists:

ξ1 = ξ1(x1, x2, x3), (1.74)

ξ2 = ξ2(x1, x2, x3), (1.75)

ξ3 = ξ3(x1, x2, x3). (1.76)

Likewise then,

dξi =
∂ξi

∂xj
dxj . (1.77)

1.3.1 Jacobian matrices and metric tensors

Defining the Jacobian matrix8 J to be associated with the inverse transformation, Eq. (1.77),
we take

J =
∂ξi

∂xj
=





∂ξ1

∂x1
∂ξ1

∂x2
∂ξ1

∂x3

∂ξ2

∂x1
∂ξ2

∂x2
∂ξ2

∂x3

∂ξ3

∂x1
∂ξ3

∂x2
∂ξ3

∂x3



 . (1.78)

We can then rewrite dξi from Eq. (1.77) in Gibbs’9 vector notation as

dξ = J · dx. (1.79)

Now for Euclidean spaces, distance must be independent of coordinate systems, so we
require

(ds)2 = dξidξi =

(
∂ξi

∂xk
dxk
)(

∂ξi

∂xl
dxl
)

= dxk
∂ξi

∂xk
∂ξi

∂xl
︸ ︷︷ ︸

gkl

dxl. (1.80)

In Gibbs’ vector notation Eq. (1.80) becomes10

(ds)2 = dξT · dξ, (1.81)

= (J · dx)T · (J · dx) . (1.82)

8The definition we adopt influences the form of many of our formulæ given throughout the remainder of
these notes. There are three obvious alternates: i) An argument can be made that a better definition of
J would be the transpose of our Jacobian matrix: J → JT . This is because when one considers that the
differential operator acts first, the Jacobian matrix is really ∂

∂xj ξ
i, and the alternative definition is more

consistent with traditional matrix notation, which would have the first row as ( ∂
∂x1 ξ

1, ∂
∂x1 ξ

2, ∂
∂x1 ξ

3), ii)
Many others, e.g. Kay, adopt as J the inverse of our Jacobian matrix: J → J−1. This Jacobian matrix is

thus defined in terms of the forward transformation, ∂xi/∂ξj, or iii) One could adopt J → (JT )
−1
. As long

as one realizes the implications of the notation, however, the convention adopted ultimately does not matter.
9Josiah Willard Gibbs, 1839-1903, prolific American mechanical engineer and mathematician with a life-

time affiliation with Yale University as well as the recipient of the first American doctorate in engineering.
10Common alternate formulations of vector mechanics of non-Cartesian spaces view the Jacobian as an

intrinsic part of the dot product and would say instead that by definition (ds)2 = dx ·dx. Such formulations
have no need for the transpose operation, especially since they do not carry forward simply to non-Cartesian
systems. The formulation used here has the advantage of explicitly recognizing the linear algebra operations
necessary to form the scalar ds. These same alternate notations reserve the dot product for that between
a vector and a vector and would hold instead that dξ = Jdx. However, this could be confused with raising
the dimension of the quantity of interest; whereas we use the dot to lower the dimension.
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Now, it can be shown that (J · dx)T = dxT · JT (see also Sec. 8.2.3.5), so

(ds)2 = dxT · JT · J
︸ ︷︷ ︸

G

·dx. (1.83)

If we define the metric tensor, gkl or G, as follows:

gkl =
∂ξi

∂xk
∂ξi

∂xl
, (1.84)

G = JT · J, (1.85)

then we have, equivalently in both Einstein and Gibbs notations,

(ds)2 = dxkgkldx
l, (1.86)

(ds)2 = dxT · G · dx. (1.87)

Note that in Einstein notation, one can loosely imagine super-scripted terms in a denominator
as being sub-scripted terms in a corresponding numerator. Now gkl can be represented as a
matrix. If we define

g = det gkl, (1.88)

it can be shown that the ratio of volumes of differential elements in one space to that of the
other is given by

dξ1 dξ2 dξ3 =
√
g dx1 dx2 dx3. (1.89)

Thus, transformations for which g = 1 are volume-preserving. Volume-preserving trans-
formations also have J = detJ = ±1. It can also be shown that if J = detJ > 0, the
transformation is locally orientation-preserving. If J = detJ < 0, the transformation is
orientation-reversing, and thus involves a reflection. So, if J = detJ = 1, the transformation
is volume- and orientation-preserving.

We also require dependent variables and all derivatives to take on the same values at
corresponding points in each space, e.g. if φ (φ = f(ξ1, ξ2, ξ3) = h(x1, x2, x3)) is a dependent
variable defined at (ξ̂1, ξ̂2, ξ̂3), and (ξ̂1, ξ̂2, ξ̂3) maps into (x̂1, x̂2, x̂3), we require f(ξ̂1, ξ̂2, ξ̂3) =
h(x̂1, x̂2, x̂3). The chain rule lets us transform derivatives to other spaces:

( ∂φ
∂x1

∂φ
∂x2

∂φ
∂x3 ) = ( ∂φ

∂ξ1
∂φ
∂ξ2

∂φ
∂ξ3 )





∂ξ1

∂x1
∂ξ1

∂x2
∂ξ1

∂x3

∂ξ2

∂x1
∂ξ2

∂x2
∂ξ2

∂x3

∂ξ3

∂x1
∂ξ3

∂x2
∂ξ3

∂x3





︸ ︷︷ ︸

J

, (1.90)

∂φ

∂xi
=

∂φ

∂ξj
∂ξj

∂xi
. (1.91)

Equation (1.91) can also be inverted, given that g 6= 0, to find (∂φ/∂ξ1, ∂φ/∂ξ2, ∂φ/∂ξ3).
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Employing Gibbs notation11 we can write Eq. (1.91) as

∇T
xφ = ∇T

ξφ · J. (1.92)

The fact that the gradient operator required the use of row vectors in conjunction with the
Jacobian matrix, while the transformation of distance, earlier in this section, Eq. (1.79),
required the use of column vectors is of fundamental importance, and will be soon exam-
ined further in Sec. 1.3.2 where we distinguish between what are known as covariant and
contravariant vectors.

Transposing both sides of Eq. (1.92), we could also say

∇xφ = JT · ∇ξφ. (1.93)

Inverting, we then have

∇ξφ = (JT )−1 · ∇xφ. (1.94)

Thus, in general, we could say for the gradient operator

∇ξ = (JT )−1 · ∇x. (1.95)

Contrasting Eq. (1.95) with Eq. (1.79), dξ = J ·dx, we see the gradient operation transforms
in a fundamentally different way than the differential operation d, unless we restrict attention
to an unusual J, one whose transpose is equal to its inverse. We will sometimes make this
restriction, and sometimes not. When we choose such a special J, there will be many
additional simplifications in the analysis; these are realized because it will be seen for many
such transformations that nearly all of the original Cartesian character will be retained,
albeit in a rotated, but otherwise undeformed, coordinate system. We shall later identify a
matrix whose transpose is equal to its inverse as an orthogonal matrix, Q: QT = Q−1 and
study it in detail in Secs. 6.2.1, 8.6.

One can also show the relation between ∂ξi/∂xj and ∂xi/∂ξj to be

∂ξi

∂xj
=

((
∂xi

∂ξj

)T
)−1

=

(
∂xj

∂ξi

)−1

, (1.96)





∂ξ1

∂x1
∂ξ1

∂x2
∂ξ1

∂x3

∂ξ2

∂x1
∂ξ2

∂x2
∂ξ2

∂x3

∂ξ3

∂x1
∂ξ3

∂x2
∂ξ3

∂x3



 =






∂x1

∂ξ1
∂x1

∂ξ2
∂x1

∂ξ3

∂x2

∂ξ1
∂x2

∂ξ2
∂x2

∂ξ3

∂x3

∂ξ1
∂x3

∂ξ2
∂x3

∂ξ3






−1

. (1.97)

11In Cartesian coordinates, we take ∇ξ ≡






∂
∂ξ1

∂
∂ξ2

∂
∂ξ3




. This gives rise to the natural, albeit unconventional,

notation ∇T
ξ =

( ∂
∂ξ1

∂
∂ξ2

∂
∂ξ3

)
. This notion does not extend easily to non-Cartesian systems, for which

index notation is preferred. Here, for convenience, we will take ∇T
x ≡ ( ∂

∂x1

∂
∂x2

∂
∂x3 ), and a similar

column version for ∇x.
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Thus, the Jacobian matrix J of the transformation is simply the inverse of the Jacobian ma-
trix of the inverse transformation. Note that in the very special case for which the transpose
is the inverse, that we can replace the inverse by the transpose. Note that the transpose of
the transpose is the original matrix and determines that ∂ξi/∂xj = ∂xi/∂ξj. This allows the
i to remain “upstairs” and the j to remain “downstairs.” Such a transformation will be seen
to be a pure rotation or reflection.

Example 1.4
Transform the Cartesian equation

∂φ

∂ξ1
+
∂φ

∂ξ2
=
(
ξ1
)2

+
(
ξ2
)2
. (1.98)

under the following:

1. Cartesian to linearly homogeneous affine coordinates.

Consider the following linear non-orthogonal transformation:

x1 =
2

3
ξ1 +

2

3
ξ2, (1.99)

x2 = −2

3
ξ1 +

1

3
ξ2, (1.100)

x3 = ξ3. (1.101)

This transformation is of the class of affine transformations, which are of the form

xi = Aijξ
j + bi, (1.102)

where Aij and bi are constants. Affine transformations for which bi = 0 are further distinguished
as linear homogeneous transformations. The transformation of this example is both affine and linear
homogeneous.

Equations (1.99-1.101) form a linear system of three equations in three unknowns; using standard
techniques of linear algebra allows us to solve for ξ1, ξ2, ξ3 in terms of x1, x2, x3; that is, we find the
inverse transformation, which is

ξ1 =
1

2
x1 − x2, (1.103)

ξ2 = x1 + x2, (1.104)

ξ3 = x3. (1.105)

Lines of constant x1 and x2 in the ξ1, ξ2 plane as well as lines of constant ξ1 and ξ2 in the x1, x2

plane are plotted in Fig. 1.3. Also shown is a unit square in the Cartesian ξ1, ξ2 plane, with vertices
A,B,C,D. The image of this rectangle is plotted as a parallelogram in the x1, x2 plane. It is seen the
orientation has been preserved in what amounts to a clockwise rotation accompanied by stretching;
moreover, the area (and thus the volume in three dimensions) has been decreased.

The appropriate Jacobian matrix for the inverse transformation is

J =
∂ξi

∂xj
=






∂ξ1

∂x1

∂ξ1

∂x2

∂ξ1

∂x3

∂ξ2

∂x1

∂ξ2

∂x2

∂ξ2

∂x3

∂ξ3

∂x1

∂ξ3

∂x2

∂ξ3

∂x3




 , (1.106)

J =





1
2 −1 0
1 1 0
0 0 1



 . (1.107)
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Figure 1.3: Lines of constant x1 and x2 in the ξ1, ξ2 plane and lines of constant ξ1 and ξ2 in
the x1, x2 plane for the homogeneous affine transformation of example problem.

The Jacobian determinant is

J = detJ = (1)

((
1

2

)

(1) − (−1) (1)

)

=
3

2
. (1.108)

So a unique transformation, ξ = J · x, always exists, since the Jacobian determinant is never zero.
Inversion gives x = J−1 · ξ. Since J > 0, the transformation preserves the orientation of geometric
entities. Since J > 1, a unit volume element in ξ space is larger than its image in x space.

The metric tensor is

gkl =
∂ξi

∂xk
∂ξi

∂xl
=
∂ξ1

∂xk
∂ξ1

∂xl
+
∂ξ2

∂xk
∂ξ2

∂xl
+
∂ξ3

∂xk
∂ξ3

∂xl
. (1.109)

For example for k = 1, l = 1 we get

g11 =
∂ξi

∂x1

∂ξi

∂x1
=
∂ξ1

∂x1

∂ξ1

∂x1
+
∂ξ2

∂x1

∂ξ2

∂x1
+
∂ξ3

∂x1

∂ξ3

∂x1
, (1.110)

g11 =

(
1

2

)(
1

2

)

+ (1) (1) + (0)(0) =
5

4
. (1.111)

Repeating this operation for all terms of gkl, we find the complete metric tensor is

gkl =





5
4

1
2 0

1
2 2 0
0 0 1



 , (1.112)

g = det gkl = (1)

((
5

4

)

(2) −
(

1

2

)(
1

2

))

=
9

4
. (1.113)

This is equivalent to the calculation in Gibbs notation:

G = JT · J, (1.114)
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G =





1
2 1 0
−1 1 0
0 0 1



 ·





1
2 −1 0
1 1 0
0 0 1



 , (1.115)

G =





5
4

1
2 0

1
2 2 0
0 0 1



 . (1.116)

Distance in the transformed system is given by

(ds)
2

= dxk gkl dx
l, (1.117)

(ds)
2

= dxT ·G · dx, (1.118)

(ds)
2

= ( dx1 dx2 dx3 )





5
4

1
2 0

1
2 2 0
0 0 1









dx1

dx2

dx3



 , (1.119)

(ds)
2

= ( (5
4 dx

1 + 1
2 dx

2) (1
2 dx

1 + 2 dx2) dx3 )
︸ ︷︷ ︸

=dxl=dxkgkl





dx1

dx2

dx3





︸ ︷︷ ︸

=dxl

= dxldx
l, (1.120)

(ds)
2

=
5

4

(
dx1
)2

+ 2
(
dx2
)2

+
(
dx3
)2

+ dx1 dx2. (1.121)

Detailed algebraic manipulation employing the so-called method of quadratic forms, to be discussed in
Sec. 8.12, reveals that the previous equation can be rewritten as follows:

(ds)
2

=
9

20

(
dx1 + 2dx2

)2
+

1

5

(
−2dx1 + dx2

)2
+
(
dx3
)2
. (1.122)

Direct expansion reveals the two forms for (ds)2 to be identical. Note:

• The Jacobian matrix J is not symmetric.

• The metric tensor G = JT · J is symmetric.

• The fact that the metric tensor has non-zero off-diagonal elements is a consequence of the transfor-
mation being non-orthogonal.

• We identify here a new representation of the differential distance vector in the transformed space:
dxl = dxkgkl whose significance will soon be discussed in Sec. 1.3.2.

• The distance is guaranteed to be positive. This will be true for all affine transformations in ordinary
three-dimensional Euclidean space. In the generalized space-time continuum suggested by the theory
of relativity, the generalized distance may in fact be negative; this generalized distance ds for an

infinitesimal change in space and time is given by ds2 =
(
dξ1
)2

+
(
dξ2
)2

+
(
dξ3
)2 −

(
dξ4
)2

, where the

first three coordinates are the ordinary Cartesian space coordinates and the fourth is
(
dξ4
)2

= (c dt)2,
where c is the speed of light.

Also we have the volume ratio of differential elements as

dξ1 dξ2 dξ3 =

√

9

4
dx1 dx2 dx3, (1.123)

=
3

2
dx1 dx2 dx3. (1.124)

Now we use Eq. (1.94) to find the appropriate derivatives of φ. We first note that

(JT )−1 =





1
2 1 0
−1 1 0
0 0 1





−1

=





2
3 − 2

3 0
2
3

1
3 0

0 0 1



 . (1.125)
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So 




∂φ
∂ξ1

∂φ
∂ξ2

∂φ
∂ξ3




 =





2
3 − 2

3 0
2
3

1
3 0

0 0 1









∂φ
∂x1

∂φ
∂x2

∂φ
∂x3



 =






∂x1

∂ξ1
∂x2

∂ξ1
∂x3

∂ξ1

∂x1

∂ξ2
∂x2

∂ξ2
∂x3

∂ξ2

∂x1

∂ξ3
∂x2

∂ξ3
∂x3

∂ξ3






︸ ︷︷ ︸

(JT )−1





∂φ
∂x1

∂φ
∂x2

∂φ
∂x3



 . (1.126)

Thus, by inspection,

∂φ

∂ξ1
=

2

3

∂φ

∂x1
− 2

3

∂φ

∂x2
, (1.127)

∂φ

∂ξ2
=

2

3

∂φ

∂x1
+

1

3

∂φ

∂x2
. (1.128)

So the transformed version of Eq. (1.98) becomes

(
2

3

∂φ

∂x1
− 2

3

∂φ

∂x2

)

+

(
2

3

∂φ

∂x1
+

1

3

∂φ

∂x2

)

=

(
1

2
x1 − x2

)2

+
(
x1 + x2

)2
, (1.129)

4

3

∂φ

∂x1
− 1

3

∂φ

∂x2
=

5

4

(
x1
)2

+ x1x2 + 2
(
x2
)2
. (1.130)

2. Cartesian to cylindrical coordinates.

The transformations are

x1 = ±
√

(ξ1)2 + (ξ2)2, (1.131)

x2 = tan−1

(
ξ2

ξ1

)

, (1.132)

x3 = ξ3. (1.133)

Here we have taken the unusual step of admitting negative x1. This is admissible mathematically, but
does not make sense according to our geometric intuition as it corresponds to a negative radius. Note
further that this system of equations is non-linear, and that the transformation as defined is non-unique.
For such systems, we cannot always find an explicit algebraic expression for the inverse transformation.
In this case, some straightforward algebraic and trigonometric manipulation reveals that we can find
an explicit representation of the inverse transformation, which is

ξ1 = x1 cosx2, (1.134)

ξ2 = x1 sinx2, (1.135)

ξ3 = x3. (1.136)

Lines of constant x1 and x2 in the ξ1, ξ2 plane and lines of constant ξ1 and ξ2 in the x1, x2 plane are
plotted in Fig. 1.4. Notice that the lines of constant x1 are orthogonal to lines of constant x2 in the
Cartesian ξ1, ξ2 plane; the analog holds for the x1, x2 plane. For general transformations, this will not
be the case. Also note that a square of area 1/2 × 1/2 is marked in the ξ1, ξ2 plane. Its image in
the x1, x2 plane is also indicated. The non-uniqueness of the mapping from one plane to the other is
evident.

The appropriate Jacobian matrix for the inverse transformation is

J =
∂ξi

∂xj
=






∂ξ1

∂x1

∂ξ1

∂x2

∂ξ1

∂x3

∂ξ2

∂x1

∂ξ2

∂x2

∂ξ2

∂x3

∂ξ3

∂x1

∂ξ3

∂x2

∂ξ3

∂x3




 , (1.137)
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Figure 1.4: Lines of constant x1 and x2 in the ξ1, ξ2 plane and lines of constant ξ1 and ξ2 in
the x1, x2 plane for cylindrical coordinates transformation of example problem.

J =





cosx2 −x1 sinx2 0
sinx2 x1 cosx2 0

0 0 1



 . (1.138)

The Jacobian determinant is

J = x1 cos2 x2 + x1 sin2 x2 = x1. (1.139)

So a unique transformation fails to exist when x1 = 0. For x1 > 0, the transformation is orientation-
preserving. For x1 = 1, the transformation is volume-preserving. For x1 < 0, the transformation is
orientation-reversing. This is a fundamental mathematical reason why we do not consider negative
radius. It fails to preserve the orientation of a mapped element. For x1 ∈ (0, 1), a unit element in ξ

space is smaller than a unit element in x space; the converse holds for x1 ∈ (1,∞).
The metric tensor is

gkl =
∂ξi

∂xk
∂ξi

∂xl
=
∂ξ1

∂xk
∂ξ1

∂xl
+
∂ξ2

∂xk
∂ξ2

∂xl
+
∂ξ3

∂xk
∂ξ3

∂xl
. (1.140)

For example for k = 1, l = 1 we get

g11 =
∂ξi

∂x1

∂ξi

∂x1
=
∂ξ1

∂x1

∂ξ1

∂x1
+
∂ξ2

∂x1

∂ξ2

∂x1
+
∂ξ3

∂x1

∂ξ3

∂x1
, (1.141)

g11 = cos2 x2 + sin2 x2 + 0 = 1. (1.142)

Repeating this operation, we find the complete metric tensor is

gkl =





1 0 0
0
(
x1
)2

0
0 0 1



 , (1.143)

g = det gkl =
(
x1
)2
. (1.144)
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This is equivalent to the calculation in Gibbs notation:

G = JT · J, (1.145)

G =





cosx2 sinx2 0
−x1 sinx2 x1 cosx2 0

0 0 1



 ·





cosx2 −x1 sinx2 0
sinx2 x1 cosx2 0

0 0 1



 , (1.146)

G =





1 0 0
0
(
x1
)2

0
0 0 1



 . (1.147)

Distance in the transformed system is given by

(ds)
2

= dxk gkl dx
l, (1.148)

(ds)
2

= dxT ·G · dx, (1.149)

(ds)
2

= ( dx1 dx2 dx3 )





1 0 0
0
(
x1
)2

0
0 0 1









dx1

dx2

dx3



 , (1.150)

(ds)2 = ( dx1 (x1)2dx2 dx3 )
︸ ︷︷ ︸

dxl=dxkgkl





dx1

dx2

dx3





︸ ︷︷ ︸

=dxl

= dxldx
l, (1.151)

(ds)
2

=
(
dx1
)2

+
(
x1dx2

)2
+
(
dx3
)2
. (1.152)

Note:

• The fact that the metric tensor is diagonal can be attributed to the transformation being orthogonal.

• Since the product of any matrix with its transpose is guaranteed to yield a symmetric matrix, the
metric tensor is always symmetric.

Also we have the volume ratio of differential elements as

dξ1 dξ2 dξ3 = x1 dx1 dx2 dx3. (1.153)

Now we use Eq. (1.94) to find the appropriate derivatives of φ. We first note that

(JT )−1 =





cosx2 sinx2 0
−x1 sinx2 x1 cosx2 0

0 0 1





−1

=





cosx2 − sin x2

x1 0

sinx2 cosx2

x1 0
0 0 1



 . (1.154)

So 




∂φ
∂ξ1

∂φ
∂ξ2

∂φ
∂ξ3




 =





cosx2 − sin x2

x1 0

sinx2 cosx2

x1 0
0 0 1









∂φ
∂x1

∂φ
∂x2

∂φ
∂x3



 =






∂x1

∂ξ1
∂x2

∂ξ1
∂x3

∂ξ1

∂x1

∂ξ2
∂x2

∂ξ2
∂x3

∂ξ2

∂x1

∂ξ3
∂x2

∂ξ3
∂x3

∂ξ3






︸ ︷︷ ︸

(JT )−1





∂φ
∂x1

∂φ
∂x2

∂φ
∂x3



 . (1.155)

Thus, by inspection,

∂φ

∂ξ1
= cosx2 ∂φ

∂x1
− sinx2

x1

∂φ

∂x2
, (1.156)

∂φ

∂ξ2
= sinx2 ∂φ

∂x1
+

cosx2

x1

∂φ

∂x2
. (1.157)
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So the transformed version of Eq. (1.98) becomes

(

cosx2 ∂φ

∂x1
− sinx2

x1

∂φ

∂x2

)

+

(

sinx2 ∂φ

∂x1
+

cosx2

x1

∂φ

∂x2

)

=
(
x1
)2
, (1.158)

(
cosx2 + sinx2

) ∂φ

∂x1
+

(
cosx2 − sinx2

x1

)
∂φ

∂x2
=
(
x1
)2
. (1.159)

1.3.2 Covariance and contravariance

Quantities known as contravariant vectors transform locally according to

ūi =
∂x̄i

∂xj
uj. (1.160)

We note that “local” refers to the fact that the transformation is locally linear. Eq. (1.160) is
not a general recipe for a global transformation rule. Quantities known as covariant vectors

transform locally according to

ūi =
∂xj

∂x̄i
uj. (1.161)

Here we have considered general transformations from one non-Cartesian coordinate system
(x1, x2, x3) to another (x̄1, x̄2, x̄3). Note that indices associated with contravariant quantities
appear as superscripts, and those associated with covariant quantities appear as subscripts.

In the special case where the barred coordinate system is Cartesian, we take U to denote
the Cartesian vector and say

U i =
∂ξi

∂xj
uj, Ui =

∂xj

∂ξi
uj . (1.162)

Example 1.5
Let’s say (x, y, z) is a normal Cartesian system and define the transformation

x̄ = λx, ȳ = λy, z̄ = λz. (1.163)

Now we can assign velocities in both the unbarred and barred systems:

ux =
dx

dt
, uy =

dy

dt
, uz =

dz

dt
, (1.164)

ūx̄ =
dx̄

dt
, ūȳ =

dȳ

dt
, ūz̄ =

dz̄

dt
, (1.165)

ūx̄ =
∂x̄

∂x

dx

dt
, ūȳ =

∂ȳ

∂y

dy

dt
, ūz̄ =

∂z̄

∂z

dz

dt
, (1.166)

ūx̄ = λux, ūȳ = λuy, ūz̄ = λuz , (1.167)

ūx̄ =
∂x̄

∂x
ux, ūȳ =

∂ȳ

∂y
uy, ūz̄ =

∂z̄

∂z
uz. (1.168)

CC BY-NC-ND. 29 July 2012, Sen & Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


32 CHAPTER 1. MULTI-VARIABLE CALCULUS

This suggests the velocity vector is contravariant.
Now consider a vector which is the gradient of a function f(x, y, z). For example, let

f(x, y, z) = x+ y2 + z3, (1.169)

ux =
∂f

∂x
, uy =

∂f

∂y
, uz =

∂f

∂z
, (1.170)

ux = 1, uy = 2y, uz = 3z2. (1.171)

In the new coordinates

f
( x̄

λ
,
ȳ

λ
,
z̄

λ

)

=
x̄

λ
+
ȳ2

λ2
+
z̄3

λ3
, (1.172)

so

f̄ (x̄, ȳ, z̄) =
x̄

λ
+
ȳ2

λ2
+
z̄3

λ3
. (1.173)

Now

ūx̄ =
∂f̄

∂x̄
, ūȳ =

∂f̄

∂ȳ
, ūz̄ =

∂f̄

∂z̄
, (1.174)

ūx̄ =
1

λ
, ūȳ =

2ȳ

λ2
, ūz̄ =

3z̄2

λ3
. (1.175)

In terms of x, y, z, we have

ūx̄ =
1

λ
, ūȳ =

2y

λ
, ūz̄ =

3z2

λ
. (1.176)

So it is clear here that, in contrast to the velocity vector,

ūx̄ =
1

λ
ux, ūȳ =

1

λ
uy, ūz̄ =

1

λ
uz. (1.177)

More generally, we find for this case that

ūx̄ =
∂x

∂x̄
ux, ūȳ =

∂y

∂ȳ
uy, ūz̄ =

∂z

∂z̄
uz, (1.178)

which suggests the gradient vector is covariant.

Contravariant tensors transform locally according to

v̄ij =
∂x̄i

∂xk
∂x̄j

∂xl
vkl. (1.179)

Covariant tensors transform locally according to

v̄ij =
∂xk

∂x̄i
∂xl

∂x̄j
vkl. (1.180)

Mixed tensors transform locally according to

v̄ij =
∂x̄i

∂xk
∂xl

∂x̄j
vkl . (1.181)
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Figure 1.5: Contours for the transformation x1 = ξ1 + (ξ2)2, x2 = ξ2 + (ξ1)3 (left) and a
blown-up version (right) including a pair of contravariant basis vectors, which are tangent
to the contours, and covariant basis vectors, which are normal to the contours.

Recall that variance is another term for gradient and that co- denotes with. A vector which
is co-variant is aligned with the variance or the gradient. Recalling next that contra- denotes
against, a vector which is contra-variant is aligned against the variance or the gradient.
This results in a set of contravariant basis vectors being tangent to lines of xi = C, while
covariant basis vectors are normal to lines of xi = C. A vector in space has two natural
representations, one on a contravariant basis, and the other on a covariant basis. The
contravariant representation seems more natural because it is similar to the familiar i, j, and
k for Cartesian systems, though both can be used to obtain equivalent results.

For the transformation x1 = ξ1 + (ξ2)2, x2 = ξ2 + (ξ1)3, Figure 1.5 gives a plot of a
set of lines of constant x1 and x2 in the Cartesian ξ1, ξ2 plane, along with a local set of
contravariant and covariant basis vectors. Note the covariant basis vectors, because they
are directly related to the gradient vector, point in the direction of most rapid change of x1

and x2 and are orthogonal to contours on which x1 and x2 are constant. The contravariant
vectors are tangent to the contours. It can be shown that the contravariant vectors are
aligned with the columns of J, and the covariant vectors are aligned with the rows of J−1.
This transformation has some special properties. Near the origin, the higher order terms
become negligible, and the transformation reduces to the identity mapping x1 ∼ ξ1, x2 ∼ ξ2.
As such, in the neighborhood of the origin, one has J = I, and there is no change in
area or orientation of an element. Moreover, on each of the coordinate axes x1 = ξ1 and
x2 = ξ2; additionally, on each of the coordinate axes J = 1, so in those special locations the
transformation is area- and orientation-preserving. This non-linear transformation can be
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shown to be singular where J = 0; this occurs when ξ2 = 1/(6(ξ1)2). As J → 0, the contours
of ξ1 align more and more with the contours of ξ2, and thus the contravariant basis vectors
come closer to paralleling each other. When J = 0, the two contours of each osculate. At
such points there is only one linearly independent contravariant basis vector, which is not
enough to represent an arbitrary vector in a linear combination. An analog holds for the
covariant basis vectors. In the first and fourth quadrants and some of the second and third,
the transformation is orientation-reversing. The transformation is orientation-preserving in
most of the second and third quadrants.

Example 1.6
Consider the vector fields defined in Cartesian coordinates by

a) U i =

(
ξ1

ξ2

)

, b) U i =

(
ξ1

2ξ2

)

. (1.182)

At the point

P :

(
ξ1

ξ2

)

=

(
1
1

)

, (1.183)

find the covariant and contravariant representations of both cases of U i in cylindrical coordinates.

a) At P in the Cartesian system, we have the contravariant

U i =

(
ξ1
ξ2

)∣
∣
∣
∣
ξ1=1,ξ2=1

=

(
1
1

)

. (1.184)

For a Cartesian coordinate system, the metric tensor gij = δij = gji = δji. Thus, the covariant
representation in the Cartesian system is

Uj = gjiU
i = δjiU

i =

(
1 0
0 1

)(
1
1

)

=

(
1
1

)

. (1.185)

Now consider cylindrical coordinates: ξ1 = x1 cosx2, ξ2 = x1 sinx2. For the inverse transformation, let
us insist that J > 0, so x1 =

√

(ξ1)2 + (ξ2)2, x2 = tan−1(ξ2/ξ1). Thus, at P we have a representation
of

P :

(
x1

x2

)

=

(√
2
π
4

)

. (1.186)

For the transformation, we have

J =

(
cosx2 −x1 sinx2

sinx2 x1 cosx2

)

, G = JT · J =

(
1 0
0 (x1)2

)

. (1.187)

At P , we thus have

J =

( √
2

2 −1√
2

2 1

)

, G = JT · J =

(
1 0
0 2

)

. (1.188)

Now, specializing Eq. (1.160) by considering the barred coordinate to be Cartesian, we can say

U i =
∂ξi

∂xj
uj. (1.189)
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Locally, we can use the Gibbs notation and say U = J · u, and thus get u = J−1 · U, so that the
contravariant representation is

(
u1

u2

)

=

( √
2

2 −1√
2

2 1

)−1

·
(

1
1

)

=

( 1√
2

1√
2

− 1
2

1
2

)

·
(

1
1

)

=

(√
2

0

)

. (1.190)

In Gibbs notation, one can interpret this as 1i+1j =
√

2er+0eθ. Note that this representation is different
than the simple polar coordinates of P given by Eq. (1.186). Let us look closer at the cylindrical basis
vectors er and eθ. In cylindrical coordinates, the contravariant representations of the unit basis vectors
must be er = (1, 0)T and eθ = (0, 1)T . So in Cartesian coordinates those basis vectors are represented
as

er = J ·
(

1
0

)

=

(
cosx2 −x1 sinx2

sinx2 x1 cosx2

)

·
(

1
0

)

=

(
cosx2

sinx2

)

, (1.191)

eθ = J ·
(

0
1

)

=

(
cosx2 −x1 sinx2

sinx2 x1 cosx2

)

·
(

0
1

)

=

(
−x1 sinx2

x1 cosx2

)

. (1.192)

In general a unit vector in the transformed space is not a unit vector in the Cartesian space. Note that
eθ is a unit vector in Cartesian space only when x1 = 1; this is also the condition for J = 1. Lastly, we
see the covariant representation is given by uj = uigij . Since gij is symmetric, we can transpose this
to get uj = gjiu

i:

(
u1

u2

)

= G ·
(
u1

u2

)

=

(
1 0
0 2

)

·
(√

2
0

)

=

(√
2

0

)

. (1.193)

This simple vector field has an identical contravariant and covariant representation. The appropriate
invariant quantities are independent of the representation:

UiU
i = ( 1 1 )

(
1
1

)

= 2, (1.194)

uiu
i = (

√
2 0 )

(√
2

0

)

= 2. (1.195)

Thought tempting, we note that there is no clear way to form the representation xix
i to demonstrate

any additional invariance.

b) At P in the Cartesian system, we have the contravariant

U i =

(
ξ1
2ξ2

)∣
∣
∣
∣
ξ1=1,ξ2=1

=

(
1
2

)

. (1.196)

In the same fashion as demonstrated in part a), we find the contravariant representation of U i in
cylindrical coordinates at P is

(
u1

u2

)

=

( √
2

2 −1√
2

2 1

)−1

·
(

1
2

)

=

( 1√
2

1√
2

− 1
2

1
2

)

·
(

1
2

)

=

( 3√
2

1
2

)

. (1.197)

In Gibbs notation, we could interpret this as 1i + 2j = (3/
√

2)er + (1/2)eθ.
The covariant representation is given once again by uj = gjiu

i:

(
u1

u2

)

= G ·
(
u1

u2

)

=

(
1 0
0 2

)

·
( 3√

2
1
2

)

=

(
3√
2

1

)

. (1.198)
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This less simple vector field has distinct contravariant and covariant representations. However, the
appropriate invariant quantities are independent of the representation:

UiU
i = ( 1 2 )

(
1
2

)

= 5, (1.199)

uiu
i =

( 3√
2

1
)
( 3√

2
1
2

)

= 5. (1.200)

The idea of covariant and contravariant derivatives play an important role in mathemat-
ical physics, namely in that the equations should be formulated such that they are invariant
under coordinate transformations. This is not particularly difficult for Cartesian systems,
but for non-orthogonal systems, one cannot use differentiation in the ordinary sense but
must instead use the notion of covariant and contravariant derivatives, depending on the
problem. The role of these terms was especially important in the development of the theory
of relativity.

Consider a contravariant vector ui defined in xi which has corresponding components U i

in the Cartesian ξi. Take wij and W i
j to represent the covariant spatial derivative of ui and

U i, respectively. Let’s use the chain rule and definitions of tensorial quantities to arrive at
a formula for covariant differentiation. From the definition of contravariance, Eq. (1.160),

U i =
∂ξi

∂xl
ul. (1.201)

Take the derivative in Cartesian space and then use the chain rule:

W i
j =

∂U i

∂ξj
=

∂U i

∂xk
∂xk

∂ξj
, (1.202)

=







∂

∂xk

(
∂ξi

∂xl
ul
)

︸ ︷︷ ︸

=U i







∂xk

∂ξj
, (1.203)

=

(
∂2ξi

∂xk∂xl
ul +

∂ξi

∂xl
∂ul

∂xk

)
∂xk

∂ξj
, (1.204)

W p
q =

(
∂2ξp

∂xk∂xl
ul +

∂ξp

∂xl
∂ul

∂xk

)
∂xk

∂ξq
. (1.205)

From the definition of a mixed tensor, Eq. (1.181),

wij = W p
q

∂xi

∂ξp
∂ξq

∂xj
, (1.206)
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=

(
∂2ξp

∂xk∂xl
ul +

∂ξp

∂xl
∂ul

∂xk

)
∂xk

∂ξq
︸ ︷︷ ︸

=W p
q

∂xi

∂ξp
∂ξq

∂xj
, (1.207)

=
∂2ξp

∂xk∂xl
∂xk

∂ξq
∂xi

∂ξp
∂ξq

∂xj
ul +

∂ξp

∂xl
∂xk

∂ξq
∂xi

∂ξp
∂ξq

∂xj
∂ul

∂xk
, (1.208)

=
∂2ξp

∂xk∂xl
∂xk

∂xj
︸︷︷︸

δk
j

∂xi

∂ξp
ul +

∂xi

∂xl
︸︷︷︸

δi
l

∂xk

∂xj
︸︷︷︸

δk
j

∂ul

∂xk
, (1.209)

=
∂2ξp

∂xk∂xl
δkj
∂xi

∂ξp
ul + δilδ

k
j

∂ul

∂xk
, (1.210)

=
∂2ξp

∂xj∂xl
∂xi

∂ξp
ul +

∂ui

∂xj
. (1.211)

Here, we have used the identity that

∂xi

∂xj
= δij , (1.212)

where δij is another form of the Kronecker delta. We define the Christoffel12 symbols Γijl as
follows:

Γijl =
∂2ξp

∂xj∂xl
∂xi

∂ξp
, (1.213)

and use the term ∆j to represent the covariant derivative. Thus, the covariant derivative of
a contravariant vector ui is as follows:

∆ju
i = wij =

∂ui

∂xj
+ Γijlu

l. (1.214)

Example 1.7
Find ∇T · u in cylindrical coordinates. The transformations are

x1 = +

√

(ξ1)
2

+ (ξ2)
2
, (1.215)

x2 = tan−1

(
ξ2

ξ1

)

, (1.216)

x3 = ξ3. (1.217)

The inverse transformation is

ξ1 = x1 cosx2, (1.218)

ξ2 = x1 sinx2, (1.219)

ξ3 = x3. (1.220)

12Elwin Bruno Christoffel, 1829-1900, German mathematician.
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This corresponds to finding

∆iu
i = wii =

∂ui

∂xi
+ Γiilu

l. (1.221)

Now for i = j

Γiilu
l =

∂2ξp

∂xi∂xl
∂xi

∂ξp
ul, (1.222)

=
∂2ξ1

∂xi∂xl
∂xi

∂ξ1
ul +

∂2ξ2

∂xi∂xl
∂xi

∂ξ2
ul +

∂2ξ3

∂xi∂xl
︸ ︷︷ ︸

=0

∂xi

∂ξ3
ul. (1.223)

Noting that all second partials of ξ3 are zero,

Γiilu
l =

∂2ξ1

∂xi∂xl
∂xi

∂ξ1
ul +

∂2ξ2

∂xi∂xl
∂xi

∂ξ2
ul. (1.224)

Expanding the i summation,

Γiilu
l =

∂2ξ1

∂x1∂xl
∂x1

∂ξ1
ul +

∂2ξ1

∂x2∂xl
∂x2

∂ξ1
ul +

∂2ξ1

∂x3∂xl
∂x3

∂ξ1
︸︷︷︸

=0

ul

+
∂2ξ2

∂x1∂xl
∂x1

∂ξ2
ul +

∂2ξ2

∂x2∂xl
∂x2

∂ξ2
ul +

∂2ξ2

∂x3∂xl
∂x3

∂ξ2
︸︷︷︸

=0

ul. (1.225)

Noting that partials of x3 with respect to ξ1 and ξ2 are zero,

Γiilu
l =

∂2ξ1

∂x1∂xl
∂x1

∂ξ1
ul +

∂2ξ1

∂x2∂xl
∂x2

∂ξ1
ul +

∂2ξ2

∂x1∂xl
∂x1

∂ξ2
ul +

∂2ξ2

∂x2∂xl
∂x2

∂ξ2
ul. (1.226)

Expanding the l summation, we get

Γiilu
l =

∂2ξ1

∂x1∂x1

∂x1

∂ξ1
u1 +

∂2ξ1

∂x1∂x2

∂x1

∂ξ1
u2 +

∂2ξ1

∂x1∂x3
︸ ︷︷ ︸

=0

∂x1

∂ξ1
u3

+
∂2ξ1

∂x2∂x1

∂x2

∂ξ1
u1 +

∂2ξ1

∂x2∂x2

∂x2

∂ξ1
u2 +

∂2ξ1

∂x2∂x3
︸ ︷︷ ︸

=0

∂x2

∂ξ1
u3

+
∂2ξ2

∂x1∂x1

∂x1

∂ξ2
u1 +

∂2ξ2

∂x1∂x2

∂x1

∂ξ2
u2 +

∂2ξ2

∂x1∂x3
︸ ︷︷ ︸

=0

∂x1

∂ξ2
u3

+
∂2ξ2

∂x2∂x1

∂x2

∂ξ2
u1 +

∂2ξ2

∂x2∂x2

∂x2

∂ξ2
u2 +

∂2ξ2

∂x2∂x3
︸ ︷︷ ︸

=0

∂x2

∂ξ2
u3. (1.227)

Again removing the x3 variation, we get

Γiilu
l =

∂2ξ1

∂x1∂x1

∂x1

∂ξ1
u1 +

∂2ξ1

∂x1∂x2

∂x1

∂ξ1
u2 +

∂2ξ1

∂x2∂x1

∂x2

∂ξ1
u1 +

∂2ξ1

∂x2∂x2

∂x2

∂ξ1
u2

+
∂2ξ2

∂x1∂x1

∂x1

∂ξ2
u1 +

∂2ξ2

∂x1∂x2

∂x1

∂ξ2
u2 +

∂2ξ2

∂x2∂x1

∂x2

∂ξ2
u1 +

∂2ξ2

∂x2∂x2

∂x2

∂ξ2
u2. (1.228)

CC BY-NC-ND. 29 July 2012, Sen & Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


1.3. COORDINATE TRANSFORMATIONS 39

Substituting for the partial derivatives, we find

Γiilu
l = 0u1 − sinx2 cosx2u2 − sinx2

(− sinx2

x1

)

u1 − x1 cosx2

(− sinx2

x1

)

u2

+0u1 + cosx2 sinx2u2 + cosx2

(
cosx2

x1

)

u1 − x1 sinx2

(
cosx2

x1

)

u2, (1.229)

=
u1

x1
. (1.230)

So, in cylindrical coordinates

∇T · u =
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
+
u1

x1
. (1.231)

Note: In standard cylindrical notation, x1 = r, x2 = θ, x3 = z. Considering u to be a velocity vector,
we get

∇T · u =
∂

∂r

(
dr

dt

)

+
∂

∂θ

(
dθ

dt

)

+
∂

∂z

(
dz

dt

)

+
1

r

(
dr

dt

)

, (1.232)

∇T · u =
1

r

∂

∂r

(

r
dr

dt

)

+
1

r

∂

∂θ

(

r
dθ

dt

)

+
∂

∂z

(
dz

dt

)

, (1.233)

∇T · u =
1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

+
∂uz
∂z

. (1.234)

Here we have also used the more traditional uθ = r(dθ/dt) = x1u2, along with ur = u1, uz = u3. For
practical purposes, this insures that ur, uθ, uz all have the same dimensions.

Example 1.8
Calculate the acceleration vector du/dt in cylindrical coordinates.

Start by expanding the total derivative as

du

dt
=
∂u

∂t
+ uT · ∇u.

Now, we take u to be a contravariant velocity vector and the gradient operation to be a covariant
derivative. Employ index notation to get

du

dt
=

∂ui

∂t
+ uj∆ju

i, (1.235)

=
∂ui

∂t
+ uj

(
∂ui

∂xj
+ Γijlu

l

)

. (1.236)

After an extended calculation similar to the previous example, one finds after expanding all terms that

du

dt
=






∂u1

∂t
∂u2

∂t
∂u3

∂t




+






u1 ∂u1

∂x1 + u2 ∂u1

∂x2 + u3 ∂u1

∂x3

u1 ∂u2

∂x1 + u2 ∂u2

∂x2 + u3 ∂u2

∂x3

u1 ∂u3

∂x1 + u2 ∂u3

∂x2 + u3 ∂u3

∂x3




+





−x1
(
u2
)2

2u
1u2

x1

0



 . (1.237)
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The last term is related to the well known Coriolis13 and centripetal acceleration terms. However, these
are not in the standard form to which most are accustomed. To arrive at that standard form, one must
return to a so-called physical representation. Here again take x1 = r, x2 = θ, and x3 = z. Also take
ur = dr/dt = u1, uθ = r(dθ/dt) = x1u2, uz = dz/dt = u3. Then the r acceleration equation becomes

dur
dt

=
∂ur
∂t

+ ur
∂ur
∂r

+
uθ
r

∂ur
∂θ

+ uz
∂ur
∂z

− u2
θ

r
︸︷︷︸

centripetal

. (1.238)

Here the final term is the traditional centripetal acceleration. The θ acceleration is slightly more
complicated. First one writes

d

dt

(
dθ

dt

)

=
∂

∂t

(
dθ

dt

)

+
dr

dt

∂

∂r

(
dθ

dt

)

+
dθ

dt

∂

∂θ

(
dθ

dt

)

+
dz

dt

∂

∂z

(
dθ

dt

)

+ 2
dr
dt
dθ
dt

r
. (1.239)

Now, here one is actually interested in duθ/dt, so both sides are multiplied by r and then one operates
to get

duθ
dt

= r
∂

∂t

(
dθ

dt

)

+ r
dr

dt

∂

∂r

(
dθ

dt

)

+ r
dθ

dt

∂

∂θ

(
dθ

dt

)

+ r
dz

dt

∂

∂z

(
dθ

dt

)

+ 2
dr

dt

dθ

dt
, (1.240)

=
∂

∂t

(

r
dθ

dt

)

+
dr

dt

(
∂

∂r

(

r
dθ

dt

)

− dθ

dt

)

+
r dθdt
r

∂

∂θ

(

r
dθ

dt

)

+
dz

dt

∂

∂z

(

r
dθ

dt

)

+ 2
dr

dt

(
r dθdt
)

r
,(1.241)

=
∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+ uz
∂uθ
∂z

+
uruθ
r

︸ ︷︷ ︸

Coriolis

. (1.242)

The final term here is the Coriolis acceleration. The z acceleration then is easily seen to be

duz
dt

=
∂uz
∂t

+ ur
∂uz
∂r

+
uθ
r

∂uz
∂θ

+ uz
∂uz
∂z

. (1.243)

We summarize some useful identities, all of which can be proved, as well as some other
common notation, as follows

gkl =
∂ξi

∂xk
∂ξi

∂xl
, (1.244)

g = det gij, (1.245)

gikg
kj = gji = gij = δji = δij = δij = δij , (1.246)

uj = uigij, (1.247)

ui = gijuj, (1.248)

uT · v = uiv
i = uivi = uigijv

j = uig
ijvj , (1.249)

u× v = ǫijkgjmgknu
mvn = ǫijkujvk, (1.250)

13Gaspard-Gustave Coriolis, 1792-1843, French mechanician.

CC BY-NC-ND. 29 July 2012, Sen & Powers.

http://en.wikipedia.org/wiki/Gaspard-Gustave_Coriolis
http://creativecommons.org/licenses/by-nc-nd/3.0/


1.3. COORDINATE TRANSFORMATIONS 41

Γijk =
∂2ξp

∂xj∂xk
∂xi

∂ξp
=

1

2
gip
(
∂gpj
∂xk

+
∂gpk
∂xj

− ∂gjk
∂xp

)

, (1.251)

∇u = ∆ju
i = ui,j =

∂ui

∂xj
+ Γijlu

l, (1.252)

div u = ∇T · u = ∆iu
i = ui,i =

∂ui

∂xi
+ Γiilu

l =
1√
g

∂

∂xi
(√

g ui
)
, (1.253)

curl u = ∇× u = ǫijkuk,j = ǫijkgkpu
p
,j = ǫijkgkp

(
∂up

∂xj
+ Γpjlu

l

)

, (1.254)

du

dt
=

∂u

∂t
+ uT · ∇u =

∂ui

∂t
+ uj

∂ui

∂xj
+ Γijlu

luj, (1.255)

grad φ = ∇φ = φ,i =
∂φ

∂xi
, (1.256)

div grad φ = ∇2φ = ∇T · ∇φ = gijφ,ij =
∂

∂xj

(

gij
∂φ

∂xi

)

+ Γjjkg
ik ∂φ

∂xi
, (1.257)

=
1√
g

∂

∂xj

(√
g gij

∂φ

∂xi

)

, (1.258)

∇T = T ij,k =
∂T ij

∂xk
+ ΓilkT

lj + ΓjlkT
il, (1.259)

div T = ∇T · T = T ij,j =
∂T ij

∂xj
+ ΓiljT

lj + ΓjljT
il, (1.260)

=
1√
g

∂

∂xj
(√

g T ij
)

+ ΓijkT
jk =

1√
g

∂

∂xj

(√
g T kj

∂ξi

∂xk

)

. (1.261)

1.3.3 Orthogonal curvilinear coordinates

In this section we specialize our discussion to widely used orthogonal curvilinear coordinate
transformations. Such transformations admit non-constant diagonal metric tensors. Because
of the diagonal nature of the metric tensor, many simplifications arise. For such systems,
subscripts alone suffice. Here, we simply summarize the results.

For an orthogonal curvilinear coordinate system (q1, q2, q3), we have

ds2 = (h1dq1)
2 + (h2dq2)

2 + (h3dq3)
2, (1.262)

where

hi =

√
(
∂x1

∂qi

)2

+

(
∂x2

∂qi

)2

+

(
∂x3

∂qi

)2

. (1.263)

We can show that

grad φ = ∇φ =
1

h1

∂φ

∂q1
e1 +

1

h2

∂φ

∂q2
e2 +

1

h3

∂φ

∂q3
e3, (1.264)

div u = ∇T · u =
1

h1h2h3

(
∂

∂q1
(u1h2h3) +

∂

∂q2
(u2h3h1) +

∂

∂q3
(u3h1h2)

)

, (1.265)
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curl u = ∇× u =
1

h1h2h3

∣
∣
∣
∣
∣
∣

h1e1 h2e2 h3e3,
∂
∂q1

∂
∂q2

∂
∂q3

u1h1 u2h2 u3h3

∣
∣
∣
∣
∣
∣

, (1.266)

div grad φ = ∇2φ =
1

h1h2h3

(
∂

∂q1

(
h2h3

h1

∂φ

∂q1

)

+
∂

∂q2

(
h3h1

h2

∂φ

∂q2

)

+
∂

∂q3

(
h1h2

h3

∂φ

∂q3

))

.

(1.267)

Example 1.9
Find expressions for the gradient, divergence, and curl in cylindrical coordinates (r, θ, z) where

x1 = r cos θ, (1.268)

x2 = r sin θ, (1.269)

x3 = z. (1.270)

The 1,2 and 3 directions are associated with r, θ, and z, respectively. From Eq. (1.263), the scale
factors are

hr =

√
(
∂x1

∂r

)2

+

(
∂x2

∂r

)2

+

(
∂x3

∂r

)2

, (1.271)

=
√

cos2 θ + sin2 θ, (1.272)

= 1, (1.273)

hθ =

√
(
∂x1

∂θ

)2

+

(
∂x2

∂θ

)2

+

(
∂x3

∂θ

)2

, (1.274)

=
√

r2 sin2 θ + r2 cos2 θ, (1.275)

= r, (1.276)

hz =

√
(
∂x1

∂z

)2

+

(
∂x2

∂z

)2

+

(
∂x3

∂z

)2

, (1.277)

= 1, (1.278)

so that

grad φ =
∂φ

∂r
er +

1

r

∂φ

∂θ
eθ +

∂φ

∂z
ez, (1.279)

div u =
1

r

(
∂

∂r
(urr) +

∂

∂θ
(uθ) +

∂

∂z
(uzr)

)

=
∂ur
∂r

+
ur
r

+
1

r

∂uθ
∂θ

+
∂uz
∂z

, (1.280)

curl u =
1

r

∣
∣
∣
∣
∣
∣

er reθ ez
∂
∂r

∂
∂θ

∂
∂z

ur uθr uz

∣
∣
∣
∣
∣
∣

. (1.281)
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1.4 Maxima and minima

Consider the real function f(x), where x ∈ [a, b]. Extrema are at x = xm, where f ′(xm) = 0,
if xm ∈ [a, b]. It is a local minimum, a local maximum, or an inflection point according to
whether f ′′(xm) is positive, negative or zero, respectively.

Now consider a function of two variables f(x, y), with x ∈ [a, b], y ∈ [c, d]. A necessary
condition for an extremum is

∂f

∂x
(xm, ym) =

∂f

∂y
(xm, ym) = 0. (1.282)

where xm ∈ [a, b], ym ∈ [c, d]. Next, we find the Hessian14 matrix:

H =

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

)

. (1.283)

We use H and its elements to determine the character of the local extremum:

• f is a maximum if ∂2f/∂x2 < 0, ∂2f/∂y2 < 0, and ∂2f/∂x∂y <
√

(∂2f/∂x2)(∂2f/∂y2),

• f is a minimum if ∂2f/∂x2 > 0, ∂2f/∂y2 > 0, and ∂2f/∂x∂y <
√

(∂2f/∂x2)(∂2f/∂y2),

• f is a saddle otherwise, as long as detH 6= 0, and

• if detH = 0, higher order terms need to be considered.

Note that the first two conditions for maximum and minimum require that terms on the
diagonal of H must dominate those on the off-diagonal with diagonal terms further required
to be of the same sign. For higher dimensional systems, one can show that if all the eigen-
values of H are negative, f is maximized, and if all the eigenvalues of H are positive, f is
minimized.

One can begin to understand this by considering a Taylor15 series expansion of f(x, y).
Taking x = (x, y)T and dx = (dx, dy)T , multi-variable Taylor series expansion gives

f(x + dx) = f(x) + dxT · ∇f
︸︷︷︸

=0

+dxT · H · dx + . . . . (1.284)

At an extremum, ∇f = 0, so

f(x + dx) = f(x) + dxT · H · dx + . . . . (1.285)

Later (see p. 276 and Sec. 8.2.3.8), we shall see that, by virtue of the definition of the term
“positive definite,” if the Hessian H is positive definite, then for all dx, dxT · H · dx > 0,
which corresponds to a minimum. For negative definite H, we have a maximum.

14Ludwig Otto Hesse, 1811-1874, German mathematician, studied under Jacobi.
15Brook Taylor, 1685-1731, English mathematician, musician, and painter.
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Example 1.10
Consider extrema of

f = x2 − y2. (1.286)

Equating partial derivatives with respect to x and to y to zero, we get

∂f

∂x
= 2x = 0, (1.287)

∂f

∂y
= −2y = 0. (1.288)

This gives x = 0, y = 0. For these values we find that

H =

(
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

)

, (1.289)

=

(
2 0
0 −2

)

. (1.290)

Since detH = −4 6= 0, and ∂2f/∂x2 and ∂2f/∂y2 have different signs, the equilibrium is a saddle point.

1.4.1 Derivatives of integral expressions

Often functions are expressed in terms of integrals. For example

y(x) =

∫ b(x)

a(x)

f(x, t) dt. (1.291)

Here t is a dummy variable of integration. Leibniz’s16 rule tells us how to take derivatives
of functions in integral form:

y(x) =

∫ b(x)

a(x)

f(x, t) dt, (1.292)

dy(x)

dx
= f(x, b(x))

db(x)

dx
− f(x, a(x))

da(x)

dx
+

∫ b(x)

a(x)

∂f(x, t)

∂x
dt. (1.293)

Inverting this arrangement in a special case, we note if

y(x) = y(xo) +

∫ x

x0

f(t) dt, (1.294)

then

16Gottfried Wilhelm von Leibniz, 1646-1716, German mathematician and philosopher of great influence;
co-inventor with Sir Isaac Newton, 1643-1727, of the calculus.
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dy(x)

dx
= f(x)

dx

dx
− f(x0)

dxo
dx

+

∫ x

x0

∂f(t)

∂x
dt, (1.295)

dy(x)

dx
= f(x). (1.296)

Note that the integral expression naturally includes the initial condition that when x = x0,
y = y(x0). This needs to be expressed separately for the differential version of the equation.

Example 1.11
Find dy/dx if

y(x) =

∫ x2

x

(x+ 1)t2 dt. (1.297)

Using Leibniz’s rule we get

dy(x)

dx
= ((x + 1)x4)(2x) − ((x + 1)x2)(1) +

∫ x2

x

t2 dt, (1.298)

= 2x6 + 2x5 − x3 − x2 +

(
t3

3

)∣
∣
∣
∣

x2

x

, (1.299)

= 2x6 + 2x5 − x3 − x2 +
x6

3
− x3

3
, (1.300)

=
7x6

3
+ 2x5 − 4x3

3
− x2. (1.301)

(1.302)

In this case it is possible to integrate explicitly to achieve the same result:

y(x) = (x + 1)

∫ x2

x

t2 dt, (1.303)

= (x + 1)

(
t3

3

)∣
∣
∣
∣

x2

x

, (1.304)

= (x + 1)

(
x6

3
− x3

3

)

, (1.305)

y(x) =
x7

3
+
x6

3
− x4

3
− x3

3
, (1.306)

dy(x)

dx
=

7x6

3
+ 2x5 − 4x3

3
− x2. (1.307)

So the two methods give identical results.
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1.4.2 Calculus of variations

The problem is to find the function y(x), with x ∈ [x1, x2], and boundary conditions y(x1) =
y1, y(x2) = y2, such that

I =

∫ x2

x1

f(x, y, y′) dx, (1.308)

is an extremum. Here, we find an operation of mapping a function y(x) into a scalar I,
which can be expressed as I = F(y). The operator F which performs this task is known as
a functional.

If y(x) is the desired solution, let Y (x) = y(x) + ǫh(x), where h(x1) = h(x2) = 0. Thus,
Y (x) also satisfies the boundary conditions; also Y ′(x) = y′(x) + ǫh′(x). We can write

I(ǫ) =

∫ x2

x1

f(x, Y, Y ′) dx. (1.309)

Taking dI/dǫ, utilizing Leibniz’s rule, Eq. (1.293), we get

dI

dǫ
=

∫ x2

x1







∂f

∂x

∂x

∂ǫ
︸︷︷︸

0

+
∂f

∂Y

∂Y

∂ǫ
︸︷︷︸

h(x)

+
∂f

∂Y ′
∂Y ′

∂ǫ
︸︷︷︸

h′(x)






dx. (1.310)

Evaluating, we find

dI

dǫ
=

∫ x2

x1

(
∂f

∂x
0 +

∂f

∂Y
h(x) +

∂f

∂Y ′h
′(x)

)

dx. (1.311)

Since I is an extremum at ǫ = 0, we have dI/dǫ = 0 for ǫ = 0. This gives

0 =

∫ x2

x1

(
∂f

∂Y
h(x) +

∂f

∂Y ′h
′(x)

)∣
∣
∣
∣
ǫ=0

dx. (1.312)

Also when ǫ = 0, we have Y = y, Y ′ = y′, so

0 =

∫ x2

x1

(
∂f

∂y
h(x) +

∂f

∂y′
h′(x)

)

dx. (1.313)

Look at the second term in this integral. Since from integration by parts we get
∫ x2

x1

∂f

∂y′
h′(x) dx =

∫ x2

x1

∂f

∂y′
dh

dx
dx =

∫ x2

x1

∂f

∂y′
dh, (1.314)

=
∂f

∂y′
h(x)

∣
∣
∣
∣

x2

x1
︸ ︷︷ ︸

=0

−
∫ x2

x1

d

dx

(
∂f

∂y′

)

h(x) dx, (1.315)

= −
∫ x2

x1

d

dx

(
∂f

∂y′

)

h(x) dx. (1.316)
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The first term in Eq. (1.315) is zero because of our conditions on h(x1) and h(x2). Thus,
substituting Eq. (1.316) into the original equation, Eq. (1.313), we find

∫ x2

x1

(
∂f

∂y
− d

dx

(
∂f

∂y′

))

︸ ︷︷ ︸

0

h(x) dx = 0. (1.317)

The equality holds for all h(x), so that we must have

∂f

∂y
− d

dx

(
∂f

∂y′

)

= 0. (1.318)

This is called the Euler17-Lagrange18 equation; sometimes it is simply called Euler’s equation.
While this is, in general, the preferred form of the Euler-Lagrange equation, its explicit

dependency on the two end conditions is better displayed by considering a slightly different
form. By expanding the total derivative term, that is

d

dx

(
∂f

∂y′
(x, y, y′)

)

=
∂2f

∂y′∂x

dx

dx
︸︷︷︸

=1

+
∂2f

∂y′∂y

dy

dx
︸︷︷︸

y′

+
∂2f

∂y′∂y′
dy′

dx
︸︷︷︸

y′′

, (1.319)

=
∂2f

∂y′∂x
+

∂2f

∂y′∂y
y′ +

∂2f

∂y′∂y′
y′′, (1.320)

the Euler-Lagrange equation, Eq. (1.318), after slight rearrangement becomes

∂2f

∂y′∂y′
y′′ +

∂2f

∂y′∂y
y′ +

∂2f

∂y′∂x
− ∂f

∂y
= 0, (1.321)

fy′y′
d2y

dx2
+ fy′y

dy

dx
+ (fy′x − fy) = 0. (1.322)

This is clearly a second order differential equation for fy′y′ 6= 0, and in general, non-linear.
If fy′y′ is always non-zero, the problem is said to be regular. If fy′y′ = 0 at any point, the
equation is no longer second order, and the problem is said to be singular at such points.
Note that satisfaction of two boundary conditions becomes problematic for equations less
than second order.

There are several special cases of the function f .

• f = f(x, y) :

The Euler-Lagrange equation is
∂f

∂y
= 0, (1.323)

which is easily solved:
f(x, y) = A(x), (1.324)

which, knowing f , is then solved for y(x).

17Leonhard Euler, 1707-1783, prolific Swiss mathematician, born in Basel, died in St. Petersburg.
18Joseph-Louis Lagrange, 1736-1813, Italian-born French mathematician.
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• f = f(x, y′) :

The Euler-Lagrange equation is

d

dx

(
∂f

∂y′

)

= 0, (1.325)

which yields

∂f

∂y′
= A, (1.326)

f(x, y′) = Ay′ +B(x). (1.327)

Again, knowing f , the equation is solved for y′ and then integrated to find y(x).

• f = f(y, y′) :

The Euler-Lagrange equation is

∂f

∂y
− d

dx

(
∂f

∂y′
(y, y′)

)

= 0, (1.328)

∂f

∂y
−
(
∂2f

∂y∂y′
dy

dx
+

∂2f

∂y′∂y′
dy′

dx

)

= 0, (1.329)

∂f

∂y
− ∂2f

∂y∂y′
dy

dx
− ∂2f

∂y′∂y′
d2y

dx2
= 0. (1.330)

Multiply by y′ to get

y′
(
∂f

∂y
− ∂2f

∂y∂y′
dy

dx
− ∂2f

∂y′∂y′
d2y

dx2

)

= 0. (1.331)

Add and subtract (∂f/∂y′)y′′ to get

y′
(
∂f

∂y
− ∂2f

∂y∂y′
dy

dx
− ∂2f

∂y′∂y′
d2y

dx2

)

+
∂f

∂y′
y′′ − ∂f

∂y′
y′′ = 0. (1.332)

Regroup to get

∂f

∂y
y′ +

∂f

∂y′
y′′

︸ ︷︷ ︸

=df/dx

−
(

y′
(
∂2f

∂y∂y′
dy

dx
+

∂2f

∂y′∂y′
d2y

dx2

)

+
∂f

∂y′
y′′
)

︸ ︷︷ ︸

=d/dx(y′∂f/∂y′)

= 0. (1.333)

Regroup again to get
d

dx

(

f − y′
∂f

∂y′

)

= 0, (1.334)
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which can be integrated. Thus,

f(y, y′) − y′
∂f

∂y′
= K, (1.335)

where K is an arbitrary constant. What remains is a first order ordinary differen-
tial equation which can be solved. Another integration constant arises. This second
constant, along with K, are determined by the two end point conditions.

Example 1.12
Find the curve of minimum length between the points (x1, y1) and (x2, y2).

If y(x) is the curve, then y(x1) = y1 and y(x2) = y2. The length of the curve is

L =

∫ x2

x1

√

1 + (y′)2 dx. (1.336)

So our f reduces to f(y′) =
√

1 + (y′)2. The Euler-Lagrange equation is

d

dx

(

y′
√

1 + (y′)2

)

= 0, (1.337)

which can be integrated to give
y′

√

1 + (y′)2
= K. (1.338)

Solving for y′ we get

y′ =

√

K2

1 −K2
≡ A, (1.339)

from which

y = Ax +B. (1.340)

The constants A and B are obtained from the boundary conditions y(x1) = y1 and y(x2) = y2. The
shortest distance between two points is a straight line.

Example 1.13
Find the curve through the points (x1, y1) and (x2, y2), such that the surface area of the body of

revolution by rotating the curve around the x-axis is a minimum.

We wish to minimize

I =

∫ x2

x1

y
√

1 + (y′)2 dx. (1.341)
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Figure 1.6: Body of revolution of minimum surface area for (x1, y1) = (−1, 3.08616) and
(x2, y2) = (2, 2.25525).

Here f reduces to f(y, y′) = y
√

1 + (y′)2. So the Euler-Lagrange equation reduces to

f(y, y′) − y′
∂f

∂y′
= A, (1.342)

y
√

1 + y′2 − y′y
y′

√

1 + y′2
= A, (1.343)

y(1 + y′2) − yy′2 = A
√

1 + y′2, (1.344)

y = A
√

1 + y′2, (1.345)

y′ =

√
( y

A

)2

− 1, (1.346)

y(x) = A cosh
x−B

A
. (1.347)

This is a catenary. The constants A and B are determined from the boundary conditions y(x1) = y1
and y(x2) = y2. In general this requires a trial and error solution of simultaneous algebraic equations.
If (x1, y1) = (−1, 3.08616) and (x2, y2) = (2, 2.25525), one finds solution of the resulting algebraic
equations gives A = 2, B = 1.

For these conditions, the curve y(x) along with the resulting body of revolution of minimum surface
area are plotted in Fig. 1.6.

1.5 Lagrange multipliers

Suppose we have to determine the extremum of f(x1, x2, . . . , xM ) subject to the n constraints

gn(x1, x2, . . . , xM) = 0, n = 1, 2, . . . , N. (1.348)
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Define

f ∗ = f − λ1g1 − λ2g2 − . . .− λNgN , (1.349)

where the λn (n = 1, 2, · · · , N) are unknown constants called Lagrange multipliers. To get
the extremum of f ∗, we equate to zero its derivative with respect to x1, x2, . . . , xM . Thus,
we have

∂f ∗

∂xm
= 0, m = 1, . . . ,M, (1.350)

gn = 0, n = 1, . . . , N. (1.351)

which are (M + N) equations that can be solved for xm (m = 1, 2, . . . ,M) and λn (n =
1, 2, . . . , N).

Example 1.14
Extremize f = x2 + y2 subject to the constraint g = 5x2 − 6xy + 5y2 − 8 = 0.

Let

f∗ = x2 + y2 − λ(5x2 − 6xy + 5y2 − 8), (1.352)

from which

∂f∗

∂x
= 2x− 10λx+ 6λy = 0, (1.353)

∂f∗

∂y
= 2y + 6λx− 10λy = 0, (1.354)

g = 5x2 − 6xy + 5y2 − 8 = 0. (1.355)

From Eq. (1.353),

λ =
2x

10x− 6y
, (1.356)

which, when substituted into Eq. (1.354), gives

x = ±y. (1.357)

Equation (1.357), when solved in conjunction with Eq. (1.355), gives the extrema to be at (x, y) =
(
√

2,
√

2), (−
√

2,−
√

2), (1/
√

2,−1/
√

2), (−1/
√

2, 1/
√

2). The first two sets give f = 4 (maximum) and
the last two f = 1 (minimum). The function to be maximized along with the constraint function and
its image are plotted in Fig. 1.7.

A similar technique can be used for the extremization of a functional with constraint.
We wish to find the function y(x), with x ∈ [x1, x2], and y(x1) = y1, y(x2) = y2, such that
the integral

I =

∫ x2

x1

f(x, y, y′) dx, (1.358)
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Figure 1.7: Unconstrained function f(x, y) along with constrained function and constraint
function (image of constrained function.)

is an extremum, and satisfies the constraint

g = 0. (1.359)

Define
I∗ = I − λg, (1.360)

and continue as before.

Example 1.15
Extremize I, where

I =

∫ a

0

y
√

1 + (y′)2 dx, (1.361)

with y(0) = y(a) = 0, and subject to the constraint

∫ a

0

√

1 + (y′)2 dx = ℓ. (1.362)

That is, find the maximum surface area of a body of revolution which has a constant length.

Let

g =

∫ a

0

√

1 + (y′)2 dx− ℓ = 0. (1.363)

Then let

I∗ = I − λg =

∫ a

0

y
√

1 + (y′)2 dx− λ

∫ a

0

√

1 + (y′)2 dx+ λℓ, (1.364)
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Figure 1.8: Curve of length ℓ = 5/4 with y(0) = y(1) = 0 whose surface area of corresponding
body of revolution (also shown) is maximum.

=

∫ a

0

(y − λ)
√

1 + (y′)2 dx+ λℓ, (1.365)

=

∫ a

0

(

(y − λ)
√

1 + (y′)2 +
λℓ

a

)

dx. (1.366)

With f∗ = (y − λ)
√

1 + (y′)2 + λℓ/a, we have the Euler-Lagrange equation

∂f∗

∂y
− d

dx

(
∂f∗

∂y′

)

= 0. (1.367)

Integrating from an earlier developed relationship, Eq. (1.335), when f = f(y, y′), and absorbing λℓ/a
into a constant A, we have

(y − λ)
√

1 + (y′)2 − y′(y − λ)
y′

√

1 + (y′)2
= A, (1.368)

from which

(y − λ)(1 + (y′)2) − (y′)2(y − λ) = A
√

1 + (y′)2, (1.369)

(y − λ)
(
1 + (y′)2 − (y′)2

)
= A

√

1 + (y′)2, (1.370)

y − λ = A
√

1 + (y′)2, (1.371)

y′ =

√
(
y − λ

A

)2

− 1, (1.372)

y = λ+A cosh
x−B

A
. (1.373)

Here A,B, λ have to be numerically determined from the three conditions y(0) = y(a) = 0, g = 0. If
we take the case where a = 1, ℓ = 5/4, we find that A = 0.422752, B = 1/2, λ = −0.754549. For these
values, the curve of interest, along with the surface of revolution, is plotted in Fig. 1.8.
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Problems

1. If

z3 + zx+ x4y = 2y3,

(a) find a general expression for

∂z

∂x

∣
∣
∣
∣
y

,
∂z

∂y

∣
∣
∣
∣
x

,

(b) evaluate

∂z

∂x

∣
∣
∣
∣
y

,
∂z

∂y

∣
∣
∣
∣
x

,

at (x, y) = (1, 2), considering only real values of x, y, z, i.e. x, y, z ∈ R1.

(c) Give a computer generated plot of the surface z(x, y) for x ∈ [−2, 2], y ∈ [−2, 2], z ∈ [−2, 2].

2. Determine the general curve y(x), with x ∈ [x1, x2], of total length L with endpoints y(x1) = y1
and y(x2) = y2 fixed, for which the area under the curve,

∫ x2

x1
y dx, is a maximum. Show that if

(x1, y1) = (0, 0); (x2, y2) = (1, 1);L = 3/2, that the curve which maximizes the area and satisfies all
constraints is the circle, (y + 0.254272)2 + (x − 1.2453)2 = (1.26920)2. Plot this curve. What is the
area? Verify that each constraint is satisfied. What function y(x) minimizes the area and satisfies all
constraints? Plot this curve. What is the area? Verify that each constraint is satisfied.

3. Show that if a ray of light is reflected from a mirror, the shortest distance of travel is when the angle
of incidence on the mirror is equal to the angle of reflection.

4. The speed of light in different media separated by a planar interface is c1 and c2. Show that if the
time taken for light to go from a fixed point in one medium to another in the second is a minimum,
the angle of incidence, αi, and the angle of refraction, αr, are related by

sinαi
sinαr

=
c1
c2
.

5. F is a quadrilateral with perimeter P . Find the form of F such that its area is a maximum. What is
this area?

6. A body slides due to gravity from point A to point B along the curve y = f(x). There is no friction
and the initial velocity is zero. If points A and B are fixed, find f(x) for which the time taken will
be the least. What is this time? If A : (x, y) = (1, 2), B : (x, y) = (0, 0), where distances are in
meters, plot the minimum time curve, and find the minimum time if the gravitational acceleration is
g = −9.81 m/s2j.

7. Consider the integral I =
∫ 1

0 (y′ − y + ex)2 dx. What kind of extremum does this integral have
(maximum or minimum)? What should y(x) be for this extremum? What does the solution of
the Euler-Lagrange equation give, if y(0) = 0 and y(1) = −e? Find the value of the extremum.
Plot y(x) for the extremum. If y0(x) is the solution of the Euler-Lagrange equation, compute I for
y1(x) = y0(x) + h(x), where you can take any h(x) you like, but with h(0) = h(1) = 0.

8. Find the length of the shortest curve between two points with cylindrical coordinates (r, θ, z) = (a, 0, 0)
and (r, θ, z) = (a,Θ, Z) along the surface of the cylinder r = a.

9. Determine the shape of a parallelogram with a given area which has the least perimeter.
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10. Find the extremum of the functional
∫ 1

0

(x2y′2 + 40x4y) dx,

with y(0) = 0 and y(1) = 1. Plot y(x) which renders the integral at an extreme point.

11. Find the point on the plane ax+ by + cz = d which is nearest to the origin.

12. Extremize the integral
∫ 1

0

y′2 dx,

subject to the end conditions y(0) = 0, y(1) = 0, and also the constraint

∫ 1

0

y dx = 1.

Plot the function y(x) which extremizes the integral and satisfies all constraints.

13. Show that the functions

u =
x+ y

x− y
,

v =
xy

(x− y)2
,

are functionally dependent.

14. Find the point on the curve of intersection of z − xy = 10 and x + y + z = 1, that is closest to the
origin.

15. Find a function y(x) with y(0) = 1, y(1) = 0 that extremizes the integral

I =

∫ 1

0

√

1 +
(
dy
dx

)2

y
dx.

Plot y(x) for this function.

16. For elliptic cylindrical coordinates

ξ1 = coshx1 cosx2,

ξ2 = sinhx1 sinx2,

ξ3 = x3.

Find the Jacobian matrix J and the metric tensor G. Find the transformation xi = xi(ξj). Plot lines
of constant x1 and x2 in the ξ1 and ξ2 plane.

17. For the elliptic coordinate system of the previous problem, find ∇T ·u where u is an arbitrary vector.

18. For parabolic coordinates

ξ1 = x1x2 cosx3,

ξ2 = x1x2 sinx3,

ξ3 =
1

2

(
(x2)2 − (x1)2

)
.

Find the Jacobian matrix J and the metric tensor G. Find the transformation xi = xi(ξj). Plot lines
of constant x1 and x2 in the ξ1 and ξ2 plane.
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19. For the parabolic coordinate system of the previous problem, find ∇T · u where u is an arbitrary
vector.

20. Find the covariant derivative of the contravariant velocity vector in cylindrical coordinates.

21. Prove Eq. (1.293) using the chain rule.
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Chapter 2

First-order ordinary differential
equations

see Kaplan, 9.1-9.3,

see Lopez, Chapters 1-3,

see Riley, Hobson, and Bence, Chapter 12,

see Bender and Orszag, 1.6.

We consider here the solution of so-called first-order ordinary differential equations. Such
equations are of the form

F (x, y, y′) = 0, (2.1)

where y′ = dy/dx. Note this is fully non-linear. A first order equation typically requires the
solution to be specified at one point, though for non-linear equations, this does not guarantee
uniqueness. An example, which we will not try to solve analytically, is

(

xy2

(
dy

dx

)3

+ 2
dy

dx
+ ln (sin xy)

)2

− 1 = 0, y(1) = 1. (2.2)

Fortunately, many first order equations, even non-linear ones, can be solved by techniques
presented in this chapter.

2.1 Separation of variables

Equation (2.1) is separable if it can be written in the form

P (x)dx = Q(y)dy, (2.3)

which can then be integrated.

57

http://en.wikipedia.org/wiki/Carl_M._Bender
http://en.wikipedia.org/wiki/Steven_Orszag


58 CHAPTER 2. FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS

-10 -5 5 10
x

-5

-2.5

2.5

5

7.5

10

y

Figure 2.1: y(x) which solves yy′ = (8x+ 1)/y with y(1) = −5.

Example 2.1

Solve

yy′ =
8x+ 1

y
, with y(1) = −5. (2.4)

Separating variables

y2dy = 8xdx+ dx. (2.5)

Integrating, we have

y3

3
= 4x2 + x+ C. (2.6)

The initial condition gives C = −140/3, so that the solution is

y3 = 12x2 + 3x− 140. (2.7)

The solution is plotted in Fig. 2.1.
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2.2 Homogeneous equations

A first order differential equation is defined by many1 as homogeneous if it can be written in
the form

y′ = f
(y

x

)

. (2.8)

Defining

u =
y

x
, (2.9)

we get

y = ux, (2.10)

from which

y′ = u+ xu′. (2.11)

Substituting in Eq. (2.8) and separating variables, we have

u+ xu′ = f(u), (2.12)

u+ x
du

dx
= f(u), (2.13)

x
du

dx
= f(u) − u, (2.14)

du

f(u) − u
=

dx

x
, (2.15)

which can be integrated.
Equations of the form

y′ = f

(
a1x+ a2y + a3

a4x+ a5y + a6

)

, (2.16)

can be similarly integrated.

Example 2.2
Solve

xy′ = 3y +
y2

x
, with y(1) = 4. (2.17)

This can be written as

y′ = 3
(y

x

)

+
( y

x

)2

. (2.18)

Let u = y/x. Then

f(u) = 3u+ u2. (2.19)

1The word “homogeneous” has two distinct interpretations in differential equations. In the present section,
the word actually refers to the function f , which is better considered as a so-called homogeneous function
of degree zero, which implies f(tx, ty) = f(x, y). Obviously f(y/x) satisfies this criteria. A more common
interpretation is that an equation of the form L(y) = f is homogeneous iff f = 0.
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Figure 2.2: y(x) which solves xy′ = 3y + y2/x with y(1) = 4.

Using our developed formula, Eq. (2.15), we get

du

2u+ u2
=
dx

x
. (2.20)

Since by partial fraction expansion we have

1

2u+ u2
=

1

2u
− 1

4 + 2u
, (2.21)

Eq. (2.20) can be rewritten as
du

2u
− du

4 + 2u
=
dx

x
. (2.22)

Both sides can be integrated to give

1

2
(ln |u| − ln |2 + u|) = ln |x| + C. (2.23)

The initial condition gives C = (1/2) ln(2/3), so that the solution can be reduced to
∣
∣
∣
∣

y

2x+ y

∣
∣
∣
∣
=

2

3
x2.

This can be solved explicitly for y(x) for each case of the absolute value. The first case

y(x) =
4
3x

3

1 − 2
3x

2
, (2.24)

is seen to satisfy the condition at x = 1. The second case is discarded as it does not satisfy the condition
at x = 1. The solution is plotted in Fig. 2.2.
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2.3 Exact equations

A differential equation is exact if it can be written in the form

dF (x, y) = 0, (2.25)

where F (x, y) = 0 is a solution to the differential equation. The chain rule is used to expand
the derivative of F (x, y) as

dF =
∂F

∂x
dx+

∂F

∂y
dy = 0. (2.26)

So, for an equation of the form

P (x, y)dx+Q(x, y)dy = 0, (2.27)

we have an exact differential if

∂F

∂x
= P (x, y),

∂F

∂y
= Q(x, y), (2.28)

∂2F

∂x∂y
=

∂P

∂y
,

∂2F

∂y∂x
=
∂Q

∂x
. (2.29)

As long as F (x, y) is continuous and differentiable, the mixed second partials are equal, thus,

∂P

∂y
=
∂Q

∂x
. (2.30)

must hold if F (x, y) is to exist and render the original differential equation to be exact.

Example 2.3
Solve

dy

dx
=

ex−y

ex−y − 1
, (2.31)

(
ex−y

)

︸ ︷︷ ︸

=P

dx+
(
1 − ex−y

)

︸ ︷︷ ︸

=Q

dy = 0, (2.32)

∂P

∂y
= −ex−y, (2.33)

∂Q

∂x
= −ex−y. (2.34)

Since ∂P/∂y = ∂Q/∂x, the equation is exact. Thus,

∂F

∂x
= P (x, y), (2.35)

∂F

∂x
= ex−y, (2.36)

F (x, y) = ex−y +A(y), (2.37)
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Figure 2.3: y(x) which solves y′ = exp(x− y)/(exp(x− y) − 1).

∂F

∂y
= −ex−y +

dA

dy
= Q(x, y) = 1 − ex−y, (2.38)

dA

dy
= 1, (2.39)

A(y) = y − C, (2.40)

F (x, y) = ex−y + y − C = 0, (2.41)

ex−y + y = C. (2.42)

The solution for various values of C is plotted in Fig. 2.3.

2.4 Integrating factors

Sometimes, an equation of the form of Eq. (2.27) is not exact, but can be made so by
multiplication by a function u(x, y), where u is called the integrating factor. It is not always
obvious that integrating factors exist; sometimes they do not. When one exists, it may not
be unique.

Example 2.4
Solve

dy

dx
=

2xy

x2 − y2
. (2.43)

Separating variables, we get

(x2 − y2) dy = 2xy dx. (2.44)
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Figure 2.4: y(x) which solves y′(x) = 2xy/(x2 − y2).

This is not exact according to criterion (2.30). It turns out that the integrating factor is y−2, so that
on multiplication, we get

2x

y
dx −

(
x2

y2
− 1

)

dy = 0. (2.45)

This can be written as

d

(
x2

y
+ y

)

= 0, (2.46)

which gives

x2

y
+ y = C, (2.47)

x2 + y2 = Cy. (2.48)

The solution for various values of C is plotted in Fig. 2.4.

The general first-order linear equation

dy(x)

dx
+ P (x) y(x) = Q(x), (2.49)

with
y(xo) = yo, (2.50)

can be solved using the integrating factor

e
R x

a
P (s)ds = e(F (x)−F (a)). (2.51)
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We choose a such that

F (a) = 0. (2.52)

Multiply by the integrating factor and proceed:

(

e
R x

a
P (s)ds

) dy(x)

dx
+
(

e
R x

a
P (s)ds

)

P (x) y(x) =
(

e
R x

a
P (s)ds

)

Q(x), (2.53)

product rule:
d

dx

(

e
R x

a
P (s)dsy(x)

)

=
(

e
R x

a
P (s)ds

)

Q(x), (2.54)

replace x by t:
d

dt

(

e
R t

a
P (s)dsy(t)

)

=
(

e
R t

a
P (s)ds

)

Q(t), (2.55)

integrate:

∫ x

xo

d

dt

(

e
R t

a
P (s)dsy(t)

)

dt =

∫ x

xo

(

e
R t

a
P (s)ds

)

Q(t)dt, (2.56)

e
R x

a
P (s)dsy(x) − e

R xo
a

P (s)dsy(xo) =

∫ x

xo

(

e
R t

a
P (s)ds

)

Q(t) dt, (2.57)

which yields

y(x) = e−
R x

a
P (s)ds

(

e
R xo
a

P (s)dsyo +

∫ x

xo

(

e
R t

a
P (s)ds

)

Q(t)dt

)

. (2.58)

Example 2.5
Solve

y′ − y = e2x; y(0) = yo. (2.59)

Here

P (x) = −1, (2.60)

or

P (s) = −1, (2.61)
∫ x

a

P (s)ds =

∫ x

a

(−1)ds, (2.62)

= −s|xa , (2.63)

= a− x. (2.64)

So

F (τ) = −τ. (2.65)

For F (a) = 0, take a = 0. So the integrating factor is

e
R

x

a
P (s)ds = ea−x = e0−x = e−x. (2.66)

Multiplying and rearranging, we get
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Figure 2.5: y(x) which solves y′ − y = e2x with y(0) = yo.

e−x
dy(x)

dx
− e−xy(x) = ex, (2.67)

d

dx

(
e−xy(x)

)
= ex, (2.68)

d

dt

(
e−ty(t)

)
= et, (2.69)

∫ x

xo=0

d

dt

(
e−ty(t)

)
dt =

∫ x

xo=0

etdt, (2.70)

e−xy(x) − e−0y(0) = ex − e0, (2.71)

e−xy(x) − yo = ex − 1, (2.72)

y(x) = ex (yo + ex − 1) , (2.73)

y(x) = e2x + (yo − 1) ex. (2.74)

The solution for various values of yo is plotted in Fig. 2.5.

2.5 Bernoulli equation

Some first-order non-linear equations also have analytical solutions. An example is the
Bernoulli2 equation

y′ + P (x)y = Q(x)yn. (2.75)

2Jacob Bernoulli, 1654-1705, Swiss-born member of a prolific mathematical family.
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where n 6= 1. Let
u = y1−n, (2.76)

so that
y = u

1
1−n . (2.77)

The derivative is

y′ =
1

1 − n

(

u
n

1−n

)

u′. (2.78)

Substituting in Eq. (2.75), we get

1

1 − n

(

u
n

1−n

)

u′ + P (x)u
1

1−n = Q(x)u
n

1−n . (2.79)

This can be written as
u′ + (1 − n)P (x)u = (1 − n)Q(x), (2.80)

which is a first-order linear equation of the form of Eq. (2.49) and can be solved.

2.6 Riccati equation

A Riccati3 equation is of the form

dy

dx
= P (x)y2 +Q(x)y +R(x). (2.81)

Studied by several Bernoullis and two Riccatis, it was solved by Euler. If we know a specific
solution y = S(x) of this equation, the general solution can then be found. Let

y = S(x) +
1

z(x)
. (2.82)

thus
dy

dx
=
dS

dx
− 1

z2

dz

dx
. (2.83)

Substituting into Eq. (2.81), we get

dS

dx
− 1

z2

dz

dx
= P

(

S +
1

z

)2

+Q

(

S +
1

z

)

+R, (2.84)

dS

dx
− 1

z2

dz

dx
= P

(

S2 +
2S

z
+

1

z2

)

+Q

(

S +
1

z

)

+R, (2.85)

dS

dx
−
(
PS2 +QS +R

)

︸ ︷︷ ︸

=0

− 1

z2

dz

dx
= P

(
2S

z
+

1

z2

)

+Q

(
1

z

)

, (2.86)

−dz
dx

= P (2Sz + 1) +Qz, (2.87)

dz

dx
+ (2P (x)S(x) +Q(x)) z = −P (x). (2.88)

3Jacopo Riccati, 1676-1754, Venetian mathematician.
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Again this is a first order linear equation in z and x of the form of Eq. (2.49) and can be
solved.

Example 2.6
Solve

y′ =
e−3x

x
y2 − 1

x
y + 3e3x. (2.89)

One solution is
y = S(x) = e3x. (2.90)

Verify:

3e3x =
e−3x

x
e6x − 1

x
e3x + 3e3x, (2.91)

3e3x =
e3x

x
− e3x

x
+ 3e3x, (2.92)

3e3x = 3e3x, (2.93)

so let

y = e3x +
1

z
. (2.94)

Also we have

P (x) =
e−3x

x
, (2.95)

Q(x) = − 1

x
, (2.96)

R(x) = 3e3x. (2.97)

Substituting into Eq. (2.88), we get

dz

dx
+

(

2
e−3x

x
e3x − 1

x

)

z = −e
−3x

x
, (2.98)

dz

dx
+
z

x
= −e

−3x

x
. (2.99)

The integrating factor here is

e
R

dx
x = elnx = x (2.100)

Multiplying by the integrating factor x

x
dz

dx
+ z = −e−3x, (2.101)

d(xz)

dx
= −e−3x, (2.102)

which can be integrated as

z =
e−3x

3x
+
C

x
=
e−3x + 3C

3x
. (2.103)

Since y = S(x) + 1/z, the solution is thus

y = e3x +
3x

e−3x + 3C
. (2.104)

The solution for various values of C is plotted in Fig. 2.6.
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Figure 2.6: y(x) which solves y′ = exp(−3x)/x− y/x+ 3 exp(3x).

2.7 Reduction of order

There are higher order equations that can be reduced to first-order equations and then solved.

2.7.1 y absent

If
f(x, y′, y′′) = 0, (2.105)

then let u(x) = y′. Thus, u′(x) = y′′, and the equation reduces to

f

(

x, u,
du

dx

)

= 0, (2.106)

which is an equation of first order.

Example 2.7
Solve

xy′′ + 2y′ = 4x3. (2.107)

Let u = y′, so that

x
du

dx
+ 2u = 4x3. (2.108)
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Multiplying by x

x2 du

dx
+ 2xu = 4x4, (2.109)

d

dx
(x2u) = 4x4. (2.110)

This can be integrated to give

u =
4

5
x3 +

C1

x2
, (2.111)

from which

y =
1

5
x4 − C1

x
+ C2, (2.112)

for x 6= 0.

2.7.2 x absent

If
f(y, y′, y′′) = 0, (2.113)

let u(x) = y′, so that

y′′ =
dy′

dx
=
dy′

dy

dy

dx
=
du

dy
u, (2.114)

Equation (2.113) becomes

f

(

y, u, u
du

dy

)

= 0, (2.115)

which is also an equation of first order. Note however that the independent variable is now
y while the dependent variable is u.

Example 2.8
Solve

y′′ − 2yy′ = 0; y(0) = yo, y′(0) = y′o. (2.116)

Let u = y′, so that y′′ = du/dx = (dy/dx)(du/dy) = u(du/dy). The equation becomes

u
du

dy
− 2yu = 0. (2.117)

Now
u = 0, (2.118)

satisfies Eq. (2.117). Thus,

dy

dx
= 0, (2.119)

y = C, (2.120)

applying one initial condition: y = yo (2.121)
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Figure 2.7: y(x) which solves y′′ − 2yy′ = 0 with y(0) = 0, y′(0) = 1.

This satisfies the initial conditions only under special circumstances, i.e. y′o = 0. For u 6= 0,

du

dy
= 2y, (2.122)

u = y2 + C1, (2.123)

apply I.C.’s: y′o = y2
o + C1, (2.124)

C1 = y′o − y2
o , (2.125)

dy

dx
= y2 + y′o − y2

o , (2.126)

dy

y2 + y′o − y2
o

= dx, (2.127)

from which for y′o − y2
o > 0

1
√

y′o − y2
o

tan−1

(

y
√

y′o − y2
o

)

= x+ C2, (2.128)

1
√

y′o − y2
o

tan−1

(

yo
√

y′o − y2
o

)

= C2, (2.129)

y(x) =
√

y′o − y2
o tan

(

x
√

y′o − y2
o + tan−1

(

yo
√

y′o − y2
o

))

. (2.130)

The solution for yo = 0, y′o = 1 is plotted in Fig. 2.7.
For y′o − y2

o = 0,

dy

dx
= y2, (2.131)

dy

y2
= dx, (2.132)
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−1

y
= x+ C2, (2.133)

− 1

yo
= C2, (2.134)

−1

y
= x− 1

yo
(2.135)

y =
1

1
yo

− x
. (2.136)

For y′o−y2
o < 0, one would obtain solutions in terms of hyperbolic trigonometric functions; see Sec. 10.3.

2.8 Uniqueness and singular solutions

Not all differential equations have solutions, as can be seen by considering

y′ =
y

x
ln y, y(0) = 2. (2.137)

The general solution of the differential equation is y = eCx, but no finite value of C allows
the initial condition to be satisfied. Let’s check this by direct substitution:

y = eCx, (2.138)

y′ = CeCx, (2.139)

y

x
ln y =

eCx

x
ln eCx, (2.140)

=
eCx

x
Cx, (2.141)

= CeCx, (2.142)

= y′. (2.143)

So the differential equation is satisfied for all values of C. Now to satisfy the initial condition,
we must have

2 = eC(0), (2.144)

2 = 1? (2.145)

There is no finite value of C that allows satisfaction of the initial condition. The original
differential equation can be written as xy′ = y ln y. The point x = 0 is singular since at that
point, the highest derivative is multiplied by 0 leaving only 0 = y ln y at x = 0. For the very
special initial condition y(0) = 1, the solution y = eCx is valid for all values of C. Thus, for
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this singular equation, for most initial conditions, no solution exists. For one special initial
condition, a solution exists, but it is not unique.

Theorem

Let f(x, y) be continuous and satisfy |f(x, y)| ≤ m and the Lipschitz4 condition |f(x, y)−
f(x, y0)| ≤ k|y − y0| in a bounded region R. Then the equation y′ = f(x, y) has one and
only one solution containing the point (x0, y0).

A stronger condition is that if f(x, y) and ∂f/∂y are finite and continuous at (x0, y0),
then a solution of y′ = f(x, y) exists and is unique in the neighborhood of this point.

Example 2.9
Analyze the uniqueness of the solution of

dy

dt
= −K√

y, y(T ) = 0. (2.146)

Here, t is the independent variable instead of x. Taking,

f(t, y) = −K√
y, (2.147)

we have
∂f

∂y
= − K

2
√
y
, (2.148)

which is not finite at y = 0. So the solution cannot be guaranteed to be unique. In fact, one solution is

y(t) =
1

4
K2(t− T )2. (2.149)

Another solution which satisfies the initial condition and differential equation is

y(t) = 0. (2.150)

Obviously the solution is not unique.

Example 2.10
Consider the differential equation and initial condition

dy

dx
= 3y2/3, y(2) = 0. (2.151)

On separating variables and integrating, we get

3y1/3 = 3x+ 3C, (2.152)

4Rudolf Otto Sigismund Lipschitz, 1832-1903, German mathematician.
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Figure 2.8: Two solutions y(x) which satisfy y′ = 3y2/3 with y(2) = 0.

so that the general solution is
y = (x+ C)3. (2.153)

Applying the initial condition, we find

y = (x− 2)3. (2.154)

However,
y = 0, (2.155)

and

y =

{
(x− 2)3 if x ≥ 2,
0 if x < 2.

(2.156)

are also solutions. These singular solutions cannot be obtained from the general solution. However,
values of y′ and y are the same at intersections. Both satisfy the differential equation. The two solutions
are plotted in Fig. 2.8.

2.9 Clairaut equation

The solution of a Clairaut5 equation

y = xy′ + f(y′), (2.157)

5Alexis Claude Clairaut, 1713-1765, Parisian/French mathematician.
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can be obtained by letting y′ = u(x), so that

y = xu+ f(u). (2.158)

Differentiating with respect to x, we get

y′ = xu′ + u+
df

du
u′, (2.159)

u = xu′ + u+
df

du
u′, (2.160)

(

x+
df

du

)

u′ = 0. (2.161)

There are two possible solutions to this, u′ = 0 or x + df/du = 0. If we consider the first
and take

u′ =
du

dx
= 0, (2.162)

we can integrate to get
u = C, (2.163)

where C is a constant. Then, from Eq. (2.158), we get the general solution

y = Cx+ f(C). (2.164)

Applying an initial condition y(xo) = yo gives what we will call the regular solution.
But if we take the second

x+
df

du
= 0, (2.165)

and rearrange to get

x = − df

du
, (2.166)

then Eq. (2.166) along with the rearranged Eq. (2.158)

y = −u df
du

+ f(u), (2.167)

form a set of parametric equations for what we call the singular solution. It is singular
because the coefficient on the highest derivative in Eq. (2.161) is itself 0.

Example 2.11
Solve

y = xy′ + (y′)3, y(0) = yo. (2.168)

Take
u = y′. (2.169)
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Figure 2.9: Two solutions y(x) which satisfy y = xy′ + (y′)3 with y(0) = yo.

Then

f(u) = u3, (2.170)

df

du
= 3u2, (2.171)

so specializing Eq. (2.164) gives
y = Cx+ C3

as the general solution. Use the initial condition to evaluate C and get the regular solution:

yo = C(0) + C3, (2.172)

C = y1/3
o , (2.173)

y = y1/3
o x+ yo. (2.174)

Note if yo ∈ R1, there are actually three roots for C: C = y
1/3
o , (−1/2 ± i

√
3/2)y

1/3
o . So the solution

is non-unique. However, if we confine our attention to real valued solutions, there is a unique real

solution, with C = y
1/3
o .

The parametric form of the singular solution is

y = −2u3, (2.175)

x = −3u2. (2.176)

Eliminating the parameter u, we obtain

y = ±2
(

−x
3

)3/2

, (2.177)

as the explicit form of the singular solution.
The regular solutions and singular solution are plotted in Fig. 2.9. Note

• In contrast to solutions for equations linear in y′, the trajectories y(x; yo) cross at numerous locations
in the x− y plane. This is a consequence of the differential equation’s non-linearity
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• While the singular solution satisfies the differential equation, it satisfies this initial condition only
when yo = 0

• For real valued x and y, the singular solution is only valid for x ≤ 0.

• Because of non-linearity, addition of the regular and singular solutions does not yield a solution to
the differential equation.

Problems

1. Find the general solution of the differential equation

y′ + x2y(1 + y) = 1 + x3(1 + x).

Plot solutions for y(0) = −2, 0, 2.

2. Solve
ẋ = 2tx+ te−t

2

x2.

Plot a solution for x(0) = 1.

3. Solve
3x2y2 dx + 2x3y dy = 0.

4. Solve
dy

dx
=
x− y

x+ y
.

5. Solve the non-linear equation (y′ − x)y′′ + 2y′ = 2x.

6. Solve xy′′ + 2y′ = x. Plot a solution for y(1) = 1, y′(1) = 1.

7. Solve y′′ − 2yy′ = 0. Plot a solution for y(0) = 0, y′(0) = 3.

8. Given that y1 = x−1 is one solution of y′′ + (3/x)y′ + (1/x2)y = 0, find the other solution.

9. Solve

(a) y′ tan y + 2 sinx sin(π2 + x) + lnx = 0

(b) xy′ − 2y − x4 − y2 = 0

(c) y′ cos y cosx+ sin y sinx = 0

(d) y′ + y cotx = ex

(e) x5y′ + y + ex
2

(x6 − 1)y3 = 0, with y(1) = e−1/2

(f) y′ + y2 − xy − 1 = 0

(g) y′(x + y2) − y = 0

(h) y′ = x+2y−5
−2x−y+4

(i) y′ + xy = y

Plot solutions, when possible, for y(0) = −1, 0, 1.
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10. Find all solutions of
(x+ 1)(y′)2 + (x− y)y′ − y = 0

11. Find an a for which a unique real solution of

(y′)4 + 8(y′)3 + (3a+ 16)(y′)2 + 12ay′ + 2a2 = 0, with y(1) = −2

exists. Find the solution.

12. Solve

y′ − 1

x2
y2 +

1

x
y = 1

13. Find the most general solution to
(y′ − 1)(y′ + 1) = 0

14. Solve
(D − 1)(D − 2)y = x
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Chapter 3

Linear ordinary differential equations

see Kaplan, 9.1-9.4,

see Lopez, Chapter 5,

see Bender and Orszag, 1.1-1.5,

see Riley, Hobson, and Bence, Chapter 13, Chapter 15.6,

see Friedman, Chapter 3.

We consider in this chapter linear ordinary differential equations. We will mainly be con-
cerned with equations which are of second order or higher in a single dependent variable.

3.1 Linearity and linear independence

An ordinary differential equation can be written in the form

L(y) = f(x), (3.1)

where y(x) is an unknown function. The equation is said to be homogeneous if f(x) = 0,
giving then

L(y) = 0. (3.2)

This is the most common usage for the term “homogeneous.” The operator L is composed
of a combination of derivatives d/dx, d2/dx2, etc. The operator L is linear if

L(y1 + y2) = L(y1) + L(y2), (3.3)

and

L(αy) = αL(y), (3.4)

where α is a scalar. We can contrast this definition of linearity with the definition of more
general term “affine” given by Eq. (1.102), which, while similar, admits a constant inhomo-
geneity.

79
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For the remainder of this chapter, we will take L to be a linear differential operator. The
general form of L is

L = PN(x)
dN

dxN
+ PN−1(x)

dN−1

dxN−1
+ . . .+ P1(x)

d

dx
+ P0(x). (3.5)

The ordinary differential equation, Eq. (3.1), is then linear when L has the form of Eq. (3.5).

Definition: The functions y1(x), y2(x), . . . , yN(x) are said to be linearly independent when
C1y1(x) + C2y2(x) + . . .+ CNyN(x) = 0 is true only when C1 = C2 = . . . = CN = 0.

A homogeneous equation of order N can be shown to have N linearly independent solu-
tions. These are called complementary functions. If yn (n = 1, . . . , N) are the complementary
functions of Eq. (3.2), then

y(x) =

N∑

n=1

Cnyn(x), (3.6)

is the general solution of the homogeneous Eq. (3.2). In language to be defined in a future
chapter, Sec. 7.3, we can say the complementary functions are linearly independent and span
the space of solutions of the homogeneous equation; they are the bases of the null space of the
differential operator L. If yp(x) is any particular solution of Eq. (3.1), the general solution
to Eq. (3.2) is then

y(x) = yp(x) +

N∑

n=1

Cnyn(x). (3.7)

Now we would like to show that any solution φ(x) to the homogeneous equation L(y) = 0
can be written as a linear combination of the N complementary functions yn(x):

C1y1(x) + C2y2(x) + . . .+ CNyN(x) = φ(x). (3.8)

We can form additional equations by taking a series of derivatives up to N − 1:

C1y
′
1(x) + C2y

′
2(x) + . . .+ CNy

′
N(x) = φ′(x), (3.9)

...

C1y
(N−1)
1 (x) + C2y

(N−1)
2 (x) + . . .+ CNy

(N−1)
N (x) = φ(N−1)(x). (3.10)

This is a linear system of algebraic equations:








y1 y2 . . . yN
y′1 y′2 . . . y′N
...

... . . .
...

y
(N−1)
1 y

(N−1)
2 . . . y

(N−1)
N














C1

C2
...
CN







=







φ(x)
φ′(x)

...
φ(N−1)(x)






. (3.11)
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We could solve Eq. (3.11) by Cramer’s rule, which requires the use of determinants. For a
unique solution, we need the determinant of the coefficient matrix of Eq. (3.11) to be non-
zero. This particular determinant is known as the Wronskian1 W of y1(x), y2(x), . . . , yN(x)
and is defined as

W =

∣
∣
∣
∣
∣
∣
∣
∣
∣

y1 y2 . . . yN
y′1 y′2 . . . y′N
...

... . . .
...

y
(N−1)
1 y

(N−1)
2 . . . y

(N−1)
N

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (3.12)

The condition W 6= 0 indicates linear independence of the functions y1(x), y2(x), . . . , yN(x),
since if φ(x) ≡ 0, the only solution is Cn = 0, n = 1, . . . , N . Unfortunately, the converse is
not always true; that is, if W = 0, the complementary functions may or may not be linearly
dependent, though in most cases W = 0 indeed implies linear dependence.

Example 3.1
Determine the linear independence of (a) y1 = x and y2 = 2x, (b) y1 = x and y2 = x2, and (c)

y1 = x2 and y2 = x|x| for x ∈ (−1, 1).

(a) W =

∣
∣
∣
∣

x 2x
1 2

∣
∣
∣
∣
= 0, linearly dependent.

(b) W =

∣
∣
∣
∣

x x2

1 2x

∣
∣
∣
∣
= x2 6= 0, linearly independent, except at x = 0.

(c) We can restate y2 as

y2(x) = −x2 x ∈ (−1, 0], (3.13)

y2(x) = x2 x ∈ (0, 1), (3.14)

so that

W =

∣
∣
∣
∣

x2 −x2

2x −2x

∣
∣
∣
∣
= −2x3 + 2x3 = 0, x ∈ (−1, 0], (3.15)

W =

∣
∣
∣
∣

x2 x2

2x 2x

∣
∣
∣
∣
= 2x3 − 2x3 = 0, x ∈ (0, 1). (3.16)

Thus, W = 0 for x ∈ (−1, 1), which suggests the functions may be linearly dependent. However, when
we seek C1 and C2 such that C1y1 + C2y2 = 0, we find the only solution is C1 = 0, C2 = 0; therefore,
the functions are in fact linearly independent, despite the fact that W = 0! Let’s check this. For
x ∈ (−1, 0],

C1x
2 + C2(−x2) = 0, (3.17)

so we will need C1 = C2 at a minimum. For x ∈ (0, 1),

C1x
2 + C2x

2 = 0, (3.18)

which gives the requirement that C1 = −C2. Substituting the first condition into the second gives
C2 = −C2, which is only satisfied if C2 = 0, thus requiring that C1 = 0; hence, the functions are indeed
linearly independent.

1Józef Maria Hoene-Wroński, 1778-1853, Polish-born French mathematician.
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Example 3.2
Determine the linear independence of the set of polynomials,

yn(x) =

{

1, x,
x2

2
,
x3

6
, . . . ,

xN−1

(N − 1)!

}

. (3.19)

The Wronskian is

W =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 x 1
2x

2 1
6x

3 . . . 1
(N−1)!x

N−1

0 1 x 1
2x

2 . . . 1
(N−2)!x

N−2

0 0 1 x . . . 1
(N−3)!x

N−3

0 0 0 1 . . . 1
(N−4)!x

N−4

...
...

...
... . . .

...
0 0 0 0 . . . 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 1. (3.20)

The determinant is unity, ∀N . As such, the polynomials are linearly independent.

3.2 Complementary functions

This section will consider solutions to the homogeneous part of the differential equation.

3.2.1 Equations with constant coefficients

First consider equations with constant coefficients.

3.2.1.1 Arbitrary order

Consider the homogeneous equation with constant coefficients

ANy
(N) + AN−1y

(N−1) + . . .+ A1y
′ + A0y = 0, (3.21)

where An, (n = 0, . . . , N) are constants. To find the solution of Eq. (3.21), we let y = erx.
Substituting we get

ANr
Nerx + AN−1r

(N−1)erx + . . .+ A1r
1erx + A0e

rx = 0. (3.22)

Eliminating the non-zero common factor erx, we get

ANr
N + AN−1r

(N−1) + . . .+ A1r
1 + A0r

0 = 0, (3.23)
N∑

n=0

Anr
n = 0. (3.24)
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This is called the characteristic equation. It is an nth order polynomial which has N roots
(some of which could be repeated, some of which could be complex), rn (n = 1, . . . , N) from
which N linearly independent complementary functions yn(x) (n = 1, . . . , N) have to be
obtained. The general solution is then given by Eq. (3.6).

If all roots are real and distinct, then the complementary functions are simply ernx,
(n = 1, . . . , N). If, however, k of these roots are repeated, i.e. r1 = r2 = . . . = rk = r,
then the linearly independent complementary functions are obtained by multiplying erx by
1, x, x2, . . . , xk−1. For a pair of complex conjugate roots p ± qi, one can use de Moivre’s
formula (see Appendix, Eq. (10.91)) to show that the complementary functions are epx cos qx
and epx sin qx.

Example 3.3
Solve

d4y

dx4
− 2

d3y

dx3
+
d2y

dx2
+ 2

dy

dx
− 2y = 0. (3.25)

Substituting y = erx, we get a characteristic equation

r4 − 2r3 + r2 + 2r − 2 = 0, (3.26)

which can be factored as
(r + 1)(r − 1)(r2 − 2r + 2) = 0, (3.27)

from which
r1 = −1, r2 = 1 r3 = 1 + i r4 = 1 − i. (3.28)

The general solution is

y(x) = C1e
−x + C2e

x + C′
3e

(1+i)x + C′
4e

(1−i)x, (3.29)

= C1e
−x + C2e

x + C′
3e
xeix + C′

4e
xe−ix, (3.30)

= C1e
−x + C2e

x + ex
(
C′

3e
ix + C′

4e
−ix) , (3.31)

= C1e
−x + C2e

x + ex (C′
3 (cosx+ i sinx) + C′

4 (cos(−x) + i sin(−x))) , (3.32)

= C1e
−x + C2e

x + ex ((C′
3 + C′

4) cosx+ i(C′
3 − C′

4) sinx) , (3.33)

y(x) = C1e
−x + C2e

x + ex(C3 cosx+ C4 sinx), (3.34)

where C3 = C′
3 + C′

4 and C4 = i(C′
3 − C′

4).

3.2.1.2 First order

The characteristic polynomial of the first order equation

ay′ + by = 0, (3.35)

is
ar + b = 0. (3.36)
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So

r = − b

a
, (3.37)

thus, the complementary function for Eq. (3.35) is simply

y = Ce−
b
a
x. (3.38)

3.2.1.3 Second order

The characteristic polynomial of the second order equation

a
d2y

dx2
+ b

dy

dx
+ cy = 0, (3.39)

is

ar2 + br + c = 0. (3.40)

Depending on the coefficients of this quadratic equation, there are three cases to be consid-
ered.

• b2 − 4ac > 0: two distinct real roots r1 and r2. The complementary functions are
y1 = er1x and y2 = er2x,

• b2 − 4ac = 0: one real root. The complementary functions are y1 = erx and y2 = xerx,
or

• b2 − 4ac < 0: two complex conjugate roots p ± qi. The complementary functions are
y1 = epx cos qx and y2 = epx sin qx.

Example 3.4
Solve

d2y

dx2
− 3

dy

dx
+ 2y = 0. (3.41)

The characteristic equation is

r2 − 3r + 2 = 0, (3.42)

with solutions

r1 = 1, r2 = 2. (3.43)

The general solution is then

y = C1e
x + C2e

2x. (3.44)
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Example 3.5
Solve

d2y

dx2
− 2

dy

dx
+ y = 0. (3.45)

The characteristic equation is
r2 − 2r + 1 = 0, (3.46)

with repeated roots
r1 = 1, r2 = 1. (3.47)

The general solution is then
y = C1e

x + C2xe
x. (3.48)

Example 3.6
Solve

d2y

dx2
− 2

dy

dx
+ 10y = 0. (3.49)

The characteristic equation is
r2 − 2r + 10 = 0, (3.50)

with solutions
r1 = 1 + 3i, r2 = 1 − 3i. (3.51)

The general solution is then
y = ex(C1 cos 3x+ C2 sin 3x). (3.52)

3.2.2 Equations with variable coefficients

3.2.2.1 One solution to find another

If y1(x) is a known solution of

y′′ + P (x)y′ +Q(x)y = 0, (3.53)

let the other solution be y2(x) = u(x)y1(x). We then form derivatives of y2 and substitute
into the original differential equation. First compute the derivatives:

y′2 = uy′1 + u′y1, (3.54)

y′′2 = uy′′1 + u′y′1 + u′y′1 + u′′y1, (3.55)

y′′2 = uy′′1 + 2u′y′1 + u′′y1. (3.56)
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Substituting into Eq. (3.53), we get

(uy′′1 + 2u′y′1 + u′′y1)
︸ ︷︷ ︸

y′′2

+P (x) (uy′1 + u′y1)
︸ ︷︷ ︸

y′2

+Q(x) uy1
︸︷︷︸

y2

= 0, (3.57)

u′′y1 + u′(2y′1 + P (x)y1) + u (y′′1 + P (x)y′1 +Q(x)y1)
︸ ︷︷ ︸

=0

= 0, (3.58)

cancel coefficient on u: u′′y1 + u′(2y′1 + P (x)y1) = 0. (3.59)

This can be written as a first-order equation in v, where v = u′:

v′y1 + v(2y′1 + P (x)y1) = 0, (3.60)

which is solved for v(x) using known methods for first order equations.

3.2.2.2 Euler equation

An equation of the type

x2 d
2y

dx2
+ Ax

dy

dx
+By = 0, (3.61)

where A and B are constants, can be solved by a change of independent variables. Let

z = ln x, (3.62)

so that
x = ez. (3.63)

Then

dz

dx
=

1

x
= e−z, (3.64)

dy

dx
=

dy

dz

dz

dx
= e−z

dy

dz
, so

d

dx
= e−z

d

dz
, (3.65)

d2y

dx2
=

d

dx

(
dy

dx

)

, (3.66)

= e−z
d

dz

(

e−z
dy

dz

)

, (3.67)

= e−2z

(
d2y

dz2
− dy

dz

)

. (3.68)

Substituting into Eq. (3.61), we get

d2y

dz2
+ (A− 1)

dy

dz
+By = 0, (3.69)

which is an equation with constant coefficients.
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In what amounts to the same approach, one can alternatively assume a solution of the
form y = Cxr. This leads to a characteristic polynomial for r of

r(r − 1) + Ar +B = 0. (3.70)

The two roots for r induce two linearly independent complementary functions.

Example 3.7
Solve

x2y′′ − 2xy′ + 2y = 0, for x > 0. (3.71)

Here A = −2 and B = 2 in Eq. (3.61). Using this, along with x = ez, we get Eq. (3.69) to reduce
to

d2y

dz2
− 3

dy

dz
+ 2y = 0. (3.72)

The solution is
y = C1e

z + C2e
2z = C1x+ C2x

2. (3.73)

Note that this equation can also be solved by letting y = Cxr . Substituting into the equation, we get
r2 − 3r + 2 = 0, so that r1 = 1 and r2 = 2. The solution is then obtained as a linear combination of
xr1 and xr2 .

Example 3.8
Solve

x2 d
2y

dx2
+ 3x

dy

dx
+ 15y = 0. (3.74)

Let us assume here that y = Cxr. Substituting this assumption into Eq. (3.74) yields

x2Cr(r − 1)xr−2 + 3xCrxr−1 + 15Cxr = 0. (3.75)

For x 6= 0, C 6= 0, we divide by Cxr to get

r(r − 1) + 3r + 15 = 0, (3.76)

r2 + 2r + 15 = 0. (3.77)

Solving gives
r = −1 ± i

√
14. (3.78)

Thus, we see there are two linearly independent complementary functions:

y(x) = C1x
−1+i

√
14 + C2x

−1−i
√

14. (3.79)

Factoring gives

y(x) =
1

x

(

C1x
i
√

14 + C2x
−i

√
14
)

. (3.80)
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Expanding in terms of exponentials and logarithms gives

y(x) =
1

x

(

C1(exp(lnx))i
√

14 + C2(exp(lnx))−i
√

14
)

, (3.81)

=
1

x

(

C1 exp(i
√

14 lnx) + C2 exp(i
√

14 lnx)
)

, (3.82)

=
1

x

(

Ĉ1 cos(
√

14 lnx) + Ĉ2 sin(
√

14 lnx)
)

. (3.83)

3.3 Particular solutions

We will now consider particular solutions of the inhomogeneous Eq. (3.1).

3.3.1 Method of undetermined coefficients

Guess a solution with unknown coefficients, and then substitute in the equation to determine
these coefficients. The number of undetermined coefficients has no relation to the order of
the differential equation.

Example 3.9
Consider

y′′ + 4y′ + 4y = 169 sin3x. (3.84)

Thus

r2 + 4r + 4 = 0, (3.85)

(r + 2)(r + 2) = 0, (3.86)

r1 = −2, r2 = −2. (3.87)

Since the roots are repeated, the complementary functions are

y1 = e−2x, y2 = xe−2x. (3.88)

For the particular function, guess

yp = a sin 3x+ b cos 3x, (3.89)

so

y′p = 3a cos 3x− 3b sin 3x, (3.90)

y′′p = −9a sin 3x− 9b cos 3x. (3.91)
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Substituting into Eq. (3.84), we get

(−9a sin 3x− 9b cos 3x)
︸ ︷︷ ︸

y′′p

+4 (3a cos 3x− 3b sin 3x)
︸ ︷︷ ︸

y′p

+4 (a sin 3x+ b cos 3x)
︸ ︷︷ ︸

yp

= 169 sin3x, (3.92)

(−5a− 12b) sin 3x+ (12a− 5b) cos 3x = 169 sin3x, (3.93)

(−5a− 12b− 169)
︸ ︷︷ ︸

=0

sin 3x+ (12a− 5b)
︸ ︷︷ ︸

=0

cos 3x = 0. (3.94)

Now sine and cosine can be shown to be linearly independent. Because of this, since the right hand
side of Eq. (3.94) is zero, the constants on the sine and cosine functions must also be zero. This yields
the simple system of linear algebraic equations

(
−5 −12
12 −5

)(
a
b

)

=

(
169
0

)

, (3.95)

we find that a = −5 and b = −12. The solution is then

y(x) = (C1 + C2x)e
−2x − 5 sin 3x− 12 cos 3x. (3.96)

Example 3.10
Solve

y′′′′ − 2y′′′ + y′′ + 2y′ − 2y = x2 + x+ 1. (3.97)

Let the particular integral be of the form yp = ax2 + bx+ c. Substituting and reducing, we get

−(2a+ 1)
︸ ︷︷ ︸

=0

x2 + (4a− 2b− 1)
︸ ︷︷ ︸

=0

x+ (2a+ 2b− 2c− 1)
︸ ︷︷ ︸

=0

= 0. (3.98)

Since x2, x1 and x0 are linearly independent, their coefficients in Eq. (3.98) must be zero, from which
a = −1/2, b = −3/2, and c = −5/2. Thus,

yp = −1

2
(x2 + 3x+ 5). (3.99)

The solution of the homogeneous equation was found in a previous example, see Eq. (3.34), so that the
general solution is

y = C1e
−x + C2e

x + ex(C3 cosx+ C4 sinx) − 1

2
(x2 + 3x+ 5). (3.100)
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A variant must be attempted if any term of f(x) is a complementary function.

Example 3.11
Solve

y′′ + 4y = 6 sin 2x. (3.101)

Since sin 2x is a complementary function, we will try

yp = x(a sin 2x+ b cos 2x), (3.102)

from which

y′p = 2x(a cos 2x− b sin 2x) + (a sin 2x+ b cos 2x), (3.103)

y′′p = −4x(a sin 2x+ b cos 2x) + 4(a cos 2x− b sin 2x). (3.104)

Substituting into Eq. (3.101), we compare coefficients and get a = 0, b = −3/2. The general
solution is then

y = C1 sin 2x+ C2 cos 2x− 3

2
x cos 2x. (3.105)

Example 3.12
Solve

y′′ + 2y′ + y = xe−x. (3.106)

The complementary functions are e−x and xe−x. To get the particular solution we have to choose
a function of the kind yp = ax3e−x. On substitution we find that a = 1/6. Thus, the general solution
is

y = C1e
−x + C2xe

−x +
1

6
x3e−x. (3.107)

3.3.2 Variation of parameters

For an equation of the class

PN(x)y(N) + PN−1(x)y
(N−1) + . . .+ P1(x)y

′ + P0(x)y = f(x), (3.108)

we propose

yp =

N∑

n=1

un(x)yn(x), (3.109)
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where yn(x), (n = 1, . . . , N) are complementary functions of the equation, and un(x), (n =
1, . . . , N) are N unknown functions. Differentiating Eq. (3.109), we find

y′p =
N∑

n=1

u′nyn

︸ ︷︷ ︸

choose to be 0

+
N∑

n=1

uny
′
n. (3.110)

We set
∑N

n=1 u
′
nyn to zero as a first condition. Differentiating the rest of Eq. (3.110), we

obtain

y′′p =
N∑

n=1

u′ny
′
n

︸ ︷︷ ︸

choose to be 0

+
N∑

n=1

uny
′′
n. (3.111)

Again we set the first term on the right side of Eq. (3.111) to zero as a second condition.
Following this procedure repeatedly we arrive at

y(N−1)
p =

N∑

n=1

u′ny
(N−2)
n

︸ ︷︷ ︸

choose to be 0

+
N∑

n=1

uny
(N−1)
n . (3.112)

The vanishing of the first term on the right gives us the (N − 1)’th condition. Substituting
these into Eq. (3.108), the last condition

PN(x)

N∑

n=1

u′ny
(N−1)
n +

N∑

n=1

un
(
PNy

(N)
n + PN−1y

(N−1)
n + . . .+ P1y

′
n + P0yn

)

︸ ︷︷ ︸

=0

= f(x), (3.113)

is obtained. Since each of the functions yn is a complementary function, the term within
brackets is zero.

To summarize, we have the following N equations in the N unknowns u′n, (n = 1, . . . , N)
that we have obtained:

N∑

n=1

u′nyn = 0,

N∑

n=1

u′ny
′
n = 0,

... (3.114)
N∑

n=1

u′ny
(N−2)
n = 0,

PN(x)

N∑

n=1

u′ny
(N−1)
n = f(x).
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These can be solved for u′n, and then integrated to give the un’s.

Example 3.13
Solve

y′′ + y = tanx. (3.115)

The complementary functions are

y1 = cosx, y2 = sinx. (3.116)

The equations for u1(x) and u2(x) are

u′1y1 + u′2y2 = 0, (3.117)

u′1y
′
1 + u′2y

′
2 = tanx. (3.118)

Solving this system, which is linear in u′1 and u′2, we get

u′1 = − sinx tanx, (3.119)

u′2 = cosx tanx. (3.120)

Integrating, we get

u1 =

∫

− sinx tanx dx = sinx− ln | secx+ tanx|, (3.121)

u2 =

∫

cosx tanx dx = − cosx. (3.122)

The particular solution is

yp = u1y1 + u2y2, (3.123)

= (sinx− ln | secx+ tanx|) cosx− cosx sinx, (3.124)

= − cosx ln | secx+ tanx|. (3.125)

The complete solution, obtained by adding the complementary and particular, is

y = C1 cosx+ C2 sinx− cosx ln | secx+ tanx|. (3.126)

3.3.3 Green’s functions

A similar goal can be achieved for boundary value problems involving a more general linear
operator L, where L is given by Eq. (3.5). If on the closed interval a ≤ x ≤ b we have a two
point boundary problem for a general linear differential equation of the form:

Ly = f(x), (3.127)
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where the highest derivative in L is order N and with general homogeneous boundary con-
ditions at x = a and x = b on linear combinations of y and N − 1 of its derivatives:

A
(
y(a), y′(a), . . . , y(N−1)(a)

)T
+ B

(
y(b), y′(b), . . . , y(N−1)(b)

)T
= 0, (3.128)

where A and B are N × N constant coefficient matrices. Then, knowing L, A and B, we
can form a solution of the form:

y(x) =

∫ b

a

f(s)g(x, s)ds. (3.129)

This is desirable as

• once g(x, s) is known, the solution is defined for all f including

– forms of f for which no simple explicit integrals can be written, and

– piecewise continuous forms of f ,

• numerical solution of the quadrature problem is more robust than direct numerical
solution of the original differential equation,

• the solution will automatically satisfy all boundary conditions, and

• the solution is useful in experiments in which the system dynamics are well charac-
terized (e.g. mass-spring-damper) but the forcing may be erratic (perhaps digitally
specified).

If the boundary conditions are inhomogeneous, a simple transformation of the dependent
variables can be effected to render the boundary conditions to be homogeneous.

We now define the Green’s2 function: g(x, s) and proceed to show that with this definition,
we are guaranteed to achieve the solution to the differential equation in the desired form as
shown at the beginning of the section. We take g(x, s) to be the Green’s function for the
linear differential operator L, as defined by Eq. (3.5), if it satisfies the following conditions:

• Lg(x, s) = δ(x− s),

• g(x, s) satisfies all boundary conditions given on x,

• g(x, s) is a solution of Lg = 0 on a ≤ x < s and on s < x ≤ b,

• g(x, s), g′(x, s), . . . , g(N−2)(x, s) are continuous for x ∈ [a, b],

• g(N−1)(x, s) is continuous for [a, b] except at x = s where it has a jump of 1/PN(s); the
jump is defined from left to right.

2George Green, 1793-1841, English corn-miller and mathematician of humble origin and uncertain edu-
cation, though he generated modern mathematics of the first rank.
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Also for purposes of these conditions, s is thought of as a constant parameter. In the actual
Green’s function representation of the solution, s is a dummy variable. The Dirac delta

function δ(x− s) is discussed in the Appendix, Sec. 10.7.10, and in Sec. 7.20 in Kaplan.
These conditions are not all independent; nor is the dependence obvious. Consider for

example,

L = P2(x)
d2

dx2
+ P1(x)

d

dx
+ Po(x). (3.130)

Then we have

P2(x)
d2g

dx2
+ P1(x)

dg

dx
+ Po(x)g = δ(x− s), (3.131)

d2g

dx2
+
P1(x)

P2(x)

dg

dx
+
Po(x)

P2(x)
g =

δ(x− s)

P2(x)
. (3.132)

Now integrate both sides with respect to x in a small neighborhood enveloping x = s:
∫ s+ǫ

s−ǫ

d2g

dx2
dx+

∫ s+ǫ

s−ǫ

P1(x)

P2(x)

dg

dx
dx+

∫ s+ǫ

s−ǫ

Po(x)

P2(x)
g dx =

∫ s+ǫ

s−ǫ

δ(x− s)

P2(x)
dx. (3.133)

Since P ′s are continuous, as we let ǫ→ 0 we get
∫ s+ǫ

s−ǫ

d2g

dx2
dx+

P1(s)

P2(s)

∫ s+ǫ

s−ǫ

dg

dx
dx+

Po(s)

P2(s)

∫ s+ǫ

s−ǫ
g dx =

1

P2(s)

∫ s+ǫ

s−ǫ
δ(x− s) dx.

(3.134)

Integrating, we find

dg

dx

∣
∣
∣
∣
s+ǫ

− dg

dx

∣
∣
∣
∣
s−ǫ

+
P1(s)

P2(s)

(
g|s+ǫ − g|s−ǫ

)

︸ ︷︷ ︸

→0

+
Po(s)

P2(s)

∫ s+ǫ

s−ǫ
g dx

︸ ︷︷ ︸

→0

=
1

P2(s)
H(x− s)|s+ǫs−ǫ
︸ ︷︷ ︸

→1

.

(3.135)

Since g is continuous, this reduces to

dg

dx

∣
∣
∣
∣
s+ǫ

− dg

dx

∣
∣
∣
∣
s−ǫ

=
1

P2(s)
. (3.136)

This is consistent with the final point, that the second highest derivative of g suffers a jump
at x = s.

Next, we show that applying this definition of g(x, s) to our desired result lets us recover
the original differential equation, rendering g(x, s) to be appropriately defined. This can be
easily shown by direct substitution:

y(x) =

∫ b

a

f(s)g(x, s)ds, (3.137)

Ly = L

∫ b

a

f(s)g(x, s)ds. (3.138)
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Now L behaves as ∂N/∂xN , via Leibniz’s rule, Eq. (1.293)

Ly =

∫ b

a

f(s)Lg(x, s)
︸ ︷︷ ︸

δ(x−s)

ds, (3.139)

=

∫ b

a

f(s)δ(x− s)ds, (3.140)

= f(x). (3.141)

Example 3.14
Find the Green’s function and the corresponding solution integral of the differential equation

d2y

dx2
= f(x), (3.142)

subject to boundary conditions
y(0) = 0, y(1) = 0. (3.143)

Verify the solution integral if f(x) = 6x.

Here

L =
d2

dx2
. (3.144)

Now 1) break the problem up into two domains: a) x < s, b) x > s, 2) Solve Lg = 0 in both domains;
four constants arise, 3) Use boundary conditions for two constants, 4) use conditions at x = s: continuity
of g and a jump of dg/dx, for the other two constants.

a) x < s

d2g

dx2
= 0, (3.145)

dg

dx
= C1, (3.146)

g = C1x+ C2, (3.147)

g(0) = 0 = C1(0) + C2, (3.148)

C2 = 0, (3.149)

g(x, s) = C1x, x < s. (3.150)

b) x > s

d2g

dx2
= 0, (3.151)

dg

dx
= C3, (3.152)

g = C3x+ C4, (3.153)

g(1) = 0 = C3(1) + C4, (3.154)

C4 = −C3, (3.155)

g(x, s) = C3 (x− 1) , x > s (3.156)
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Continuity of g(x, s) when x = s:

C1s = C3 (s− 1) , (3.157)

C1 = C3
s− 1

s
, (3.158)

g(x, s) = C3
s− 1

s
x, x < s, (3.159)

g(x, s) = C3 (x− 1) , x > s. (3.160)

Jump in dg/dx at x = s (note P2(x) = 1):

dg

dx

∣
∣
∣
∣
s+ǫ

− dg

dx

∣
∣
∣
∣
s−ǫ

= 1, (3.161)

C3 − C3
s− 1

s
= 1, (3.162)

C3 = s, (3.163)

g(x, s) = x(s− 1), x < s, (3.164)

g(x, s) = s(x− 1), x > s. (3.165)

Note some properties of g(x, s) which are common in such problems:

• it is broken into two domains,

• it is continuous in and through both domains,

• its N − 1 (here N = 2, so first) derivative is discontinuous at x = s,

• it is symmetric in s and x across the two domains, and

• it is seen by inspection to satisfy both boundary conditions.

The general solution in integral form can be written by breaking the integral into two pieces as

y(x) =

∫ x

0

f(s) s(x− 1) ds+

∫ 1

x

f(s) x(s− 1) ds, (3.166)

= (x− 1)

∫ x

0

f(s) s ds+ x

∫ 1

x

f(s) (s− 1) ds. (3.167)

Now evaluate the integral if f(x) = 6x (thus f(s) = 6s).

y(x) = (x− 1)

∫ x

0

(6s) s ds+ x

∫ 1

x

(6s) (s− 1) ds, (3.168)

= (x− 1)

∫ x

0

6s2 ds+ x

∫ 1

x

(
6s2 − 6s

)
ds, (3.169)

= (x− 1)
(
2s3
)∣
∣
x

0
+ x

(
2s3 − 3s2

)∣
∣
1

x
, (3.170)

= (x− 1)(2x3 − 0) + x((2 − 3) − (2x3 − 3x2)), (3.171)

= 2x4 − 2x3 − x− 2x4 + 3x3, (3.172)

y(x) = x3 − x. (3.173)

Note the original differential equation and both boundary conditions are automatically satisfied by the
solution. The solution is plotted in Fig. 3.1.
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y(x) = x  - x3

y(x) = x  - x3

in domain of interest 0 < x < 1 in expanded domain, -2 < x < 2

Figure 3.1: Sketch of problem solution, y′′ = 6x, y(0) = y(1) = 0.

3.3.4 Operator D

The linear operator D is defined by

D(y) =
dy

dx
, (3.174)

or, in terms of the operator alone,

D =
d

dx
. (3.175)

The operator can be repeatedly applied, so that

Dn(y) =
dny

dxn
. (3.176)

Another example of its use is

(D − a)(D − b)f(x) = (D − a)((D − b)f(x)), (3.177)

= (D − a)

(
df

dx
− bf

)

, (3.178)

=
d2f

dx2
− (a+ b)

df

dx
+ abf. (3.179)

Negative powers of D are related to integrals. This comes from

dy(x)

dx
= f(x) y(xo) = yo, (3.180)

y(x) = yo +

∫ x

xo

f(s) ds, (3.181)
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then

substituting: D(y(x)) = f(x), (3.182)

apply inverse: D−1(D(y(x))) = D−1(f(x)), (3.183)

y(x) = D−1(f(x)), (3.184)

= yo +

∫ x

xo

f(s) ds, (3.185)

so D−1 = yo +

∫ x

xo

(. . .) ds. (3.186)

We can evaluate h(x) where

h(x) =
1

D − a
f(x), (3.187)

in the following way

(D − a)h(x) = (D − a)

(
1

D − a
f(x)

)

, (3.188)

(D − a)h(x) = f(x), (3.189)

dh(x)

dx
− ah(x) = f(x), (3.190)

e−ax
dh(x)

dx
− ae−axh(x) = f(x)e−ax, (3.191)

d

dx

(
e−axh(x)

)
= f(x)e−ax, (3.192)

d

ds

(
e−ash(s)

)
= f(s)e−as, (3.193)

∫ x

xo

d

ds

(
e−ash(s)

)
ds =

∫ x

xo

f(s)e−as ds, (3.194)

e−axh(x) − e−axoh(xo) =

∫ x

xo

f(s)e−as ds, (3.195)

h(x) = ea(x−xo)h(xo) + eax
∫ x

xo

f(s)e−as ds, (3.196)

1

D − a
f(x) = ea(x−xo)h(xo) + eax

∫ x

xo

f(s)e−as ds. (3.197)

This gives us h(x) explicitly in terms of the known function f such that h satisfies D(h)−ah =
f .

We can find the solution to higher order equations such as

(D − a)(D − b)y(x) = f(x), y(xo) = yo, y
′(xo) = y′o, (3.198)
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(D − b)y(x) =
1

D − a
f(x), (3.199)

(D − b)y(x) = h(x), (3.200)

y(x) = yoe
b(x−xo) + ebx

∫ x

xo

h(s)e−bs ds. (3.201)

Note that

dy

dx
= yobe

b(x−xo) + h(x) + bebx
∫ x

xo

h(s)e−bs ds, (3.202)

dy

dx
(xo) = y′o = yob+ h(xo), (3.203)

which can be rewritten as
(D − b)(y(xo)) = h(xo), (3.204)

which is what one would expect.
Returning to the problem at hand, we take our expression for h(x), evaluate it at x = s

and substitute into the expression for y(x) to get

y(x) = yoe
b(x−xo) + ebx

∫ x

xo

(

h(xo)e
a(s−xo) + eas

∫ s

xo

f(t)e−at dt

)

e−bs ds, (3.205)

= yoe
b(x−xo) + ebx

∫ x

xo

(

(y′o − yob) e
a(s−xo) + eas

∫ s

xo

f(t)e−atdt

)

e−bsds, (3.206)

= yoe
b(x−xo) + ebx

∫ x

xo

(

(y′o − yob) e
(a−b)s−axo + e(a−b)s

∫ s

xo

f(t)e−atdt

)

ds, (3.207)

= yoe
b(x−xo) + ebx (y′o − yob)

∫ x

xo

e(a−b)s−axods+ ebx
∫ x

xo

e(a−b)s
(∫ s

xo

f(t)e−atdt

)

ds,

(3.208)

= yoe
b(x−xo) + ebx (y′o − yob)

ea(x−xo)−xb − e−bxo

a− b
+ ebx

∫ x

xo

e(a−b)s
(∫ s

xo

f(t)e−atdt

)

ds,

(3.209)

= yoe
b(x−xo) + (y′o − yob)

ea(x−xo) − eb(x−xo)

a− b
+ ebx

∫ x

xo

e(a−b)s
(∫ s

xo

f(t)e−atdt

)

ds,

(3.210)

= yoe
b(x−xo) + (y′o − yob)

ea(x−xo) − eb(x−xo)

a− b
+ ebx

∫ x

xo

∫ s

xo

e(a−b)sf(t)e−atdt ds. (3.211)

Changing the order of integration and integrating on s, we get

y(x) = yoe
b(x−xo) + (y′o − yob)

ea(x−xo) − eb(x−xo)

a− b
+ ebx

∫ x

xo

∫ x

t

e(a−b)sf(t)e−atds dt,

CC BY-NC-ND. 29 July 2012, Sen & Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


100 CHAPTER 3. LINEAR ORDINARY DIFFERENTIAL EQUATIONS

(3.212)

= yoe
b(x−xo) + (y′o − yob)

ea(x−xo) − eb(x−xo)

a− b
+ ebx

∫ x

xo

f(t)e−at
(∫ x

t

e(a−b)sds

)

dt,

(3.213)

= yoe
b(x−xo) + (y′o − yob)

ea(x−xo) − eb(x−xo)

a− b
+

∫ x

xo

f(t)

a− b

(
ea(x−t) − eb(x−t)

)
dt.

(3.214)

Thus, we have a solution to the second order linear differential equation with constant
coefficients and arbitrary forcing expressed in integral form. A similar alternate expression
can be developed when a = b.

Problems

1. Find the general solution of the differential equation

y′ + x2y(1 + y) = 1 + x3(1 + x).

2. Show that the functions y1 = sinx, y2 = x cosx, and y3 = x are linearly independent. Find the lowest
order differential equation of which they are the complementary functions.

3. Solve the following initial value problem for (a) C = 6, (b) C = 4, and (c) C = 3 with y(0) = 1 and
y′(0) = −3.

d2y

dt2
+ C

dy

dt
+ 4y = 0.

Plot your results.

4. Solve

(a) d3y
dx3 − 3 d

2y
dx2 + 4y = 0,

(b) d4y
dx4 − 5 d

3y
dx3 + 11 d

2y
dx2 − 7 dydx = 12,

(c) y′′ + 2y = 6ex + cos 2x,

(d) x2y′′ − 3xy′ − 5y = x2 log x,

(e) d2y
dx2 + y = 2ex cosx+ (ex − 2) sinx.

5. Find a particular solution to the following ODE using (a) variation of parameters and (b) undetermined
coefficients.

d2y

dx2
− 4y = cosh 2x.

6. Solve the boundary value problem
d2y

dx2
+ y

dy

dx
= 0,

with boundary conditions y(0) = 0 and y(π/2) = −1 Plot your result.

7. Solve

2x2 d
3y

dx3
+ 2x

d2y

dx2
− 8

dy

dx
= 1,

with y(1) = 4, y′(1) = 8, y(2) = 11. Plot your result.
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8. Solve
x2y′′ + xy′ − 4y = 6x.

9. Find the general solution of
y′′ + 2y′ + y = xe−x.

10. Find the Green’s function solution of

y′′ + y′ − 2y = f(x),

with y(0) = 0, y′(1) = 0. Determine y(x) if f(x) = 3 sinx. Plot your result.

11. Find the Green’s function solution of
y′′ + 4y = f(x),

with y(0) = y(1), y′(0) = 0. Verify this is the correct solution when f(x) = x2. Plot your result.

12. Solve y′′′ − 2y′′ − y′ + 2y = sin2 x.

13. Solve y′′′ + 6y′′ + 12y′ + 8y = ex − 3 sinx− 8e−2x.

14. Solve x4y′′′′ + 7x3y′′′ + 8x2y′′ = 4x−3.

15. Show that x−1 and x5 are solutions of the equation

x2y′′ − 3xy′ − 5y = 0.

Thus, find the general solution of
x2y′′ − 3xy′ − 5y = x2.

16. Solve the equation

2y′′ − 4y′ + 2y =
ex

x
,

where x > 0.
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Chapter 4

Series solution methods

see Kaplan, Chapter 6,

see Hinch, Chapters 1, 2, 5, 6, 7,

see Bender and Orszag,

see Kervorkian and Cole,

see Van Dyke,

see Murdock,

see Holmes,

see Lopez, Chapters 7-11, 14,

see Riley, Hobson, and Bence, Chapter 14.

This chapter will deal with series solution methods. Such methods are useful in solving both
algebraic and differential equations. The first method is formally exact in that an infinite
number of terms can often be shown to have absolute and uniform convergence properties.
The second method, asymptotic series solutions, is less rigorous in that convergence is not
always guaranteed; in fact convergence is rarely examined because the problems tend to
be intractable. Still asymptotic methods will be seen to be quite useful in interpreting the
results of highly non-linear equations in local domains.

4.1 Power series

Solutions to many differential equations cannot be found in a closed form solution expressed
for instance in terms of polynomials and transcendental functions such as sin and cos. Often,
instead, the solutions can be expressed as an infinite series of polynomials. It is desirable
to get a complete expression for the nth term of the series so that one can make statements
regarding absolute and uniform convergence of the series. Such solutions are approximate
in that if one uses a finite number of terms to represent the solution, there is a truncation
error. Formally though, for series which converge, an infinite number of terms gives a true
representation of the actual solution, and hence the method is exact.

A function f(x) is said to be analytic if it is an infinitely differentiable function such that
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104 CHAPTER 4. SERIES SOLUTION METHODS

the Taylor series,
∑∞

n=0 f
(n)(xo)(x− xo)

n/n!, at any point x = xo in its domain converges to
f(x) in a neighborhood of x = xo.

4.1.1 First-order equation

An equation of the form
dy

dx
+ P (x)y = Q(x), (4.1)

where P (x) and Q(x) are analytic at x = a, has a power series solution

y(x) =
∞∑

n=0

an(x− a)n, (4.2)

around this point.

Example 4.1
Find the power series solution of

dy

dx
= y y(0) = yo, (4.3)

around x = 0.

Let
y = a0 + a1x+ a2x

2 + a3x
3 + · · · , (4.4)

so that
dy

dx
= a1 + 2a2x+ 3a3x

2 + 4a4x
3 + · · · . (4.5)

Substituting into Eq. (4.3), we have

a1 + 2a2x+ 3a3x
2 + 4a4x

3 + · · ·
︸ ︷︷ ︸

dy/dx

= a0 + a1x+ a2x
2 + a3x

3 + · · ·
︸ ︷︷ ︸

y

, (4.6)

(a1 − a0)
︸ ︷︷ ︸

=0

+ (2a2 − a1)
︸ ︷︷ ︸

=0

x+ (3a3 − a2)
︸ ︷︷ ︸

=0

x2 + (4a4 − a3)
︸ ︷︷ ︸

=0

x3 + · · · = 0 (4.7)

Because the polynomials x0, x1, x2, . . . are linearly independent, the coefficients must be all zero. Thus,

a1 = a0, (4.8)

a2 =
1

2
a1 =

1

2
a0, (4.9)

a3 =
1

3
a2 =

1

3!
a0, (4.10)

a4 =
1

4
a3 =

1

4!
a0, (4.11)

...

so that

y(x) = a0

(

1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·

)

. (4.12)
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Figure 4.1: Comparison of truncated series and exact solutions.

Applying the initial condition at x = 0 gives a0 = yo so

y(x) = yo

(

1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·

)

. (4.13)

Of course this power series is the Taylor series expansion, see Sec. 10.1, of the closed form solution
y = yoe

x about x = 0. The power series solution about a different point will give a different solution.
For yo = 1 the exact solution and three approximations to the exact solution are shown in Figure 4.1.

Alternatively, one can use a compact summation notation. Thus,

y =

∞∑

n=0

anx
n, (4.14)

dy

dx
=

∞∑

n=0

nanx
n−1, (4.15)

=

∞∑

n=1

nanx
n−1, (4.16)

m = n− 1 =

∞∑

m=0

(m+ 1)am+1x
m, (4.17)

=

∞∑

n=0

(n+ 1)an+1x
n. (4.18)

Thus, the differential equation becomes

∞∑

n=0

(n+ 1)an+1x
n

︸ ︷︷ ︸

dy/dx

=

∞∑

n=0

anx
n

︸ ︷︷ ︸

y

, (4.19)

∞∑

n=0

((n+ 1)an+1 − an)
︸ ︷︷ ︸

=0

xn = 0, (4.20)

(n+ 1)an+1 = an, (4.21)

an+1 =
1

n+ 1
an, (4.22)
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an =
a0

n!
, (4.23)

y = a0

∞∑

n=0

xn

n!
, (4.24)

y = yo

∞∑

n=0

xn

n!
. (4.25)

The ratio test tells us that

lim
n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
=

1

n+ 1
→ 0, (4.26)

so the series converges absolutely.
If a series is uniformly convergent in a domain, it converges at the same rate for all x in that

domain. We can use the Weierstrass1 M -test for uniform convergence. That is for a series

∞∑

n=0

un(x), (4.27)

to be convergent, we need a convergent series of constants Mn to exist

∞∑

n=0

Mn, (4.28)

such that
|un(x)| ≤Mn, (4.29)

for all x in the domain. For our problem, we take x ∈ [−A,A], where A > 0.
So for uniform convergence we must have

∣
∣
∣
∣

xn

n!

∣
∣
∣
∣
≤Mn. (4.30)

So take

Mn =
An

n!
. (4.31)

(Note Mn is thus strictly positive). So

∞∑

n=0

Mn =
∞∑

n=0

An

n!
. (4.32)

By the ratio test, this is convergent if

lim
n→∞

∣
∣
∣
∣
∣
∣

An+1

(n+1)!

An

(n)!

∣
∣
∣
∣
∣
∣

≤ 1, (4.33)

lim
n→∞

∣
∣
∣
∣

A

n+ 1

∣
∣
∣
∣

≤ 1. (4.34)

This holds for all A, so for x ∈ (−∞,∞) the series converges absolutely and uniformly.

1 Karl Theodor Wilhelm Weierstrass, 1815-1897, Westphalia-born German mathematician.
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4.1.2 Second-order equation

We consider series solutions of

P (x)
d2y

dx2
+Q(x)

dy

dx
+R(x)y = 0, (4.35)

around x = a. There are three different cases, depending of the behavior of P (a), Q(a)
and R(a), in which x = a is classified as an ordinary point, a regular singular point, or an
irregular singular point. These are described next.

4.1.2.1 Ordinary point

If P (a) 6= 0 and Q/P , R/P are analytic at x = a, this point is called an ordinary point. The
general solution is y = C1y1(x) + C2y2(x) where y1 and y2 are of the form

∑∞
n=0 an(x− a)n.

The radius of convergence of the series is the distance to the nearest complex singularity,
i.e. the distance between x = a and the closest point on the complex plane at which Q/P
or R/P is not analytic.

Example 4.2
Find the series solution of

y′′ + xy′ + y = 0, y(0) = yo, y′(0) = y′o, (4.36)

around x = 0.

The point x = 0 is an ordinary point, so that we have

y =

∞∑

n=0

anx
n, (4.37)

y′ =

∞∑

n=1

nanx
n−1, (4.38)

xy′ =

∞∑

n=1

nanx
n, (4.39)

xy′ =
∞∑

n=0

nanx
n, (4.40)

y′′ =

∞∑

n=2

n(n− 1)anx
n−2, (4.41)

m = n− 2, y′′ =

∞∑

m=0

(m+ 1)(m+ 2)am+2x
m, (4.42)

=

∞∑

n=0

(n+ 1)(n+ 2)an+2x
n. (4.43)
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Substituting into Eq. (4.36), we get

∞∑

n=0

((n+ 1)(n+ 2)an+2 + nan + an)
︸ ︷︷ ︸

=0

xn = 0. (4.44)

Equating the coefficients to zero, we get

an+2 = − 1

n+ 2
an, (4.45)

so that

y = a0

(

1 − x2

2
+

x4

4 · 2 − x6

6 · 4 · 2 + · · ·
)

+ a1

(

x− x3

3
+

x5

5 · 3 − x7

7 · 5 · 3 + · · ·
)

, (4.46)

y = yo

(

1 − x2

2
+

x4

4 · 2 − x6

6 · 4 · 2 + · · ·
)

+ y′o

(

x− x3

3
+

x5

5 · 3 − x7

7 · 5 · 3 + · · ·
)

, (4.47)

y = yo

∞∑

n=0

(−1)n

2nn!
x2n + y′o

∞∑

n=1

(−1)n−12nn!

(2n)!
x2n−1, (4.48)

y = yo

∞∑

n=0

1

n!

(−x2

2

)n

− y′o
x

∞∑

n=1

n!

(2n)!

(
−2x2

)n
. (4.49)

The series converges for all x. For yo = 1, y′o = 0 the exact solution, which can be shown to be

y = exp

(

−x
2

2

)

, (4.50)

and two approximations to the exact solution are shown in Fig. 4.2. For arbitrary yo and y′o, the
solution can be shown to be

y = exp

(

−x
2

2

)(

yo +

√
π

2
y′oerfi

(
x√
2

))

. (4.51)

Here “erfi” is the so-called imaginary error function; see Sec. 10.7.4 of the Appendix.

4.1.2.2 Regular singular point

If P (a) = 0, then x = a is a singular point. Furthermore, if (x − a)Q/P and (x − a)2R/P
are both analytic at x = a, this point is called a regular singular point. Then there exists at
least one solution of the form

y(x) = (x− a)r
∞∑

n=0

an(x− a)n =

∞∑

n=0

an(x− a)n+r. (4.52)

This is known as the Frobenius2 method. The radius of convergence of the series is again
the distance to the nearest complex singularity.

An equation for r is called the indicial equation. The following are the different kinds of
solutions of the indicial equation possible:

2Ferdinand Georg Frobenius, 1849-1917, Prussian/German mathematician.
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Figure 4.2: Comparison of truncated series and exact solutions.

• r1 6= r2, and r1 − r2 not an integer. Then

y1 = (x− a)r1
∞∑

n=0

an(x− a)n =
∞∑

n=0

an(x− a)n+r1, (4.53)

y2 = (x− a)r2
∞∑

n=0

bn(x− a)n =
∞∑

n=0

an(x− a)n+r2 . (4.54)

• r1 = r2 = r. Then

y1 = (x− a)r
∞∑

n=0

an(x− a)n =
∞∑

n=0

an(x− a)n+r, (4.55)

y2 = y1 ln x+ (x− a)r
∞∑

n=0

bn(x− a)n = y1 ln x+
∞∑

n=0

bn(x− a)n+r. (4.56)

• r1 6= r2, and r1 − r2 is a positive integer.

y1 = (x− a)r1
∞∑

n=0

an(x− a)n =

∞∑

n=0

an(x− a)n+r1, (4.57)

y2 = ky1 ln x+ (x− a)r2
∞∑

n=0

bn(x− a)n = ky1 ln x+
∞∑

n=0

bn(x− a)n+r2. (4.58)

The constants an and k are determined by the differential equation. The general solution is

y(x) = C1y1(x) + C2y2(x). (4.59)
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Example 4.3
Find the series solution of

4xy′′ + 2y′ + y = 0, (4.60)

around x = 0.

The point x = 0 is a regular singular point. So we have a = 0 and take

y = xr
∞∑

n=0

anx
n, (4.61)

y =

∞∑

n=0

anx
n+r, (4.62)

y′ =

∞∑

n=0

an(n+ r)xn+r−1, (4.63)

y′′ =

∞∑

n=0

an(n+ r)(n+ r − 1)xn+r−2, (4.64)

4

∞∑

n=0

an(n+ r)(n+ r − 1)xn+r−1

︸ ︷︷ ︸

=4xy′′

+ 2

∞∑

n=0

an(n+ r)xn+r−1

︸ ︷︷ ︸

=2y′

+

∞∑

n=0

anx
n+r

︸ ︷︷ ︸

=y

= 0, (4.65)

2

∞∑

n=0

an(n+ r)(2n+ 2r − 1)xn+r−1 +

∞∑

n=0

anx
n+r = 0, (4.66)

m = n− 1 2

∞∑

m=−1

am+1(m+ 1 + r)(2(m + 1) + 2r − 1)xm+r +

∞∑

n=0

anx
n+r = 0, (4.67)

2

∞∑

n=−1

an+1(n+ 1 + r)(2(n + 1) + 2r − 1)xn+r +

∞∑

n=0

anx
n+r = 0, (4.68)

2a0r(2r − 1)x−1+r + 2

∞∑

n=0

an+1(n+ 1 + r)(2(n + 1) + 2r − 1)xn+r +

∞∑

n=0

anx
n+r = 0. (4.69)

The first term (n = −1) gives the indicial equation:

r(2r − 1) = 0, (4.70)

from which r = 0, 1/2. We then have

2
∞∑

n=0

an+1(n+ r + 1)(2n+ 2r + 1)xn+r +
∞∑

n=0

anx
n+r = 0, (4.71)

∞∑

n=0

(2an+1(n+ r + 1)(2n+ 2r + 1) + an)
︸ ︷︷ ︸

=0

xn+r = 0. (4.72)

For r = 0

an+1 = −an
1

(2n+ 2)(2n+ 1)
, (4.73)

y1 = a0

(

1 − x

2!
+
x2

4!
− x3

6!
+ · · ·

)

. (4.74)
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Figure 4.3: Comparison of truncated series and exact solutions.

For r = 1/2

an+1 = −an
1

2(2n+ 3)(n+ 1)
, (4.75)

y2 = a0x
1/2

(

1 − x

3!
+
x2

5!
− x3

7!
+ · · ·

)

. (4.76)

The series converges for all x to y1 = cos
√
x and y2 = sin

√
x. The general solution is

y = C1y1 + C2y2, (4.77)

or

y(x) = C1 cos
√
x+ C2 sin

√
x. (4.78)

Note that y(x) is real and non-singular for x ∈ [0,∞). However, the first derivative

y′(x) = −C1
sin

√
x

2
√
x

+ C2
cos

√
x

2
√
x,

(4.79)

is singular at x = 0. The nature of the singularity is seen from a Taylor series expansion of y′(x) about
x = 0, which gives

y′(x) ∼ C1

(

−1

2
+

x

12
+ . . .

)

+ C2

(
1

2
√
x
−

√
x

4
+ . . .

)

. (4.80)

So there is a weak 1/
√
x singularity in y′(x) at x = 0.

For y(0) = 1, y′(0) <∞, the exact solution and the linear approximation to the exact solution are
shown in Fig. 4.3. For this case, one has C1 = 1 to satisfy the condition on y(0), and one must have
C2 = 0 to satisfy the non-singular condition on y′(0).
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Example 4.4
Find the series solution of

xy′′ − y = 0, (4.81)

around x = 0.

Let y =
∑∞

n=0 anx
n+r. Then, from Eq. (4.81)

r(r − 1)a0x
r−1 +

∞∑

n=1

((n+ r)(n + r − 1)an − an−1)x
n+r−1 = 0. (4.82)

The indicial equation is r(r − 1) = 0, from which r = 0, 1.
Consider the larger of the two, i.e. r = 1. For this we get

an =
1

n(n+ 1)
an−1, (4.83)

=
1

n!(n+ 1)!
a0. (4.84)

Thus,

y1(x) = x+
1

2
x2 +

1

12
x3 +

1

144
x4 + . . . . (4.85)

From Eq. (4.58), the second solution is

y2(x) = ky1(x) lnx+

∞∑

n=0

bnx
n. (4.86)

It has derivatives

y′2(x) = k
y1(x)

x
+ ky′1(x) ln x+

∞∑

n=0

nbnx
n−1, (4.87)

y′′2 (x) = −k y1(x)
x2

+ 2k
y′1(x)

x
+ ky′′1 (x) ln x+

∞∑

n=0

n(n− 1)bnx
n−2. (4.88)

To take advantage of Eq. (4.81), let us multiply the second derivative by x.

xy′′2 (x) = −k y1(x)
x

+ 2ky′1(x) + k xy′′1 (x)
︸ ︷︷ ︸

=y1(x)

lnx+

∞∑

n=0

n(n− 1)bnx
n−1. (4.89)

Now since y1 is a solution of Eq. (4.81), we have xy′′1 = y1; thus,

xy′′2 (x) = −k y1(x)
x

+ 2ky′1(x) + ky1(x) lnx+

∞∑

n=0

n(n− 1)bnx
n−1. (4.90)

Now subtract Eq. (4.86) from both sides and then enforce Eq. (4.81) to get

0 = xy′′2 (x) − y2(x) = −k y1(x)
x

+ 2ky′1(x) + ky1(x) ln x+
∞∑

n=0

n(n− 1)bnx
n−1

−
(

ky1(x) ln x+

∞∑

n=1

bnx
n

)

. (4.91)
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Simplifying and rearranging, we get

− ky1(x)

x
+ 2ky′1(x) +

∞∑

n=0

n(n− 1)bnx
n−1 −

∞∑

n=0

bnx
n = 0. (4.92)

Substituting the solution y1(x) already obtained, we get

0 = −k
(

1 +
1

2
x+

1

12
x2 + . . .

)

+ 2k

(

1 + x+
1

2
x2 + . . .

)

+
(
2b2x+ 6b3x

2 + . . .
)
−
(
b0 + b1x+ b2x

2 + . . .
)
. (4.93)

Collecting terms, we have

k = b0, (4.94)

bn+1 =
1

n(n+ 1)

(

bn − k(2n+ 1)

n!(n+ 1)!

)

for n = 1, 2, . . . . (4.95)

Thus,

y2(x) = b0y1 lnx+ b0

(

1 − 3

4
x2 − 7

36
x3 − 35

1728
x4 − . . .

)

+b1

(

x+
1

2
x2 +

1

12
x3 +

1

144
x4 + . . .

)

︸ ︷︷ ︸

=y1

. (4.96)

Since the last part of the series, shown in an under-braced term, is actually y1(x), and we already have
C1y1 as part of the solution, we choose b1 = 0. Because we also allow for a C2, we can then set b0 = 1.
Thus, we take

y2(x) = y1 lnx+

(

1 − 3

4
x2 − 7

36
x3 − 35

1728
x4 − . . .

)

. (4.97)

The general solution, y = C1y1 + C2y2, is

y(x) = C1

(

x+
1

2
x2 +

1

12
x3 +

1

144
x4 + . . .

)

︸ ︷︷ ︸

y1

+C2

((

x+
1

2
x2 +

1

12
x3 +

1

144
x4 + . . .

)

lnx+

(

1 − 3

4
x2 − 7

36
x3 − 35

1728
x4 − . . .

))

︸ ︷︷ ︸

y2

.(4.98)

It can also be shown that the solution can be represented compactly as

y(x) =
√
x
(
C1I1(2

√
x) + C2K1(2

√
x)
)
, (4.99)

where I1 and K1 are what is known as modified Bessel functions of the first and second kinds, respec-
tively, both of order 1. The function I1(s) is non-singular, while K1(s) is singular at s = 0.
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4.1.2.3 Irregular singular point

If P (a) = 0 and in addition either (x− a)Q/P or (x− a)2R/P is not analytic at x = a, this
point is an irregular singular point. In this case a series solution cannot be guaranteed.

4.1.3 Higher order equations

Similar techniques can sometimes be used for equations of higher order.

Example 4.5
Solve

y′′′ − xy = 0, (4.100)

around x = 0.

Let

y =
∞∑

n=0

anx
n, (4.101)

from which

xy =

∞∑

n=1

an−1x
n, (4.102)

y′′′ = 6a3 +

∞∑

n=1

(n+ 1)(n+ 2)(n+ 3)an+3x
n. (4.103)

Substituting into Eq. (4.100), we find that

a3 = 0, (4.104)

an+3 =
1

(n+ 1)(n+ 2)(n+ 3)
an−1, (4.105)

which gives the general solution

y(x) = a0

(

1 +
1

24
x4 +

1

8064
x8 + . . .

)

+a1x

(

1 +
1

60
x4 +

1

30240
x8 + . . .

)

+a2x
2

(

1 +
1

120
x4 +

1

86400
x8 + . . .

)

. (4.106)

For y(0) = 1, y′(0) = 0, y′′(0) = 0, we get a0 = 1, a1 = 0, and a2 = 0. The exact solution and the
linear approximation to the exact solution, y ∼ 1 + x4/24, are shown in Fig. 4.4. The exact solution is
expressed in terms of one of the hypergeometric functions, see Sec. 10.7.8 of the Appendix, and is

y = 0F2

(

{} ;

{
1

2
,
3

4

}

;
x4

64

)

. (4.107)
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Figure 4.4: Comparison of truncated series and exact solutions.

4.2 Perturbation methods

Perturbation methods, also known as linearization or asymptotic techniques, are not as
rigorous as infinite series methods in that usually it is impossible to make a statement
regarding convergence. Nevertheless, the methods have proven to be powerful in many
regimes of applied mathematics, science, and engineering.

The method hinges on the identification of a small parameter ǫ, 0 < ǫ ≪ 1. Typically
there is an easily obtained solution when ǫ = 0. One then uses this solution as a seed to
construct a linear theory about it. The resulting set of linear equations are then solved
giving a solution which is valid in a regime near ǫ = 0.

4.2.1 Algebraic and transcendental equations

To illustrate the method of solution, we begin with quadratic algebraic equations for which
exact solutions are available. We can then easily see the advantages and limitations of the
method.

Example 4.6
For 0 < ǫ≪ 1 solve

x2 + ǫx− 1 = 0. (4.108)

Let
x = x0 + ǫx1 + ǫ2x2 + · · · . (4.109)

Substituting into Eq. (4.108),

(
x0 + ǫx1 + ǫ2x2 + · · ·

)2

︸ ︷︷ ︸

=x2

+ǫ
(
x0 + ǫx1 + ǫ2x2 + · · ·

)

︸ ︷︷ ︸

=x

−1 = 0, (4.110)
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expanding the square by polynomial multiplication,

(
x2

0 + 2x1x0ǫ+
(
x2

1 + 2x2x0

)
ǫ2 + . . .

)
+
(
x0ǫ+ x1ǫ

2 + . . .
)
− 1 = 0. (4.111)

Regrouping, we get

(x2
0 − 1)

︸ ︷︷ ︸

=0

ǫ0 + (2x1x0 + x0)
︸ ︷︷ ︸

=0

ǫ1 + (x2
1 + 2x0x2 + x1)

︸ ︷︷ ︸

=0

ǫ2 + . . . = 0. (4.112)

Because ǫ0, ǫ1, ǫ2, . . ., are linearly independent, the coefficients in Eq. (4.112) must each equal zero.
Thus, we get

O(ǫ0) : x2
0 − 1 = 0 ⇒ x0 = 1, −1,

O(ǫ1) : 2x0x1 + x0 = 0 ⇒ x1 = − 1
2 , − 1

2 ,
O(ǫ2) : x2

1 + 2x0x2 + x1 = 0 ⇒ x2 = 1
8 , − 1

8 ,
...

(4.113)

The solutions are

x = 1 − ǫ

2
+
ǫ2

8
+ · · · , (4.114)

and

x = −1 − ǫ

2
− ǫ2

8
+ · · · . (4.115)

The exact solutions can also be expanded

x =
1

2

(

−ǫ±
√

ǫ2 + 4
)

, (4.116)

= ±1 − ǫ

2
± ǫ2

8
+ . . . , (4.117)

to give the same results. The exact solution and the linear approximation are shown in Fig. 4.5.
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Example 4.7
For 0 < ǫ≪ 1 solve

ǫx2 + x− 1 = 0. (4.118)

Note as ǫ→ 0, the equation becomes singular. Let

x = x0 + ǫx1 + ǫ2x2 + · · · . (4.119)

Substituting into Eq. (4.118), we get

ǫ
(
x0 + ǫx1 + ǫ2x2 + · · ·

)2

︸ ︷︷ ︸

x2

+
(
x0 + ǫx1 + ǫ2x2 + · · ·

)

︸ ︷︷ ︸

x

= 0. (4.120)

Expanding the quadratic term gives

ǫ
(
x2

0 + 2ǫx0x1 + · · ·
)

+
(
x0 + ǫx1 + ǫ2x2 + · · ·

)
− 1 = 0, (4.121)

(x0 − 1)
︸ ︷︷ ︸

=0

ǫ0 + (x2
0 + x1)

︸ ︷︷ ︸

=0

ǫ1 + (2x0x1 + x2)
︸ ︷︷ ︸

=0

ǫ2 + · · · = 0. (4.122)

Because of linear independence of ǫ0, ǫ1, ǫ2, . . ., their coefficients must be zero. Thus, collecting different
powers of ǫ, we get

O(ǫ0) : x0 − 1 = 0 ⇒ x0 = 1,
O(ǫ1) : x2

0 + x1 = 0 ⇒ x1 = −1,
O(ǫ2) : 2x0x1 + x2 = 0 ⇒ x2 = 2,
...

(4.123)

This gives one solution

x = 1 − ǫ+ 2ǫ2 + · · · . (4.124)

To get the other solution, let

X =
x

ǫα
. (4.125)

Equation (4.118) becomes

ǫ2α+1X2 + ǫαX − 1 = 0. (4.126)

The first two terms are of the same order if 2α+ 1 = α. This demands α = −1. With this,

X = xǫ, ǫ−1X2 + ǫ−1X − 1 = 0. (4.127)

This gives

X2 +X − ǫ = 0. (4.128)

We expand

X = X0 + ǫX1 + ǫ2X2 + · · · , (4.129)

so

(
X0 + ǫX1 + ǫ2X2 + · · ·

)2

︸ ︷︷ ︸

X2

+
(
X0 + ǫX1 + ǫ2X2 + · · ·

)

︸ ︷︷ ︸

X

−ǫ = 0, (4.130)

(
X2

0 + 2ǫX0X1 + ǫ2(X2
1 + 2X0X2) + · · ·

)
+
(
X0 + ǫX1 + ǫ2X2 + · · ·

)
− ǫ = 0. (4.131)
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Figure 4.6: Comparison of asymptotic and exact solutions.

Collecting terms of the same order

O(ǫ0) : X2
0 +X0 = 0 ⇒ X0 = −1, 0,

O(ǫ1) : 2X0X1 +X1 = 1 ⇒ X1 = −1, 1,
O(ǫ2) : X2

1 + 2X0X2 +X2 = 0 ⇒ X2 = 1, −1,
...

(4.132)

gives the two solutions

X = −1 − ǫ+ ǫ2 + · · · , (4.133)

X = ǫ− ǫ2 + · · · , (4.134)

or, with X = xǫ,

x =
1

ǫ

(
−1 − ǫ+ ǫ2 + · · ·

)
, (4.135)

x = 1 − ǫ+ · · · . (4.136)

Expansion of the exact solutions

x =
1

2ǫ

(
−1 ±

√
1 + 4ǫ

)
, (4.137)

=
1

2ǫ

(
−1 ± (1 + 2ǫ− 2ǫ2 + 4ǫ4 + · · ·)

)
, (4.138)

gives the same results. The exact solution and the linear approximation are shown in Fig. 4.6.

Example 4.8
Solve

cosx = ǫ sin(x+ ǫ), (4.139)
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for x near π/2.

Fig. 4.7 shows a plot of cosx and ǫ sin(x + ǫ) for ǫ = 0.1. It is seen that there are multiple
intersections near x =

(
n+ 1

2π
)
, where n = 0,±1,±2, . . .. We seek only one of these. When we

-10 -5 5 10
x

-1

-0.5

0.5

1

f(x)

ε = 0.1
cos (x)

ε sin(x + ε)

. .... .

Figure 4.7: Location of roots.

substitute
x = x0 + ǫx1 + ǫ2x2 + · · · , (4.140)

into Eq. (4.139), we find

cos(x0 + ǫx1 + ǫ2x2 + · · ·
︸ ︷︷ ︸

x

) = ǫ sin(x0 + ǫx1 + ǫ2x2 + · · ·
︸ ︷︷ ︸

x

+ǫ). (4.141)

Now we expand both the left and right hand sides in a Taylor series in ǫ about ǫ = 0. We note that
a general function f(ǫ) has such a Taylor series of f(ǫ) ∼ f(0) + ǫf ′(0) + (ǫ2/2)f ′′(0) + . . . Expanding
the left hand side, we get

cos(x0 + ǫx1 + . . .)
︸ ︷︷ ︸

=cosx

= cos(x0 + ǫx1 + . . .)|ǫ=0
︸ ︷︷ ︸

=cos x|
ǫ=0

+ǫ

=d/dǫ(cosx)|
ǫ=0

︷ ︸︸ ︷

(− sin(x0 + ǫx1 + . . .))
︸ ︷︷ ︸

=d/dx(cosx)|
ǫ=0

(x1 + 2ǫx2 + . . .)
︸ ︷︷ ︸

=dx/dǫ|
ǫ=0

∣
∣
∣
∣
∣
∣
∣
ǫ=0

+ . . . , (4.142)

cos(x0 + ǫx1 + . . .) = cosx0 − ǫx1 sinx0 + . . . . (4.143)

The right hand side is similar. We then arrive at Eq. (4.139) being expressed as

cosx0 − ǫx1 sinx0 + . . . = ǫ(sinx0 + . . .). (4.144)

Collecting terms
O(ǫ0) : cosx0 = 0 ⇒ x0 = π

2 ,
O(ǫ1) : −x1 sinx0 − sinx0 = 0 ⇒ x1 = −1,
...

(4.145)

The solution is
x =

π

2
− ǫ+ · · · . (4.146)
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4.2.2 Regular perturbations

Differential equations can also be solved using perturbation techniques.

Example 4.9
For 0 < ǫ≪ 1 solve

y′′ + ǫy2 = 0, (4.147)

y(0) = 1, y′(0) = 0. (4.148)

Let

y(x) = y0(x) + ǫy1(x) + ǫ2y2(x) + · · · , (4.149)

y′(x) = y′0(x) + ǫy′1(x) + ǫ2y′2(x) + · · · , (4.150)

y′′(x) = y′′0 (x) + ǫy′′1 (x) + ǫ2y′′2 (x) + · · · . (4.151)

Substituting into Eq. (4.147),

(
y′′0 (x) + ǫy′′1 (x) + ǫ2y′′2 (x) + · · ·

)

︸ ︷︷ ︸

y′′

+ǫ
(
y0(x) + ǫy1(x) + ǫ2y2(x) + · · ·

)2

︸ ︷︷ ︸

y2

= 0, (4.152)

(
y′′0 (x) + ǫy′′1 (x) + ǫ2y′′2 (x) + · · ·

)
+ ǫ
(
y2
0(x) + 2ǫy1(x)yo(x) + · · ·

)
= 0. (4.153)

Substituting into the boundary conditions, Eq. (4.148):

y0(0) + ǫy1(0) + ǫ2y2(0) + · · · = 1, (4.154)

y′0(0) + ǫy′1(0) + ǫ2y′2(0) + · · · = 0. (4.155)

Collecting terms

O(ǫ0) : y′′0 = 0, y0(0) = 1, y′0(0) = 0 ⇒ y0 = 1,

O(ǫ1) : y′′1 = −y2
0, y1(0) = 0, y′1(0) = 0 ⇒ y1 = −x2

2 ,

O(ǫ2) : y′′2 = −2y0y1, y2(0) = 0, y′2(0) = 0 ⇒ y2 = x4

12 ,
...

(4.156)

The solution is

y = 1 − ǫ
x2

2
+ ǫ2

x4

12
+ · · · . (4.157)

For validity of the asymptotic solution, we must have

1 ≫ ǫ
x2

2
. (4.158)

This solution becomes invalid when the first term is as large or larger than the second:

1 ≤ ǫ
x2

2
, (4.159)

|x| ≥
√

2

ǫ
. (4.160)
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Using the techniques of the previous chapter it is seen that Eqs. (4.147, 4.148) possess an exact
solution. With

u =
dy

dx
,

d2y

dx2
=
dy′

dy

dy

dx
=
du

dy
u, (4.161)

Eq. (4.147) becomes

u
du

dy
+ ǫy2 = 0, (4.162)

udu = −ǫy2dy, (4.163)

u2

2
= − ǫ

3
y3 + C1, (4.164)

u = 0 when y = 1 so C =
ǫ

3
, (4.165)

u = ±
√

2ǫ

3
(1 − y3), (4.166)

dy

dx
= ±

√

2ǫ

3
(1 − y3), (4.167)

dx = ± dy
√

2ǫ
3 (1 − y3)

, (4.168)

x = ±
∫ y

1

ds
√

2ǫ
3 (1 − s3)

. (4.169)

It can be shown that this integral can be represented in terms of a) the Gamma function, Γ, (see
Sec. 10.7.1 of the Appendix), and b) Gauss’s3 hypergeometric function, 2F1(a, b, c, z), (see Sec. 10.7.8
of the Appendix), as follows:

x = ∓
√
π

6ǫ

Γ
(

1
3

)

Γ
(

5
6

) ±
√

3

2ǫ
y

(

2F1

(
1

3
,
1

2
,
4

3
, y3

))

. (4.170)

It is likely difficult to invert either Eq. (4.169) or (4.170) to get y(x) explicitly. For small ǫ, the
essence of the solution is better conveyed by the asymptotic solution. A portion of the asymptotic and
exact solutions for ǫ = 0.1 are shown in Fig. 4.8. For this value, the asymptotic solution is expected to
be invalid for |x| ≥

√

2/ǫ = 4.47.

Example 4.10
Solve

y′′ + ǫy2 = 0, y(0) = 1, y′(0) = ǫ. (4.171)

Let

y(x) = y0(x) + ǫy1(x) + ǫ2y2(x) + · · · . (4.172)

3Johann Carl Friedrich Gauss, 1777-1855, Brunswick-born German mathematician of tremendous influ-
ence.
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Figure 4.8: Comparison of asymptotic and exact solutions.

Substituting into Eq. (4.171) and collecting terms

O(ǫ0) : y′′0 = 0, y0(0) = 1, y′0(0) = 0 ⇒ y0 = 1,

O(ǫ1) : y′′1 = −y2
0 , y1(0) = 0, y′1(0) = 1 ⇒ y1 = −x2

2 + x,

O(ǫ2) : y′′2 = −2y0y1, y2(0) = 0, y′2(0) = 0 ⇒ y2 = x4

12 − x3

3 ,
...

(4.173)

The solution is

y = 1 − ǫ

(
x2

2
− x

)

+ ǫ2
(
x4

12
− x3

3

)

+ · · · . (4.174)

A portion of the asymptotic and exact solutions for ǫ = 0.1 are shown in Fig. 4.9. Compared to the

-10 -5 5 10
x

-5

-4

-3

-2

-1

1

y

asymptotic

exacty’’ + ε y  = 0
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2

Figure 4.9: Comparison of asymptotic and exact solutions.

previous example, there is a slight offset from the y axis.

CC BY-NC-ND. 29 July 2012, Sen & Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


4.2. PERTURBATION METHODS 123

4.2.3 Strained coordinates

The regular perturbation expansion may not be valid over the complete domain of interest.
The method of strained coordinates, also known as the Poincaré4-Lindstedt5 method, is
designed to address this. In a slightly different context this method is known as Lighthill’s6

method.

Example 4.11
Find an approximate solution of the Duffing equation:

ẍ+ x+ ǫx3 = 0, x(0) = 1, ẋ(0) = 0. (4.175)

First let’s give some physical motivation, as also outlined in Section 10.2 of Kaplan. One problem in
which Duffing’s equation arises is the undamped motion of a mass subject to a non-linear spring force.
Consider a body of mass m moving in the horizontal x plane. Initially the body is given a small positive
displacement x(0) = xo. The body has zero initial velocity dx/dt(0) = 0. The body is subjected to a
non-linear spring force Fs oriented such that it will pull the body towards x = 0:

Fs = (k0 + k1x
2)x. (4.176)

Here k0 and k1 are dimensional constants with SI units N/m and N/m3 respectively. Newton’s second
law gives us

m
d2x

dt2
= −(k0 + k1x

2)x, (4.177)

m
d2x

dt2
+ (k0 + k1x

2)x = 0, x(0) = xo,
dx

dt
(0) = 0. (4.178)

Choose an as yet arbitrary length scale L and an as yet arbitrary time scale T with which to scale the
problem and take:

x̃ =
x

L
, t̃ =

t

T
. (4.179)

Substitute
mL

T 2

d2x̃

dt̃2
+ k0Lx̃+ k1L

3x̃3 = 0, Lx̃(0) = xo,
L

T

dx̃

dt̃
(0) = 0. (4.180)

Rearrange to make all terms dimensionless:

d2x̃

dt̃2
+
k0T

2

m
x̃+

k1L
2T 2

m
x̃3 = 0, x̃(0) =

xo
L
,

dx̃

dt̃
(0) = 0. (4.181)

Now we want to examine the effect of small non-linearities. Choose the length and time scales such
that the leading order motion has an amplitude which is O(1) and a frequency which is O(1). So take

T ≡
√
m

k0
, L ≡ xo. (4.182)

So
d2x̃

dt̃2
+ x̃+

k1x
2
o
m
k0

m
x̃3 = 0, x̃(0) = 1,

dx̃

dt̃
(0) = 0. (4.183)

4Henri Poincaré, 1854-1912, French polymath.
5Anders Lindstedt, 1854-1939, Swedish mathematician, astronomer, and actuarial scientist.
6Sir Michael James Lighthill, 1924-1998, British applied mathematician and noted open-water swimmer.

CC BY-NC-ND. 29 July 2012, Sen & Powers.

http://en.wikipedia.org/wiki/Henri_Poincar%C3%A9
http://en.wikipedia.org/wiki/Anders_Lindstedt
http://en.wikipedia.org/wiki/James_Lighthill
http://creativecommons.org/licenses/by-nc-nd/3.0/


124 CHAPTER 4. SERIES SOLUTION METHODS

Choosing

ǫ ≡ k1x
2
o

k0
, (4.184)

we get

d2x̃

dt̃2
+ x̃+ ǫx̃3 = 0, x̃(0) = 1,

dx̃

dt̃
(0) = 0. (4.185)

So our asymptotic theory will be valid for

ǫ≪ 1, k1x
2
o ≪ k0. (4.186)

Now, let’s drop the superscripts and focus on the mathematics. An accurate numerical approxima-
tion to the exact solution x(t) for ǫ = 0.2 and the so-called phase plane for this solution, giving dx/dt
versus x are shown in Fig. 4.10.
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x(0) = 1,  x'(0) = 0

3
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-1 -1/2

-1/2

1/2

1/2

Figure 4.10: Numerical solution x(t) and phase plane trajectory, dx/dt versus x for Duffing’s
equation, ǫ = 0.2.

Note if ǫ = 0, the solution is x(t) = cos t, and thus dx/dt = − sin t. Thus, for ǫ = 0, x2 +(dx/dt)2 =
cos2 t + sin2 t = 1. Thus, the ǫ = 0 phase plane solution is a unit circle. The phase plane portrait of
Fig. 4.10 displays a small deviation from a circle. This deviation would be more pronounced for larger
ǫ.

Let’s use an asymptotic method to try to capture this solution. Using the expansion

x(t) = x0(t) + ǫx1(t) + ǫ2x2(t) + · · · , (4.187)

and collecting terms, we find

O(ǫ0) : ẍ0 + x0 = 0, x0(0) = 1, ẋ0(0) = 0 ⇒ x0 = cos t,
O(ǫ1) : ẍ1 + x1 = −x3

0, x1(0) = 0, ẋ1(0) = 0 ⇒ x1 = 1
32 (− cos t+ cos 3t− 12t sin t),

...

(4.188)
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Figure 4.11: Error plots for various approximations from the method of strained coordinates
to Duffing’s equation with ǫ = 0.2. Difference between high accuracy numerical solution and:
a) leading order asymptotic solution, b) uncorrected O(ǫ) asymptotic solution, c) corrected
O(ǫ) asymptotic solution.

The difference between the exact solution and the leading order solution, xexact(t) − x0(t) is plotted
in Fig. 4.11a. The error is the same order of magnitude as the solution itself for moderate values of t.
This is undesirable.

To O(ǫ) the solution is

x = cos t+
ǫ

32



− cos t+ cos 3t− 12t sin t
︸ ︷︷ ︸

secular term



+ · · · . (4.189)

This series has a so-called “secular term,” −ǫ 3
8 t sin t, that grows without bound. Thus, our solution is

only valid for t≪ ǫ−1.
Now nature may or may not admit unbounded growth depending on the problem. Let us return to

the original Eq. (4.175) to consider whether or not unbounded growth is admissible. Eq. (4.175) can
be integrated once via the following steps

ẋ
(
ẍ+ x+ ǫx3

)
= 0, (4.190)

ẋẍ+ ẋx+ ǫẋx3 = 0, (4.191)

d

dt

(
1

2
ẋ2 +

1

2
x2 +

ǫ

4
x4

)

= 0, (4.192)

1

2
ẋ2 +

1

2
x2 +

ǫ

4
x4 =

(
1

2
ẋ2 +

1

2
x2 +

ǫ

4
x4

)∣
∣
∣
∣
t=0

, (4.193)

1

2
ẋ2 +

1

2
x2 +

ǫ

4
x4 =

1

4
(2 + ǫ), (4.194)

indicating that the solution is bounded. The difference between the exact solution and the leading
order solution, xexact(t)− (x0(t)+ ǫx1(t)) is plotted in Fig. 4.11b. There is some improvement for early
time, but the solution is actually worse for later time. This is because of the secularity.

To have a solution valid for all time, we strain the time coordinate

t = (1 + c1ǫ+ c2ǫ
2 + · · ·)τ, (4.195)

where τ is the new time variable. The ci’s should be chosen to avoid secular terms.
Differentiating

ẋ =
dx

dτ

dτ

dt
=
dx

dτ

(
dt

dτ

)−1

, (4.196)
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=
dx

dτ
(1 + c1ǫ+ c2ǫ

2 + · · ·)−1, (4.197)

ẍ =
d2x

dτ2
(1 + c1ǫ+ c2ǫ

2 + · · ·)−2, (4.198)

=
d2x

dτ2

(
1 − c1ǫ+ (c21 − c2)ǫ

2 + · · ·
)2
, (4.199)

=
d2x

dτ2
(1 − 2c1ǫ+ (3c21 − 2c2)ǫ

2 + · · ·). (4.200)

Furthermore, we write
x = x0 + ǫx1 + ǫ2x2 + . . . (4.201)

Substituting into Eq. (4.175), we get
(
d2x0

dτ2
+ ǫ

d2x1

dτ2
+ ǫ2

d2x2

dτ2
+ · · ·

)

(1 − 2c1ǫ+ (3c21 − 2c2)ǫ
2 + · · ·)

︸ ︷︷ ︸

ẍ

+ (x0 + ǫx1 + ǫ2x2 + · · ·)
︸ ︷︷ ︸

x

+ǫ (x0 + ǫx1 + ǫ2x2 + · · ·)3
︸ ︷︷ ︸

x3

= 0. (4.202)

Collecting terms, we get

O(ǫ0) : d2x0

dτ2 + x0 = 0, x0(0) = 1, dx0

dτ (0) = 0,
x0(τ) = cos τ,

O(ǫ1) : d2x1

dτ2 + x1 = 2c1
d2x0

dτ2 − x3
0, x1(0) = 0, dx1

dτ (0) = 0,
= −2c1 cos τ − cos3 τ,
= −(2c1 + 3

4 ) cos τ − 1
4 cos 3τ,

x1(τ) = 1
32 (− cos τ + cos 3τ), if we choose c1 = − 3

8 .
(4.203)

Thus,

x(τ) = cos τ + ǫ
1

32
(− cos τ + cos 3τ) + · · · . (4.204)

Since

t =

(

1 − ǫ
3

8
+ · · ·

)

τ, (4.205)

τ =

(

1 + ǫ
3

8
+ · · ·

)

t, (4.206)

we get the corrected solution approximation to be

x(t) = cos








(

1 + ǫ
3

8
+ · · ·

)

︸ ︷︷ ︸

Frequency Modulation (FM)

t








+ǫ
1

32

(

− cos

((

1 + ǫ
3

8
+ · · ·

)

t

)

+ cos

(

3

(

1 + ǫ
3

8
+ · · ·

)

t

))

+ · · · . (4.207)

The difference between the exact solution and the leading order solution, xexact(t) − (x0(t) + ǫx1(t))
for the corrected solution to O(ǫ) is plotted in Fig. 4.11c. The error is much smaller relative to the
previous cases; there does appear to be a slight growth in the amplitude of the error with time. This
might not be expected, but in fact is a characteristic behavior of the truncation error of the numerical
method used to generate the exact solution.
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Example 4.12
Find the amplitude of the limit cycle oscillations of the van der Pol7 equation

ẍ− ǫ(1 − x2)ẋ + x = 0, x(0) = A, ẋ(0) = 0, 0 < ǫ≪ 1. (4.208)

Here A is the amplitude and is considered to be an adjustable parameter in this problem. If a limit cycle
exists, it will be valid as t → ∞. Note this could be thought of as a model for a mass-spring-damper
system with a non-linear damping coefficient of −ǫ(1 − x2). For small |x|, the damping coefficient
is negative. From our intuition from linear mass-spring-damper systems, we recognize that this will
lead to amplitude growth, at least for sufficiently small |x|. However, when the amplitude grows to
|x| > 1/

√
ǫ, the damping coefficient again becomes positive, thus decaying the amplitude. We might

expect a limit cycle amplitude where there exists a balance between the tendency for amplitude to grow
or decay.

Let
t = (1 + c1ǫ+ c2ǫ

2 + · · ·)τ, (4.209)

so that Eq. (4.208) becomes

d2x

dτ2
(1 − 2c1ǫ+ . . .) − ǫ(1 − x2)

dx

dτ
(1 − c1ǫ+ . . .) + x = 0. (4.210)

We also use
x = x0 + ǫx1 + ǫ2x2 + . . . . (4.211)

Thus, we get
x0 = A cos τ, (4.212)

to O(ǫ0). To O(ǫ), the equation is

d2x1

dτ2
+ x1 = −2c1A cos τ −A

(

1 − A2

4

)

sin τ +
A3

4
sin 3τ. (4.213)

Choosing c1 = 0 and A = 2 in order to suppress secular terms, we get

x1 =
3

4
sin τ − 1

4
sin 3τ. (4.214)

The amplitude, to lowest order, is
A = 2, (4.215)

so to O(ǫ) the solution is

x(t) = 2 cos
(
t+O(ǫ2)

)
+ ǫ

(
3

4
sin
(
t+O(ǫ2)

)
− 1

4
sin
(
3
(
t+O(ǫ2)

))
)

+O(ǫ2). (4.216)

The exact solution, xexact, ẋexact, calculated by high precision numerics in the x, ẋ phase plane, x(t),
and the difference between the exact solution and the asymptotic leading order solution, xexact(t) −
x0(t), and the difference between the exact solution and the asymptotic solution corrected to O(ǫ):
xexact(t)− (x0(t)+ ǫx1(t)) is plotted in Fig. 4.12. Because of the special choice of initial conditions, the
solution trajectory lies for all time on the limit cycle of the phase plane. Note that the leading order
solution is only marginally better than the corrected solution at this value of ǫ. For smaller values of
ǫ, the relative errors between the two approximations would widen; that is, the asymptotic correction
would become relatively speaking, more accurate.

7Balthasar van der Pol, 1889-1959, Dutch physicist.
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Figure 4.12: Results for van der Pol equation, d2x/dt2 − ǫ(1 − x2)dx/dt + x = 0, x(0) =
2, ẋ(0) = 0, ǫ = 0.3: a) high precision numerical phase plane, b) high precision numeri-
cal calculation of x(t), c) difference between exact and asymptotic leading order solution
(blue), and difference between exact and corrected asymptotic solution to O(ǫ) (red) from
the method of strained coordinates.

4.2.4 Multiple scales

The method of multiple scales is a strategy for isolating features of a solution which may
evolve on widely disparate scales.

Example 4.13
Solve

d2x

dt2
− ǫ(1 − x2)

dx

dt
+ x = 0, x(0) = 0,

dx

dt
(0) = 1, 0 < ǫ≪ 1. (4.217)

Let x = x(τ, τ̃ ), where the fast time scale is

τ = (1 + a1ǫ+ a2ǫ
2 + · · ·)t, (4.218)

and the slow time scale is
τ̃ = ǫt. (4.219)

Since

x = x(τ, τ̃ ), (4.220)

dx

dt
=

∂x

∂τ

dτ

dt
+
∂x

∂τ̃

dτ̃

dt
. (4.221)

The first derivative is
dx

dt
=
∂x

∂τ
(1 + a1ǫ+ a2ǫ

2 + · · ·) +
∂x

∂τ̃
ǫ, (4.222)

so
d

dt
= (1 + a1ǫ+ a2ǫ

2 + · · ·) ∂
∂τ

+ ǫ
∂

∂τ̃
. (4.223)
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Applying this operator to dx/dt, we get

d2x

dt2
= (1 + a1ǫ+ a2ǫ

2 + · · ·)2 ∂
2x

∂τ2
+ 2(1 + a1ǫ+ a2ǫ

2 + · · ·)ǫ ∂
2x

∂τ∂τ̃
+ ǫ2

∂2x

∂τ̃2
. (4.224)

Introduce
x = x0 + ǫx1 + ǫ2x2 + · · · . (4.225)

So to O(ǫ), Eq. (4.217) becomes

(1 + 2a1ǫ+ · · ·)∂
2 (x0 + ǫx1 + · · ·)

∂τ2
+ 2ǫ

∂2 (x0 + · · ·)
∂τ∂τ̃

+ · · ·
︸ ︷︷ ︸

ẍ

−ǫ (1 − x2
0 − · · ·)∂(x0 + · · ·)

∂τ
+ · · ·

︸ ︷︷ ︸

(1−x2)ẋ

+ (x0 + ǫx1 + · · ·)
︸ ︷︷ ︸

x

= 0. (4.226)

Collecting terms of O(ǫ0), we have

∂2x0

∂τ2
+ x0 = 0 with x0(0, 0) = 0, ∂x0

∂τ (0, 0) = 1. (4.227)

The solution is
x0 = A(τ̃ ) cos τ +B(τ̃ ) sin τ with A(0) = 0, B(0) = 1. (4.228)

The terms of O(ǫ1) give

∂2x1

∂τ2
+ x1 = −2a1

∂2x0

∂τ2
− 2

∂2x0

∂τ∂τ̃
+ (1 − x2

0)
∂x0

∂τ
, (4.229)

=

(

2a1B + 2A′ −A+
A

4
(A2 +B2)

)

sin τ

+

(

2a1A− 2B′ +B − B

4
(A2 +B2)

)

cos τ

+
A

4
(A2 − 3B2) sin 3τ − B

4
(3A2 −B2) cos 3τ. (4.230)

with

x1(0, 0) = 0, (4.231)

∂x1

∂τ
(0, 0) = −a1

∂x0

∂τ
(0, 0) − ∂x0

∂τ̃
(0, 0), (4.232)

= −a1 −
∂x0

∂τ̃
(0, 0). (4.233)

Since ǫt is already represented in τ̃ , choose a1 = 0. Then

2A′ −A+
A

4
(A2 +B2) = 0, (4.234)

2B′ −B +
B

4
(A2 +B2) = 0. (4.235)

Since A(0) = 0, try A(τ̃ ) = 0. Then

2B′ −B +
B3

4
= 0. (4.236)
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Multiplying by B, we get

2BB′ −B2 +
B4

4
= 0, (4.237)

(B2)′ −B2 +
B4

4
= 0. (4.238)

Taking F ≡ B2, we get

F ′ − F +
F 2

4
= 0. (4.239)

This is a first order ODE in F , which can be easily solved. Separating variables, integrating, and
transforming from F back to B, we get

B2

1 − B2

4

= Ceτ̃ . (4.240)

Since B(0) = 1, we get C = 4/3. From this

B =
2√

1 + 3e−τ̃
, (4.241)

so that

x(τ, τ̃ ) =
2√

1 + 3e−τ̃
sin τ +O(ǫ), (4.242)

x(t) =
2√

1 + 3e−ǫt
︸ ︷︷ ︸

Amplitude Modulation (AM)

sin
(
(1 +O(ǫ2))t

)
+O(ǫ). (4.243)

The high precision numerical approximation for the solution trajectory in the (x, ẋ) phase plane,
the high precision numerical solution xexact(t), and the difference between the exact solution and the
asymptotic leading order solution, xexact(t) − x0(t), and the difference between the exact solution and
the asymptotic solution corrected to O(ǫ): xexact(t) − (x0(t) + ǫx1(t)) are plotted in Fig. 4.13. Note
that the amplitude, which is initially 1, grows to a value of 2, the same value which was obtained
in the previous example. This is evident in the phase plane, where the initial condition does not lie
on the long time limit cycle. Here, we have additionally obtained the time scale for the growth of
the amplitude change. Note also that the leading order approximation is poor for t > 1/ǫ, while the
corrected approximation is relatively good. Also note that for ǫ = 0.3, the segregation in time scales
is not dramatic. The “fast” time scale is that of the oscillation and is O(1). The slow time scale is
O(1/ǫ), which here is around 3. For smaller ǫ, the effect would be more dramatic.

4.2.5 Boundary layers

The method of boundary layers, also known as matched asymptotic expansion, can be used
in some cases. It is most appropriate for cases in which a small parameter multiplies the
highest order derivative. In such cases a regular perturbation scheme will fail since we lose
a boundary condition at leading order.
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Figure 4.13: Results for van der Pol equation, d2x/dt2 − ǫ(1 − x2)dx/dt + x = 0, x(0) =
0, ẋ(0) = 1, ǫ = 0.3: a) high precision numerical phase plane, b) high precision numeri-
cal calculation of x(t), along with the envelope 2/

√
1 + 3e−ǫt, c) difference between exact

and asymptotic leading order solution (blue), and difference between exact and corrected
asymptotic solution to O(ǫ) (red) from the method of multiple scales.

Example 4.14
Solve

ǫy′′ + y′ + y = 0, y(0) = 0, y(1) = 1. (4.244)

An exact solution to this equation exists, namely

y(x) = exp

(
1 − x

2ǫ

) sinh
(
x
√

1−4ǫ
2ǫ

)

sinh
(√

1−4ǫ
2ǫ

) . (4.245)

We could in principle simply expand this in a Taylor series in ǫ. However, for more difficult problems,
exact solutions are not available. So here we will just use the exact solution to verify the validity of the
method.

We begin with a regular perturbation expansion

y(x) = y0 + ǫy1(x) + ǫ2y2(x) + · · · . (4.246)

Substituting and collecting terms, we get

O(ǫ0) : y′0 + y0 = 0, y0(0) = 0, y0(1) = 1, (4.247)

the solution to which is

y0 = ae−x. (4.248)

It is not possible for the solution to satisfy the two boundary conditions simultaneously since we only
have one free variable, a. So, we divide the region of interest x ∈ [0, 1] into two parts, a thin inner
region or boundary layer around x = 0, and an outer region elsewhere.

Equation (4.248) gives the solution in the outer region. To satisfy the boundary condition y0(1) = 1,
we find that a = e, so that

y = e1−x + · · · . (4.249)
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In the inner region, we choose a new independent variable X defined as X = x/ǫ, so that the equation
becomes

d2y

dX2
+

dy

dX
+ ǫy = 0. (4.250)

Using a perturbation expansion, the lowest order equation is

d2y0
dX2

+
dy0
dX

= 0, (4.251)

with a solution
y0 = A+Be−X . (4.252)

Applying the boundary condition y0(0) = 0, we get

y0 = A(1 − e−X). (4.253)

Matching of the inner and outer solutions is achieved by (Prandtl’s8 method)

yinner(X → ∞) = youter(x→ 0), (4.254)

which gives A = e. The solution is

y(x) = e(1 − e−x/ǫ) + · · · , in the inner region, (4.255)

lim
x→∞

y = e, (4.256)

and

y(x) = e1−x + · · · , in the outer region, (4.257)

lim
x→0

y = e. (4.258)

A composite solution can also be written by adding the two solutions. However, one must realize that
this induces a double counting in the region where the inner layer solution matches onto the outer layer
solution. Thus, we need to subtract one term to account for this overlap. This is known as the common
part. Thus, the correct composite solution is the summation of the inner and outer parts, with the
common part subtracted:

y(x) =
(

e(1 − e−x/ǫ) + · · ·
)

︸ ︷︷ ︸

inner

+
(
e1−x + · · ·

)

︸ ︷︷ ︸

outer

− e
︸︷︷︸

common part

, (4.259)

y = e(e−x − e−x/ǫ) + · · · . (4.260)

The exact solution, the inner layer solution, the outer layer solution, and the composite solution are
plotted in Fig. 4.14.

Example 4.15
Obtain the solution of the previous problem

ǫy′′ + y′ + y = 0, y(0) = 0, y(1) = 1, (4.261)

8Ludwig Prandtl, 1875-1953, German engineer based in Göttingen.
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Figure 4.14: Exact, inner layer solution, outer layer solution, and composite solution for
boundary layer problem.

to the next order.

Keeping terms of the next order in ǫ, we have

y = e1−x + ǫ((1 − x)e1−x) + . . . , (4.262)

for the outer solution, and

y = A(1 − e−X) + ǫ
(
B −AX − (B +AX)e−X

)
+ . . . , (4.263)

for the inner solution.
Higher order matching (Van Dyke’s9 method) is obtained by expanding the outer solution in terms

of the inner variable, the inner solution in terms of the outer variable, and comparing. Thus, the outer
solution is, as ǫ→ 0

y = e1−ǫX + ǫ
(
(1 − ǫX)e1−ǫX

)
+ . . . , (4.264)

= e(1 − ǫX) + ǫe(1 − ǫX)2. (4.265)

Ignoring terms which are > O(ǫ2), we get

y = e(1 − ǫX) + ǫe, (4.266)

= e+ ǫe(1 −X), (4.267)

= e+ ǫe
(

1 − x

ǫ

)

, (4.268)

= e+ ǫe− ex. (4.269)

Similarly, the inner solution as ǫ→ 0 is

y = A(1 − e−x/ǫ) + ǫ
(

B −A
x

ǫ
−
(

B +A
x

ǫ

)

e−x/ǫ
)

+ . . . , (4.270)

= A+Bǫ−Ax. (4.271)

9Milton Denman Van Dyke, 1922-2010, American engineer and applied mathematician.
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Figure 4.15: Difference between exact and asymptotic solutions for two different orders of
approximation for a boundary layer problem.

Comparing, we get A = B = e, so that

y(x) = e(1 − e−x/ǫ) + e
(

ǫ− x− (ǫ+ x)e−x/ǫ
)

+ · · · in the inner region, (4.272)

and

y(x) = e1−x + ǫ(1 − x)e1−x · · · in the outer region, (4.273)

The composite solution, inner plus outer minus common part, reduces to

y = e1−x − (1 + x)e1−x/ǫ + ǫ
(

(1 − x)e1−x − e1−x/ǫ
)

+ · · · . (4.274)

The difference between the exact solution and the approximation from the previous example, and the
difference between the exact solution and approximation from this example are plotted in Fig. 4.15.

Example 4.16
In the same problem, investigate the possibility of having the boundary layer at x = 1. The outer

solution now satisfies the condition y(0) = 0, giving y = 0. Let

X =
x− 1

ǫ
. (4.275)

The lowest order inner solution satisfying y(X = 0) = 1 is

y = A+ (1 −A)e−X . (4.276)

However, as X → −∞, this becomes unbounded and cannot be matched with the outer solution. Thus,
a boundary layer at x = 1 is not possible.
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Example 4.17
Solve

ǫy′′ − y′ + y = 0, with y(0) = 0, y(1) = 1. (4.277)

The boundary layer is at x = 1. The outer solution is y = 0. Taking

X =
x− 1

ǫ
(4.278)

the inner solution is

y = A+ (1 −A)eX + . . . (4.279)

Matching, we get

A = 0, (4.280)

so that we have a composite solution

y(x) = e(x−1)/ǫ + . . . . (4.281)

The exact solution, the approximate solution to O(ǫ), and the difference between the exact solution
and the approximation, are plotted in Fig. 4.16.

4.2.6 WKBJ method

Any equation of the form
d2v

dx2
+ P (x)

dv

dx
+Q(x)v = 0, (4.282)

can be written as
d2y

dx2
+R(x)y = 0, (4.283)
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where

v(x) = y(x) exp

(

−1

2

∫ x

0

P (s)ds

)

, (4.284)

R(x) = Q(x) − 1

2

dP

dx
− 1

4
(P (x))2 . (4.285)

So it is sufficient to study equations of the form of Eq. (4.283). The Wentzel,10 Kramers,11

Brillouin,12 Jeffreys,13 (WKBJ) method is used for equations of the kind

ǫ2
d2y

dx2
= f(x)y, (4.286)

where ǫ is a small parameter. This also includes an equation of the type

ǫ2
d2y

dx2
= (λ2p(x) + q(x))y, (4.287)

where λ is a large parameter. Alternatively, by taking x = ǫt, Eq. (4.286) becomes

d2y

dt2
= f(ǫt)y. (4.288)

We can also write Eq. (4.286) as
d2y

dx2
= g(x)y, (4.289)

where g(x) is slowly varying in the sense that g′/g3/2 ∼ O(ǫ).
We seek solutions to Eq. (4.286) of the form

y(x) = exp

(
1

ǫ

∫ x

x0

(S0(s) + ǫS1(s) + ǫ2S2(s) + · · ·)ds
)

. (4.290)

The derivatives are

dy

dx
=

1

ǫ

(
S0(x) + ǫS1(x) + ǫ2S2(x) + · · ·

)
y(x), (4.291)

d2y

dx2
=

1

ǫ2
(
S0(x) + ǫS1(x) + ǫ2S2(x) + · · ·

)2
y(x),

+
1

ǫ

(
dS0

dx
+ ǫ

dS1

dx
+ ǫ2

dS2

dx
+ · · ·

)

y(x). (4.292)

10Gregor Wentzel, 1898-1978, German physicist.
11Hendrik Anthony Kramers, 1894-1952, Dutch physicist.
12Léon Brillouin, 1889-1969, French physicist.
13Harold Jeffreys, 1891-1989, English mathematician.
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Substituting into Eq. (4.286), we get

(
(S0(x))

2 + 2ǫS0(x)S1(x) + · · ·
)
y(x) + ǫ

(
dS0

dx
+ · · ·

)

y(x)

︸ ︷︷ ︸

=ǫ2d2y/dx2

= f(x)y(x). (4.293)

Collecting terms, at O(ǫ0) we have

S2
0(x) = f(x), (4.294)

from which
S0(x) = ±

√

f(x). (4.295)

To O(ǫ1) we have

2S0(x)S1(x) +
dS0

dx
= 0, (4.296)

from which

S1(x) = −
dS0

dx

2S0(x)
, (4.297)

= −
± 1

2
√
f(x)

df
dx

2
(

±
√

f(x)
) , (4.298)

= −
df
dx

4f(x)
. (4.299)

Thus, we get the general solution

y(x) = C1 exp

(
1

ǫ

∫ x

x0

(S0(s) + ǫS1(s) + · · ·)ds
)

+C2 exp

(
1

ǫ

∫ x

x0

(S0(s) + ǫS1(s) + · · ·)ds
)

, (4.300)

y(x) = C1 exp

(

1

ǫ

∫ x

x0

(
√

f(s) − ǫ
df
ds

4f(s)
+ · · ·)ds

)

+C2 exp

(

1

ǫ

∫ x

x0

(−
√

f(s) − ǫ
df
ds

4f(s)
+ · · ·)ds

)

, (4.301)

y(x) = C1 exp

(

−
∫ f(x)

f(x0)

df

4f

)

exp

(
1

ǫ

∫ x

x0

(
√

f(s) + · · ·)ds
)

+C2 exp

(

−
∫ f(x)

f(x0)

df

4f

)

exp

(

−1

ǫ

∫ x

x0

(
√

f(s) + · · ·)ds
)

, (4.302)

y(x) =
Ĉ1

(f(x))1/4
exp

(
1

ǫ

∫ x

x0

√

f(s)ds

)

+
Ĉ2

(f(x))1/4
exp

(

−1

ǫ

∫ x

x0

√

f(s)ds

)

+ · · · .

(4.303)
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This solution is not valid near x = a for which f(a) = 0. These are called turning points.
At such points the solution changes from an oscillatory to an exponential character.

Example 4.18
Find an approximate solution of the Airy14 equation

ǫ2y′′ + xy = 0, for x > 0. (4.304)

In this case
f(x) = −x. (4.305)

Thus, x = 0 is a turning point. We find that

S0(x) = ±i√x, (4.306)

and

S1(x) = − S′
0

2S0
= − 1

4x
. (4.307)

The solutions are of the form

y = exp

(

± i

ǫ

∫ √
x dx−

∫
dx

4x

)

+ · · · , (4.308)

=
1

x1/4
exp

(

±2x3/2i

3ǫ

)

+ · · · . (4.309)

The general approximate solution is

y =
C1

x1/4
sin

(
2x3/2

3ǫ

)

+
C2

x1/4
cos

(
2x3/2

3ǫ

)

+ · · · . (4.310)

The exact solution can be shown to be

y = C1Ai
(

−ǫ−2/3x
)

+ C2Bi
(

−ǫ−2/3x
)

. (4.311)

Here Ai and Bi are Airy functions of the first and second kind, respectively. See Sec. 10.7.9 in the
Appendix.

Example 4.19
Find a solution of x3y′′ = y, for small, positive x.

Let ǫ2X = x, so that X is of O(1) when x is small. Then the equation becomes

ǫ2
d2y

dX2
= X−3y. (4.312)

14George Biddell Airy, 1801-1892, English applied mathematician, First Wrangler at Cambridge, holder of
the Lucasian Chair (that held by Newton) at Cambridge, Astronomer Royal who had some role in delaying
the identification of Neptune as predicted by John Couch Adams’ perturbation theory in 1845.

CC BY-NC-ND. 29 July 2012, Sen & Powers.

http://en.wikipedia.org/wiki/George_Biddell_Airy
http://en.wikipedia.org/wiki/John_Couch_Adams
http://creativecommons.org/licenses/by-nc-nd/3.0/


4.2. PERTURBATION METHODS 139

The WKBJ method is applicable. We have f = X−3. The general solution is

y = C′
1X

3/4 exp

(

− 2

ǫ
√
X

)

+ C′
2X

3/4 exp

(
2

ǫ
√
X

)

+ · · · . (4.313)

In terms of the original variables

y = C1x
3/4 exp

(

− 2√
x

)

+ C2x
3/4 exp

(
2√
x

)

+ · · · . (4.314)

The exact solution can be shown to be

y =
√
x

(

C1I1

(
2√
x

)

+ C2K1

(
2√
x

))

. (4.315)

Here I1 is a modified Bessel function of the first kind of order one, and K1 is a modified Bessel function
of the second kind of order one.

4.2.7 Solutions of the type eS(x)

Example 4.20
Solve

x3y′′ = y, (4.316)

for small, positive x.

Let y = eS(x), so that y′ = S′eS , y′′ = (S′)2eS + S′′eS , from which

S′′ + (S′)2 = x−3. (4.317)

Assume that S′′ ≪ (S′)2 (to be checked later). Thus, S′ = ±x−3/2, and S = ±2x−1/2. Checking we
get S′′/(S′)2 = x1/2 → 0 as x → 0, confirming the assumption. Now we add a correction term so that
S(x) = 2x−1/2 +C(x), where we have taken the positive sign. Assume that C ≪ 2x−1/2. Substituting
in the equation, we have

3

2
x−5/2 + C′′ − 2x−3/2C′ + (C′)2 = 0. (4.318)

Since C ≪ 2x−1/2, we have C′ ≪ x−3/2 and C′′ ≪ (3/2)x−5/2. Thus

3

2
x−5/2 − 2x−3/2C′ = 0, (4.319)

from which C′ = (3/4)x−1 and C = (3/4) lnx. We can now check the assumption on C.
We have S(x) = 2x−1/2 + (3/4) lnx, so that

y = x3/4 exp

(

− 2√
x

)

+ · · · . (4.320)

Another solution is obtained by taking S(x) = −2x−1/2 +C(x). This procedure is similar to that of the
WKBJ method, and the solution is identical. The exact solution is of course the same as the previous
example.
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y’ = exp (-xy)

y (  ) = 18

Repeated Substitution Method

Figure 4.17: Numerical and first approximate solution for repeated substitution problem.

4.2.8 Repeated substitution

This technique sometimes works if the range of the independent variable is such that some
term is small.

Example 4.21
Solve

y′ = e−xy, y(∞) → c, c > 0, (4.321)

for y > 0 and large x.

As x→ ∞, y′ → 0, so that y → c. Substituting y = c into Eq. (4.321), we get

y′ = e−cx, (4.322)

which can be integrated to get, after application of the boundary condition,

y = c− 1

c
e−cx. (4.323)

Substituting Eq. (4.323) into the original Eq. (4.321), we find

y′ = exp

(

−x
(

c− 1

c
e−cx

))

, (4.324)

= e−cx
(

1 +
x

c
e−cx + . . .

)

. (4.325)

which can be integrated to give

y = c− 1

c
e−cx − 1

c2

(

x+
1

2c

)

e−2cx + · · · . (4.326)

The series converges for large x. An accurate numerical solution along with the first approximation are
plotted in Fig. 4.17.
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Problems

1. Solve as a series in x for x > 0 about the point x = 0:

(a) x2y′′ − 2xy′ + (x+ 1)y = 0; y(1) = 1, y(4) = 0.

(b) xy′′ + y′ + 2x2y = 0; |y(0)| <∞, y(1) = 1.

In each case find the exact solution with a symbolic computation program, and compare graphically
the first four terms of your series solution with the exact solution.

2. Find two-term expansions for each of the roots of

(x− 1)(x+ 3)(x− 3λ) + 1 = 0,

where λ is large.

3. Find two terms of an approximate solution of

y′′ +
λ

λ+ x
y = 0,

with y(0) = 0, y(1) = 1, where λ is a large parameter. For λ = 20, plot y(x) for the two-term
expansion. Also compute the exact solution by numerical integration. Plot the difference between the
asymptotic and numerical solution versus x.

4. Find the leading order solution for

(x− ǫy)
dy

dx
+ xy = e−x,

where y(1) = 1, and x ∈ [0, 1], ǫ ≪ 1. For ǫ = 0.2, plot the asymptotic solution, the exact solution
and the difference versus x.

5. The motion of a pendulum is governed by the equation

d2x

dt2
+ sin(x) = 0,

with x(0) = ǫ, dxdt (0) = 0. Using strained coordinates, find the approximate solution of x(t) for small ǫ
through O(ǫ2). Plot your results for both your asymptotic results and those obtained by a numerical
integration of the full equation.

6. Find an approximate solution for

y′′ − yey/10 = 0,

with y(0) = 1, y(1) = e.

7. Find an approximate solution for the following problem:

ÿ − yey/12 = 0, with y(0) = 0.1, ẏ(0) = 1.2.

Compare with the numerical solution for 0 ≤ x ≤ 1.

8. Find the lowest order solution for

ǫ2y′′ + ǫy2 − y + 1 = 0,

with y(0) = 1, y(1) = 3, where ǫ is small. For ǫ = 0.2, plot the asymptotic and exact solutions.
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9. Show that for small ǫ the solution of
dy

dt
− y = ǫet,

with y(0) = 1 can be approximated as an exponential on a slightly different time scale.

10. Obtain approximate general solutions of the following equations near x = 0.

(a) xy′′ + y′ + xy = 0, through O(x6),

(b) xy′′ + y = 0, through O(x2).

11. Find all solutions through O(ǫ2), where ǫ is a small parameter, and compare with the exact result for
ǫ = 0.01.

(a) 4x4 + 4(ǫ+ 1)x3 + 3(2ǫ− 5)x2 + (2ǫ− 16)x− 4 = 0,

(b) 2ǫx4 + 2(2ǫ+ 1)x3 + (7 − 2ǫ)x2 − 5x− 4 = 0.

12. Find three terms of a solution of
x+ ǫ cos(x + 2ǫ) =

π

2
,

where ǫ is a small parameter. For ǫ = 0.2, compare the best asymptotic solution with the exact
solution.

13. Find three terms of the solution of

ẋ+ 2x+ ǫx2 = 0, with x(0) = cosh ǫ,

where ǫ is a small parameter. Compare graphically with the exact solution for ǫ = 0.3 and 0 ≤ t ≤ 2.

14. Write down an approximation for
∫ π/2

0

√

1 + ǫ cos2 x dx,

if ǫ = 0.1, so that the absolute error is less than 2 × 10−4.

15. Solve
y′′ + y = eǫ sin x, with y(0) = y(1) = 0,

through O(ǫ), where ǫ is a small parameter. For ǫ = 0.25 graphically compare the asymptotic solution
with a numerically obtained solution.

16. The solution of the matrix equation A · x = y can be written as x = A−1 · y. Find the perturbation
solution of (A + ǫB) · x = y, where ǫ is a small parameter.

17. Find all solutions of ǫx4 + x − 2 = 0 approximately, if ǫ is small and positive. If ǫ = 0.001, compare
the exact solution obtained numerically with the asymptotic solution.

18. Obtain the first two terms of an approximate solution to

ẍ+ 3(1 + ǫ)ẋ+ 2x = 0, with x(0) = 2(1 + ǫ), ẋ(0) = −3(1 + 2ǫ),

for small ǫ. Compare the approximate and exact solutions graphically in the range 0 ≤ x ≤ 1 for (a)
ǫ = 0.1, (b) ǫ = 0.25, and (c) ǫ = 0.5.

19. Find an approximate solution to

ẍ+ (1 + ǫ)x = 0, with x(0) = A, ẋ(0) = B,

for small, positive ǫ. Compare with the exact solution. Plot both the exact solution and the approxi-
mate solution on the same graph for A = 1, B = 0, ǫ = 0.3.
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20. Find an approximate solution to the following problem for small ǫ

ǫ2ÿ − y = −1, with y(0) = 0, y(1) = 0.

Compare graphically with the exact solution for ǫ = 0.1.

21. Solve to leading order
ǫy′′ + yy′ − y = 0, with y(0) = 0, y(1) = 3.

Compare graphically to the exact solution for ǫ = 0.2.

22. If ẍ + x + ǫx3 = 0 with x(0) = A, ẋ(0) = 0 where ǫ is small, a regular expansion gives x(t) ≈
A cos t + ǫ(A3/32)(− cos t + cos 3t − 12t sin t). Explain why this is not valid for all time, and obtain
a better solution by inserting t = (1 + a1ǫ + . . .)τ into this solution, expanding in terms of ǫ, and
choosing a1, a2, · · · properly (Pritulo’s method).

23. Use perturbations to find an approximate solution to

y′′ + λy′ = λ, with y(0) = 0, y(1) = 0,

where λ≫ 1.

24. Find the complementary functions of
y′′′ − xy = 0,

in terms of expansions near x = 0. Retain only two terms for each function.

25. Find, correct to O(ǫ), the solution of

ẍ+ (1 + ǫ cos 2t) x = 0, with x(0) = 1, and ẋ(0) = 0,

that is bounded for all t, where ǫ≪ 1.

26. Find the function f to O(ǫ) where it satisfies the integral equation

x =

∫ x+ǫ sin x

0

f(ξ) dξ.

27. Find three terms of a perturbation solution of

y′′ + ǫy2 = 0,

with y(0) = 0, y(1) = 1 for ǫ ≪ 1. For ǫ = 2.5, compare the O(1), O(ǫ), and O(ǫ2) solutions to a
numerically obtained solution in x ∈ [0, 1].

28. Obtain a power series solution (in summation form) for y′ + ky = 0 about x = 0, where k is an
arbitrary, nonzero constant. Compare to a Taylor series expansion of the exact solution.

29. Obtain two terms of an approximate solution for ǫex = cosx when ǫ is small. Graphically compare
to the actual values (obtained numerically) when ǫ = 0.2, 0.1, 0.01.

30. Obtain three terms of a perturbation solution for the roots of the equation (1 − ǫ)x2 − 2x + 1 = 0.
(Hint: The expansion x = x0 + ǫx1 + ǫ2x2 + . . . will not work.)

31. The solution of the matrix equation A · x = y can be written as x = A−1 · y. Find the nth term of
the perturbation solution of (A + ǫB) · x = y, where ǫ is a small parameter. Obtain the first three
terms of the solution for

A =





1 2 1
2 2 1
1 2 3



 , B =





1/10 1/2 1/10
0 1/5 0

1/2 1/10 1/2



 , y =





1/2
1/5
1/10



 .
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32. Obtain leading and first order terms for u and v, governed by the following set of coupled differential
equations, for small ǫ:

d2u

dx2
+ ǫv

du

dx
= 1, u(0) = 0, u(1) =

1

2
+

1

120
ǫ,

d2v

dx2
+ ǫu

dv

dx
= x, v(0) = 0, v(1) =

1

6
+

1

80
ǫ.

Compare asymptotic and numerically obtained results for ǫ = 0.2.

33. Obtain two terms of a perturbation solution to ǫfxx+ fx = −e−x with boundary conditions f(0) = 0,
f(1) = 1. Graph the solution for ǫ = 0.2, 0.1, 0.05, 0.025 on 0 ≤ x ≤ 1.

34. Find two uniformly valid approximate solutions of

ü+
ω2u

1 + u2
= 0, with u(0) = 0,

up to the first order. Note that ω is not small.

35. Using a two-variable expansion, find the lowest order solution of

(a) ẍ+ ǫẋ+ x = 0 with x(0) = 0, ẋ(0) = 1,

(b) ẍ+ ǫẋ3 + x = 0 with x(0) = 0, ẋ(0) = 1.

where ǫ≪ 1. Compare asymptotic and numerically obtained results for ǫ = 0.01.

36. Obtain a three-term solution of

ǫẍ− ẋ = 1, with x(0) = 0, x(1) = 2,

where ǫ≪ 1.

37. Find an approximate solution to the following problem for small ǫ

ǫ2ÿ − y = −1 with y(0) = 0, y(1) = 0.

Compare graphically with the exact solution for ǫ = 0.1.

38. A projectile of mass m is launched at an angle α with respect to the horizontal, and with an initial
velocity V . Find the time it takes to reach its maximum height. Assume that the air resistance is
small and can be written as k times the square of the velocity of the projectile. Choosing appropriate
values for the parameters, compare with the numerical result.

39. For small ǫ, solve using WKBJ

ǫ2y′′ = (1 + x2)2y, with y(0) = 0, y(1) = 1.

40. Obtain a general series solution of

y′′ + k2y = 0,

about x = 0.

41. Find a general solution of

y′′ + exy = 1,

near x = 0.
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42. Solve

x2y′′ + x

(
1

2
+ 2x

)

y′ +

(

x− 1

2

)

y = 0,

around x = 0.

43. Solve y′′ −√
xy = 0, x > 0 in each one of the following ways:

(a) Substitute x = ǫ−4/5X , and then use WKBJ.

(b) Substitute x = ǫ2/5X , and then use regular perturbation.

(c) Find an approximate solution of the kind y = eS(x).

where ǫ is small

44. Find a solution of

y′′′ −√
xy = 0,

for small x ≥ 0.

45. Find an approximate general solution of

(x sinx) y′′ + (2x cosx+ x2 sinx) y′ + (x sin x+ sinx+ x2 cosx) y = 0,

valid near x = 0.

46. A bead can slide along a circular hoop in a vertical plane. The bead is initially at the lowest position,
θ = 0, and given an initial velocity of 2

√
gR, where g is the acceleration due to gravity and R is the

radius of the hoop. If the friction coefficient is µ, find the maximum angle θmax reached by the bead.
Compare perturbation and numerical results. Present results on a θmax vs. µ plot, for 0 ≤ µ ≤ 0.3.

47. The initial velocity downwards of a body of mass m immersed in a very viscous fluid is V . Find
the velocity of the body as a function of time. Assume that the viscous force is proportional to the
velocity. Assume that the inertia of the body is small, but not negligible, relative to viscous and
gravity forces. Compare perturbation and exact solutions graphically.

48. For small ǫ, solve to lowest order using the method of multiple scales

ẍ+ ǫẋ+ x = 0, with x(0) = 0, ẋ(0) = 1.

Compare exact and asymptotic results for ǫ = 0.3.

49. For small ǫ, solve using WKBJ

ǫ2y′′ = (1 + x2)2y, with y(0) = 0, y(1) = 1.

Plot asymptotic and numerical solutions for ǫ = 0.11.

50. Find the lowest order approximate solution to

ǫ2y′′ + ǫy2 − y + 1 = 0, with y(0) = 1, y(1) = 2,

where ǫ is small. Plot asymptotic and numerical solutions for ǫ = 0.23.

51. A pendulum is used to measure the earth’s gravity. The frequency of oscillation is measured, and the
gravity calculated assuming a small amplitude of motion and knowing the length of the pendulum.
What must the maximum initial angular displacement of the pendulum be if the error in gravity is
to be less than 1%. Neglect air resistance.
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52. Find two terms of an approximate solution of

y′′ +
λ

λ+ x
y = 0,

with y(0) = 0, y(1) = 1, where λ is a large parameter.

53. Find all solutions of eǫx = x2 through O(ǫ2), where ǫ is a small parameter.

54. Solve
(1 + ǫ)y′′ + ǫy2 = 1,

with y(0) = 0, y(1) = 1 through O(ǫ2), where ǫ is a small parameter.

55. Solve to lowest order
ǫy′′ + y′ + ǫy2 = 1,

with y(0) = −1, y(1) = 1, where ǫ is a small parameter. For ǫ = 0.2, plot asymptotic and numerical
solutions to the full equation.

56. Find the series solution of the differential equation

y′′ + xy = 0,

around x = 0 up to four terms.

57. Find the local solution of the equation
y′′ =

√
xy,

near x→ 0+.

58. Find the solution of the transcendental equation

sinx = ǫ cos 2x,

near x = π for small positive ǫ.

59. Solve
ǫy′′ − y′ = 1,

with y(0) = 0, y(1) = 2 for small ǫ. Plot asymptotic and numerical solutions for ǫ = 0.04.

60. Find two terms of the perturbation solution of

(1 + ǫy)y′′ + ǫy′2 −N2y = 0,

with y′(0) = 0, y(1) = 1. for small ǫ. N is a constant. Plot the asymptotic and numerical solution for
ǫ = 0.12, N = 10.

61. Solve

ǫy′′ + y′ =
1

2
,

with y(0) = 0, y(1) = 1 for small ǫ. Plot asymptotic and numerical solutions for ǫ = 0.12.

62. Find if the van der Pol equation
ÿ − ǫ(1 − y2)ẏ + k2y = 0,

has a limit cycle of the form y = A cosωt.

63. Solve y′ = e−2xy for large x where y is positive. Plot y(x).
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Chapter 5

Orthogonal functions and Fourier
series

see Kaplan, Chapter 7,

see Lopez, Chapters 10, 16,

see Riley, Hobson, and Bence, Chapter 15.4, 15.5.

Solution of linear differential equations gives rise to complementary functions. Some of these
are well known, such as sine and cosine. This chapter will consider these and other functions
which arise from the solution of a variety of linear second order differential equations with
constant and non-constant coefficients. The notion of eigenvalues, eigenfunctions, orthogonal,
and orthonormal functions will be introduced; a stronger foundation will be built in Chapter 7
on linear analysis. A key result of the present chapter will be to show how one can expand
an arbitrary function in terms of infinite sums of the product of scalar amplitudes with
orthogonal basis functions. Such a summation is known as a Fourier1 series.

5.1 Sturm-Liouville equations

Consider on the domain x ∈ [x0, x1] the following general linear homogeneous second order
differential equation with general homogeneous boundary conditions:

a(x)
d2y

dx2
+ b(x)

dy

dx
+ c(x)y + λy = 0, (5.1)

α1y(x0) + α2y
′(x0) = 0, (5.2)

β1y(x1) + β2y
′(x1) = 0. (5.3)

Define the following functions:

p(x) = exp

(∫ x

xo

b(s)

a(s)
ds

)

, (5.4)

1Jean Baptiste Joseph Fourier, 1768-1830, French mathematician.
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r(x) =
1

a(x)
exp

(∫ x

xo

b(s)

a(s)
ds

)

, (5.5)

q(x) =
c(x)

a(x)
exp

(∫ x

xo

b(s)

a(s)
ds

)

. (5.6)

With these definitions, Eq. (5.1) is transformed to the type known as a Sturm-Liouville2

equation:

d

dx

(

p(x)
dy

dx

)

+ (q(x) + λr(x)) y(x) = 0, (5.7)

(
1

r(x)

(
d

dx

(

p(x)
d

dx

)

+ q(x)

))

︸ ︷︷ ︸

Ls

y(x) = −λ y(x). (5.8)

Here the Sturm-Liouville linear operator Ls is

Ls =
1

r(x)

(
d

dx

(

p(x)
d

dx

)

+ q(x)

)

, (5.9)

so we have Eq. (5.8) compactly stated as

Lsy(x) = −λ y(x). (5.10)

It can be shown that Ls is what is known as a self-adjoint linear operator; see Sec. 7.4.2.
What has been shown then is that all systems of the form of Eqs. (5.1-5.3) can be transformed
into a self-adjoint form.

Now the trivial solution y(x) = 0 will satisfy the differential equation and boundary
conditions, Eqs. (5.1-5.3). In addition, for special real values of λ, known as eigenvalues,
there are special non-trivial functions, known as eigenfunctions which also satisfy Eqs. (5.1-
5.3). Eigenvalues and eigenfunctions will be discussed in more general terms in Sec. 7.4.4.

Now it can be shown that if we have for x ∈ [x0, x1]

p(x) > 0, (5.11)

r(x) > 0, (5.12)

q(x) ≥ 0, (5.13)

then an infinite number of real positive eigenvalues λ and corresponding eigenfunctions yn(x)
exist for which Eqs. (5.1-5.3) are satisfied. Moreover, it can also be shown (Hildebrand,
p. 204) that a consequence of the homogeneous boundary conditions is the orthogonality

condition:

<yn, ym> =

∫ x1

x0

r(x)yn(x)ym(x) dx = 0, for n 6= m, (5.14)

<yn, yn> =

∫ x1

x0

r(x)yn(x)yn(x) dx = K2. (5.15)

2Jacques Charles François Sturm, 1803-1855, Swiss-born French mathematician and Joseph Liouville,
1809-1882, French mathematician.
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Consequently, in the same way that in ordinary vector mechanics i · j = 0, i · k = 0, i · i = 1
implies i is orthogonal to j and k, the eigenfunctions of a Sturm-Liouville operator Ls are
said to be orthogonal to each other. The so-called inner product notation, <·, ·>, will be
explained in detail in Sec. 7.3.2. Here K ∈ R1 is a real constant. This can be written
compactly using the Kronecker delta function, δnm as

∫ x1

x0

r(x)yn(x)ym(x) dx = K2δnm. (5.16)

Sturm-Liouville theory shares many more analogies with vector algebra. In the same sense
that the dot product of a vector with itself is guaranteed positive, we have defined a “product”
for the eigenfunctions in which the “product” of a Sturm-Liouville eigenfunction with itself
is guaranteed positive.

Motivated by Eq. (5.16), we can define functions ϕn(x):

ϕn(x) =

√

r(x)

K
yn(x), (5.17)

so that

<ϕn, ϕm> =

∫ x1

x0

ϕn(x)ϕm(x) dx = δnm. (5.18)

Such functions are said to be orthonormal, in the same way that i, j, and k are or-
thonormal. While orthonormal functions have great utility, note that in the context of our
Sturm-Liouville nomenclature, that ϕn(x) does not in general satisfy the Sturm-Liouville
equation: Lsϕn(x) 6= −λnϕn(x). If, however, r(x) = C, where C is a scalar constant, then
in fact Lsϕn(x) = −λnϕn(x). Whatever the case, we are guaranteed Lsyn(x) = −λnyn(x).
The yn(x) functions are orthogonal under the influence of the weighting function r(x), but
not necessarily orthonormal. The following sections give special cases of the Sturm-Liouville
equation with general homogeneous boundary conditions.

5.1.1 Linear oscillator

A linear oscillator gives perhaps the simplest example of a Sturm-Liouville problem. We will
consider the domain x ∈ [0, 1]. For other domains, we could easily transform coordinates;
e.g. if x ∈ [x0, x1], then the linear mapping x̃ = (x− x0)/(x1 − x0) lets us consider x̃ ∈ [0, 1].

The equations governing a linear oscillator with general homogeneous boundary condi-
tions are

d2y

dx2
+ λy = 0, α1y(0) + α2

dy

dx
(0) = 0, β1y(1) + β2

dy

dx
(1) = 0. (5.19)

Here we have

a(x) = 1, (5.20)

b(x) = 0, (5.21)

c(x) = 0, (5.22)
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so

p(x) = exp

(∫ x

xo

0

1
ds

)

= e0 = 1, (5.23)

r(x) =
1

1
exp

(∫ x

xo

0

1
ds

)

= e0 = 1, (5.24)

q(x) =
0

1
exp

(∫ x

xo

0

1
ds

)

= 0. (5.25)

So, we can consider the domain x ∈ (−∞,∞). In practice it is more common to consider
the finite domain in which x ∈ [0, 1]. The Sturm-Liouville operator is

Ls =
d2

dx2
. (5.26)

The eigenvalue problem is
d2

dx2
︸︷︷︸

Ls

y(x) = −λ y(x). (5.27)

We can find a series solution by assuming y =
∑∞

n=0 anx
n. This leads us to the recursion

relationship

an+2 =
−λan

(n + 1)(n+ 2)
. (5.28)

So, given two seed values, a0 and a1, detailed analysis of the type considered in Sec. 4.1.2
reveals the solution can be expressed as the infinite series

y(x) = a0

(

1 − (
√
λx)2

2!
+

(
√
λx)4

4!
− . . .

)

︸ ︷︷ ︸

cos(
√
λx)

+a1

(
√
λx− (

√
λx)3

3!
+

(
√
λx)5

5!
− . . .

)

︸ ︷︷ ︸

sin(
√
λx)

. (5.29)

The series is recognized as being composed of linear combinations of the Taylor series for
cos(

√
λx) and sin(

√
λx) about x = 0. Letting a0 = C1 and a1 = C2, we can express the

general solution in terms of these two complementary functions as

y(x) = C1 cos(
√
λx) + C2 sin(

√
λx). (5.30)

Applying the general homogeneous boundary conditions from Eq. (5.19) leads to a chal-
lenging problem for determining admissible eigenvalues λ. To apply the boundary conditions,
we need dy/dx, which is

dy

dx
= −C1

√
λ sin(

√
λx) + C2

√
λ cos(

√
λx). (5.31)

CC BY-NC-ND. 29 July 2012, Sen & Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


5.1. STURM-LIOUVILLE EQUATIONS 151

Enforcing the boundary conditions at x = 0 and x = 1 leads us to two equations:

α1C1 + α2

√
λC2 = 0, (5.32)

C1

(

β1 cos
√
λ− β2

√
λ sin

√
λ
)

+ C2

(

β1 sin
√
λ+ β2

√
λ cos

√
λ
)

= 0. (5.33)

This can be posed as the linear system

(
α1 α2

√
λ(

β1 cos
√
λ− β2

√
λ sin

√
λ
) (

β1 sin
√
λ+ β2

√
λ cos

√
λ
)

)

·
(
C1

C2

)

=

(
0
0

)

. (5.34)

For non-trivial solutions, the determinant of the coefficient matrix must be zero, which leads
to the transcendental equation

α1

(

β1 sin
√
λ+ β2

√
λ cos

√
λ
)

− α2

√
λ
(

β1 cos
√
λ− β2

√
λ sin

√
λ
)

= 0. (5.35)

For known values of α1, α2, β2, and β1, one seeks values of λ which satisfy Eq. (5.35). This
is a solution which in general must be done numerically, except for the simplest of cases.

One important simple case is for α1 = 1, α2 = 0, β1 = 1, β2 = 0. This gives the boundary
conditions to be y(0) = y(1) = 0. Boundary conditions where the function values are
specified are known as Dirichlet3 conditions. In this case, Eq. (5.35) reduces to sin

√
λ = 0,

which is easily solved as
√
λ = nπ, with n = 0,±1,±2, . . .. We also get C1 = 0; consequently,

y = C2 sin(nπx). Note that for n = 0, the solution is the trivial y = 0.
Another set of conditions also leads to a similarly simple result. Taking α1 = 0, α2 = 1,

β1 = 0, β2 = 1, the boundary conditions are y′(0) = y′(1) = 0. Boundary conditions
where the function’s derivative values are specified are known as Neumann4 conditions. In
this case, Eq. (5.35) reduces to −λ sin

√
λ = 0, which is easily solved as

√
λ = nπ, with

n = 0,±1,±2, . . .. We also get C2 = 0; consequently, y = C1 cos(nπx). Here, for n = 0, the
solution is the non-trivial y = C1.

Some of the eigenfunctions for Dirichlet and Neumann boundary conditions are plotted
in Fig. 5.1. Note these two families form the linearly independent complementary functions
of Eq. (5.19). Also note that as n rises, the number of zero-crossings within the domain
rises. This will be seen to be characteristic of all sets of eigenfunctions for Sturm-Liouville
equations.

Example 5.1
Find the eigenvalues and eigenfunctions for a linear oscillator equation with Dirichlet boundary

conditions:
d2y

dx2
+ λy = 0, y(0) = y(ℓ) = 0. (5.36)

3Johann Peter Gustav Lejeune Dirichlet, 1805-1859, German mathematician who formally defined a func-
tion in the modern sense.

4Carl Gottfried Neumann, 1832-1925, German mathematician.
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1

0 0

sin(πx)

sin(2πx)
sin(3πx)

sin(4πx) cos(πx)

cos(2πx)

cos(3πx)
cos(4πx)

cos(0πx)=1

x x

sin(nπx) cos(nπx)

Figure 5.1: Solutions to the linear oscillator equation, Eq. (5.19), in terms of two sets of
complementary functions, sin(nπx) and cos(nπx).

We could transform the domain via x̃ = x/ℓ so that x̃ ∈ [0, 1], but this problem is sufficiently
straightforward to allow us to deal with the original domain. We know by inspection that the general
solution is

y(x) = C1 cos(
√
λx) + C2 sin(

√
λx). (5.37)

For y(0) = 0, we get

y(0) = 0 = C1 cos(
√
λ(0)) + C2 sin(

√
λ(0)), (5.38)

0 = C1(1) + C2(0), (5.39)

C1 = 0. (5.40)

So

y(x) = C2 sin(
√
λx). (5.41)

At the boundary at x = ℓ we have

y(ℓ) = 0 = C2 sin(
√
λ ℓ). (5.42)

For non-trivial solutions we need C2 6= 0, which then requires that

√
λℓ = nπ n = ±1,±2,±3, . . . , (5.43)

so

λ =
(nπ

ℓ

)2

. (5.44)

The eigenvalues and eigenfunctions are

λn =
n2π2

ℓ2
, (5.45)

and

yn(x) = sin
(nπx

ℓ

)

, (5.46)

respectively.
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Check orthogonality for y2(x) and y3(x).

I =

∫ ℓ

0

sin

(
2πx

ℓ

)

sin

(
3πx

ℓ

)

dx, (5.47)

=
ℓ

2π

(

sin
(πx

ℓ

)

− 1

5
sin

(
5πx

ℓ

))∣
∣
∣
∣

ℓ

0

, (5.48)

= 0. (5.49)

Check orthogonality for y4(x) and y4(x).

I =

∫ ℓ

0

sin

(
4πx

ℓ

)

sin

(
4πx

ℓ

)

dx, (5.50)

=

(
x

2
− ℓ

16π
sin

(
8πx

ℓ

))∣
∣
∣
∣

ℓ

0

, (5.51)

=
ℓ

2
. (5.52)

In fact
∫ ℓ

0

sin
(nπx

ℓ

)

sin
(nπx

ℓ

)

dx =
ℓ

2
, (5.53)

so the orthonormal functions ϕn(x) for this problem are

ϕn(x) =

√

2

ℓ
sin
(nπx

ℓ

)

. (5.54)

With this choice, we recover the orthonormality condition

∫ ℓ

0

ϕn(x)ϕm(x) dx = δnm, (5.55)

2

ℓ

∫ ℓ

0

sin
(nπx

ℓ

)

sin
(mπx

ℓ

)

dx = δnm. (5.56)

5.1.2 Legendre’s differential equation

Legendre’s5 differential equation is given next. Here, it is convenient to let the term n(n+1)
play the role of λ.

(1 − x2)
d2y

dx2
− 2x

dy

dx
+ n(n + 1)
︸ ︷︷ ︸

λ

y = 0. (5.57)

5Adrien-Marie Legendre, 1752-1833, French/Parisian mathematician.
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Here

a(x) = 1 − x2, (5.58)

b(x) = −2x, (5.59)

c(x) = 0. (5.60)

Then, taking xo = −1, we have

p(x) = exp

∫ x

−1

−2s

1 − s2
ds, (5.61)

= exp
(
ln
(
1 − s2

))∣
∣x

−1
, (5.62)

=
(
1 − s2

)∣
∣
x

−1
, (5.63)

= 1 − x2. (5.64)

We find then that

r(x) = 1, (5.65)

q(x) = 0. (5.66)

Thus, we require x ∈ (−1, 1). In Sturm-Liouville form, Eq. (5.57) reduces to

d

dx

(

(1 − x2)
dy

dx

)

+ n(n+ 1) y = 0, (5.67)

d

dx

(

(1 − x2)
d

dx

)

︸ ︷︷ ︸

Ls

y(x) = −n(n + 1) y(x). (5.68)

So

Ls =
d

dx

(

(1 − x2)
d

dx

)

. (5.69)

Now x = 0 is a regular point, so we can expand in a power series around this point. Let

y =
∞∑

m=0

amx
m. (5.70)

Substituting into Eq. (5.57), we find after detailed analysis that

am+2 = am
(m+ n + 1)(m− n)

(m+ 1)(m+ 2)
. (5.71)
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With a0 and a1 as given seeds, we can thus generate all values of am for m ≥ 2. We find

y(x) = a0

(

1 − n(n + 1)
x2

2!
+ n(n+ 1)(n− 2)(n+ 3)

x4

4!
− . . .

)

︸ ︷︷ ︸

y1(x)

+a1

(

x− (n− 1)(n+ 2)
x3

3!
+ (n− 1)(n+ 2)(n− 3)(n+ 4)

x5

5!
− . . .

)

︸ ︷︷ ︸

y2(x)

.(5.72)

Thus, the general solution takes the form

y(x) = a0y1(x) + a1y2(x), (5.73)

with complementary functions y1(x) and y2(x) defined as

y1(x) = 1 − n(n+ 1)
x2

2!
+ n(n+ 1)(n− 2)(n+ 3)

x4

4!
− . . . , (5.74)

y2(x) = x− (n− 1)(n+ 2)
x3

3!
+ (n− 1)(n+ 2)(n− 3)(n+ 4)

x5

5!
− . . . . (5.75)

This solution holds for arbitrary real values of n. However, for n = 0, 2, 4, . . ., y1(x) is a finite
polynomial, while y2(x) is an infinite series which diverges at |x| = 1. For n = 1, 3, 5, . . ., it
is the other way around. Thus, for integer, non-negative n either 1) y1 is a polynomial of
degree n, and y2 is a polynomial of infinite degree, or 2) y1 is a polynomial of infinite degree,
and y2 is a polynomial of degree n.

We could in fact treat y1 and y2 as the complementary functions for Eq. (5.57). However,
the existence of finite degree polynomials in special cases has led to an alternate definition
of the standard complementary functions for Eq. (5.57). The finite polynomials (y1 for even
n, and y2 for odd n) can be normalized by dividing through by their values at x = 1 to give
the Legendre polynomials, Pn(x):

Pn(x) =

{
y1(x)
y1(1)

, for n even,
y2(x)
y2(1)

, for n odd.
(5.76)

The Legendre polynomials are thus

n = 0, P0(x) = 1, (5.77)

n = 1, P1(x) = x, (5.78)

n = 2, P2(x) =
1

2
(3x2 − 1), (5.79)

n = 3, P3(x) =
1

2
(5x3 − 3x), (5.80)

n = 4, P4(x) =
1

8
(35x4 − 30x2 + 3), (5.81)

...

n, Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n, Rodrigues’ formula. (5.82)
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The Rodrigues6 formula gives a generating formula for general n.
The orthogonality condition is

∫ 1

−1

Pn(x)Pm(x) dx =
2

2n+ 1
δnm. (5.83)

Direct substitution shows that Pn(x) satisfies both the differential equation, Eq. (5.57),
and the orthogonality condition. It is then easily shown that the following functions are
orthonormal on the interval x ∈ (−1, 1):

ϕn(x) =

√

n+
1

2
Pn(x), (5.84)

giving
∫ 1

−1

ϕn(x)ϕm(x)dx = δnm. (5.85)

The total solution, Eq. (5.73), can be recast as the sum of the finite sum of polynomials
Pn(x) (Legendre functions of the first kind and degree n) and the infinite sum of polynomials
Qn(x) (Legendre functions of the second kind and degree n):

y(x) = C1Pn(x) + C2Qn(x). (5.86)

Here Qn(x), the infinite series portion of the solution, is obtained by

Qn(x) =

{
y1(1)y2(x), for n even,

−y2(1)y1(x), for n odd.
(5.87)

One can also show the Legendre functions of the second kind, Qn(x), satisfy a similar orthog-
onality condition. Additionally, Qn(±1) is singular. One can further show that the infinite
series of polynomials which form Qn(x) can be recast as a finite series of polynomials along
with a logarithmic function. The first few values of Qn(x) are in fact

n = 0, Q0(x) =
1

2
ln

(
1 + x

1 − x

)

, (5.88)

n = 1, Q1(x) =
x

2
ln

(
1 + x

1 − x

)

− 1, (5.89)

n = 2, Q2(x) =
3x2 − 1

4
ln

(
1 + x

1 − x

)

− 3

2
x, (5.90)

n = 3, Q3(x) =
5x3 − 3x

4
ln

(
1 + x

1 − x

)

− 5

2
x2 +

2

3
, (5.91)

...

The first few eigenfunctions of Eq. (5.57) for the two families of complementary functions
are plotted in Fig. 5.2.

6Benjamin Olinde Rodrigues, 1794-1851, obscure French mathematician, of Portuguese and perhaps
Spanish roots.
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Q1

Q4
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Figure 5.2: Solutions to the Legendre equation, Eq. (5.57), in terms of two sets of comple-
mentary functions, Pn(x) and Qn(x).

5.1.3 Chebyshev equation

The Chebyshev7 equation is

(1 − x2)
d2y

dx2
− x

dy

dx
+ λy = 0. (5.92)

Let’s get this into Sturm-Liouville form.

a(x) = 1 − x2, (5.93)

b(x) = −x, (5.94)

c(x) = 0. (5.95)

Now, taking x0 = −1,

p(x) = exp

(∫ x

−1

b(s)

a(s)
ds

)

, (5.96)

= exp

(∫ x

−1

−s
1 − s2

ds

)

, (5.97)

= exp

(
1

2
ln(1 − s2)

)∣
∣
∣
∣

x

−1

, (5.98)

=
√

1 − s2

∣
∣
∣

x

−1
, (5.99)

=
√

1 − x2, (5.100)

r(x) =
exp

(∫ x

−1
b(s)
a(s)

ds
)

a(x)
=

1√
1 − x2

, (5.101)

q(x) = 0. (5.102)

7Pafnuty Lvovich Chebyshev, 1821-1894, Russian mathematician.
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Thus, for p(x) > 0, we require x ∈ (−1, 1). The Chebyshev equation, Eq. (5.92), in Sturm-
Liouville form is

d

dx

(√
1 − x2

dy

dx

)

+
λ√

1 − x2
y = 0, (5.103)

√
1 − x2

d

dx

(√
1 − x2

d

dx

)

︸ ︷︷ ︸

Ls

y(x) = −λ y(x). (5.104)

Thus,

Ls =
√

1 − x2
d

dx

(√
1 − x2

d

dx

)

. (5.105)

That the two forms are equivalent can be easily checked by direct expansion.
Series solution techniques reveal for eigenvalues of λ one family of complementary func-

tions of Eq. (5.92) can be written in terms of the so-called Chebyshev polynomials, Tn(x).
These are also known as Chebyshev polynomials of the first kind. These polynomials can be
obtained by a regular series expansion of the original differential equation. These eigenvalues
and eigenfunctions are listed next:

λ = 0, T0(x) = 1, (5.106)

λ = 1, T1(x) = x, (5.107)

λ = 4, T2(x) = −1 + 2x2, (5.108)

λ = 9, T3(x) = −3x+ 4x3, (5.109)

λ = 16, T4(x) = 1 − 8x2 + 8x4, (5.110)
...

λ = n2, Tn(x) = cos(n cos−1 x), Rodrigues’ formula. (5.111)

The orthogonality condition is
∫ 1

−1

Tn(x)Tm(x)√
1 − x2

dx =

{
πδnm, if n = 0,
π
2
δnm, if n = 1, 2, . . ..

. (5.112)

Direct substitution shows that Tn(x) satisfies both the differential equation, Eq. (5.92), and
the orthogonality condition. We can deduce then that the functions ϕn(x)

ϕn(x) =







√
1

π
√

1−x2 Tn(x), if n = 0,
√

2
π
√

1−x2 Tn(x), if n = 1, 2, . . .
. (5.113)

are an orthonormal set of functions on the interval x ∈ (−1, 1). That is,

∫ 1

−1

ϕn(x)ϕm(x)dx = δnm. (5.114)

CC BY-NC-ND. 29 July 2012, Sen & Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


5.1. STURM-LIOUVILLE EQUATIONS 159

The Chebyshev polynomials of the first kind, Tn(x) form one set of complementary func-
tions which satisfy Eq. (5.92). The other set of complementary functions are Vn(x), and can
be shown to be

λ = 0, V0(x) = 0, (5.115)

λ = 1, V1(x) =
√

1 − x2, (5.116)

λ = 4, V2(x) =
√

1 − x2(2x), (5.117)

λ = 9, V3(x) =
√

1 − x2(−1 + 4x2), (5.118)

λ = 16, V4(x) =
√

1 − x2(−4x2 + 8x3), (5.119)
...

λ = n2, Vn(x) = sin(n cos−1 x), Rodrigues’ formula. (5.120)

The general solution to Eq. (5.214) is a linear combination of the two complementary func-
tions:

y(x) = C1Tn(x) + C2Vn(x). (5.121)

One can also show that Vn(x) satisfies an orthogonality condition:

∫ 1

−1

Vn(x)Vm(x)√
1 − x2

dx =
π

2
δnm. (5.122)

The first few eigenfunctions of Eq. (5.92) for the two families of complementary functions
are plotted in Fig. 5.3.
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Figure 5.3: Solutions to the Chebyshev equation, Eq. (5.92), in terms of two sets of comple-
mentary functions, Tn(x) and Vn(x).
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5.1.4 Hermite equation

The Hermite8 equation is discussed next. There are two common formulations, the physicists’
and the probabilists’. We will focus on the first and briefly discuss the second.

5.1.4.1 Physicists’

The physicists’ Hermite equation is

d2y

dx2
− 2x

dy

dx
+ λy = 0. (5.123)

We find that

p(x) = e−x
2

, (5.124)

r(x) = e−x
2

, (5.125)

q(x) = 0. (5.126)

Thus, we allow x ∈ (−∞,∞). In Sturm-Liouville form, Eq. (5.123) becomes

d

dx

(

e−x
2 dy

dx

)

+ λe−x
2

y = 0, (5.127)

ex
2 d

dx

(

e−x
2 d

dx

)

︸ ︷︷ ︸

Ls

y(x) = −λ y(x). (5.128)

So

Ls = ex
2 d

dx

(

e−x
2 d

dx

)

. (5.129)

One set of complementary functions can be expressed in terms of polynomials known as the
Hermite polynomials, Hn(x). These polynomials can be obtained by a regular series expan-
sion of the original differential equation. The eigenvalues and eigenfunctions corresponding
to the physicists’ Hermite polynomials are listed next:

λ = 0, H0(x) = 1, (5.130)

λ = 2, H1(x) = 2x, (5.131)

λ = 4, H2(x) = −2 + 4x2, (5.132)

λ = 6, H3(x) = −12x+ 8x3, (5.133)

λ = 8, H4(x) = 12 − 48x2 + 16x4, (5.134)
... (5.135)

λ = 2n, Hn(x) = (−1)nex
2 dne−x

2

dxn
, Rodrigues’ formula. (5.136)

8Charles Hermite, 1822-1901, Lorraine-born French mathematician.
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The orthogonality condition is

∫ ∞

−∞
e−x

2

Hn(x)Hm(x) dx = 2nn!
√
πδnm (5.137)

Direct substitution shows that Hn(x) satisfies both the differential equation, Eq. (5.123),
and the orthogonality condition. It is then easily shown that the following functions are
orthonormal on the interval x ∈ (−∞,∞):

ϕn(x) =
e−x

2/2Hn(x)
√√

π2nn!
, (5.138)

giving ∫ ∞

−∞
ϕn(x)ϕm(x)dx = δmn. (5.139)

The general solution to Eq. (5.123) is

y(x) = C1Hn(x) + C2Ĥn(x), (5.140)

where the other set of complementary functions is Ĥn(x). For general n, Ĥn(x) is a ver-
sion of the so-called Kummer confluent hypergeometric function of the first kind Ĥn(x) =

1F1 (−n/2; 1/2; x2). Note, this general solution should be treated carefully, especially as the
second complementary function, Ĥn(x), is rarely discussed in the literature, and notation is
often non-standard. For our eigenvalues of n, somewhat simpler results can be obtained in
terms of the imaginary error function, erfi(x); see Sec. 10.7.4. The first few of these functions
are

λ = 0, n = 0, Ĥ0(x) =

√
π

2
erfi(x), (5.141)

λ = 2, n = 1, Ĥ1(x) = ex
2 −

√
πx2 erfi(

√
x2), (5.142)

λ = 4, n = 2, Ĥ2(x) = −xex2

+
√
π erfi(x)

(

x2 − 1

2

)

, (5.143)

λ = 6, n = 3, Ĥ3(x) = ex
2 (

1 − x2
)

+
√
πx2 erfi(x)

(

x2 − 3

2

)

. (5.144)

The first few eigenfunctions of the Hermite equation, Eq. (5.123), for the two families of
complementary functions are plotted in Fig. 5.4.

5.1.4.2 Probabilists’

The probabilists’ Hermite equation is

d2y

dx2
− x

dy

dx
+ λy = 0. (5.145)
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Figure 5.4: Solutions to the physicists’ Hermite equation, Eq. (5.123), in terms of two sets
of complementary functions Hn(x) and Ĥn(x).

We find that

p(x) = e−x
2/2, (5.146)

r(x) = e−x
2/2, (5.147)

q(x) = 0. (5.148)

Thus, we allow x ∈ (−∞,∞). In Sturm-Liouville form, Eq. (5.145) becomes

d

dx

(

e−x
2/2 dy

dx

)

+ λe−x
2/2 y = 0, (5.149)

ex
2/2 d

dx

(

e−x
2/2 d

dx

)

︸ ︷︷ ︸

Ls

y(x) = −λ y(x). (5.150)

So

Ls = ex
2/2 d

dx

(

e−x
2/2 d

dx

)

. (5.151)

One set of complementary functions can be expressed in terms of polynomials known as the
probabilists’ Hermite polynomials, Hen(x). These polynomials can be obtained by a regular
series expansion of the original differential equation. The eigenvalues and eigenfunctions
corresponding to the probabilists’ Hermite polynomials are listed next:

λ = 0, He0(x) = 1, (5.152)

λ = 1, He1(x) = x, (5.153)

λ = 2, He2(x) = −1 + x2, (5.154)

λ = 3, He3(x) = −3x+ x3, (5.155)
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λ = 4, He4(x) = 3 − 6x2 + x4, (5.156)
... (5.157)

λ = n, Hen(x) = (−1)nex
2/2d

ne−x
2/2

dxn
, Rodrigues’ formula. (5.158)

The orthogonality condition is

∫ ∞

−∞
e−x

2/2Hen(x)Hem(x) dx = n!
√

2πδnm (5.159)

Direct substitution shows that Hen(x) satisfies both the differential equation, Eq. (5.145),
and the orthogonality condition. It is then easily shown that the following functions are
orthonormal on the interval x ∈ (−∞,∞):

ϕn(x) =
e−x

2/4Hen(x)
√√

2πn!
, (5.160)

giving
∫ ∞

−∞
ϕn(x)ϕm(x)dx = δmn. (5.161)

Plots and the second set of complementary functions for the probabilists’ Hermite equation
are obtained in a similar manner to those for the physicists’. One can easily show the relation
between the two to be

Hen(x) = 2−n/2Hn

(
x√
2

)

. (5.162)

5.1.5 Laguerre equation

The Laguerre9 equation is

x
d2y

dx2
+ (1 − x)

dy

dx
+ λy = 0. (5.163)

We find that

p(x) = xe−x, (5.164)

r(x) = e−x, (5.165)

q(x) = 0. (5.166)

Thus, we require x ∈ (0,∞).

9Edmond Nicolas Laguerre, 1834-1886, French mathematician.
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In Sturm-Liouville form, Eq. (5.163) becomes

d

dx

(

xe−x
dy

dx

)

+ λe−x y = 0, (5.167)

ex
d

dx

(

xe−x
d

dx

)

︸ ︷︷ ︸

Ls

y(x) = −λ y(x). (5.168)

So

Ls = ex
d

dx

(

xe−x
d

dx

)

. (5.169)

One set of the complementary functions can be expressed in terms of polynomials of finite
order known as the Laguerre polynomials, Ln(x). These polynomials can be obtained by a
regular series expansion of Eq. (5.163). Eigenvalues and eigenfunctions corresponding to the
Laguerre polynomials are listed next:

λ = 0, L0(x) = 1, (5.170)

λ = 1, L1(x) = 1 − x, (5.171)

λ = 2, L2(x) = 1 − 2x+
1

2
x2, (5.172)

λ = 3, L3(x) = 1 − 3x+
3

2
x2 − 1

6
x3, (5.173)

λ = 4, L4(x) = 1 − 4x+ 3x2 − 2

3
x3 +

1

24
x4, (5.174)

... (5.175)

λ = n, Ln(x) =
1

n!
ex
dn (xne−x)

dxn
, Rodrigues’ formula. (5.176)

The orthogonality condition reduces to

∫ ∞

0

e−xLn(x)Lm(x) dx = δnm. (5.177)

Direct substitution shows that Ln(x) satisfies both the differential equation, Eq. (5.163),
and the orthogonality condition. It is then easily shown that the following functions are
orthonormal on the interval x ∈ (0,∞):

ϕn(x) = e−x/2Ln(x), (5.178)

so that ∫ ∞

0

ϕn(x)ϕm(x)dx = δmn. (5.179)
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The general solution to Eq. (5.163) is

y(x) = C1Ln(x) + C2L̂n(x), (5.180)

where the other set of complementary functions is L̂n(x). For general n, L̂n(x) = U(−n, 1, x),
one of the so-called Tricomi confluent hypergeometric functions. Again the literature is not
extensive on these functions. For integer eigenvalues n, L̂n(x) reduces somewhat and can be
expressed in terms of the exponential integral function, Ei(x), see Sec. 10.7.6. The first few
of these functions are

λ = n = 0, L̂0(x) = Ei(x), (5.181)

λ = n = 1, L̂1(x) = −ex − Ei(x)(1 − x), (5.182)

λ = n = 2, L̂2(x) =
1

4

(
ex(3 − x) + Ei(x)

(
2 − 4x+ x2

))
, (5.183)

λ = n = 3, L̂3(x) =
1

36

(
ex
(
−11 + 8x− x2

)
+ Ei(x)

(
−6 + 18x− 9x2 + x3

))
,

(5.184)

The first few eigenfunctions of the Laguerre equation, Eq. (5.163), for the two families of
complementary functions are plotted in Fig. 5.5.
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Figure 5.5: Solutions to the Laguerre equation, Eq. (5.163), in terms of two sets of comple-
mentary functions, Ln(x) and L̂n(x).

5.1.6 Bessel’s differential equation

5.1.6.1 First and second kind

Bessel’s10 differential equation is as follows, with it being convenient to define λ = −ν2.

x2 d
2y

dx2
+ x

dy

dx
+ (µ2x2 − ν2)y = 0. (5.185)

10Friedrich Wilhelm Bessel, 1784-1846, Westphalia-born German mathematician.
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We find that

p(x) = x, (5.186)

r(x) =
1

x
, (5.187)

q(x) = µ2x. (5.188)

We thus require x ∈ (0,∞), though in practice, it is more common to employ a finite domain
such as x ∈ (0, ℓ). In Sturm-Liouville form, we have

d

dx

(

x
dy

dx

)

+

(

µ2x− ν2

x

)

y = 0, (5.189)

(

x

(
d

dx

(

x
d

dx

)

+ µ2x

))

︸ ︷︷ ︸

Ls

y(x) = ν2 y(x). (5.190)

The Sturm-Liouville operator is

Ls = x

(
d

dx

(

x
d

dx

)

+ µ2x

)

. (5.191)

In some other cases it is more convenient to take λ = µ2 in which case we get

p(x) = x, (5.192)

r(x) = x, (5.193)

q(x) = −ν
2

x
, (5.194)

and the Sturm-Liouville form and operator are:

(
1

x

(
d

dx

(

x
d

dx

)

− ν2

x

))

︸ ︷︷ ︸

Ls

y(x) = −µ2 y(x), (5.195)

Ls =
1

x

(
d

dx

(

x
d

dx

)

− ν2

x

)

. (5.196)

The general solution is

y(x) = C1Jν(µx) + C2Yν(µx), if ν is an integer, (5.197)

y(x) = C1Jν(µx) + C2J−ν(µx), if ν is not an integer, (5.198)

where Jν(µx) and Yν(µx) are called the Bessel and Neumann functions of order ν. Often
Jν(µx) is known as a Bessel function of the first kind and Yν(µx) is known as a Bessel
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function of the second kind. Both Jν and Yν are represented by infinite series rather than
finite series such as the series for Legendre polynomials.

The Bessel function of the first kind of order ν, Jν(µx), is represented by

Jν(µx) =

(
1

2
µx

)ν ∞∑

k=0

(
−1

4
µ2x2

)k

k!Γ(ν + k + 1)
. (5.199)

The Neumann function Yν(µx) has a complicated series representation (see Hildebrand).
The representations for J0(µx) and Y0(µx) are

J0(µx) = 1 −
(

1
4
µ2x2

)1

(1!)2
+

(
1
4
µ2x2

)2

(2!)2
+ . . .+

(
−1

4
µ2x2

)n

(n!)2
, (5.200)

Y0(µx) =
2

π

(

ln

(
1

2
µx

)

+ γ

)

J0(µx) (5.201)

+
2

π

((
1
4
µ2x2

)1

(1!)2
−
(

1 +
1

2

) (1
4
µ2x2

)2

(2!)2
. . .

)

. (5.202)

It can be shown using term by term differentiation that

dJν(µx)

dx
= µ

Jν−1(µx) − Jν+1(µx)

2
,

dYν(µx)

dx
= µ

Yν−1(µx) − Yν+1(µx)

2
, (5.203)

d

dx
(xνJν (µx)) = µxνJν−1 (µx) ,

d

dx
(xνYν (µx)) = µxνYν−1 (µx) . (5.204)

The Bessel functions J0(µ0x), J0(µ1x), J0(µ2x), J0(µ3x) are plotted in Fig. 5.6. Here the
eigenvalues µn can be determined from trial and error. The first four are found to be
µ0 = 2.40483, µ1 = 5.52008, µ2 = 8.65373, and µ3 = 11.7915. In general, one can say

lim
n→∞

µn = nπ +O(1). (5.205)

The Bessel functions J0(x), J1(x), J2(x), J3(x), and J4(x) along with the Neumann functions
Y0(x), Y1(x), Y2(x), Y3(x), and Y4(x) are plotted in Fig. 5.7 (so here µ = 1).

The orthogonality condition for a domain x ∈ (0, 1), taken here for the case in which the
eigenvalue is µn, can be shown to be

∫ 1

0

xJν(µnx)Jν(µmx) dx =
1

2
(Jν+1(µn))

2 δnm. (5.206)

Here we must choose µn such that Jν(µn) = 0, which corresponds to a vanishing of the
function at the outer limit x = 1; see Hildebrand, p. 226. So the orthonormal Bessel
function is

ϕn(x) =

√
2xJν(µnx)

|Jν+1(µn)|
. (5.207)
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Figure 5.6: Bessel functions J0(µ0x), J0(µ1x), J0(µ2x), J0(µ3x).
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Figure 5.7: Bessel functions J0(x), J1(x), J2(x), J3(x), J4(x) and Neumann functions Y0(x),
Y1(x), Y2(x), Y3(x), Y4(x).
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5.1.6.2 Third kind

Hankel11 functions, also known as Bessel functions of the third kind are defined by

H(1)
ν (x) = Jν(x) + iYν(x), (5.208)

H(2)
ν (x) = Jν(x) − iYν(x). (5.209)

5.1.6.3 Modified Bessel functions

The modified Bessel equation is

x2 d
2y

dx2
+ x

dy

dx
− (x2 + ν2)y = 0, (5.210)

the solutions of which are the modified Bessel functions. The modified Bessel function of the

first kind of order ν is
Iν(x) = i−νJν(ix). (5.211)

The modified Bessel function of the second kind of order ν is

Kν(x) =
π

2
iν+1H(1)

n (ix). (5.212)

5.1.6.4 Ber and bei functions

The real and imaginary parts of the solutions of

x2 d
2y

dx2
+ x

dy

dx
− (p2 + ix2)y = 0, (5.213)

where p is a real constant, are called the ber and bei functions.

5.2 Fourier series representation of arbitrary functions

It is often useful, especially when solving partial differential equations, to be able to represent
an arbitrary function f(x) in the domain x ∈ [x0, x1] with an appropriately weighted sum of
orthonormal functions ϕn(x):

f(x) =

∞∑

n=0

αnϕn(x). (5.214)

We generally truncate the infinite series to a finite number of N terms so that f(x) is
approximated by

f(x) ≃
N∑

n=1

αnϕn(x). (5.215)

11Hermann Hankel, 1839-1873, German mathematician.
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We can better label an N -term approximation of a function as a projection of the function
from an infinite dimensional space onto an N -dimensional function space. This will be
discussed further in Sec. 7.3.2.6. The projection is useful only if the infinite series converges
so that the error incurred in neglecting terms past N is small relative to the terms included.

The problem is to determine what the coefficients αn must be. They can be found in the
following manner. We first assume the expansion exists and multiply both sides by ϕk(x):

f(x)ϕk(x) =
∞∑

n=0

αnϕn(x)ϕk(x), (5.216)

∫ x1

x0

f(x)ϕk(x) dx =

∫ x1

x0

∞∑

n=0

αnϕn(x)ϕk(x) dx, (5.217)

=

∞∑

n=0

αn

∫ x1

x0

ϕn(x)ϕk(x) dx

︸ ︷︷ ︸

δnk

, (5.218)

=

∞∑

n=0

αnδnk, (5.219)

= α0 δ0k
︸︷︷︸

=0

+α1 δ1k
︸︷︷︸

=0

+ . . .+ αk δkk
︸︷︷︸

=1

+ . . .+ α∞ δ∞k
︸︷︷︸

=0

, (5.220)

= αk. (5.221)

So trading k and n

αn =

∫ x1

x0

f(x)ϕn(x) dx. (5.222)

The series is known as a Fourier series. Depending on the expansion functions, the series is
often specialized as Fourier-sine, Fourier-cosine, Fourier-Legendre, Fourier-Bessel, etc. We
have inverted Eq. (5.214) to solve for the unknown αn. The inversion was aided greatly
by the fact that the basis functions were orthonormal. For non-orthonormal, as well as
non-orthogonal bases, more general techniques exist for the determination of αn.

Example 5.2
Represent

f(x) = x2, on x ∈ [0, 3], (5.223)

with a series of

• trigonometric functions,

• Legendre polynomials,

• Chebyshev polynomials, and

• Bessel functions.

CC BY-NC-ND. 29 July 2012, Sen & Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


5.2. FOURIER SERIES REPRESENTATION OF ARBITRARY FUNCTIONS 171

Trigonometric Series

For the trigonometric series, let’s try a Fourier sine series. The orthonormal functions in this case
are, from Eq. (5.54),

ϕn(x) =

√

2

3
sin
(nπx

3

)

. (5.224)

The coefficients from Eq. (5.222) are thus

αn =

∫ 3

0

x2
︸︷︷︸

f(x)

(√

2

3
sin
(nπx

3

)
)

︸ ︷︷ ︸

ϕn(x)

dx, (5.225)

so

α0 = 0, (5.226)

α1 = 4.17328, (5.227)

α2 = −3.50864, (5.228)

α3 = 2.23376, (5.229)

α4 = −1.75432, (5.230)

α5 = 1.3807. (5.231)

Note that the magnitude of the coefficient on the orthonormal function, αn, decreases as n increases.
From this, one can loosely infer that the higher frequency modes contain less “energy.”

f(x) =

√

2

3

(

4.17328 sin
(πx

3

)

− 3.50864 sin

(
2πx

3

)

(5.232)

+2.23376 sin

(
3πx

3

)

− 1.75432 sin

(
4πx

3

)

+ 1.3807 sin

(
5πx

3

)

+ . . .

)

. (5.233)

The function f(x) = x2 and five terms of the approximation are plotted in Fig. 5.8.

Legendre polynomials

Next, let’s try the Legendre polynomials. The Legendre polynomials are orthogonal on x ∈ [−1, 1],
and we have x ∈ [0, 3], so let’s define

x̃ =
2

3
x− 1, (5.234)

x =
3

2
(x̃+ 1), (5.235)

so that the domain x ∈ [0, 3] maps into x̃ ∈ [−1, 1]. So, expanding x2 on the domain x ∈ [0, 3] is
equivalent to expanding

(
3

2

)2

(x̃+ 1)2

︸ ︷︷ ︸

x2

=
9

4
(x̃+ 1)2, x̃ ∈ [−1, 1]. (5.236)

Now from Eq. (5.84),

ϕn(x̃) =

√

n+
1

2
Pn(x̃). (5.237)
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Figure 5.8: Five term Fourier-sine series approximation to f(x) = x2.

So from Eq. (5.222)

αn =

∫ 1

−1

(
9

4
(x̃+ 1)2

)

︸ ︷︷ ︸

f(x̃)

(√

n+
1

2
Pn(x̃)

)

︸ ︷︷ ︸

ϕn(x̃)

dx̃. (5.238)

Evaluating, we get

α0 = 3
√

2 = 4.24264, (5.239)

α1 = 3

√

3

2
= 3.67423, (5.240)

α2 =
3√
10

= 0.948683, (5.241)

α3 = 0, (5.242)

... (5.243)

αn = 0, n > 3. (5.244)

Once again, the fact the α0 > α1 > α2 indicates the bulk of the “energy” is contained in the lower
frequency modes. Carrying out the multiplication and returning to x space gives the finite series, which
can be expressed in a variety of forms:

x2 = α0ϕ0(x̃) + α1ϕ1(x̃) + α2ϕ2(x̃), (5.245)

= 3
√

2

(√

1

2
P0

(
2

3
x− 1

))

︸ ︷︷ ︸

=ϕ0(x̃)

+3

√

3

2

(√

3

2
P1

(
2

3
x− 1

))

︸ ︷︷ ︸

=ϕ1(x̃)

+
3√
10

(√

5

2
P2

(
2

3
x− 1

))

︸ ︷︷ ︸

=ϕ2(x̃)

, (5.246)

= 3P0

(
2

3
x− 1

)

+
9

2
P1

(
2

3
x− 1

)

+
3

2
P2

(
2

3
x− 1

)

, (5.247)

= 3(1) +
9

2

(
2

3
x− 1

)

+
3

2

(

−1

2
+

3

2

(
2

3
x− 1

)2
)

, (5.248)
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= 3 +

(

−9

2
+ 3x

)

+

(
3

2
− 3x+ x2

)

, (5.249)

= x2. (5.250)

Thus, the Fourier-Legendre representation is exact over the entire domain. This is because the function
which is being expanded has the same general functional form as the Legendre polynomials; both are
polynomials.

Chebyshev polynomials

Let’s now try the Chebyshev polynomials. These are orthogonal on the same domain as the Leg-
endre polynomials, so let’s use the same transformation as before. Now from Eq. (5.113)

ϕ0(x̃) =

√

1

π
√

1 − x̃2
T0(x̃), (5.251)

ϕn(x̃) =

√

2

π
√

1 − x̃2
Tn(x̃), n > 0. (5.252)

So

α0 =

∫ 1

−1

9

4
(x̃+ 1)2

︸ ︷︷ ︸

f(x̃)

√

1

π
√

1 − x̃2
T0(x̃)

︸ ︷︷ ︸

ϕ0(x̃)

dx̃, (5.253)

αn =

∫ 1

−1

9

4
(x̃+ 1)2

︸ ︷︷ ︸

f(x̃)

√

2

π
√

1 − x̃2
Tn(x̃)

︸ ︷︷ ︸

ϕn(x̃)

dx̃. (5.254)

Evaluating, we get

α0 = 4.2587, (5.255)

α1 = 3.4415, (5.256)

α2 = −0.28679, (5.257)

α3 = −1.1472, (5.258)

...

With this representation, we see that |α3| > |α2|, so it is not yet clear that the “energy” is concentrated
in the high frequency modes. Consideration of more terms would verify that in fact it is the case that
the “energy ” of high frequency modes is decaying; in fact α4 = −0.683, α5 = −0.441, α6 = −0.328,
α7 = −0.254. So

f(x) = x2 =

√
√
√
√

2

π

√

1 −
(

2
3x− 1

)2

(
4.2587√

2
T0

(
2

3
x− 1

)

+ 3.4415 T1

(
2

3
x− 1

)

(5.259)

−0.28679 T2

(
2

3
x− 1

)

− 1.1472 T3

(
2

3
x− 1

)

+ . . .

)

. (5.260)

The function f(x) = x2 and four terms of the approximation are plotted in Fig. 5.9.
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Figure 5.9: Four term Fourier-Chebyshev series approximation to f(x) = x2.

Bessel functions

Now let’s expand in terms of Bessel functions. The Bessel functions have been defined such that
they are orthogonal on a domain between zero and unity when the eigenvalues are the zeros of the
Bessel function. To achieve this we adopt the transformation (and inverse):

x̃ =
x

3
, x = 3x̃. (5.261)

With this transformation our domain transforms as follows:

x ∈ [0, 3] −→ x̃ ∈ [0, 1]. (5.262)

So in the transformed space, we seek an expansion

9x̃2
︸︷︷︸

f(x̃)

=
∞∑

n=0

αnJν(µnx̃). (5.263)

Let’s choose to expand on J0, so we take

9x̃2 =

∞∑

n=0

αnJ0(µnx̃). (5.264)

Now, the eigenvalues µn are such that J0(µn) = 0. We find using trial and error methods that solutions
for all the zeros can be found:

µ0 = 2.4048, (5.265)

µ1 = 5.5201, (5.266)

µ2 = 8.6537, (5.267)

...
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Figure 5.10: Ten term Fourier-Bessel series approximation to f(x) = x2.

Similar to the other functions, we could expand in terms of the orthonormalized Bessel functions, ϕn(x).
Instead, for variety, let’s directly operate on Eq. (5.264) to determine the values for αn.

9x̃2x̃J0(µkx̃) =

∞∑

n=0

αnx̃J0(µnx̃)J0(µkx̃), (5.268)

∫ 1

0

9x̃3J0(µkx̃) dx̃ =

∫ 1

0

∞∑

n=0

αnx̃J0(µnx̃)J0(µkx̃) dx̃, (5.269)

9

∫ 1

0

x̃3J0(µkx̃) dx̃ =
∞∑

n=0

αn

∫ 1

0

x̃J0(µnx̃)J0(µkx̃) dx̃, (5.270)

= αk

∫ 1

0

x̃J0(µkx̃)J0(µkx̃) dx̃. (5.271)

So replacing k by n and dividing we get

αn =
9
∫ 1

0
x̃3J0(µnx̃) dx̃

∫ 1

0 x̃J0(µnx̃)J0(µnx̃) dx̃
. (5.272)

Evaluating the first three terms we get

α0 = 4.446, (5.273)

α1 = −8.325, (5.274)

α2 = 7.253, (5.275)

...

Because the basis functions are not normalized, it is difficult to infer how the amplitude is decaying by
looking at αn alone. The function f(x) = x2 and ten terms of the Fourier-Bessel series approximation
are plotted in Fig. 5.10 The Fourier-Bessel approximation is

f(x) = x2 = 4.446 J0

(

2.4048
(x

3

))

− 8.325 J0

(

5.5201
(x

3

))

+ 7.253 J0

(

8.6537
(x

3

))

+ . . . . (5.276)
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Note that other Fourier-Bessel expansions exist. Also note that even though the Bessel function does
not match the function itself at either boundary point, that the series still appears to be converging.

Problems

1. Show that oscillatory solutions of the delay equation

dx

dt
(t) + x(t) + bx(t− 1) = 0,

are possible only when b = 2.2617. Find the frequency.

2. Show that xaJν(bx
c) is a solution of

y′′ − 2a− 1

x
y′ +

(

b2c2x2c−2 +
a2 − ν2c2

x2

)

y = 0.

Hence solve in terms of Bessel functions:

(a) d2y
dx2 + k2xy = 0,

(b) d2y
dx2 + x4y = 0.

3. Laguerre’s differential equation is

xy′′ + (1 − x)y′ + λy = 0.

Show that when λ = n, a nonnegative integer, there is a polynomial solution Ln(x) (called a Laguerre
polynomial) of degree n with coefficient of xn equal to 1. Determine L0 through L4.

4. Consider the function y(x) = x2 − 2x+ 1 defined for x ∈ [0, 4]. Find eight term expansions in terms
of a) Fourier-Sine, b) Fourier-Legendre, c) Fourier-Hermite (physicists’), d) Fourier-Bessel series and
plot your results on a single graph.

5. Consider the function y(x) = 0, x ∈ [0, 1), y(x) = 2x − 2, x ∈ [1, 2]. Find an eight term Fourier-
Legendre expansion of this function. Plot the function and the eight term expansion for x ∈ [0, 2].

6. Consider the function y(x) = 2x, x ∈ [0, 6]. Find an eight term a) Fourier-Chebyshev and b) Fourier-
sine expansion of this function. Plot the function and the eight term expansions for x ∈ [0, 6]. Which
expansion minimizes the error in representation of the function?

7. Consider the function y(x) = cos2(x2). Find an eight term a) Fourier-Laguerre, (x ∈ [0,∞)), and b)
Fourier-sine (x ∈ [0, 10]) expansion of this function. Plot the function and the eight term expansions
for x ∈ [0, 10]. Which expansion minimizes the error in representation of the function?
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Chapter 6

Vectors and tensors

see Kaplan, Chapters 3, 4, 5,

see Lopez, Chapters 17-23,

see Aris,

see Borisenko and Tarapov,

see McConnell,

see Schey,

see Riley, Hobson, and Bence, Chapters 6, 8, 19.

This chapter will outline many topics considered in traditional vector calculus and include
an introduction to differential geometry.

6.1 Cartesian index notation

Here we will consider what is known as Cartesian index notation as a way to represent vectors
and tensors. In contrast to Sec. 1.3, which considered general coordinate transformations,
when we restrict our transformations to rotations about the origin, many simplifications
result. For such transformations, the distinction between contravariance and covariance
disappears, as does the necessity for Christoffel symbols, and also the need for an “upstairs-
downstairs” index notation.

Many vector relations can be written in a compact form by using Cartesian index nota-
tion. Let x1, x2, x3 represent the three coordinate directions and e1, e2, e3 the unit vectors
in those directions. Then a vector u may be written as

u =





u1

u2

u3



 = u1e1 + u2e2 + u3e3 =
3∑

i=1

uiei = uiei = ui, (6.1)

where u1, u2, and u3 are the three Cartesian components of u. Note that we do not need to
use the summation sign every time if we use the Einstein convention to sum from 1 to 3 if
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178 CHAPTER 6. VECTORS AND TENSORS

an index is repeated. The single free index on the right side of Eq. (6.1) indicates that an ei
is assumed.

Two additional symbols are needed for later use. They are the Kronecker delta, as
specialized from Eq. (1.63),

δij ≡
{

0, if i 6= j,
1, if i = j.

(6.2)

and the alternating symbol (or Levi-Civita1 symbol)

ǫijk ≡







1, if indices are in cyclical order 1,2,3,1,2,· · ·,
−1, if indices are not in cyclical order,

0, if two or more indices are the same.
(6.3)

The identity

ǫijkǫlmn = δilδjmδkn + δimδjnδkl + δinδjlδkm − δilδjnδkm − δimδjlδkn − δinδjmδkl, (6.4)

relates the two. The following identities are also easily shown:

δii = 3, (6.5)

δij = δji, (6.6)

δijδjk = δik, (6.7)

ǫijkǫilm = δjlδkm − δjmδkl, (6.8)

ǫijkǫljk = 2δil, (6.9)

ǫijkǫijk = 6, (6.10)

ǫijk = −ǫikj , (6.11)

ǫijk = −ǫjik, (6.12)

ǫijk = −ǫkji, (6.13)

ǫijk = ǫkij = ǫjki. (6.14)

Regarding index notation:

• a repeated index indicates summation on that index,

• a non-repeated index is known as a free index,

• the number of free indices give the order of the tensor:

– u, uv, uiviw, uii, uijvij , zeroth order tensor–scalar,

– ui, uivij , first order tensor–vector,

– uij , uijvjk, uivj , second order tensor,

1Tullio Levi-Civita, 1883-1941, Italian mathematician.
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– uijk, uivjwk, uijvkmwm, third order tensor,

– uijkl, uijvkl, fourth order tensor.

• indices cannot be repeated more than once:

– uiik, uij, uiijj, viujk are proper.

– uiviwi, uiiij, uijvii are improper!

• Cartesian components commute: uijviwklm = viwklmuij,

• Cartesian indices do not commute: uijkl 6= ujlik.

Example 6.1
Let us consider, using generalized coordinates described earlier in Sec. 1.3, a trivial identity trans-

formation from the Cartesian ξi coordinates to the transformed coordinates xi:

x1 = ξ1, x2 = ξ2, x3 = ξ3. (6.15)

Here, we are returning to the more general “upstairs-downstairs” index notation of Sec. 1.3. Recalling
Eq. (1.78), the Jacobian of the transformation is

J =
∂ξi

∂xj
=





1 0 0
0 1 0
0 0 1



 = δij = I. (6.16)

From Eq. (1.85), the metric tensor then is

gij = G = JT · J = I · I = I = δij . (6.17)

Then we find by the transformation rules that for this transformation, the covariant and contravariant
representations of a general vector u are one and the same:

ui = giju
j = δiju

j = δiju
j = ui. (6.18)

Consequently, for Cartesian vectors, there is no need to use a notation which distinguishes covariant
and contravariant representations. We will hereafter write all Cartesian vectors with only a subscript
notation.

6.2 Cartesian tensors

6.2.1 Direction cosines

Consider the alias transformation of the (x1, x2) Cartesian coordinate system by rotation of
each coordinate axes by angle α to the rotated Cartesian coordinate system x1, x2 as sketched
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x*   = x* cos α + x* cos β
11 2

β ββ

α

α

α

x1

x 1

x 2
x 2

x*2

x*1

P

x*
1

Figure 6.1: Rotation of axes in a two-dimensional Cartesian system.

in Fig. 6.1. Relative to our earlier notation for general non-Cartesian systems, Sec. 1.3, in
this chapter, x plays the role of the earlier ξ, and x plays the role of the earlier x. We define
the angle between the x1 and x1 axes as α:

α ≡ [x1, x1]. (6.19)

With β = π/2 − α, the angle between the x1 and x2 axes is

β ≡ [x2, x1]. (6.20)

The point P can be represented in both coordinate systems. In the unrotated system, P is
represented by the coordinates:

P : (x∗1, x
∗
2). (6.21)

In the rotated coordinate system, P is represented by

P : (x∗1, x
∗
2). (6.22)

Trigonometry shows us that

x∗1 = x∗1 cosα+ x∗2 cosβ, (6.23)

x∗1 = x∗1 cos[x1, x1] + x∗2 cos[x2, x1]. (6.24)

Dropping the stars, and extending to three dimensions, we find that

x1 = x1 cos[x1, x1] + x2 cos[x2, x1] + x3 cos[x3, x1]. (6.25)
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Extending to expressions for x2 and x3 and writing in matrix form, we get

( x1 x2 x3 )
︸ ︷︷ ︸

=xj=xT

= ( x1 x2 x3 )
︸ ︷︷ ︸

=xi=xT

·





cos[x1, x1] cos[x1, x2] cos[x1, x3]
cos[x2, x1] cos[x2, x2] cos[x2, x3]
cos[x3, x1] cos[x3, x2] cos[x3, x3]





︸ ︷︷ ︸

=ℓij=Q

. (6.26)

Using the notation
ℓij = cos[xi, xj], (6.27)

Eq. (6.26) is written as

(x1 x2 x3 )
︸ ︷︷ ︸

=xj=xT

= (x1 x2 x3 )
︸ ︷︷ ︸

=xi=xT

·





ℓ11 ℓ12 ℓ13
ℓ21 ℓ22 ℓ23
ℓ31 ℓ32 ℓ33





︸ ︷︷ ︸

=Q

. (6.28)

Here ℓij are known as the direction cosines. Expanding the first term we find

x1 = x1ℓ11 + x2ℓ21 + x3ℓ31. (6.29)

More generally, we have

xj = x1ℓ1j + x2ℓ2j + x3ℓ3j , (6.30)

=
3∑

i=1

xiℓij, (6.31)

= xiℓij . (6.32)

Here we have employed Einstein’s convention that repeated indices implies a summation over
that index.

What amounts to the law of cosines,

ℓijℓkj = δik, (6.33)

can easily be proven by direct substitution. Direction cosine matrices applied to geometric
entities such as polygons have the property of being volume- and orientation-preserving

because det ℓij = 1. General volume-preserving transformations have determinant of ±1.
For right-handed coordinate systems, transformations which have positive determinants are
orientation-preserving, and those which have negative determinants are orientation-reversing.
Transformations which are volume-preserving but orientation-reversing have determinant of
−1, and involve a reflection.

Example 6.2
Show for the two-dimensional system described in Fig. 6.1 that ℓijℓkj = δik holds.
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Expanding for the two-dimensional system, we get

ℓi1ℓk1 + ℓi2ℓk2 = δik. (6.34)

First, take i = 1, k = 1. We get then

ℓ11ℓ11 + ℓ12ℓ12 = δ11 = 1, (6.35)

cosα cosα+ cos(α+ π/2) cos(α+ π/2) = 1, (6.36)

cosα cosα+ (− sin(α))(− sin(α)) = 1, (6.37)

cos2 α+ sin2 α = 1. (6.38)

This is obviously true. Next, take i = 1, k = 2. We get then

ℓ11ℓ21 + ℓ12ℓ22 = δ12 = 0, (6.39)

cosα cos(π/2 − α) + cos(α+ π/2) cos(α) = 0, (6.40)

cosα sinα− sinα cosα = 0. (6.41)

This is obviously true. Next, take i = 2, k = 1. We get then

ℓ21ℓ11 + ℓ22ℓ12 = δ21 = 0, (6.42)

cos(π/2 − α) cosα+ cosα cos(π/2 + α) = 0, (6.43)

sinα cosα+ cosα(− sinα) = 0. (6.44)

This is obviously true. Next, take i = 2, k = 2. We get then

ℓ21ℓ21 + ℓ22ℓ22 = δ22 = 1, (6.45)

cos(π/2 − α) cos(π/2 − α) + cosα cosα = 1, (6.46)

sinα sinα+ cosα cosα = 1. (6.47)

Again, this is obviously true.

Using the law of cosines, Eq. (6.33), we can easily find the inverse transformation back
to the unprimed coordinates via the following operations. First operate on Eq. (6.32) with
ℓkj.

ℓkjxj = ℓkjxiℓij , (6.48)

= ℓijℓkjxi, (6.49)

= δikxi, (6.50)

= xk, (6.51)

ℓijxj = xi, (6.52)

xi = ℓijxj . (6.53)

Note that the Jacobian matrix of the transformation is J = ∂xi/∂xj = ℓij . It can be shown
that the metric tensor is G = JT · J = ℓjiℓki = δjk = I, so g = 1, and the transformation
is volume-preserving. Moreover, since JT · J = I, we see that JT = J−1. As such, it is
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precisely the type of matrix for which the gradient takes on the same form in original and
transformed coordinates, as presented in the discussion surrounding Eq. (1.95). As will be
discussed in detail in Sec. 8.6, matrices which have these properties are known as orthogonal

are often denoted by Q. So for this class of transformations, J = Q = ∂xi/∂xj = ℓij . Note
that QT · Q = I and that QT = Q−1. The matrix Q is a rotation matrix when its elements
are composed of the direction cosines ℓij. Note then that QT = ℓji. For a coordinate system
which obeys the right-hand rule, we require detQ = 1 so that it is also orientation-preserving.

Example 6.3
Consider the previous two-dimensional example of a matrix which rotates a vector through an angle

α using matrix methods.

We have

J =
∂xi
∂xj

= ℓij = Q =

(
cosα cos

(
α+ π

2

)

cos
(
π
2 − α

)
cosα

)

=

(
cosα − sinα
sinα cosα

)

. (6.54)

We get the rotated coordinates via Eq. (6.26):

xT = xT · Q, (6.55)

(x1 x2 ) = (x1 x2 ) ·
(

cosα − sinα
sinα cosα

)

, (6.56)

= (x1 cosα+ x2 sinα −x1 sinα+ x2 cosα ) , (6.57)
(
x1

x2

)

=

(
x1 cosα+ x2 sinα
−x1 sinα+ x2 cosα

)

. (6.58)

We can also rearrange to say

x = QT · x, (6.59)

Q · x = Q ·QT

︸ ︷︷ ︸

I

·x, (6.60)

Q · x = I · x, (6.61)

x = Q · x. (6.62)

The law of cosines holds because

Q ·QT =

(
cosα − sinα
sinα cosα

)

·
(

cosα sinα
− sinα cosα

)

, (6.63)

=

(
cos2 α+ sin2 α 0

0 sin2 α+ cos2 α

)

, (6.64)

=

(
1 0
0 1

)

, (6.65)

= I = δij . (6.66)

Consider the determinant of Q:

detQ = cos2 α− (− sin2 α) = cos2 α+ sin2 α = 1. (6.67)

Thus, the transformation is volume- and orientation-preserving; hence, it is a rotation. The rotation is
through an angle α.
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Example 6.4
Consider the so-called reflection matrix in two dimensions:

Q =

(
cosα sinα
sinα − cosα

)

. (6.68)

Note the reflection matrix is obtained by multiplying the second column of the rotation matrix of
Eq. (6.54) by −1. We see that

Q ·QT =

(
cosα sinα
sinα − cosα

)

·
(

cosα sinα
sinα − cosα

)

, (6.69)

=

(
cos2 α+ sin2 α 0

0 sin2 α+ cos2 α

)

, (6.70)

=

(
1 0
0 1

)

= I = δij . (6.71)

The determinant of the reflection matrix is

detQ = − cos2 α− sin2 α = −1. (6.72)

Thus, the transformation is volume-preserving, but not orientation-preserving. One can show by con-
sidering its action on vectors x is that it reflects them about a line passing through the origin inclined
at an angle of α/2 to the horizontal.

6.2.1.1 Scalars

An entity φ is a scalar if it is invariant under a rotation of coordinate axes.

6.2.1.2 Vectors

A set of three scalars (v1, v2, v3)
T is defined as a vector if under a rotation of coordinate axes,

the triple also transforms according to

vj = viℓij, vT = vT · Q. (6.73)

We could also transpose both sides and have

v = QT · v. (6.74)

A vector associates a scalar with a chosen direction in space by an expression which is linear
in the direction cosines of the chosen direction.
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Example 6.5
Returning to generalized coordinate notation, show the equivalence between covariant and con-

travariant representations for pure rotations of a vector v.

Consider then a transformation from a Cartesian space ξj to a transformed space xi via a pure
rotation:

ξi = ℓijx
j . (6.75)

Here ℓij is simply a matrix of direction cosines as we have previously defined; we employ the upstairs-
downstairs index notation for consistency. The Jacobian is

∂ξi

∂xj
= ℓij. (6.76)

From Eq. (1.85), the metric tensor is

gkl =
∂ξi

∂xk
∂ξi

∂xl
= ℓikℓ

i
l = δkl. (6.77)

Here we have employed the law of cosines, which is easily extensible to the “upstairs-downstairs”
notation.

So a vector v has the same covariant and contravariant components since

vi = gijv
j = δijv

j = δijv
j = vi. (6.78)

Note the vector itself has components that do transform under rotation:

vi = ℓijV
j . (6.79)

Here V j is the contravariant representation of the vector v in the unrotated coordinate system. One
could also show that Vj = V j , as always for a Cartesian system.

6.2.1.3 Tensors

A set of nine scalars is defined as a second order tensor if under a rotation of coordinate
axes, they transform as

T ij = ℓkiℓljTkl, T = QT · T ·Q. (6.80)

A tensor associates a vector with each direction in space by an expression that is linear in
the direction cosines of the chosen transformation. It will be seen that

• the first subscript gives associated direction (or face; hence first–face), and

• the second subscript gives the vector components for that face.

Graphically, one can use the sketch in Fig. 6.2 to visualize a second order tensor. In Fig. 6.2,
q(1), q(2), and q(3), are the vectors associated with the 1, 2, and 3 faces, respectively.
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Figure 6.2: Tensor visualization.

6.2.2 Matrix representation

Tensors can be represented as matrices (but all matrices are not tensors!):

Tij =





T11 T12 T13

T21 T22 T23

T31 T32 T33





–vector associated with 1 direction,
–vector associated with 2 direction,
–vector associated with 3 direction.

(6.81)

A simple way to choose a vector qj associated with a plane of arbitrary orientation is to
form the inner product of the tensor Tij and the unit normal associated with the plane ni:

qj = niTij, qT = nT · T. (6.82)

Here ni has components which are the direction cosines of the chosen direction. For example
to determine the vector associated with face 2, we choose

ni =





0
1
0



 . (6.83)

Thus, in Gibbs notation we have

nT · T = (0, 1, 0)





T11 T12 T13

T21 T22 T23

T31 T32 T33



 = (T21, T22, T23). (6.84)
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In Einstein notation, we arrive at the same conclusion via

niTij = n1T1j + n2T2j + n3T3j , (6.85)

= (0)T1j + (1)T2j + (0)T3j , (6.86)

= (T21, T22, T23). (6.87)

6.2.3 Transpose of a tensor, symmetric and anti-symmetric ten-
sors

The transpose T Tij of a tensor Tij is found by trading elements across the diagonal

T Tij ≡ Tji, (6.88)

so

T Tij =





T11 T21 T31

T12 T22 T32

T13 T23 T33



 . (6.89)

A tensor is symmetric if it is equal to its transpose, i.e.

Tij = Tji, T = TT , if symmetric. (6.90)

A tensor is anti-symmetric if it is equal to the additive inverse of its transpose, i.e.

Tij = −Tji, T = −TT , if anti-symmetric. (6.91)

A tensor is asymmetric if it is neither symmetric nor anti-symmetric.
The tensor inner product of a symmetric tensor Sij and anti-symmetric tensor Aij can

be shown to be 0:
SijAij = 0, S : A = 0. (6.92)

Here the “:” notation indicates a tensor inner product.

Example 6.6
Show SijAij = 0 for a two-dimensional space.

Take a general symmetric tensor to be

Sij =

(
a b
b c

)

. (6.93)

Take a general anti-symmetric tensor to be

Aij =

(
0 d
−d 0

)

. (6.94)

So

SijAij = S11A11 + S12A12 + S21A21 + S22A22, (6.95)

= a(0) + bd− bd+ c(0), (6.96)

= 0. (6.97)
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An arbitrary tensor can be represented as the sum of a symmetric and anti-symmetric
tensor:

Tij =
1

2
Tij +

1

2
Tij

︸ ︷︷ ︸

=Tij

+
1

2
Tji −

1

2
Tji

︸ ︷︷ ︸

=0

, (6.98)

=
1

2
(Tij + Tji)

︸ ︷︷ ︸

≡T(ij)

+
1

2
(Tij − Tji)

︸ ︷︷ ︸

≡T[ij]

. (6.99)

So with

T(ij) ≡ 1

2
(Tij + Tji) , (6.100)

T[ij] ≡ 1

2
(Tij − Tji) , (6.101)

we arrive at

Tij = T(ij)
︸︷︷︸

symmetric

+ T[ij]
︸︷︷︸

anti−symmetric

. (6.102)

The first term, T(ij), is called the symmetric part of Tij; the second term, T[ij], is called the
anti-symmetric part of Tij .

6.2.4 Dual vector of an anti-symmetric tensor

As the anti-symmetric part of a three by three tensor has only three independent components,
we might expect a three-component vector can be associated with this. Let us define the
dual vector to be

di ≡
1

2
ǫijkTjk =

1

2
ǫijkT(jk)
︸ ︷︷ ︸

=0

+
1

2
ǫijkT[jk]. (6.103)

For fixed i, ǫijk is anti-symmetric. So the first term is zero, being for fixed i the tensor inner
product of an anti-symmetric and symmetric tensor. Thus,

di =
1

2
ǫijkT[jk]. (6.104)

Let us find the inverse. Apply ǫilm to both sides of Eq. (6.103) to get

ǫilmdi =
1

2
ǫilmǫijkTjk, (6.105)
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=
1

2
(δljδmk − δlkδmj)Tjk, (6.106)

=
1

2
(Tlm − Tml), (6.107)

= T[lm], (6.108)

T[lm] = ǫilmdi, (6.109)

T[ij] = ǫkijdk, (6.110)

T[ij] = ǫijkdk. (6.111)

Expanding, we can see that

T[ij] = ǫijkdk = ǫij1d1 + ǫij2d2 + ǫij3d3 =





0 d3 −d2

−d3 0 d1

d2 −d1 0



 . (6.112)

The matrix form realized is obvious when one considers that an individual term, such as
ǫij1d1 only has a value when i, j = 2, 3 or i, j = 3, 2, and takes on values of ±d1 in those
cases. In summary, the general dimension three tensor can be written as

Tij = T(ij) + ǫijkdk. (6.113)

6.2.5 Principal axes and tensor invariants

Given a tensor Tij, find the associated direction such that the vector components in this
associated direction are parallel to the direction. So we want

niTij = λnj . (6.114)

This defines an eigenvalue problem; this will be discussed further in Sec. 7.4.4. Linear algebra
gives us the eigenvalues and associated eigenvectors.

niTij = λniδij, (6.115)

ni(Tij − λδij) = 0, (6.116)

(n1, n2, n3)





T11 − λ T12 T13

T21 T22 − λ T23

T31 T32 T33 − λ



 = (0, 0, 0). (6.117)

This is equivalent to nT · (T− λI) = 0T or (T− λI)T · n = 0. We get non-trivial solutions if
∣
∣
∣
∣
∣
∣

T11 − λ T12 T13

T21 T22 − λ T23

T31 T32 T33 − λ

∣
∣
∣
∣
∣
∣

= 0. (6.118)

We are actually finding the so-called left eigenvectors of Tij . These arise with less frequency
than the right eigenvectors, which are defined by Tijuj = λδijuj. Right and left eigenvalue
problems are discussed later in Sec. 7.4.4.
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We know from linear algebra that such an equation for a third order matrix gives rise to
a characteristic polynomial for λ of the form

λ3 − I
(1)
T λ2 + I

(2)
T λ− I

(3)
T = 0, (6.119)

where I
(1)
T , I

(2)
T , I

(3)
T are scalars which are functions of all the scalars Tij . The IT ’s are known

as the invariants of the tensor Tij. The invariants will not change if the coordinate axes are
rotated; in contrast, the scalar components Tij will change under rotation. The invariants
can be shown to be given by

I
(1)
T = Tii = T11 + T22 + T33 = tr T, (6.120)

I
(2)
T =

1

2
(TiiTjj − TijTji) =

1

2

(
(tr T)2 − tr(T · T)

)
= (detT)(tr T−1), (6.121)

=
1

2

(
T(ii)T(jj) + T[ij]T[ij] − T(ij)T(ij)

)
, (6.122)

I
(3)
T = ǫijkT1iT2jT3k = detT. (6.123)

Here, “tr” denotes the trace. It can also be shown that if λ(1), λ(2), λ(3) are the three eigen-
values, then the invariants can also be expressed as

I
(1)
T = λ(1) + λ(2) + λ(3), (6.124)

I
(2)
T = λ(1)λ(2) + λ(2)λ(3) + λ(3)λ(1), (6.125)

I
(3)
T = λ(1)λ(2)λ(3). (6.126)

If Tij is real and symmetric, it can be shown that

• the eigenvalues are real,

• eigenvectors corresponding to distinct eigenvalues are real and orthogonal, and

• the left and right eigenvectors are identical.

A sketch of a volume element rotated to be aligned with a set of orthogonal principal axes
is shown in Figure 6.3.

If the matrix is asymmetric, the eigenvalues could be complex, and the eigenvectors are
not orthogonal. It is often most physically relevant to decompose a tensor into symmetric and
anti-symmetric parts and find the orthogonal basis vectors and real eigenvalues associated
with the symmetric part and the dual vector associated with the anti-symmetric part.

In continuum mechanics,

• the symmetric part of a tensor can be associated with deformation along principal
axes, and

• the anti-symmetric part of a tensor can be associated with rotation of an element.
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Figure 6.3: Sketch depicting rotation of volume element to be aligned with principal axes.
Tensor Tij must be symmetric to guarantee existence of orthogonal principal directions.

Example 6.7
Decompose the tensor given here into a combination of orthogonal basis vectors and a dual vector.

Tij =





1 1 −2
3 2 −3
−4 1 1



 . (6.127)

First

T(ij) =
1

2
(Tij + Tji) =





1 2 −3
2 2 −1
−3 −1 1



 , (6.128)

T[ij] =
1

2
(Tij − Tji) =





0 −1 1
1 0 −2
−1 2 0



 . (6.129)

First, get the dual vector di:

di =
1

2
ǫijkT[jk], (6.130)

d1 =
1

2
ǫ1jkT[jk] =

1

2
(ǫ123T[23] + ǫ132T[32]) =

1

2
((1)(−2) + (−1)(2)) = −2, (6.131)

d2 =
1

2
ǫ2jkT[jk] =

1

2
(ǫ213T[13] + ǫ231T[31]) =

1

2
((−1)(1) + (1)(−1)) = −1, (6.132)

d3 =
1

2
ǫ3jkT[jk] =

1

2
(ǫ312T[12] + ǫ321T[21]) =

1

2
((1)(−1) + (−1)(1)) = −1, (6.133)

di = (−2,−1,−1)T . (6.134)

Note that Eq. (6.112) is satisfied.
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Now find the eigenvalues and eigenvectors for the symmetric part.

∣
∣
∣
∣
∣
∣

1 − λ 2 −3
2 2 − λ −1
−3 −1 1 − λ

∣
∣
∣
∣
∣
∣

= 0. (6.135)

We get the characteristic polynomial,

λ3 − 4λ2 − 9λ+ 9 = 0. (6.136)

The eigenvalue and associated normalized eigenvector for each root is

λ(1) = 5.36488, n
(1)
i = (−0.630537,−0.540358, 0.557168)T , (6.137)

λ(2) = −2.14644, n
(2)
i = (−0.740094, 0.202303,−0.641353)T , (6.138)

λ(3) = 0.781562, n
(3)
i = (−0.233844, 0.816754, 0.527476)T. (6.139)

It is easily verified that each eigenvector is orthogonal. When the coordinates are transformed to be
aligned with the principal axes, the magnitude of the vector associated with each face is the eigenvalue;
this vector points in the same direction of the unit normal associated with the face.

Example 6.8
For a given tensor, which we will take to be symmetric, though the theory applies to non-symmetric

tensors as well,

Tij = T =





1 2 4
2 3 −1
4 −1 1



 , (6.140)

find the three basic tensor invariants, I
(1)
T , I

(2)
T , and I

(3)
T , and show they are truly invariant when the

tensor is subjected to a rotation with direction cosine matrix of

ℓij = Q =






1√
6

√
2
3

1√
6

1√
3

− 1√
3

1√
3

1√
2

0 − 1√
2




 . (6.141)

Calculation shows that detQ = 1, and Q · QT = I, so the matrix Q is volume- and orientation-
preserving, and thus a rotation matrix. As an aside, the construction of an orthogonal matrix, such as
our Q is non-trivial. One method of construction involves determining a set of orthogonal vectors via
a process to be described later, see Sec. 7.3.2.5.

The eigenvalues of T, which are the principal values, are easily calculated to be

λ(1) = 5.28675, λ(2) = −3.67956, λ(3) = 3.39281. (6.142)

The three invariants of Tij are

I
(1)
T = tr(T) = tr





1 2 4
2 3 −1
4 −1 1



 = 1 + 3 + 1 = 5, (6.143)
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I
(2)
T =

1

2

(
(tr(T))2 − tr(T ·T)

)

=
1

2








tr





1 2 4
2 3 −1
4 −1 1









2

− tr









1 2 4
2 3 −1
4 −1 1



 ·





1 2 4
2 3 −1
4 −1 1












 ,

=
1

2



52 − tr





21 4 6
4 14 4
6 4 18







 ,

=
1

2
(25 − 21 − 14 − 18),

= −14, (6.144)

I
(3)
T = detT = det





1 2 4
2 3 −1
4 −1 1



 = −66. (6.145)

Now when we rotate the tensor T, we get a transformed tensor given by

T = QT · T · Q =






1√
6

1√
3

1√
2√

2
3 − 1√

3
0

1√
6

1√
3

− 1√
2










1 2 4
2 3 −1
4 −1 1










1√
6

√
2
3

1√
6

1√
3

− 1√
3

1√
3

1√
2

0 − 1√
2




 , (6.146)

=





4.10238 2.52239 1.60948
2.52239 −0.218951 −2.91291
1.60948 −2.91291 1.11657



 . (6.147)

We then seek the tensor invariants of T. Leaving out some of the details, which are the same as those
for calculating the invariants of T, we find the invariants indeed are invariant:

I
(1)
T = 4.10238− 0.218951 + 1.11657 = 5, (6.148)

I
(2)
T =

1

2
(52 − 53) = −14, (6.149)

I
(3)
T = −66. (6.150)

Finally, we verify that the tensor invariants are indeed related to the principal values (the eigenvalues
of the tensor) as follows

I
(1)
T = λ(1) + λ(2) + λ(3) = 5.28675− 3.67956 + 3.39281 = 5, (6.151)

I
(2)
T = λ(1)λ(2) + λ(2)λ(3) + λ(3)λ(1),

= (5.28675)(−3.67956)+ (−3.67956)(3.39281)+ (3.39281)(5.28675) = −14, (6.152)

I
(3)
T = λ(1)λ(2)λ(3) = (5.28675)(−3.67956)(3.39281) = −66. (6.153)

6.3 Algebra of vectors

Here we will primarily use bold letters for vectors, such as in u. At times we will use the
notation ui to represent a vector.
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6.3.1 Definition and properties

Null vector: A vector with zero components.

Multiplication by a scalar α: αu = αu1e1 + αu2e2 + αu3e3 = αui,

Sum of vectors: u + v = (u1 + v1)e1 + (u2 + v2)e2 + (u3 + v3)e3 = (ui + vi),

Magnitude, length, or norm of a vector: ||u||2 =
√

u2
1 + u2

2 + u2
3 =

√
uiui,

Triangle inequality: ||u + v||2 ≤ ||u||2 + ||v||2.
Here the subscript 2 in || · ||2 indicates we are considering a Euclidean norm. In many

sources in the literature this subscript is omitted, and the norm is understood to be the
Euclidean norm. In a more general sense, we can still retain the property of a norm for a
more general p-norm for a three-dimensional vector:

||u||p = (|u1|p + |u2|p + |u3|p)1/p , 1 ≤ p <∞. (6.154)

For example the 1-norm of a vector is the sum of the absolute values of its components:

||u||1 = (|u1| + |u2| + |u3|) . (6.155)

The ∞-norm selects the largest component:

||u||∞ = lim
p→∞

(|u1|p + |u2|p + |u3|p)1/p = maxi=1,2,3|ui|. (6.156)

6.3.2 Scalar product (dot product, inner product)

The scalar product of u and v is defined for vectors with real components as

<u,v> = uT · v = ( u1 u2 u3 ) ·





v1

v2

v3



 = u1v1 + u2v2 + u3v3 = uivi. (6.157)

Note that the term uivi is a scalar, which explains the nomenclature “scalar product.”
The vectors u and v are said to be orthogonal if uT · v = 0. Also

<u,u> = uT · u = (u1 u2 u3 ) ·





u1

u2

u3



 = u2
1 + u2

2 + u2
3 = uiui = (||u||2)2. (6.158)

We will consider important modifications for vectors with complex components later in
Sec. 7.3.2. In the same section, we will consider the generalized notion of an inner product,
denoted here by <., .>.
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6.3.3 Cross product

The cross product of u and v is defined as

u × v =

∣
∣
∣
∣
∣
∣

e1 e2 e3

u1 u2 u3

v1 v2 v3

∣
∣
∣
∣
∣
∣

= ǫijkujvk. (6.159)

Note the cross product of two vectors is a vector.
Property: u× αu = 0. Let’s use Cartesian index notation to prove this

u × αu = ǫijkujαuk, (6.160)

= αǫijkujuk, (6.161)

= α(ǫi11u1u1 + ǫi12u1u2 + ǫi13u1u3, (6.162)

+ǫi21u2u1 + ǫi22u2u2 + ǫi23u2u3 (6.163)

+ǫi31u3u1 + ǫi32u3u2 + ǫi33u3u3) (6.164)

= 0, for i = 1, 2, 3, (6.165)

since ǫi11 = ǫi22 = ǫi33 = 0 and ǫi12 = −ǫi21, ǫi13 = −ǫi31, and ǫi23 = −ǫi32.

6.3.4 Scalar triple product

The scalar triple product of three vectors u, v, and w is defined by

[u,v,w] = uT · (v ×w), (6.166)

= ǫijkuivjwk. (6.167)

The scalar triple product is a scalar. Geometrically, it represents the volume of the paral-
lelepiped with edges parallel to the three vectors.

6.3.5 Identities

[u,v,w] = −[u,w,v], (6.168)

u× (v ×w) = (uT · w)v − (uT · v)w, (6.169)

(u× v) × (w × x) = [u,w,x]v − [v,w,x]u, (6.170)

(u× v)T · (w × x) = (uT · w)(vT · x) − (uT · x)(vT · w). (6.171)

Example 6.9
Prove Eq. (6.169) using Cartesian index notation.

u× (v × w) = ǫijkuj (ǫklmvlwm) , (6.172)
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= ǫijkǫklmujvlwm, (6.173)

= ǫkijǫklmujvlwm, (6.174)

= (δilδjm − δimδjl)ujvlwm, (6.175)

= ujviwj − ujvjwi, (6.176)

= ujwjvi − ujvjwi, (6.177)

= (uT · w)v − (uT · v)w. (6.178)

6.4 Calculus of vectors

6.4.1 Vector function of single scalar variable

If we have the scalar function φ(τ) and vector functions u(τ) and v(τ), some useful identities,
based on the product rule, which can be proved include

d

dτ
(φu) = φ

du

dτ
+
dφ

dτ
u,

d

dτ
(φui) = φ

dui
dτ

+
dφ

dτ
ui, (6.179)

d

dτ
(uT · v) = uT · dv

dτ
+
duT

dτ
· v, d

dτ
(uivi) = ui

dvi
dτ

+
dui
dτ

vi, (6.180)

d

dτ
(u × v) = u × dv

dτ
+
du

dτ
× v,

d

dτ
(ǫijkujvk) = ǫijkuj

dvk
dτ

+ ǫijkvk
duj
dτ

. (6.181)

Here τ is a general scalar parameter, which may or may not have a simple physical interpre-
tation.

6.4.2 Differential geometry of curves

Now let us consider a general discussion of curves in space. If

r(τ) = xi(τ)ei = xi(τ), (6.182)

then r(τ) describes a curve in three-dimensional space. If we require that the basis vectors
be constants (this will not be the case in most general coordinate systems, but is for ordinary
Cartesian systems), the derivative of Eq. (6.182) is

dr(τ)

dτ
= r′(τ) = x′i(τ)ei = x′i(τ). (6.183)

Now r′(τ) is a vector that is tangent to the curve. A unit vector in this direction is

t =
r′(τ)

||r′(τ)||2
, (6.184)
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where

||r′(τ)||2 =
√

x′ix
′
i. (6.185)

In the special case in which τ is time t, we denote the derivative by a dot ( ˙ ) notation
rather than a prime (′) notation; ṙ is the velocity vector, ẋi its components, and ||ṙ||2 the
magnitude. Note that the unit tangent vector t is not the scalar parameter for time, t. Also
we will occasionally use the scalar components of t: ti, which again are not related to time
t.

Take s(t) to be the distance along the curve. Pythagoras’ theorem tells us for differential
distances that

ds2 = dx2
1 + dx2

2 + dx2
3, (6.186)

ds =
√

dx2
1 + dx2

2 + dx2
3, (6.187)

ds = ||dxi||2, (6.188)

ds

dt
=

∣
∣
∣
∣

∣
∣
∣
∣

dxi
dt

∣
∣
∣
∣

∣
∣
∣
∣
2

, (6.189)

= ||ṙ(t)||2, (6.190)

so that

t =
ṙ

||ṙ||2
=

dr
dt
ds
dt

=
dr

ds
, ti =

dri
ds
. (6.191)

Also integrating Eq. (6.190) with respect to t gives

s =

∫ b

a

||ṙ(t)||2dt =

∫ b

a

√

dxi
dt

dxi
dt

dt =

∫ b

a

√

dx1

dt

dx1

dt
+
dx2

dt

dx2

dt
+
dx3

dt

dx3

dt
dt, (6.192)

to be the distance along the curve between t = a and t = b.

Example 6.10
If

r(t) = 2t2i + t3j, (6.193)

find the unit tangent at t = 1, and the length of the curve from t = 0 to t = 1.

The derivative is

ṙ(t) = 4ti + 3t2j. (6.194)

At t = 1,

ṙ(t = 1) = 4i + 3j (6.195)

so that the unit vector in this direction is

t =
4

5
i +

3

5
j. (6.196)
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t

t 

ρ

θ

Δθ

Δs

Figure 6.4: Sketch for determination of radius of curvature.

The length of the curve from t = 0 to t = 1 is

s =

∫ 1

0

√

16t2 + 9t4dt, (6.197)

=
1

27
(16 + 9t2)3/2 |10, (6.198)

=
61

27
. (6.199)

In Fig. 6.4, r(t) describes a circle. Two unit tangents, t and t̂ are drawn at times t and
t+ ∆t. At time t we have

t = − sin θ i + cos θ j. (6.200)

At time t+ ∆t we have

t̂ = − sin (θ + ∆θ) i + cos (θ + ∆θ) j. (6.201)

Expanding Eq. (6.201) in a Taylor series about ∆θ = 0, we get

t̂ =
(
− sin θ − ∆θ cos θ +O(∆θ)2

)
i +
(
cos θ − ∆θ sin θ +O(∆θ)2

)
j, (6.202)

so as ∆θ → 0,

t̂ − t = −∆θ cos θ i − ∆θ sin θ j, (6.203)

∆t = ∆θ (− cos θ i − sin θ j)
︸ ︷︷ ︸

unit vector

. (6.204)
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It is easily verified that ∆tT · t = 0, so ∆t is normal to t. Furthermore, since − cos θi− sin θj
is a unit vector,

||∆t||2 = ∆θ. (6.205)

Now for ∆θ → 0,

∆s = ρ∆θ. (6.206)

where ρ is the radius of curvature. So

||∆t||2 =
∆s

ρ
(6.207)

Thus,
∣
∣
∣
∣

∣
∣
∣
∣

∆t

∆s

∣
∣
∣
∣

∣
∣
∣
∣
2

=
1

ρ
. (6.208)

Taking all limits to zero, we get
∣
∣
∣
∣

∣
∣
∣
∣

dt

ds

∣
∣
∣
∣

∣
∣
∣
∣
2

=
1

ρ
. (6.209)

The term on the right side of Eq. (6.209) is often defined as the curvature, κ:

κ =
1

ρ
. (6.210)

Thus, the curvature κ is the magnitude of dt/ds; it gives a measure of how the unit tangent
changes as one moves along the curve.

6.4.2.1 Curves on a plane

The plane curve y = f(x) in the x-y plane can be represented as

r(t) = x(t) i + y(t) j, (6.211)

where x(t) = t and y(t) = f(t). Differentiating, we have

ṙ(t) = ẋ(t) i + ẏ(t) j. (6.212)

The unit vector from Eq. (6.184) is

t =
ẋi + ẏj

(ẋ2 + ẏ2)1/2
, (6.213)

=
i + y′j

(1 + (y′)2)1/2
, (6.214)
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where the primes are derivatives with respect to x. Since

ds2 = dx2 + dy2, (6.215)

ds =
(
dx2 + dy2

)1/2
, (6.216)

ds

dx
=

1

dx

(
dx2 + dy2

)1/2
, (6.217)

ds

dx
= (1 + (y′)2)1/2, (6.218)

we have, by first expanding dt/ds with the chain rule, then applying the quotient rule to
expand the derivative of Eq. (6.214) along with the use of Eq. (6.218),

dt

ds
=

dt
dx
ds
dx

, (6.219)

=
(1 + (y′)2)1/2y′′j − (i + y′j)(1 + (y′)2)−1/2y′y′′

1 + (y′)2

︸ ︷︷ ︸

dt/dx

1

(1 + (y′)2)1/2

︸ ︷︷ ︸

1/(ds/dx)

, (6.220)

=
y′′

(1 + (y′)2)3/2

︸ ︷︷ ︸

=κ

−y′i + j

(1 + (y′)2)1/2

︸ ︷︷ ︸

n

. (6.221)

As the second factor of Eq. (6.221) is a unit vector, the leading scalar factor must be the
magnitude of dt/ds. We define this unit vector to be n, and note that it is orthogonal to
the unit tangent vector t:

nT · t =
−y′i + j

(1 + (y′)2)1/2
· i + y′j

(1 + (y′)2)1/2
, (6.222)

=
−y′ + y′

1 + (y′)2
, (6.223)

= 0. (6.224)

Expanding our notion of curvature and radius of curvature, we define dt/ds such that

dt

ds
= κn, (6.225)

∣
∣
∣
∣

∣
∣
∣
∣

dt

ds

∣
∣
∣
∣

∣
∣
∣
∣
2

= κ =
1

ρ
. (6.226)

Thus,

κ =
y′′

(1 + (y′)2)3/2
, (6.227)

ρ =
(1 + (y′)2)3/2

y′′
, (6.228)

for curves on a plane.
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6.4.2.2 Curves in three-dimensional space

We next expand these notions to three-dimensional space. A set of local, right-handed,
orthogonal coordinates can be defined at a point on a curve r(t). The unit vectors at this
point are the tangent t, the principal normal n, and the binormal b, where

t =
dr

ds
(6.229)

n =
1

κ

dt

ds
, (6.230)

b = t× n. (6.231)

We will first show that t, n, and b form an orthogonal system of unit vectors. We have
already seen that t is a unit vector tangent to the curve. By the product rule for vector
differentiation, we have the identity

tT · dt
ds

=
1

2

d

ds
(tT · t
︸ ︷︷ ︸

=1

). (6.232)

Since tT · t = ||t||22 = 1, we recover

tT · dt
ds

= 0. (6.233)

Thus, t is orthogonal to dt/ds. Since n is parallel to dt/ds, it is orthogonal to t also. From
Eqs. (6.209) and (6.230), we see that n is a unit vector. Furthermore, b is a unit vector
orthogonal to both t and n because of its definition in terms of a cross product of those
vectors in Eq. (6.231).

Next, we will derive some basic relations involving the unit vectors and the characteristics
of the curve. Take d/ds of Eq. (6.231):

db

ds
=

d

ds
(t × n) , (6.234)

=
dt

ds
× n

︸︷︷︸

(1/κ)dt/ds

+t × dn

ds
, (6.235)

=
dt

ds
× 1

κ

dt

ds
+ t × dn

ds
, (6.236)

=
1

κ

dt

ds
× dt

ds
︸ ︷︷ ︸

=0

+t × dn

ds
, (6.237)

= t × dn

ds
. (6.238)
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So we see that db/ds is orthogonal to t. In addition, since ||b||2 = 1,

bT · db
ds

=
1

2

d

ds
(bT · b), (6.239)

=
1

2

d

ds
(||b||22), (6.240)

=
1

2

d

ds
(12), (6.241)

= 0. (6.242)

So db/ds is orthogonal to b also. Since db/ds is orthogonal to both t and b, it must be
aligned with the only remaining direction, n. So, we can write

db

ds
= τn, (6.243)

where τ is the magnitude of db/ds, which we call the torsion of the curve.
From Eq. (6.231) it is easily deduced that n = b × t,. Differentiating this with respect

to s, we get

dn

ds
=

db

ds
× t + b × dt

ds
, (6.244)

= τn × t + b × κn, (6.245)

= −τb − κt. (6.246)

Summarizing

dt

ds
= κn, (6.247)

dn

ds
= −κt − τb, (6.248)

db

ds
= τn. (6.249)

These are the Frenet-Serret2 relations. In matrix form, we can say that

d

ds





t
n
b



 =





0 κ 0
−κ 0 −τ
0 τ 0









t
n
b



 . (6.250)

Note the coefficient matrix is anti-symmetric.

Example 6.11
Find the local coordinates, the curvature, and the torsion for the helix

r(t) = a cos t i + a sin t j + bt k. (6.251)

2Jean Frédéric Frenet, 1816-1900, French mathematician, and Joseph Alfred Serret, 1819-1885, French
mathematician.
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Taking the derivative and finding its magnitude we get

dr(t)

dt
= −a sin t i + a cos t j + b k, (6.252)

∣
∣
∣
∣

∣
∣
∣
∣

dr(t)

dt

∣
∣
∣
∣

∣
∣
∣
∣
2

=
√

a2 sin2 t+ a2 cos2 t+ b2, (6.253)

=
√

a2 + b2. (6.254)

This gives us the unit tangent vector t:

t =
dr
dt∣

∣
∣
∣dr
dt

∣
∣
∣
∣
2

=
−a sin t i + a cos t j + b k√

a2 + b2
. (6.255)

We also have

ds

dt
=

√
(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

, (6.256)

=
√

a2 sin2 t+ a2 cos2 t+ b2, (6.257)

=
√

a2 + b2. (6.258)

Continuing, we have

dt

ds
=

dt
dt
ds
dt

, (6.259)

= −acos t i + sin t j√
a2 + b2

1√
a2 + b2

, (6.260)

=
a

a2 + b2
︸ ︷︷ ︸

κ

(− cos t i− sin t j)
︸ ︷︷ ︸

n

, (6.261)

= κn. (6.262)

Thus, the unit principal normal is

n = −(cos t i + sin t j). (6.263)

The curvature is

κ =
a

a2 + b2
. (6.264)

The radius of curvature is

ρ =
a2 + b2

a
. (6.265)

We also find the unit binormal

b = t× n, (6.266)

=
1√

a2 + b2

∣
∣
∣
∣
∣
∣

i j k

−a sin t a cos t b
− cos t − sin t 0

∣
∣
∣
∣
∣
∣

, (6.267)

=
b sin t i − b cos t j + a k√

a2 + b2
. (6.268)
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The torsion is determined from

τn =
db
dt
ds
dt

, (6.269)

= b
cos t i + sin t j

a2 + b2
, (6.270)

=
−b

a2 + b2
︸ ︷︷ ︸

τ

(− cos t i − sin t j)
︸ ︷︷ ︸

n

, (6.271)

from which

τ = − b

a2 + b2
. (6.272)

Further identities which can be proved relate directly to the time parameterization of r:

dr

dt
× d2r

dt2
= κv3b, (6.273)

(
dr

dt
× d2r

dt2

)T

· d
3r

dt3
= −κ2v6τ, (6.274)

√

||r̈||22 ||ṙ||22 − (ṙT · r̈)2

||ṙ||32
= κ, (6.275)

where v = ds/dt.

6.5 Line and surface integrals

If r is a position vector,

r = xiei, (6.276)

then φ(r) is a scalar field, and u(r) is a vector field.

6.5.1 Line integrals

A line integral is of the form

I =

∫

C

uT · dr, (6.277)

where u is a vector field, and dr is an element of curve C. If u = ui, and dr = dxi, then we
can write

I =

∫

C

ui dxi. (6.278)
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Figure 6.5: Three-dimensional curve parameterized by x(t) = a cos t, y(t) = a sin t, z(t) = bt,
with a = 5, b = 1, for t ∈ [0, 25].
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Figure 6.6: The vector field u = yzi+xyj+xzk and the curves a) x = y2 = z; b) x = y = z.

Example 6.12
Find

I =

∫

C

uT · dr, (6.279)

if
u = yz i + xy j + xz k, (6.280)

and C goes from (0, 0, 0) to (1, 1, 1) along

(a) the curve x = y2 = z,
(b) the straight line x = y = z.

The vector field and two paths are sketched in Fig. 6.6. We have

∫

C

uT · dr =

∫

C

(yz dx+ xy dy + xz dz). (6.281)

(a) Substituting x = y2 = z, and thus dx = 2ydy, dx = dz, we get

I =

∫ 1

0

y3(2y dy) + y3 dy + y4(2y dy), (6.282)

=

∫ 1

0

(2y4 + y3 + 2y5)dy, (6.283)

=
2y5

5
+
y4

4
+
y6

3

∣
∣
∣
∣

1

0

, (6.284)

=
59

60
. (6.285)
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We can achieve the same result in an alternative way that is often more useful for more curves
whose representation is more complicated. Let us parameterize C by taking x = t, y = t2, z = t. Thus
dx = dt, dy = 2tdt, dz = dt. The end points of C are at t = 0 and t = 1. So the integral is

I =

∫ 1

0

(t2t dt+ tt2(2t) dt+ t(t) dt, (6.286)

=

∫ 1

0

(t3 + 2t4 + t2) dt, (6.287)

=
t4

4
+

2t5

5
+
t3

3

∣
∣
∣
∣

1

0

, (6.288)

=
59

60
. (6.289)

(b) Substituting x = y = z, and thus dx = dy = dz, we get

I =

∫ 1

0

(x2dx+ x2dx+ x2dx) =

∫ 1

0

3x2dx = x3|10 = 1. (6.290)

Note a different value for I was obtained on path (b) relative to that found on path (a); thus, the
integral here is path-dependent.

In general the value of a line integral depends on the path. If, however, we have the
special case in which we can form u = ∇φ in Eq. (6.277), where φ is a scalar field, then

I =

∫

C

(∇φ)T · dr, (6.291)

=

∫

C

∂φ

∂xi
dxi, (6.292)

=

∫

C

dφ, (6.293)

= φ(b) − φ(a), (6.294)

where a and b are the beginning and end of curve C. The integral I is then independent of
path. u is then called a conservative field, and φ is its potential.

6.5.2 Surface integrals

A surface integral is of the form

I =

∫

S

uT · n dS =

∫

S

uini dS (6.295)

where u (or ui) is a vector field, S is an open or closed surface, dS is an element of this
surface, and n (or ni) is a unit vector normal to the surface element.
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6.6 Differential operators

Surface integrals can be used for coordinate-independent definitions of differential operators.
Beginning with some well-known theorems: the divergence theorem for a scalar, the diver-
gence theorem, and a little known theorem, which is possible to demonstrate, we have, where
S is a surface enclosing volume V ,

∫

V

∇φ dV =

∫

S

nφ dS, (6.296)
∫

V

∇T · u dV =

∫

S

nT · u dS, (6.297)
∫

V

(∇× u) dV =

∫

S

n × u dS. (6.298)

Now we invoke the mean value theorem, which asserts that somewhere within the limits of
integration, the integrand takes on its mean value, which we denote with an overline, so
that, for example,

∫

V
α dV = αV . Thus, we get

(∇φ) V =

∫

S

nφ dS, (6.299)

(∇T · u) V =

∫

S

nT · u dS, (6.300)

(∇× u) V =

∫

S

n× u dS. (6.301)

As we let V → 0, mean values approach local values, so we get

∇φ ≡ grad φ = lim
V→0

1

V

∫

S

nφ dS, (6.302)

∇T · u ≡ div u = lim
V→0

1

V

∫

S

nT · u dS, (6.303)

∇× u ≡ curl u = lim
V→0

1

V

∫

S

n× u dS, (6.304)

where φ(r) is a scalar field, and u(r) is a vector field. V is the region enclosed within a
closed surface S, and n is the unit normal to an element of the surface dS. Here “grad” is
the gradient operator, “div” is the divergence operator, and “curl” is the curl operator.

Consider the element of volume in Cartesian coordinates shown in Fig. 6.7. The differ-
ential operations in this coordinate system can be deduced from the definitions and written
in terms of the vector operator ∇:

∇ = e1
∂

∂x1

+ e2
∂

∂x2

+ e3
∂

∂x3

=





∂
∂x1
∂
∂x2
∂
∂x3



 =
∂

∂xi
. (6.305)
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  x3

  x1

  x2O

Figure 6.7: Element of volume.

We also adopt the unconventional, row vector operator

∇T = ( ∂
∂x1

∂
∂x2

∂
∂x3

) . (6.306)

The operator ∇T is well-defined for Cartesian coordinate systems, but does not extend to
non-orthogonal systems.

6.6.1 Gradient of a scalar

Let’s evaluate the gradient of a scalar function of a vector

grad (φ(xi)). (6.307)

We take the reference value of φ to be at the origin O. Consider first the x1 variation. At
O, x1 = 0, and our function takes the value of φ. At the faces a distance x1 = ± dx1/2 away
from O in the x1-direction, our function takes a value of

φ± ∂φ

∂x1

dx1

2
. (6.308)

Writing V = dx1dx2dx3, Eq. (6.302) gives

grad φ = lim
V→0

1

V

((

φ+
∂φ

∂x1

dx1

2

)

e1dx2dx3 −
(

φ− ∂φ

∂x1

dx1

2

)

e1dx2dx3 (6.309)

+ similar terms from the x2 and x3 faces
)

,

=
∂φ

∂x1

e1 +
∂φ

∂x2

e2 +
∂φ

∂x3

e3, (6.310)

=
∂φ

∂xi
ei =

∂φ

∂xi
, (6.311)

= ∇φ. (6.312)
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The derivative of φ on a particular path is called the directional derivative. If the path
has a unit tangent t , the derivative in this direction is

(∇φ)T · t = ti
∂φ

∂xi
. (6.313)

If φ(x, y, z) = constant is a surface, then dφ = 0 on this surface. Also

dφ =
∂φ

∂xi
dxi, (6.314)

= (∇φ)T · dr. (6.315)

Since dr is tangent to the surface, ∇φ must be normal to it. The tangent plane at r = r0 is
defined by the position vector r such that

(∇φ)T · (r − r0) = 0. (6.316)

Example 6.13
At the point (1,1,1), find the unit normal to the surface

z3 + xz = x2 + y2. (6.317)

Define

φ(x, y, z) = z3 + xz − x2 − y2 = 0. (6.318)

A normal at (1,1,1) is

∇φ = (z − 2x) i − 2y j + (3z2 + x)k, (6.319)

= −1 i − 2 j + 4 k. (6.320)

The unit normal is

n =
∇φ

||∇φ||2
, (6.321)

=
1√
21

(−1 i − 2 j + 4 k). (6.322)
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Figure 6.8: Plot of surface z3 + xz = x2 + y2 and normal vector at (1, 1, 1).

6.6.2 Divergence

6.6.2.1 Vectors

Equation (6.303) becomes

div u = lim
V→0

1

V

((

u1 +
∂u1

∂x1

dx1

2

)

dx2dx3 −
(

u1 −
∂u1

∂x1

dx1

2

)

dx2dx3 (6.323)

+ similar terms from the x2 and x3 faces
)

,

=
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
, (6.324)

=
∂ui
∂xi

, (6.325)

= ∇T · u = ( ∂
∂x1

∂
∂x2

∂
∂x3

)





u1

u2

u3



 . (6.326)

6.6.2.2 Tensors

The extension to tensors is straightforward

divT = ∇T · T, (6.327)
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=
∂Tij
∂xi

. (6.328)

Notice that this yields a vector quantity.

6.6.3 Curl of a vector

The application of Eq. (6.304) is not obvious here. Consider just one of the faces: the face
whose outer normal is e1. For that face, one needs to evaluate

∫

S

n × u dS. (6.329)

On this face, one has n = e1, and

u =

(

u1 +
∂u1

∂x1
dx1

)

e1 +

(

u2 +
∂u2

∂x1
dx1

)

e2 +

(

u3 +
∂u3

∂x1
dx1

)

e3. (6.330)

So, on this face the integrand is

n× u =

∣
∣
∣
∣
∣
∣
∣

e1 e2 e3

1 0 0
(

u1 + ∂u1

∂x1
dx1

) (

u2 + ∂u2

∂x1
dx1

) (

u3 + ∂u3

∂x1
dx1

)

∣
∣
∣
∣
∣
∣
∣

, (6.331)

=

(

u2 +
∂u2

∂x1
dx1

)

e3 −
(

u3 +
∂u3

∂x1
dx1

)

e2. (6.332)

Two similar terms appear on the opposite face, whose unit vector points in the −e1 direction.
Carrying out the integration then for equation (6.304), one gets

curl u = lim
V→0

1

V

((

u2 +
∂u2

∂x1

dx1

2

)

e3dx2dx3 −
(

u3 +
∂u3

∂x1

dx1

2

)

e2dx2dx3 (6.333)

−
(

u2 −
∂u2

∂x1

dx1

2

)

e3dx2dx3 +

(

u3 −
∂u3

∂x1

dx1

2

)

e2dx2dx3

+ similar terms from the x2 and x3 faces
)

,

=

∣
∣
∣
∣
∣
∣

e1 e2 e3
∂
∂x1

∂
∂x2

∂
∂x3

u1 u2 u3

∣
∣
∣
∣
∣
∣

, (6.334)

= ǫijk
∂uk
∂xj

, (6.335)

= ∇× u. (6.336)

The curl of a tensor does not arise often in practice.
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6.6.4 Laplacian

6.6.4.1 Scalar

The Laplacian3 is simply div grad, and can be written, when operating on φ, as

div grad φ = ∇T · (∇φ) = ∇2φ =
∂2φ

∂xi∂xi
. (6.337)

6.6.4.2 Vector

Equation (6.346) is used to evaluate the Laplacian of a vector:

∇2u = ∇T · ∇u = ∇(∇T · u) −∇× (∇× u). (6.338)

6.6.5 Identities

∇× (∇φ) = 0, (6.339)

∇T · (∇× u) = 0 (6.340)

∇T · (φu) = φ∇T · u + (∇φ)T · u, (6.341)

∇× (φu) = φ∇× u + ∇φ× u, (6.342)

∇T · (u× v) = vT · (∇× u) − uT · (∇× v), (6.343)

∇× (u× v) = (vT · ∇)u− (uT · ∇)v + u(∇T · v) − v(∇T · u), (6.344)

∇(uT · v) = (uT · ∇)v + (vT · ∇)u + u × (∇× v) + v × (∇× u), (6.345)

∇ · ∇Tu = ∇(∇T · u) −∇× (∇× u). (6.346)

Example 6.14
Show that Eq. (6.346)

∇ · ∇Tu = ∇(∇T · u) −∇× (∇× u). (6.347)

is true.

Going from right to left

∇(∇T · u) −∇× (∇× u) =
∂

∂xi

∂uj
∂xj

− ǫijk
∂

∂xj

(

ǫklm
∂um
∂xl

)

, (6.348)

=
∂

∂xi

∂uj
∂xj

− ǫkijǫklm
∂

∂xj

(
∂um
∂xl

)

, (6.349)

=
∂2uj
∂xi∂xj

− (δilδjm − δimδjl)
∂2um
∂xj∂xl

, (6.350)

3Pierre-Simon Laplace, 1749-1827, Normandy-born French mathematician.
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=
∂2uj
∂xi∂xj

− ∂2uj
∂xj∂xi

+
∂2ui
∂xj∂xj

, (6.351)

=
∂

∂xj

(
∂ui
∂xj

)

, (6.352)

= ∇T · ∇u. (6.353)

6.6.6 Curvature revisited

If a curve in two-dimensional space is given implicitly by the function

φ(x, y) = 0, (6.354)

it can be shown that the curvature is given by the formula

κ = ∇ ·
( ∇φ
||∇φ||2

)

, (6.355)

provided one takes precautions to preserve the sign as will be demonstrated in the following
example. Note that ∇φ is a gradient vector which must be normal to any so-called level set

curve for which φ is constant; moreover, it points in the direction of most rapid change of φ.
The corresponding vector ∇φ/||∇φ||2 must be a unit normal vector to level sets of φ.

Example 6.15
Show Eq. (6.355) is equivalent to Eq. (6.227) if y = f(x).

Let us take

φ(x, y) = f(x) − y = 0. (6.356)

Then, with ′ denoting a derivative with respect to x, we get

∇φ =
∂φ

∂x
i +

∂φ

∂y
j, (6.357)

= f ′(x)i − j. (6.358)

We then see that

||∇φ||2 =
√

f ′(x)2 + 1, (6.359)

so that

∇φ
||∇φ||2

=
f ′(x)i − j
√

1 + f ′(x)2
. (6.360)
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Then we see that by applying Eq. (6.355), we get

κ = ∇ ·
( ∇φ
||∇φ||2

)

, (6.361)

= ∇ ·
(

f ′(x)i − j
√

1 + f ′(x)2

)

, (6.362)

=
∂

∂x

(

f ′(x)
√

1 + f ′(x)2

)

+
∂

∂y

(

−1
√

1 + f ′(x)2

)

︸ ︷︷ ︸

=0

, (6.363)

=

√

1 + f ′(x)2f ′′(x) − f ′(x)f ′(x)f ′′(x)
(
1 + f ′(x)2

)−1/2

1 + f ′(x)2
, (6.364)

=

(
1 + f ′(x)2

)
f ′′(x) − f ′(x)f ′(x)f ′′(x)

(1 + f ′(x)2)3/2
, (6.365)

=
f ′′(x)

(1 + f ′(x)2)3/2
. (6.366)

Equation (6.366) is fully equivalent to the earlier developed Eq. (6.227). Note however that if we had
chosen φ(x, y) = y− f(x) = 0, we would have recovered a formula for curvature with the opposite sign.

Considering now surfaces embedded in a three dimensional space described parametrically
by

φ(x, y, z) = 0. (6.367)

It can be shown that the so-called mean curvature of the surface κM is given by Eq. (6.355):

κM = ∇ ·
( ∇φ
||∇φ||2

)

(6.368)

Note that their are many other measures of curvature of surfaces.
Lastly, let us return to consider one-dimensional curves embedded within a high dimen-

sional space. The curves may be considered to be defined as solutions to the differential
equations of the form

dx

dt
= v(x). (6.369)

We can consider v(x) to be a velocity field which is dependent on position x, but independent
of time. A particle with a known initial condition will move through the field, acquiring a
new velocity at each new spatial point it encounters, and thus tracing a non-trivial trajectory.
We now take the velocity gradient tensor to be F, with

F = ∇vT . (6.370)
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With this, it can then be shown after detailed analysis that the curvature of the trajectory
is given by

κ =

√

(vT · F · FT · v)(vT · v) − (vT · FT · v)2

(vT · v)3/2
(6.371)

In terms of the unit tangent vector, t = v/||v||2, Eq. (6.371) reduces to

κ =

√

(tT · F · FT · t) − (tT · FT · t)2

||v||2
(6.372)

Example 6.16
Find the curvature of the curve given by

dx

dt
= −y, x(0) = 0, (6.373)

dy

dt
= x, y(0) = 2. (6.374)

We can of course solve this exactly by first dividing one equation by the other to get

dy

dx
= −x

y
, y(x = 0) = 2. (6.375)

Separating variables, we get

ydy = −xdx, (6.376)

y2

2
= −x

2

2
+ C, (6.377)

22

2
= −02

2
+ C, (6.378)

C = 2. (6.379)

Thus,

x2 + y2 = 4, (6.380)

is the curve of interest. It is a circle whose radius is 2 and thus whose radius of curvature ρ = 2; thus,
its curvature κ = 1/ρ = 1/2.

Let us reproduce this result using Eq. (6.371). We can think of the two-dimensional velocity vector
as

v =

(
u(x, y)
v(x, y)

)

=

(
−y
x

)

. (6.381)

The velocity gradient is then

F = ∇vT =

( ∂
∂x
∂
∂y

)

(u(x, y) v(x, y) ) =

( ∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

)

=

(
0 1
−1 0

)

. (6.382)

Now, let us use Eq. (6.371) to directly compute the curvature. The simple nature of our velocity field
induces several simplifications. First, because the velocity gradient tensor here is antisymmetric, we
have

vT ·FT · v = (−y x )

(
0 −1
1 0

)(
−y
x

)

= (−y x )

(
−x
−y

)

= xy − xy = 0. (6.383)
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Second, we see that

F · FT =

(
0 1
−1 0

)

·
(

0 −1
1 0

)

=

(
1 0
0 1

)

= I. (6.384)

So for this problem, Eq. (6.371) reduces to

κ =

√

(vT · F · FT
︸ ︷︷ ︸

I

·v)(vT · v) − (vT ·FT · v
︸ ︷︷ ︸

=0

)2

(vT · v)
3/2

, (6.385)

=

√

(vT · v)(vT · v)

(vT · v)
3/2

, (6.386)

=
(vT · v)

(vT · v)
3/2

, (6.387)

=
1√

vT · v
, (6.388)

=
1

||v||2
, (6.389)

=
1

√

x2 + y2
, (6.390)

=
1√
4
, (6.391)

=
1

2
. (6.392)

6.7 Special theorems

6.7.1 Green’s theorem

Let u = ux i + uy j be a vector field, C a closed curve, and D the region enclosed by C, all
in the x-y plane. Then

∮

C

uT · dr =

∫ ∫

D

(
∂uy
∂x

− ∂ux
∂y

)

dx dy. (6.393)

Example 6.17
Show that Green’s theorem is valid if u = y i + 2xy j, and C consists of the straight lines (0,0) to

(1,0) to (1,1) to (0,0).

∮

C

uT · dr =

∫

C1

uT · dr +

∫

C2

uT · dr +

∫

C3

uT · dr, (6.394)
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Figure 6.9: Sketch of vector field u = yi + 2xyj and closed contour integral C.

where C1, C2, and C3 are the straight lines (0,0) to (1,0), (1,0) to (1,1), and (1,1) to (0,0), respectively.
This is sketched in Figure 6.9.

For this problem we have

C1 : y = 0, dy = 0, x ∈ [0, 1], u = 0 i + 0 j, (6.395)

C2 : x = 1, dx = 0, y ∈ [0, 1], u = y i + 2y j, (6.396)

C3 : x = y, dx = dy, x ∈ [1, 0], y ∈ [1, 0], u = x i + 2x2 j. (6.397)

Thus,

∮

C

u · dr =

∫ 1

0

(0 i + 0 j) · (dx i)

︸ ︷︷ ︸

C1

+

∫ 1

0

(y i + 2y j) · (dy j)

︸ ︷︷ ︸

C2

+

∫ 0

1

(x i + 2x2 j) · (dx i + dx j)

︸ ︷︷ ︸

C3

,(6.398)

=

∫ 1

0

2y dy +

∫ 0

1

(x+ 2x2) dx, (6.399)

= y2
∣
∣
1

0
+

(
1

2
x2 +

2

3
x3

)∣
∣
∣
∣

0

1

= 1 − 1

2
− 2

3
, (6.400)

= −1

6
. (6.401)

On the other hand,

∫ ∫

D

(
∂uy
∂x

− ∂ux
∂y

)

dx dy =

∫ 1

0

∫ x

0

(2y − 1) dy dx, (6.402)

=

∫ 1

0

((
y2 − y

)∣
∣
x

0

)

dx, (6.403)

=

∫ 1

0

(x2 − x) dx, (6.404)
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=

(
x3

3
− x2

2

)∣
∣
∣
∣

1

0

, (6.405)

=
1

3
− 1

2
, (6.406)

= −1

6
. (6.407)

6.7.2 Divergence theorem

Let us consider Eq. (6.300) in more detail. Let S be a closed surface, and V the region
enclosed within it, then the divergence theorem is

∫

S

uT · n dS =

∫

V

∇T · u dV, (6.408)
∫

S

uinidS =

∫

V

∂ui
∂xi

dV, (6.409)

where dV an element of volume, dS is an element of the surface, and n (or ni) is the outward
unit normal to it. The divergence theorem is also known as Gauss’s theorem. It extends to
tensors of arbitrary order: ∫

S

Tijk...nidS =

∫

V

∂Tijk...
∂xi

dV. (6.410)

Note if Tijk... = C, then we get
∫

S

nidS = 0. (6.411)

The divergence theorem can be thought of as an extension of the familiar one-dimensional
scalar result:

φ(b) − φ(a) =

∫ b

a

dφ

dx
dx. (6.412)

Here the end points play the role of the surface integral, and the integral on x plays the role
of the volume integral.

Example 6.18
Show that the divergence theorem is valid if

u = x i + y j + 0k, (6.413)

and S is the closed surface which consists of a circular base and the hemisphere of unit radius with
center at the origin and z ≥ 0, that is,

x2 + y2 + z2 = 1. (6.414)
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Figure 6.10: Sketch depicting x2 + y2 + z1 = 1, z ≥ 0 and vector field u = xi + yj + 0k.

In spherical coordinates, defined by

x = r sin θ cosφ, (6.415)

y = r sin θ sinφ, (6.416)

z = r cos θ, (6.417)

the hemispherical surface is described by
r = 1. (6.418)

A sketch of the surface of interest along with the vector field is shown in Figure 6.10.
We split the surface integral into two parts

∫

S

uT · n dS =

∫

B

uT · n dS +

∫

H

uT · n dS, (6.419)

where B is the base and H the curved surface of the hemisphere.
The first term on the right is zero since n = −k, and uT · n = 0 on B. In general, the unit normal

pointing in the r direction can be shown to be

er = n = sin θ cosφi + sin θ sinφj + cos θk. (6.420)

This is in fact the unit normal on H . Thus, on H , where r = 1, we have

uT · n = (xi + yj + 0k)T · (sin θ cosφi + sin θ sinφj + cos θk), (6.421)

= (r sin θ cosφi + r sin θ sinφj + 0k)T · (sin θ cosφi + sin θ sinφj + cos θk), (6.422)

= r
︸︷︷︸

1

sin2 θ cos2 φ+ r
︸︷︷︸

1

sin2 θ sin2 φ, (6.423)

= sin2 θ cos2 φ+ sin2 θ sin2 φ, (6.424)

= sin2 θ, (6.425)
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∫

H

uT · n dS =

∫ 2π

0

∫ π/2

0

sin2 θ
︸ ︷︷ ︸

uT ·n

(sin θ dθ dφ)
︸ ︷︷ ︸

dS

, (6.426)

=

∫ 2π

0

∫ π/2

0

sin3 θ dθ dφ, (6.427)

=

∫ 2π

0

∫ π/2

0

(
3

4
sin θ − 1

4
sin 3θ

)

dθ dφ, (6.428)

= 2π

∫ π/2

0

(
3

4
sin θ − 1

4
sin 3θ

)

dθ, (6.429)

= 2π

(
3

4
− 1

12

)

, (6.430)

=
4

3
π. (6.431)

On the other hand, if we use the divergence theorem, we find that

∇T · u =
∂

∂x
(x) +

∂

∂y
(y) +

∂

∂z
(0) = 2, (6.432)

so that ∫

V

∇T · u dV = 2

∫

V

dV = 2
2

3
π =

4

3
π, (6.433)

since the volume of the hemisphere is (2/3)π.

6.7.3 Green’s identities

Applying the divergence theorem, Eq. (6.409), to the vector u = φ∇ψ, we get
∫

S

φ(∇ψ)T · n dS =

∫

V

∇T · (φ∇ψ) dV, (6.434)

∫

S

φ
∂ψ

∂xi
ni dS =

∫

V

∂

∂xi

(

φ
∂ψ

∂xi

)

dV. (6.435)

From this, we get Green’s first identity
∫

S

φ(∇ψ)T · n dS =

∫

V

(φ∇2ψ + (∇φ)T · ∇ψ) dV, (6.436)

∫

S

φ
∂ψ

∂xi
ni dS =

∫

V

(

φ
∂2ψ

∂xi∂xi
+
∂φ

∂xi

∂ψ

∂xi

)

dV. (6.437)

Interchanging φ and ψ in Eq. (6.436), we get
∫

S

ψ(∇φ)T · n dS =

∫

V

(ψ∇2φ+ (∇ψ)T · ∇φ) dV, (6.438)

∫

S

ψ
∂φ

∂xi
ni dS =

∫

V

(

ψ
∂2φ

∂xi∂xi
+
∂ψ

∂xi

∂φ

∂xi

)

dV. (6.439)
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Subtracting Eq. (6.438) from Eq. (6.436), we get Green’s second identity
∫

S

(φ∇ψ − ψ∇φ)T · n dS =

∫

V

(φ∇2ψ − ψ∇2φ) dV, (6.440)

∫

S

(

φ
∂ψ

∂xi
− ψ

∂φ

∂xi

)

ni dS =

∫

V

(

φ
∂2ψ

∂xi∂xi
− ψ

∂2φ

∂xi∂xi

)

dV (6.441)

6.7.4 Stokes’ theorem

Consider Stokes’4 theorem. Let S be an open surface, and the curve C its boundary. Then
∫

S

(∇× u)T · n dS =

∮

C

uT · dr, (6.442)
∫

S

ǫijk
∂uk
∂xj

ni dS =

∮

C

ui dri, (6.443)

where n is the unit vector normal to the element dS, and dr an element of curve C.

Example 6.19
Evaluate

I =

∫

S

(∇× u)T · n dS, (6.444)

using Stokes’s theorem, where
u = x3 j − (z + 1) k, (6.445)

and S is the surface z = 4 − 4x2 − y2 for z ≥ 0.

Using Stokes’s theorem, the surface integral can be converted to a line integral along the boundary
C which is the curve 4 − 4x2 − y2 = 0.

I =

∮

C

uT · dr, (6.446)

=

∮

(x3 j − (z + 1) k)
︸ ︷︷ ︸

uT

· (dx i + dy j)
︸ ︷︷ ︸

dr

, (6.447)

=

∫

C

x3 dy. (6.448)

C can be represented by the parametric equations x = cos t, y = 2 sin t. This is easily seen by direct
substitution on C:

4 − 4x2 − y2 = 4 − 4 cos2 t− (2 sin t)2 = 4 − 4(cos2 t+ sin2 t) = 4 − 4 = 0. (6.449)

Thus, dy = 2 cos t dt, so that

I =

∫ 2π

0

cos3 t
︸ ︷︷ ︸

x3

(2 cos t dt)
︸ ︷︷ ︸

dy

, (6.450)

4George Gabriel Stokes, 1819-1903, Irish-born English mathematician.
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Figure 6.11: Sketch depicting z = 4 − 4x2 − y2 and vector field u = x3j − (z + 1)k.

= 2

∫ 2π

0

cos4 t dt, (6.451)

= 2

∫ 2π

0

(
1

8
cos 4t+

1

2
cos 2t+

3

8

)

dt, (6.452)

= 2

(
1

32
sin 4t+

1

4
sin 2t+

3

8
t

)∣
∣
∣
∣

2π

0

, (6.453)

=
3

2
π. (6.454)

A sketch of the surface of interest along with the vector field is shown in Figure 6.11. The curve C is
on the boundary z = 0.

6.7.5 Leibniz’s rule

If we consider an arbitrary moving volume V (t) with a corresponding surface area S(t) with
surface volume elements moving at velocity wk, Leibniz’s rule, extended from the earlier
Eq. (1.293), gives us a means to calculate the time derivatives of integrated quantities. For
an arbitrary order tensor, it is

d

dt

∫

V (t)

Tjk...(xi, t) dV =

∫

V (t)

∂Tjk...(xi, t)

∂t
dV +

∫

S(t)

nmwmTjk....(xi, t) dS. (6.455)
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Note if Tjk...(xi, t) = 1, we get

d

dt

∫

V (t)

(1) dV =

∫

V (t)

∂

∂t
(1) dV +

∫

S(t)

nmwm(1) dS, (6.456)

dV

dt
=

∫

S(t)

nmwm dS. (6.457)

Here the volume changes due to the net surface motion. In one dimension Tjk...(xi, t) = f(x, t)
we get

d

dt

∫ x=b(t)

x=a(t)

f(x, t) dx =

∫ x=b(t)

x=a(t)

∂f

∂t
dx+

db

dt
f(b(t), t) − da

dt
f(a(t), t). (6.458)

Problems

1. Find the angle between the planes

3x− y + 2z = 2,

x− 2y = 1.

2. Find the curve of intersection of the cylinders x2 + y2 = 1 and y2 + z2 = 1. Determine also the radius
of curvature of this curve at the points (0,1,0) and (1,0,1).

3. Show that for a curve r(t)

tT · dt
ds

× d2t

ds2
= κ2τ,

drT

ds · d2rds2 × d3r
ds3

d2rT

ds2 · d2rds2

= τ,

where t is the unit tangent, s is the length along the curve, κ is the curvature, and τ is the torsion.

4. Find the equation for the tangent to the curve of intersection of x = 2 and y = 1 + xz sin y2z at the
point (2, 1, π).

5. Find the curvature and torsion of the curve r(t) = 2ti + t2j + 2t3k at the point (2, 1, 2).

6. Apply Stokes’s theorem to the plane vector field u(x, y) = uxi + uyj and a closed curve enclosing a
plane region. What is the result called? Use this result to find

∮

C
uT ·dr, where u = −yi+xj and the

integration is counterclockwise along the sides C of the trapezoid with corners at (0,0), (2,0), (2,1),
and (1,1).

7. Orthogonal bipolar coordinates (u, v, w) are defined by

x =
α sinh v

cosh v − cosu
,

y =
α sinu

cosh v − cosu
,

z = w.

For α = 1, plot some of the surfaces of constant x and y in the u− v plane.
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8. Using Cartesian index notation, show that

∇× (u × v) = (vT · ∇)u − (uT · ∇)v + u(∇T · v) − v(∇T · u),

where u and v are vector fields.

9. Consider two Cartesian coordinate systems: S with unit vectors (i, j,k), and S′ with (i′, j′,k′), where
i′ = i, j′ = (j − k)/

√
2, k′ = (j + k)/

√
2. The tensor T has the following components in S:





1 0 0
0 −1 0
0 0 2



 .

Find its components in S′.

10. Find the matrix A that operates on any vector of unit length in the x-y plane and turns it through
an angle θ around the z-axis without changing its length. Show that A is orthogonal; that is that all
of its columns are mutually orthogonal vectors of unit magnitude.

11. What is the unit vector normal to the plane passing through the points (1,0,0), (0,1,0) and (0,0,2)?

12. Prove the following identities using Cartesian index notation:

(a) (a × b)T · c = aT · (b× c),

(b) a × (b × c) = b(aT · c) − c(aT · b),

(c) (a × b)T · (c × d) = ((a × b) × c)
T · d.

13. The position of a point is given by r = ia cosωt + jb sinωt. Show that the path of the point is an
ellipse. Find its velocity v and show that r × v = constant. Show also that the acceleration of the
point is directed towards the origin and its magnitude is proportional to the distance from the origin.

14. System S is defined by the unit vectors e1, e2, and e3. Another Cartesian system S′ is defined by
unit vectors e′1, e′2, and e′3 in directions a, b, and c where

a = e1,

b = e2 − e3.

(a) Find e′1, e′2, e′3, (b) find the transformation array Aij , (c) show that δij = AkiAkj is satisfied, and
(d) find the components of the vector e1 + e2 + e3 in S′.

15. Use Green’s theorem to calculate
∮

C
uT · dr, where u = x2i + 2xyj, and C is the counterclockwise

path around a rectangle with vertices at (0,0), (2,0), (0,4) and (2,4).

16. Derive an expression for the gradient, divergence, curl, and Laplacian operators in orthogonal para-
boloidal coordinates

x = uv cos θ,

y = uv sin θ,

z =
1

2
(u2 − v2).

Determine the scale factors. Find ∇φ, ∇T · u, ∇× u, and ∇2φ in this coordinate system.
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17. Derive an expression for the gradient, divergence, curl and Laplacian operators in orthogonal parabolic
cylindrical coordinates (u, v, w) where

x = uv,

y =
1

2
(u2 − v2),

z = w,

where u ∈ [0,∞), v ∈ (−∞,∞), and w ∈ (−∞,∞).

18. Consider orthogonal elliptic cylindrical coordinates (u, v, z) which are related to Cartesian coordinates
(x, y, z) by

x = a coshu cos v

y = a sinhu sin v

z = z

where u ∈ [0,∞), v ∈ [0, 2π) and z ∈ (−∞,∞). Determine ∇f,∇T ·u,∇×u and ∇2f in this system,
where f is a scalar field and u is a vector field.

19. Determine a unit vector in the plane of the vectors i − j and j + k and perpendicular to the vector
i − j + k.

20. Determine a unit vector perpendicular to the plane of the vectors a = i + 2j − k, b = 2i + j + 0k.

21. Find the curvature and the radius of curvature of y = a sinx at the peaks and valleys.

22. Determine the unit vector normal to the surface x3 − 2xyz + z3 = 0 at the point (1,1,1).

23. Show using indicial notation that

∇×∇φ = = 0,

∇T · ∇ × u = 0

∇(uT · v) = (uT · ∇)v + (vT · ∇)u + u × (∇× v) + v × (∇× u),

1

2
∇(uT · u) = (uT · ∇)u + u × (∇× u),

∇T · (u × v) = vT · ∇ × u − uT · ∇ × v,

∇× (∇× u) = ∇(∇T · u) −∇2u,

∇× (u × v) = (vT · ∇)u − (uT · ∇)v + u(∇T · v) − v(∇T · u).

24. Show that the Laplacian operator ∂2

∂xi∂xi
has the same form in S and S′.

25. If

Tij =





x1x
2
2 3x3 x1 − x2

x2x1 x1x3 x2
3 + 1

0 4 2x2 − x3



 ,

a) Evaluate Tij at P : (3, 1, 2),

b) find T(ij) and T[ij] at P ,

c) find the associated dual vector di,

d) find the principal values and the orientations of each associated normal vector for the symmetric
part of Tij evaluated at P ,

e) evaluate the divergence of Tij at P ,

f) evaluate the curl of the divergence of Tij at P .
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26. Consider the tensor

Tij =





2 −1 2
3 1 0
0 1 4



 ,

defined in a Cartesian coordinate system. Consider the vector associated with the plane whose normal
points in the direction (2, 5,−1). What is the magnitude of the component of the associated vector
that is aligned with the normal to the plane?

27. Find the invariants of the tensor

Tij =

(
1 2
2 2

)

.

28. Find the tangent to the curve of intersection of the surfaces y2 = x and y = xy at (x, y, z) = (1, 1, 1).
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Chapter 7

Linear analysis

see Kaplan, Chapter 1,

see Friedman, Chapter 1, 2,

see Riley, Hobson, and Bence, Chapters 7, 10, 15,

see Lopez, Chapters 15, 31,

see Greenberg, Chapters 17 and 18,

see Wylie and Barrett, Chapter 13,

see Michel and Herget,

see Zeidler,

see Riesz and Nagy,

see Debnath and Mikusinski.

This chapter will introduce some more formal notions of what is known as linear analysis.
We will generalize our notion of a vector; in addition to traditional vectors which exist within
a space of finite dimension, we will see how what is known as function space can be thought
of a vector space of infinite dimension. This chapter will also introduce some of the more
formal notation of modern mathematics.

7.1 Sets

Consider two sets A and B. We use the following notation

x ∈ A, x is an element of A,
x /∈ A, x is not an element of A,
A = B, A and B have the same elements,
A ⊂ B, the elements of A also belong to B,
A ∪ B, set of elements that belong to A or B,
A ∩ B, set of elements that belong to A and B, and
A − B, set of elements that belong to A but not to B.

If A ⊂ B, then B − A is the complement of A in B.

229
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Some sets that are commonly used are:

Z, set of all integers,
N, set of all positive integers,
Q, set of all rational numbers,
R, set of all real numbers,
R+, set of all non-negative real numbers, and
C, set of all complex numbers.

• An interval is a portion of the real line.

• An open interval (a, b) does not include the end points, so that if x ∈ (a, b), then
a < x < b. In set notation this is {x ∈ R : a < x < b} if x is real.

• A closed interval [a, b] includes the end points. If x ∈ [a, b], then a ≤ x ≤ b. In set
notation this is {x ∈ R : a ≤ x ≤ b} if x is real.

• The complement of any open subset of [a, b] is a closed set.

• A set A ⊂ R is bounded from above if there exists a real number, called the upper

bound, such that every x ∈ A is less than or equal to that number.

• The least upper bound or supremum is the minimum of all upper bounds.

• In a similar fashion, a set A ⊂ R can be bounded from below, in which case it will
have a greatest lower bound or infimum.

• A set which has no elements is the empty set {}, also known as the null set ∅. Note
the set with 0 as the only element, 0, is not empty.

• A set that is either finite, or for which each element can be associated with a member
of N is said to be countable. Otherwise the set is uncountable.

• An ordered pair is P = (x, y), where x ∈ A, and y ∈ B. Then P ∈ A × B, where the
symbol × represents a Cartesian product. If x ∈ A and y ∈ A also, then we write
P = (x, y) ∈ A2.

• A real function of a single variable can be written as f : X → Y or y = f(x) where f
maps x ∈ X ⊂ R to y ∈ Y ⊂ R. For each x, there is only one y, though there may be
more than one x that maps to a given y. The set X is called the domain of f , y the
image of x, and the range the set of all images.
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Figure 7.1: Riemann integration process.

7.2 Differentiation and integration

7.2.1 Fréchet derivative

An example of a Fréchet1 derivative is the Jacobian derivative. It is a generalization of the
ordinary derivative.

7.2.2 Riemann integral

Consider a function f(t) defined in the interval [a, b]. Choose t1, t2, · · · , tN−1 such that

a = t0 < t1 < t2 < · · · < tN−1 < tN = b. (7.1)

Let ξn ∈ [tn−1, tn], and

IN = f(ξ1)(t1 − t0) + f(ξ2)(t2 − t1) + · · · + f(ξN)(tN − tN−1). (7.2)

Also let maxn |tn − tn−1| → 0 as N → ∞. Then IN → I, where

I =

∫ b

a

f(t) dt. (7.3)

If I exists and is independent of the manner of subdivision, then f(t) is Riemann2 integrable
in [a, b]. The Riemann integration process is sketched in Fig. 7.1.

Example 7.1
Determine if the function f(t) is Riemann integrable in [0, 1] where

f(t) =

{
0, if t is rational,
1, if t is irrational.

(7.4)

1Maurice René Fréchet, 1878-1973, French mathematician.
2Georg Friedrich Bernhard Riemann, 1826-1866, Hanover-born German mathematician.
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On choosing ξn rational, I = 0, but if ξn is irrational, then I = 1. So f(t) is not Riemann integrable.

7.2.3 Lebesgue integral

Let us consider sets belonging to the interval [a, b] where a and b are real scalars. The
covering of a set is an open set which contains the given set; the covering will have a certain
length. The outer measure of a set is the length of the smallest covering possible. The inner
measure of the set is (b − a) minus the outer measure of the complement of the set. If the
two measures are the same, then the value is the measure and the set is measurable.

For the set I = (a, b), the measure is m(I) = |b − a|. If there are two disjoint intervals
I1 = (a, b) and I2 = (c, d). Then the measure of I = I1 ∪ I2 is m(I) = |b− a| + |c− d|.

Consider again a function f(t) defined in the interval [a, b]. Let the set

en = {t : yn−1 ≤ f(t) ≤ yn}, (7.5)

(en is the set of all t’s for which f(t) is bounded between two values, yn−1 and yn). Also let
the sum IN be defined as

IN = y1m(e1) + y2m(e2) + · · ·+ yNm(eN ). (7.6)

Let maxn |yn − yn−1| → 0 as N → ∞. Then IN → I, where

I =

∫ b

a

f(t) dt. (7.7)

Here I is said to be the Lebesgue3 integral of f(t). The Lebesgue integration process is
sketched in Fig. 7.2.

Example 7.2
To integrate the function in the previous example, we observe first that the set of rational and

irrational numbers in [0,1] has measure zero and 1 respectively. Thus, from Eq. (7.6) the Lebesgue
integral exists, and is equal to 1. Loosely speaking, the reason is that the rationals are not dense in
[0, 1] while the irrationals are dense in [0, 1]. That is to say every rational number exists in isolation
from other rational numbers and surrounded by irrationals. Thus, the rationals exist as isolated points
on the real line; these points have measure 0; The irrationals have measure 1 over the same interval;
hence the integral is IN = y1m(e1) + y2m(e2) = 1(1) + 0(0) = 1.

3Henri Lèon Lebesgue, 1875-1941, French mathematician.
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Figure 7.2: Lebesgue integration process.

The Riemann integral is based on the concept of the length of an interval, and the
Lebesgue integral on the measure of a set. When both integrals exist, their values are the
same. If the Riemann integral exists, the Lebesgue integral also exists. The converse is not
necessarily true.

The importance of the distinction is subtle. It can be shown that certain integral oper-
ators which operate on Lebesgue integrable functions are guaranteed to generate a function
which is also Lebesgue integrable. In contrast, certain operators operating on functions which
are at most Riemann integrable can generate functions which are not Riemann integrable.

7.2.4 Cauchy principal value

If the integrand f(x) of a definite integral contains a singularity at x = xo with xo ∈ (a, b),
then the Cauchy principal value is

−
∫ b

a

f(x)dx = PV

∫ b

a

f(x)dx = lim
ǫ→0

(∫ xo−ǫ

a

f(x)dx+

∫ b

xo+ǫ

f(x)dx

)

. (7.8)

7.3 Vector spaces

A field F is typically a set of numbers which contains the sum, difference, product, and
quotient (excluding division by zero) of any two numbers in the field.4 Examples are the sets
of rational numbers Q, real numbers, R, or complex numbers, C. We will usually use only
R or C. Note the integers Z are not a field as the quotient of two integers is not necessarily
an integer.

Consider a set S with two operations defined: addition of two elements (denoted by +)
both belonging to the set, and multiplication of a member of the set by a scalar belonging

4More formally a field is what is known as a commutative ring with some special properties, not discussed
here. What is known as function fields can also be defined.
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to a field F (indicated by juxtaposition). Let us also require the set to be closed under the
operations of addition and multiplication by a scalar, i.e. if x ∈ S, y ∈ S, and α ∈ F then
x+ y ∈ S, and αx ∈ S. Furthermore:

1. ∀ x, y ∈ S : x + y = y + x. For all elements x and y in S, the addition operator on
such elements is commutative.

2. ∀ x, y, z ∈ S : (x + y) + z = x + (y + z). For all elements x and y in S, the addition
operator on such elements is associative.

3. ∃ 0 ∈ S | ∀ x ∈ S, x+ 0 = x: there exists a 0, which is an element of S, such that for
all x in S when the addition operator is applied to 0 and x, the original element x is
yielded.

4. ∀ x ∈ S, ∃ − x ∈ S | x+ (−x) = 0. For all x in S there exists an element −x, also in
S, such that when added to x, yields the 0 element.

5. ∃ 1 ∈ F | ∀ x ∈ S, 1x = x. There exists an element 1 in F such that for all x in S,1
multiplying the element x yields the element x.

6. ∀ a, b ∈ F, ∀x ∈ S, (a + b)x = ax + bx. For all a and b which are in F and for all x
which are in S, the addition operator distributes onto multiplication.

7. ∀ a ∈ F, ∀ x, y ∈ S, a(x+ y) = ax+ ay.

8. ∀ a, b ∈ F, ∀ x ∈ S, a(bx) = (ab)x.

Such a set is called a linear space or vector space over the field F, and its elements are
called vectors. We will see that our definition is inclusive enough to include elements which
are traditionally thought of as vectors (in the sense of a directed line segment), and some
which are outside of this tradition. Note that typical vector elements x and y are no longer
indicated in bold. However, they are in general not scalars, though in special cases, they can
be.

The element 0 ∈ S is called the null vector. Examples of vector spaces S over the field of
real numbers (i.e. F : R) are:

1. S : R1. Set of real numbers, x = x1, with addition and scalar multiplication defined as
usual; also known as S : R.

2. S : R2. Set of ordered pairs of real numbers, x = (x1, x2)
T , with addition and scalar

multiplication defined as:

x+ y =

(
x1 + y1

x2 + y2

)

= (x1 + y1, x2 + y2)
T , (7.9)

αx =

(
αx1

αx2

)

= (αx1, αx2)
T , (7.10)
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where

x =

(
x1

x2

)

= (x1, x2)
T ∈ R2, y =

(
y1

y2

)

= (y1, y2)
T ∈ R2, α ∈ R1. (7.11)

Note R2 = R1 × R1, where the symbol × represents a Cartesian product.

3. S : RN . Set of N real numbers, x = (x1, · · · , xN )T , with addition and scalar multipli-
cation defined similar to that just defined in R2.

4. S : R∞. Set of an infinite number of real numbers, x = (x1, x2, · · ·)T , with addition and
scalar multiplication defined similar to those defined for RN . Note, one can interpret
functions, e.g. x = 3t2 + t, t ∈ R1 to generate vectors x ∈ R∞.

5. S : C. Set of all complex numbers z = z1, with z1 = a1 + ib1; a1, b1 ∈ R1.

6. S : C2. Set of all ordered pairs of complex numbers z = (z1, z2)
T , with z1 = a1+ib1, z2 =

a2 + ib2; a1, a2, b1, b2 ∈ R1.

7. S : CN . Set of N complex numbers, z = (z1, · · · , zN )T .

8. S : C∞. Set of an infinite number of complex numbers, z = (z1, z2, · · ·)T . Scalar
complex functions give rise to sets in C∞.

9. S : M. Set of all M ×N matrices with addition and multiplication by a scalar defined
as usual, and M ∈ N, N ∈ N.

10. S : C[a, b] Set of real-valued continuous functions, x(t) for t ∈ [a, b] ∈ R1 with addition
and scalar multiplication defined as usual.

11. S : CN [a, b] Set of real-valued functions x(t) for t ∈ [a, b] with continuousNth derivative
with addition and scalar multiplication defined as usual; N ∈ N.

12. S : L2[a, b] Set of real-valued functions x(t) such that x(t)2 is Lebesgue integrable in
t ∈ [a, b] ∈ R1, a < b, with addition and multiplication by a scalar defined as usual.
Note that the integral must be finite.

13. S : Lp[a, b] Set of real-valued functions x(t) such that |x(t)|p, p ∈ [1,∞), is Lebesgue
integrable in t ∈ [a, b] ∈ R1, a < b, with addition and multiplication by a scalar defined
as usual. Note that the integral must be finite.

14. S : Lp[a, b] Set of complex-valued functions x(t) such that |x(t)|p, p ∈ [1,∞) ∈ R1, is
Lebesgue integrable in t ∈ [a, b] ∈ R1, a < b, with addition and multiplication by a
scalar defined as usual.
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15. S : W1
2(G), Set of real-valued functions u(x) such that u(x)2 and

∑N
n=1 (∂u/∂xn)

2 are
Lebesgue integrable in G, where x ∈ G ∈ RN , N ∈ N. This is an example of a Sobolov5

space, which is useful in variational calculus and the finite element method. Sobolov
space W 1

2 (G) is to Lebesgue space L2[a, b] as the real space R1 is to the rational space
Q1. That is Sobolov space allows a broader class of functions to be solutions to physical
problems. See Zeidler.

16. S : PN Set of all polynomials of degree ≤ N with addition and multiplication by a
scalar defined as usual; N ∈ N.

Some examples of sets that are not vector spaces are Z and N over the field R for the same
reason that they do not form a field, namely that they are not closed over the multiplication
operation.

• S′ is a subspace of S if S′ ⊂ S, and S′ is itself a vector space. For example R2 is a
subspace of R3.

• If S1 and S2 are subspaces of S, then S1 ∩ S2 is also a subspace. The set S1 + S2 of all
x1 + x2 with x1 ∈ S1 and x2 ∈ S2 is also a subspace of S.

• If S1 + S2 = S, and S1 ∩ S2 = {0}, then S is the direct sum of S1 and S2, written as
S = S1 ⊕ S2.

• If x1, x2, · · · , xN are elements of a vector space S and α1, α2, · · · , αN belong to the field
F, then x = α1x1 + α2x2 + · · · + αNxN ∈ S is a linear combination.

• Vectors x1, x2, · · · , xN for which it is possible to have α1x1 + α2x2 + · · · + αNxN = 0
where the scalars αn are not all zero, are said to be linearly dependent. Otherwise they
are linearly independent.

• For M ≤ N , the set of all linear combinations of M vectors {x1, x2, · · · , xM} of a vector
space constitute a subspace of an N -dimensional vector space.

• A set of N linearly independent vectors in an N -dimensional vector space is said to
span the space.

• If the vector space S contains a set of N linearly independent vectors, and any set
with (N + 1) elements is linearly dependent, then the space is said to be finite dimen-

sional, and N is the dimension of the space. If N does not exist, the space is infinite

dimensional.

• A basis of a finite dimensional space of dimension N is a set of N linearly independent
vectors {u1, u2, . . . , uN}. All elements of the vector space can be represented as linear
combinations of the basis vectors.

5Sergei Lvovich Sobolev, 1908-1989, St. Petersburg-born Russian physicist and mathematician.

CC BY-NC-ND. 29 July 2012, Sen & Powers.

http://en.wikipedia.org/wiki/Sergei_Lvovich_Sobolev
http://creativecommons.org/licenses/by-nc-nd/3.0/


7.3. VECTOR SPACES 237

• A set of vectors in a linear space S is convex iff ∀x, y ∈ S and α ∈ [0, 1] ∈ R1 implies
αx + (1 − α)y ∈ S. For example if we consider S to be a subspace of R2, that is a
region of the x, y plane, S is convex if for any two points in S, all points on the line
segment between them also lie in S. Spaces with lobes are not convex. Functions f
are convex iff the space on which they operate are convex and if f(αx + (1 − α)y) ≤
αf(x) + (1 − α)f(y) ∀ x, y ∈ S, α ∈ [0, 1] ∈ R1.

7.3.1 Normed spaces

The norm ||x|| of a vector x ∈ S is a real number that satisfies the following properties:

1. ||x|| ≥ 0,

2. ||x|| = 0 if and only if x = 0,

3. ||αx|| = |α| ||x||, α ∈ C1, and

4. ||x+ y|| ≤ ||x|| + ||y||, (triangle or Minkowski6 inequality).

The norm is a natural generalization of the length of a vector. All properties of a norm can
be cast in terms of ordinary finite dimensional Euclidean vectors, and thus have geometrical
interpretations. The first property says length is greater than or equal to zero. The second
says the only vector with zero length is the zero vector. The third says the length of a scalar
multiple of a vector is equal to the magnitude of the scalar times the length of the original
vector. The Minkowski inequality is easily understood in terms of vector addition. If we add
vectorially two vectors x and y, we will get a third vector whose length is less than or equal
to the sum of the lengths of the original two vectors. We will get equality when x and y
point in the same direction. The interesting generalization is that these properties hold for
the norms of functions as well as ordinary geometric vectors.

Examples of norms are:

1. x ∈ R1, ||x|| = |x|. This space is also written as ℓ1(R
1) or in abbreviated form ℓ11. The

subscript on ℓ in either case denotes the type of norm; the superscript in the second
form denotes the dimension of the space. Another way to denote this norm is ||x||1.

2. x ∈ R2, x = (x1, x2)
T , the Euclidean norm ||x|| = ||x||2 = +

√

x2
1 + x2

2 = +
√
xTx. We

can call this normed space E2, or ℓ2(R
2), or ℓ22.

3. x ∈ RN , x = (x1, x2, · · · , xN)T , ||x|| = ||x||2 = +
√

x2
1 + x2

2 + · · · + x2
N = +

√
xTx. We

can call this norm the Euclidean norm and the normed space Euclidean EN , or ℓ2(R
N)

or ℓN2 .

4. x ∈ RN , x = (x1, x2, · · · , xN)T , ||x|| = ||x||1 = |x1| + |x2| + · · · + |xN |. This is also
ℓ1(R

N) or ℓN1 .

6Hermann Minkowski, 1864-1909, Russian/Lithuanian-born German-based mathematician and physicist.
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5. x ∈ RN , x = (x1, x2, · · · , xN)T , ||x|| = ||x||p = (|x1|p + |x2|p + · · · + |xN |p)1/p, where
1 ≤ p <∞. This space is called or ℓp(R

N ) or ℓNp .

6. x ∈ RN , x = (x1, x2, · · · , xN )T , ||x|| = ||x||∞ = max1≤n≤N |xn|. This space is called
ℓ∞(RN) or ℓN∞.

7. x ∈ CN , x = (x1, x2, · · · , xN )T , ||x|| = ||x||2 = +
√

|x1|2 + |x2|2 + · · · + |xN |2 =

+
√
xTx. This space is described as ℓ2(C

N).

8. x ∈ C[a, b], ||x|| = maxa≤t≤b |x(t)|; t ∈ [a, b] ∈ R1.

9. x ∈ C1[a, b], ||x|| = maxa≤t≤b |x(t)| + maxa≤t≤b |x′(t)|; t ∈ [a, b] ∈ R1.

10. x ∈ L2[a, b], ||x|| = ||x||2 = +
√
∫ b

a
x(t)2 dt; t ∈ [a, b] ∈ R1.

11. x ∈ Lp[a, b], ||x|| = ||x||p = +
(∫ b

a
|x(t)|p dt

)1/p

; t ∈ [a, b] ∈ R1.

12. x ∈ L2[a, b], ||x|| = ||x||2 = +
√
∫ b

a
|x(t)|2 dt = +

√
∫ b

a
x(t)x(t) dt; t ∈ [a, b] ∈ R1.

13. x ∈ Lp[a, b], ||x|| = ||x||p = +
(∫ b

a
|x(t)|p dt

)1/p

= +

(
∫ b

a

(

x(t)x(t)
)p/2

dt

)1/p

; t ∈
[a, b] ∈ R1.

14. u ∈ W1
2(G), ||u|| = ||u||1,2 = +

√
∫

G

(

u(x)u(x) +
∑N

n=1(∂u/∂xn)(∂u/∂xn)
)

dx; x ∈
G ∈ RN , u ∈ L2(G), ∂u/∂xn ∈ L2(G). This is an example of a Sobolov space which is
useful in variational calculus and the finite element method.

Some additional notes on properties of norms include

• A vector space in which a norm is defined is called a normed vector space.

• The metric or distance between x and y is defined by d(x, y) = ||x−y||. This a natural
metric induced by the norm. Thus, ||x|| is the distance between x and the null vector.

• The diameter of a set of vectors is the supremum (i.e. least upper bound) of the distance
between any two vectors of the set.

• Let S1 and S2 be subsets of a normed vector space S such that S1 ⊂ S2. Then S1

is dense in S2 if for every x(2) ∈ S2 and every ǫ > 0, there is a x(1) ∈ S1 for which
||x(2) − x(1)|| < ǫ.

• A sequence x(1), x(2), · · · ∈ S, where S is a normed vector space, is a Cauchy7 sequence
if for every ǫ > 0 there exists a number Nǫ such that ||x(m) − x(n)|| < ǫ for every m
and n greater than Nǫ.

7Augustin-Louis Cauchy, 1789-1857, French mathematician and physicist.
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• The sequence x(1), x(2), · · · ∈ S, where S is a normed vector space, converges if there
exists an x ∈ S such that limn→∞ ||x(n) − x|| = 0. Then x is the limit point of the
sequence, and we write limn→∞ x(n) = x or x(n) → x.

• Every convergent sequence is a Cauchy sequence, but the converse is not true.

• A normed vector space S is complete if every Cauchy sequence in S is convergent, i.e.
if S contains all the limit points.

• A complete normed vector space is also called a Banach8 space.

• It can be shown that every finite dimensional normed vector space is complete.

• Norms || · ||n and || · ||m in S are equivalent if there exist a, b > 0 such that, for any
x ∈ S,

a||x||m ≤ ||x||n ≤ b||x||m. (7.12)

• In a finite dimensional vector space, any norm is equivalent to any other norm. So,
the convergence of a sequence in such a space does not depend on the choice of norm.

We recall that if z ∈ C1, then we can represent z as z = a + ib where a ∈ R1, b ∈ R1;
further, the complex conjugate of z is represented as z = a− ib. It can be easily shown for
z1 ∈ C1, z2 ∈ C1 that

• (z1 + z2) = z1 + z2,

• (z1 − z2) = z1 − z2,

• z1z2 = z1 z2, and

•
(
z1
z2

)

= z1
z2

.

We also recall that the modulus of z, |z| has the following properties:

|z|2 = zz, (7.13)

= (a + ib)(a− ib), (7.14)

= a2 + iab− iab− i2b2, (7.15)

= a2 + b2 ≥ 0. (7.16)

Example 7.3
Consider x ∈ R3 and take

x =





1
−4
2



 . (7.17)

8Stefan Banach, 1892-1945, Polish mathematician.
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Find the norm if x ∈ ℓ31 (absolute value norm), x ∈ ℓ32 (Euclidean norm), if x = ℓ33 (another norm), and
if x ∈ ℓ3∞ (maximum norm).

By the definition of the absolute value norm for x ∈ ℓ31,

||x|| = ||x||1 = |x1| + |x2| + |x3|, (7.18)

we get
||x||1 = |1| + | − 4| + |2| = 1 + 4 + 2 = 7. (7.19)

Now consider the Euclidean norm for x ∈ ℓ32. By the definition of the Euclidean norm,

||x|| = ||x||2 +
√

x2
1 + x2

2 + x2
3, (7.20)

we get
||x||2 = +

√

12 + (−4)2 + 22 =
√

1 + 16 + 4 = +
√

21 ∼ 4.583. (7.21)

Since the norm is Euclidean, this is the ordinary length of the vector.

For the norm, x ∈ ℓ33, we have

||x|| = ||x||3 = +
(
|x1|3 + |x2|3 + |x3|3

)1/3
, (7.22)

so
||x||3 = +

(
|1|3 + | − 4|3 + |2|3

)1/3
= (1 + 64 + 8)

1/3 ∼ 4.179 (7.23)

For the maximum norm, x ∈ ℓ3∞, we have

||x|| = ||x||∞ = lim
p→∞

+ (|x1|p + |x2|p + |x3|p)1/p , (7.24)

so
||x||∞ = lim

p→∞
+ (|1|p + | − 4|p + |2|p)1/p = 4. (7.25)

This selects the magnitude of the component of x whose magnitude is maximum. Note that as p
increases the norm of the vector decreases.

Example 7.4
For x ∈ ℓ2(C

2), find the norm of

x =

(
i
1

)

=

(
0 + 1i
1 + 0i

)

. (7.26)

The definition of the space defines the norm is a 2 norm (“Euclidean”):

||x|| = ||x||2 = +
√

xTx = +
√
x1x1 + x2x2 =

√

|x1|2 + |x2|2, (7.27)

so

||x||2 = +

√

( 0 + 1i 1 + 0i )

(
0 + 1i
1 + 0i

)

, (7.28)

CC BY-NC-ND. 29 July 2012, Sen & Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


7.3. VECTOR SPACES 241

||x||2 = +

√

(0 + 1i)(0 + 1i) + (1 + 0i)(1 + 0i) = +
√

(0 − 1i)(0 + 1i) + (1 − 0i)(1 + 0i), (7.29)

||x||2 = +
√

−i2 + 1 = +
√

2. (7.30)

Note that if we were negligent in the use of the conjugate and defined the norm as ||x||2 = +
√
xTx,

we would obtain

||x||2 = +
√
xTx = +

√

( i 1 )

(
i
1

)

= +
√

i2 + 1 = +
√
−1 + 1 = 0! (7.31)

This violates the property of the norm that ||x|| > 0 if x 6= 0!

Example 7.5
Consider x ∈ L2[0, 1] where x(t) = 2t; t ∈ [0, 1] ∈ R1. Find ||x||.

By the definition of the norm for this space, we have

||x|| = ||x||2 = +

√
∫ 1

0

x2(t) dt, (7.32)

||x||22 =

∫ 1

0

x(t)x(t) dt =

∫ 1

0

(2t)(2t) dt = 4

∫ 1

0

t2 dt = 4

(
t3

3

)∣
∣
∣
∣

1

0

, (7.33)

||x||22 = 4

(
13

3
− 03

3

)

=
4

3
, (7.34)

||x||2 =
2
√

3

3
∼ 1.1547. (7.35)

Example 7.6
Consider x ∈ L3[−2, 3] where x(t) = 1 + 2it; t ∈ [−2, 3] ∈ R1. Find ||x||.

By the definition of the norm we have

||x|| = ||x||3 = +

(∫ 3

−2

|1 + 2it|3 dt
)1/3

, (7.36)

||x||3 = +

(∫ 3

−2

(

(1 + 2it) (1 + 2it)
)3/2

dt

)1/3

, (7.37)

||x||33 =

∫ 3

−2

(

(1 + 2it) (1 + 2it)
)3/2

dt, (7.38)

||x||33 =

∫ 3

−2

((1 − 2it) (1 + 2it))
3/2

dt, (7.39)
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||x||33 =

∫ 3

−2

(
1 + 4t2

)3/2
dt, (7.40)

||x||33 =

(
√

1 + 4t2
(

5t

8
+ t3

)

+
3

16
sinh−1(2t)

)∣
∣
∣
∣

3

−2

, (7.41)

||x||33 =
37

√
17

4
+

3 sinh−1(4)

16
+

3

16

(

154
√

17 + sinh−1(6)
)

∼ 214.638, (7.42)

||x||3 ∼ 5.98737. (7.43)

Example 7.7
Consider x ∈ Lp[a, b] where x(t) = c; t ∈ [a, b] ∈ R1, c ∈ C1. Find ||x||.

Let us take the complex constant c = α+ iβ, α ∈ R1, β ∈ R1. Then

|c| =
(
α2 + β2

)1/2
. (7.44)

Now

||x|| = ||x||p =

(
∫ b

a

|x(t)|p dt
)1/p

, (7.45)

||x||p =

(
∫ b

a

(
α2 + β2

)p/2
dt

)1/p

, (7.46)

||x||p =

(

(
α2 + β2

)p/2
∫ b

a

dt

)1/p

, (7.47)

||x||p =
((
α2 + β2

)p/2
(b− a)

)1/p

, (7.48)

||x||p =
(
α2 + β2

)1/2
(b − a)1/p, (7.49)

||x||p = |c|(b − a)1/p. (7.50)

Note the norm is proportional to the magnitude of the complex constant c. For finite p, it also increases
with the extent of the domain b − a. For infinite p, it is independent of the length of the domain, and
simply selects the value |c|. This is consistent with the norm in L∞ selecting the maximum value of
the function.

Example 7.8
Consider x ∈ Lp[0, b] where x(t) = 2t2; t ∈ [0, b] ∈ R1. Find ||x||.
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Now

||x|| = ||x||p =

(
∫ b

0

|x(t)|p dt
)1/p

, (7.51)

||x||p =

(
∫ b

0

|2t2|p dt
)1/p

, (7.52)

||x||p =

(
∫ b

0

2pt2p dt

)1/p

, (7.53)

||x||p =

((
2pt2p+1

2p+ 1

)∣
∣
∣
∣

b

0

)1/p

, (7.54)

||x||p =

(
2pb2p+1

2p+ 1

)1/p

, (7.55)

||x||p =
2b

2p+1

p

(2p+ 1)
1/p

(7.56)

Note as p→ ∞ that (2p+ 1)
1/p → 1, and (2p+ 1)/p→ 2, so

lim
p→∞

||x|| = 2b2. (7.57)

This is the maximum value of x(t) = 2t2 in t ∈ [0, b], as expected.

Example 7.9
Consider u ∈ W1

2(G) with u(x) = 2x4; x ∈ [0, 3] ∈ R1. Find ||u||.

Here we require u ∈ L2[0, 3] and ∂u/∂x ∈ L2[0, 3], which for our choice of u, is satisfied. The
formula for the norm in W1

2[0, 3] is

||u|| = ||u||1,2 = +

√
∫ 3

0

(

u(x)u(x) +
du

dx

du

dx

)

dx, (7.58)

||u||1,2 = +

√
∫ 3

0

((2x4)(2x4) + (8x3)(8x3)) dx, (7.59)

||u||1,2 = +

√
∫ 3

0

(4x8 + 64x6) dx, (7.60)

||u||1,2 = +

√
(

4x9

9
+

64x7

7

)∣
∣
∣
∣

3

0

= 54

√

69

7
∼ 169.539. (7.61)
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Example 7.10
Consider the sequence of vectors {x(1), x(2), . . .} ∈ Q3, where Q3 is the space of rational numbers

over the field of rational numbers, and

x(1) = (1, 3, 0) =
(
x(1)1, x(1)2, x(1)3

)
, (7.62)

x(2) =

(
1

1 + 1
, 3, 0

)

=

(
1

2
, 3, 0

)

, (7.63)

x(3) =

(
1

1 + 1
2

, 3, 0

)

=

(
2

3
, 3, 0

)

, (7.64)

x(4) =

(
1

1 + 2
3

, 3, 0

)

=

(
3

5
, 3, 0

)

, (7.65)

... (7.66)

x(n) =

(
1

1 + x(n−1)1
, 3, 0

)

, (7.67)

...

for n ≥ 2. Does this sequence have a limit point in Q3? Is this a Cauchy sequence?

Consider the first term only; the other two are trivial. The series has converged when the nth term
is equal to the (n− 1)th term:

x(n−1)1 =
1

1 + x(n−1)1
. (7.68)

Rearranging, it is found that
x2

(n−1)1 + x(n−1)1 − 1 = 0. (7.69)

Solving, one finds that

x(n−1)1 =
−1 ±

√
5

2
. (7.70)

We find from numerical experimentation that it is the “+” root to which x1 converges:

lim
n→∞

x(n−1)1 =

√
5 − 1

2
. (7.71)

As n→ ∞,

x(n) →
(√

5 − 1

2
, 3, 0

)

. (7.72)

Thus, the limit point for this sequence is not in Q3; hence the sequence is not convergent. Had the set
been defined in R3, it would have been convergent.

However, the sequence is a Cauchy sequence. Consider, say ǫ = .01. If we choose, we then find by
numerical experimentation that Nǫ = 4. Choosing, for example m = 5 > Nǫ and n = 21 > Nǫ, we get

x(5) =

(
5

8
, 3, 0

)

, (7.73)

x(21) =

(
10946

17711
, 3, 0

)

, (7.74)

||x(5) − x(21)||2 =

∣
∣
∣
∣

∣
∣
∣
∣

(
987

141688
, 0, 0

)∣
∣
∣
∣

∣
∣
∣
∣
2

= 0.00696 < 0.01. (7.75)

This could be generalized for arbitrary ǫ, so the sequence can be shown to be a Cauchy sequence.
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Example 7.11
Does the infinite sequence of functions

v = {v1(t), v2(t), · · · , vn(t), · · ·} =
{
t(t), t(t2), t(t3), · · · , t(tn), · · ·

}
, (7.76)

converge in L2[0, 1]? Does the sequence converge in C[0, 1]?

First, check if the sequence is a Cauchy sequence:

lim
n,m→∞

||vn(t) − vm(t)||2 =

√
∫ 1

0

(tn+1 − tm+1)
2
dt =

√

1

2n+ 3
− 2

m+ n+ 3
+

1

2m+ 3
= 0. (7.77)

As this norm approaches zero, it will be possible for any ǫ > 0 to find an integer Nǫ such that
||vn(t) − vm(t)||2 < ǫ. So, the sequence is a Cauchy sequence. We also have

lim
n→∞

vn(t) =

{
0, t ∈ [0, 1),
1, t = 1.

(7.78)

The function given in Eq. (7.78), the “limit point” to which the sequence converges, is in L2[0, 1], which
is sufficient condition for convergence of the sequence of functions in L2[0, 1]. However the “limit point”
is not a continuous function, so despite the fact that the sequence is a Cauchy sequence and elements
of the sequence are in C[0, 1], the sequence does not converge in C[0, 1].

Example 7.12
Analyze the sequence of functions

v = {v1, v2, . . . , vn, . . .} =
{√

2 sin(πt),
√

2 sin(2πt), . . . ,
√

2 sin(nπt), . . .
}

, (7.79)

in L2[0, 1].

This is simply a set of sine functions, which can be shown to form a basis; such a proof will not be
given here. Each element of the set is orthonormal to other elements:

||vn(t)||2 =

(∫ 1

0

(√
2 sin(nπt)

)2

dt

)1/2

= 1. (7.80)

It is also easy to show that
∫ 1

0 vn(t)vm(t) dt = 0, so the basis is orthonormal. As n→ ∞, the norm of
the basis function remains bounded, and is, in fact, unity.

Consider the norm of the difference of the mth and nth functions:

||vn(t) − vm(t)||2 =

(∫ 1

0

(√
2 sin(nπt) −

√
2 sin(mπt)

)2

dt

) 1
2

=
√

2. (7.81)

This is valid for all m and n. Since we can find a value of ǫ > 0 which violates the conditions for a
Cauchy sequence, this series of functions is not a Cauchy sequence.
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7.3.2 Inner product spaces

The inner product <x, y> is, in general, a complex scalar (<x, y> ∈ C1) associated with
two elements x and y of a normed vector space satisfying the following rules. For x, y, z ∈ S

and α, β ∈ C,

1. <x, x> > 0 if x 6= 0,

2. <x, x> = 0 if and only if x = 0,

3. <x, αy + βz> = α<x, y>+ β<x, z>, α ∈ C1, β ∈ C1, and

4. <x, y> = <y, x>, where <·> indicates the complex conjugate of the inner product.

Inner product spaces are subspaces of linear vector spaces and are sometimes called pre-

Hilbert9 spaces. A pre-Hilbert space is not necessarily complete, so it may or may not form
a Banach space.

Example 7.13
Show

<αx, y> = α<x, y>. (7.82)

Using the properties of the inner product and the complex conjugate we have

<αx, y> = <y, αx>, (7.83)

= α<y, x>, (7.84)

= α <y, x>, (7.85)

= α <x, y>. (7.86)

Note that in a real vector space we have

<x, αy> = <αx, y> = α<x, y>, and also that, (7.87)

<x, y> = <y, x>, (7.88)

since every scalar is equal to its complex conjugate.

Note that some authors use <αy + βz, x> = α<y, x>+ β<z, x> instead of Property 3
that we have chosen.

9David Hilbert, 1862-1943, German mathematician of great influence.
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7.3.2.1 Hilbert space

A Banach space (i.e. a complete normed vector space) on which an inner product is defined
is also called a Hilbert space. While Banach spaces allow for the definition of several types
of norms, Hilbert spaces are more restrictive: we must define the norm such that

||x|| = ||x||2 = +
√
<x, x>. (7.89)

As a counterexample if x ∈ R2, and we take ||x|| = ||x||3 = (|x1|3 + |x2|3)1/3 (thus x ∈ ℓ23
which is a Banach space), we cannot find a definition of the inner product which satisfies all
its properties. Thus, the space ℓ23 cannot be a Hilbert space! Unless specified otherwise the
unsubscripted norm ||·|| can be taken to represent the Hilbert space norm ||·||2. It is common
for both sub-scripted and unscripted versions of the norm to appear in the literature.

The Cauchy-Schwarz10 inequality is embodied in the following:

Theorem

For x and y which are elements of a Hilbert space,

||x||2 ||y||2 ≥ |<x, y>|. (7.90)

If y = 0, both sides are zero and the equality holds. Let us take y 6= 0. Then, we have

||x− αy||22 = <x− αy, x− αy>, where α is any scalar, (7.91)

= <x, x>−<x, αy>−<αy, x>+<αy, αy>, (7.92)

= <x, x>− α<x, y>− α <y, x>+ αα <y, y>, (7.93)

on choosing α =
<y, x>

<y, y>
=
<x, y>

<y, y>
, (7.94)

= <x, x>− <x, y>

<y, y>
<x, y>

−<x, y>
<y, y>

<y, x>+
<y, x><x, y>

<y, y>2
<y, y>

︸ ︷︷ ︸

=0

, (7.95)

= ||x||22 −
|<x, y>|2
||y||22

, (7.96)

||x− αy||22 ||y||22 = ||x||22 ||y||22 − |<x, y>|2. (7.97)

Since ||x− αy||22 ||y||22 ≥ 0,

||x||22 ||y||22 − |<x, y>|2 ≥ 0, (7.98)

||x||22 ||y||22 ≥ |<x, y>|2, (7.99)

||x||2 ||y||2 ≥ |<x, y>|, QED. (7.100)

10Karl Hermann Amandus Schwarz, 1843-1921, Silesia-born German mathematician, deeply influenced by
Weierstrass, on the faculty at Berlin, captain of the local volunteer fire brigade, and assistant to railway
stationmaster.
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Note that this effectively defines the angle between two vectors. Because of the inequality,
we have

||x||2 ||y||2
|<x, y>| ≥ 1, (7.101)

|<x, y>|
||x||2 ||y||2

≤ 1. (7.102)

Defining α to be the angle between the vectors x and y, we recover the familiar result from
vector analysis

cosα =
<x, y>

||x||2 ||y||2
. (7.103)

This reduces to the ordinary relationship we find in Euclidean geometry when x, y ∈ R3.
The Cauchy-Schwarz inequality is actually a special case of the so-called Hölder11 inequality:

||x||p||y||q ≥ |<x, y>|, with
1

p
+

1

q
= 1. (7.104)

The Hölder inequality reduces to the Cauchy-Schwarz inequality when p = q = 2.
Examples of Hilbert spaces include

• Finite dimensional vector spaces

– x ∈ R3, y ∈ R3 with <x, y> = xT y = x1y1 + x2y2 + x3y3, where x = (x1, x2, x3)
T ,

and y = (y1, y2, y3)
T . This is the ordinary dot product for three-dimensional

Cartesian vectors. With this definition of the inner product <x, x> = ||x||2 =
x2

1 + x2
2 + x2

3, so the space is the Euclidean space, E3. The space is also ℓ2(R
3) or

ℓ32.

– x ∈ RN , y ∈ RN with <x, y> = xT y = x1y1 + x2y2 + · · · + xNyN , where x =
(x1, x2, · · · , xN )T , and y = (y1, y2, · · · , yN)T . This is the ordinary dot product for
N -dimensional Cartesian vectors; the space is the Euclidean space, EN , or ℓ2(R

N),
or ℓN2 .

– x ∈ CN , y ∈ CN with <x, y> = xTy = x1y1 + x2y2 + · · · + xNyN , where x =
(x1, x2, · · · , xN )T , and y = (y1, y2, · · · , yN)T . This space is also ℓ2(C

N). Note that

∗ <x, x> = x1x1 + x2x2 + · · · + xNxN = |x1|2 + |x2|2 + . . .+ |xN |2 = ||x||22.
∗ <x, y> = x1y1 + x2y2 + . . .+ xNyN .

∗ It is easily shown that this definition guarantees ||x||2 ≥ 0 and <x, y> =
<y, x> .

• Lebesgue spaces

– x ∈ L2[a, b], y ∈ L2[a, b], t ∈ [a, b] ∈ R1 with <x, y> =
∫ b

a
x(t)y(t) dt.

11Otto Hölder, 1859-1937, Stuttgart-born German mathematician.
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1
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Figure 7.3: Venn diagram showing relationship between various classes of spaces.

– x ∈ L2[a, b], y ∈ L2[a, b], t ∈ [a, b] ∈ R1 with <x, y> =
∫ b

a
x(t)y(t) dt.

• Sobolov spaces

– u ∈ W1
2(G), v ∈ W1

2(G), x ∈ G ∈ RN , N ∈ N, u ∈ L2(G), ∂u/∂xn ∈ L2(G), v ∈
L2(G), ∂v/∂xn ∈ L2(G) with

<u, v> =

∫

G

(

u(x)v(x) +
N∑

n=1

∂u

∂xn

∂v

∂xn

)

dx. (7.105)

A Venn12 diagram of some of the common spaces is shown in Fig. 7.3.

7.3.2.2 Non-commutation of the inner product

By the fourth property of inner products, we see that the inner product operation is not
commutative in general. Specifically when the vectors are complex, <x, y> 6= <y, x>. When
the vectors x and y are real, the inner product is real, and the inner product commutes,
e.g. ∀x ∈ RN , y ∈ RN , <x, y> = <y, x>. At first glance one may wonder why one would
define a non-commutative operation. It is done to preserve the positive definite character
of the norm. If, for example, we had instead defined the inner product to commute for
complex vectors, we might have taken <x, y> = xTy. Then if we had taken x = (i, 1)T

and y = (1, 1)T , we would have <x, y> = <y, x> = 1 + i. However, we would also have
<x, x> = ||x||22 = (i, 1)(i, 1)T = 0! Obviously, this would violate the property of the norm
since we must have ||x||22 > 0 for x 6= 0.

12John Venn, 1834-1923, English mathematician.
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Interestingly, one can interpret the Heisenberg13 uncertainty principle to be entirely con-
sistent with our definition of an inner product which does not commute in a complex space.
In quantum mechanics, the superposition of physical states of a system is defined by a
complex-valued vector field. Position is determined by application of a position operator,
and momentum is determined by application of a momentum operator. If one wants to know
both position and momentum, both operators are applied. However, they do not commute,
and application of them in different orders leads to a result which varies by a factor related
to Planck’s14 constant.

Matrix multiplication is another example of an inner product that does not commute,
in general. Such topics are considered in the more general group theory. Operators that
commute are known as Abelian15 and those that do not are known as non-Abelian.

7.3.2.3 Minkowski space

While non-relativistic quantum mechanics, as well as classical mechanics, works well in com-
plex Hilbert spaces, the situation becomes more difficult when one considers Einstein’s theo-
ries of special and general relativity. In those theories, which are developed to be consistent
with experimental observations of 1) systems moving at velocities near the speed of light,
2) systems involving vast distances and gravitation, or 3) systems involving minute length
scales, the relevant linear vector space is known as Minkowski space. The vectors have four
components, describing the three space-like and one time-like location of an event in space-
time, given for example by x = (x0, x1, x2, x3)

T , where x0 = ct, with c as the speed of light.
Unlike Hilbert or Banach spaces, however, norms and inner products in the sense that we
have defined do not exist! While so-called Minkowski norms and Minkowski inner products
are defined in Minkowski space, they are defined in such a fashion that the inner product of a
space-time vector with itself can be negative! From the theory of special relativity, the inner
product which renders the equations invariant under a Lorentz16 transformation (necessary
so that the speed of light measures the same in all frames and, moreover, not the Galilean17

transformation of Newtonian theory) is

<x, x> = x2
0 − x2

1 − x2
2 − x2

3. (7.106)

Obviously, this inner product can take on negative values. The theory goes on to show that
when relativistic effects are important, ordinary concepts of Euclidean geometry become
meaningless, and a variety of non-intuitive results can be obtained. In the Venn diagram,
we see that Minkowski spaces certainly are not Banach, but there are also linear spaces that
are not Minkowski, so it occupies an island in the diagram.

13Werner Karl Heisenberg, 1901-1976, German physicist.
14Max Karl Ernst Ludwig Planck, 1858-1947, German physicist.
15Niels Henrick Abel, 1802-1829, Norwegian mathematician, considered solution of quintic equations by

elliptic functions, proved impossibility of solving quintic equations with radicals, gave first solution of an
integral equation, famously ignored by Gauss.

16Hendrik Antoon Lorentz, 1853-1928, Dutch physicist.
17after Galileo Galilei, 1564-1642, Italian polymath.
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Example 7.14
For x and y belonging to a Hilbert space, prove the parallelogram equality:

||x+ y||22 + ||x− y||22 = 2||x||22 + 2||y||22. (7.107)

The left side is

<x+ y, x+ y>+<x− y, x− y> = (<x, x>+<x, y>+<y, x>+<y, y>) , (7.108)

+ (<x, x>−<x, y>−<y, x>+<y, y>) , (7.109)

= 2<x, x>+ 2<y, y>, (7.110)

= 2||x||22 + 2||y||22. (7.111)

Example 7.15
For x, y ∈ ℓ2(R

2), find <x, y> if

x =

(
1
3

)

, y =

(
2
−2

)

. (7.112)

The solution is

<x, y> = xT y = ( 1 3 )

(
2
−2

)

= (1)(2) + (3)(−2) = −4. (7.113)

Note that the inner product yields a real scalar, but in contrast to the norm, it can be negative. Note
also that the Cauchy-Schwarz inequality holds as ||x||2 ||y||2 =

√
10
√

8 ∼ 8.944 > | − 4|. Also the
Minkowski inequality holds as ||x+ y||2 = ||(3, 1)T ||2 = +

√
10 < ||x||2 + ||y||2 =

√
10 +

√
8.

Example 7.16
For x, y ∈ ℓ2(C

2), find <x, y> if

x =

(
−1 + i
3 − 2i

)

, y =

(
1 − 2i
−2

)

. (7.114)

The solution is

<x, y> = xT y = (−1 − i 3 + 2i )

(
1 − 2i
−2

)

= (−1 − i)(1 − 2i) + (3 + 2i)(−2) = −9 − 3i. (7.115)

Note that the inner product is a complex scalar which has negative components. It is easily shown that
||x||2 = 3.870 and ||y||2 = 3 and ||x + y||2 = 2.4495. Also |<x, y>| = 9.4868. The Cauchy-Schwarz
inequality holds as (3.870)(3) = 11.61 > 9.4868.The Minkowski inequality holds as 2.4495 < 3.870+3 =
6.870.
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Example 7.17
For x, y ∈ L2[0, 1], find <x, y> if

x(t) = 3t+ 4, y(t) = −t− 1. (7.116)

The solution is

<x, y> =

∫ 1

0

(3t+ 4)(−t− 1) dt =

(

−4t− 7t2

2
− t3

)∣
∣
∣
∣

1

0

= −17

2
= −8.5. (7.117)

Once more the inner product is a negative scalar. It is easily shown that ||x||2 = 5.56776 and ||y||2 =
1.52753 and ||x + y||2 = 4.04145. Also |<x, y>| = 8.5. It is easily seen that the Cauchy-Schwarz
inequality holds as (5.56776)(1.52753) = 8.505 > 8.5. The Minkowski inequality holds as 4.04145 <
5.56776 + 1.52753 = 7.095.

Example 7.18
For x, y ∈ L2[0, 1], find <x, y> if

x(t) = it, y(t) = t+ i. (7.118)

We recall that

<x, y> =

∫ 1

0

x(t)y(t) dt. (7.119)

The solution is

<x, y> =

∫ 1

0

(−it)(t+ i) dt =

(
t2

2
− it3

3

)∣
∣
∣
∣

1

0

=
1

2
− i

3
. (7.120)

The inner product is a complex scalar. It is easily shown that ||x||2 = 0.5776 and ||y||2 = 1.1547 and
||x+y||2 = 1.6330. Also |<x, y>| = 0.601. The Cauchy-Schwarz inequality holds as (0.57735)(1.1547) =
0.6667 > 0.601. The Minkowski inequality holds as 1.63299 < 0.57735 + 1.1547 = 1.7321.

Example 7.19
For u, v ∈W 1

2 (G)), find <u, v> if

u(x) = x1 + x2, v(x) = −x1x2, (7.121)

and G is the square region in the x1, x2 plane x1 ∈ [0, 1], x2 ∈ [0, 1].
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We recall that

<u, v> =

∫

G

(

u(x)v(x) +
∂u

∂x1

∂v

∂x1
+

∂u

∂x2

∂v

∂x2

)

dx, (7.122)

<u, v> =

∫ 1

0

∫ 1

0

((x1 + x2)(−x1x2) + (1)(−x2) + (1)(−x1)) dx1 dx2 = −4

3
= −1.33333. (7.123)

The inner product here is negative real scalar. It is easily shown that ||u||1,2 = 1.77951 and ||v||1,2 =
0.881917 and ||u + v||1,2 = 1.13039. Also |<u, v>| = 1.33333. The Cauchy-Schwarz inequality holds
as (1.77951)(0.881917) = 1.56938 > 1.33333. The Minkowski inequality holds as 1.13039 < 1.77951 +
0.881917 = 2.66143.

7.3.2.4 Orthogonality

One of the primary advantages of working in Hilbert spaces is that the inner product allows
one to utilize of the useful concept of orthogonality:

• x and y are said to be orthogonal to each other if

<x, y> = 0. (7.124)

• In an orthogonal set of vectors {v1, v2, · · ·} the elements of the set are all orthogonal
to each other, so that <vn, vm> = 0 if n 6= m.

• If a set {ϕ1, ϕ2, · · ·} exists such that <ϕn, ϕm> = δnm, then the elements of the set are
orthonormal.

• A basis {v1, v2, · · · , vN} of a finite-dimensional space that is also orthogonal is an
orthogonal basis. On dividing each vector by its norm we get

ϕn =
vn√

<vn, vn>
, (7.125)

to give us an orthonormal basis {ϕ1, ϕ2, · · · , ϕN}.

Example 7.20
If elements x and y of an inner product space are orthogonal to each other, prove the Pythagorean

theorem
||x||22 + ||y||22 = ||x+ y||22. (7.126)

The right side is

<x+ y, x+ y> = <x, x>+<x, y>
︸ ︷︷ ︸

=0

+<y, x>
︸ ︷︷ ︸

=0

+<y, y>, (7.127)

= <x, x>+<y, y>, (7.128)

= ||x||22 + ||y||22, QED. (7.129)
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Example 7.21
Show that an orthogonal set of vectors in an inner product space is linearly independent.

Let {v1, v2, · · · , vn, . . . , vN} be an orthogonal set of vectors. Then consider

α1v1 + α2v2 + . . .+ αnvn + . . .+ αNvN = 0. (7.130)

Taking the inner product with vn, we get

<vn, (α1v1 + α2v2 + . . .+ αnvn + . . .+ αNvN )> = <vn, 0>, (7.131)

α1<vn, v1>
︸ ︷︷ ︸

0

+α2<vn, v2>
︸ ︷︷ ︸

0

+ . . .+ αn<vn, vn>
︸ ︷︷ ︸

6=0

+ . . .+ αN <vn, vN>
︸ ︷︷ ︸

0

= 0, (7.132)

αn<vn, vn> = 0, (7.133)

since all the other inner products are zero. Thus, αn = 0, indicating that the set {v1, v2, · · · , vn, . . . , vN}
is linearly independent.

7.3.2.5 Gram-Schmidt procedure

In a given inner product space, the Gram-Schmidt18 procedure can be used to find an or-
thonormal set using a linearly independent set of vectors.

Example 7.22
Find an orthonormal set of vectors {ϕ1, ϕ2, . . .} in L2[−1, 1] using linear combinations of the linearly

independent set of vectors {1, t, t2, t3, . . .} where −1 ≤ t ≤ 1.

Choose
v1(t) = 1. (7.134)

Now choose the second vector linearly independent of v1 as

v2(t) = a+ bt. (7.135)

This should be orthogonal to v1, so that
∫ 1

−1

v1(t)v2(t) dt = 0, (7.136)

∫ 1

−1

(1)
︸︷︷︸

=v1(t)

(a+ bt)
︸ ︷︷ ︸

=v2(t)

dt = 0, (7.137)

(

at+
bt2

2

)∣
∣
∣
∣

1

−1

= 0, (7.138)

a(1 − (−1)) +
b

2
(12 − (−1)2) = 0, (7.139)

18Jørgen Pedersen Gram, 1850-1916, Danish actuary and mathematician, and Erhard Schmidt, 1876-1959,
German/Estonian-born Berlin mathematician, studied under David Hilbert, founder of modern functional
analysis. The Gram-Schmidt procedure was actually first introduced by Laplace.
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from which
a = 0. (7.140)

Taking b = 1 arbitrarily, since orthogonality does not depend on the magnitude of v2(t), we have

v2 = t. (7.141)

Choose the third vector linearly independent of v1(t) and v2(t), i.e.

v3(t) = a+ bt+ ct2. (7.142)

For this to be orthogonal to v1(t) and v2(t), we get the conditions
∫ 1

−1

(1)
︸︷︷︸

=v1(t)

(a+ bt+ ct2)
︸ ︷︷ ︸

=v3(t)

dt = 0, (7.143)

∫ 1

−1

t
︸︷︷︸

=v2(t)

(a+ bt+ ct2)
︸ ︷︷ ︸

=v3(t)

dt = 0. (7.144)

The first of these gives c = −3a. Taking a = 1 arbitrarily, we have c = −3. The second relation gives
b = 0. Thus

v3 = 1 − 3t2. (7.145)

In this manner we can find as many orthogonal vectors as we want. We can make them orthonormal
by dividing each by its norm, so that we have

ϕ1 =
1√
2
, (7.146)

ϕ2 =

√

3

2
t, (7.147)

ϕ3 =

√

5

8
(1 − 3t2), (7.148)

...

Scalar multiples of these functions, with the functions set to unity at t = 1, are the Legendre poly-
nomials: P0(t) = 1, P1(t) = t, P2(t) = (1/2)(3t2 − 1) . . . As studied earlier in Chapter 5, some other
common orthonormal sets can be formed on the foundation of several eigenfunctions to Sturm-Liouville
differential equations.

7.3.2.6 Projection of a vector onto a new basis

Here we consider how to project N -dimensional vectors x, first onto general non-orthogonal
bases of dimension M ≤ N , and then specialize for orthogonal bases of dimension M ≤ N .
For ordinary vectors in Euclidean space, N and M will be integers. When M < N , we will
usually lose information in projecting theN -dimensional x onto a lowerM-dimensional basis.
When M = N , we will lose no information, and the projection can be better characterized
as a new representation. While much of our discussion is most easily digested when M and
N take on finite values, the analysis will be easily extended to infinite dimension, which is
appropriate for a space of vectors which are functions.
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7.3.2.6.1 Non-orthogonal basis We are given M linearly independent non-orthogonal
basis vectors {u1, u2, · · · , uM} on which to project the N -dimensional x, with M ≤ N . Each
of the M basis vectors, um, is taken for convenience to be a vector of length N ; we must
realize that both x and um could be functions as well, in which case saying they have length
N would be meaningless.

The general task here is to find expressions for the coefficients αm, m = 1, 2, . . .M , to
best represent x in the linear combination

α1u1 + α2u2 + · · · + αMuM =

M∑

m=1

αmum ≃ x. (7.149)

We use the notation for an approximation, ≃, because for M < N , x most likely will not
be exactly equal to the linear combination of basis vectors. Since u ∈ CN , we can define U
as the N ×M matrix whose M columns are populated by the M basis vectors of length N ,
u1, u2, . . . , uM . We can thus rewrite Eq. (7.149) as

U · α ≃ x. (7.150)

If M = N , the approximation would become an equality; thus, we could invert Eq. (7.150)
and find simply that α = U−1 · x. However, if M < N , U−1 does not exist, and we cannot
use this approach to find α. We need another strategy.

To get the values of αm in the most general of cases, we begin by taking inner products
of Eq. (7.149) with u1 to get

<u1, α1u1>+<u1, α2u2>+ . . .+<u1, αMuM> = <u1, x>. (7.151)

Using the properties of an inner product and performing the procedure for all um, m =
1, . . . ,M , we get

α1<u1, u1>+ α2<u1, u2>+ . . .+ αM<u1, uM> = <u1, x>, (7.152)

α1<u2, u1>+ α2<u2, u2>+ . . .+ αM<u2, uM> = <u2, x>, (7.153)
...

α1<uM , u1>+ α2<uM , u2>+ . . .+ αM<uM , uM> = <uM , x>. (7.154)

Knowing x and u1, u2, · · · , uM , all the inner products can be determined, and Eqs. (7.152-
7.154) can be posed as the linear algebraic system:







<u1, u1> <u1, u2> . . . <u1, uM>
<u2, u1> <u2, u2> . . . <u2, uM>

...
... . . .

...
<uM , u1> <uM , u2> . . . <uM , uM>







·

︸ ︷︷ ︸

U
T ·U







α1

α2
...
αM







︸ ︷︷ ︸

α

=







<u1, x>
<u2, x>

...
<uM , x>







︸ ︷︷ ︸

U
T ·x

. (7.155)
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Equation (7.155) can also be written compactly as

<ui, um>αm = <ui, x>. (7.156)

In either case, Cramer’s rule or Gaussian elimination can be used to determine the unknown
coefficients, αm.

We can understand this in another way by considering an approach using Gibbs notation,
valid when each of the M basis vectors um ∈ CN . Note that the Gibbs notation does not
suffice for other classes of basis vectors, e.g. when the vectors are functions, um ∈ L2. Operate

on Eq. (7.150) with U
T

to get

(

U
T · U

)

· α = U
T · x. (7.157)

This is the Gibbs notation equivalent of Eq. (7.155). We cannot expect U−1 to always exist;
however, as long as the M ≤ N basis vectors are linearly independent, we can expect the

M ×M matrix
(

U
T · U

)−1

to exist. We can then solve for the coefficients α via

α =
(

U
T ·U

)−1

·UT · x, M ≤ N. (7.158)

In this case, one is projecting x onto a basis of equal or lower dimension than itself, and
we recover the M × 1 vector α. If one then operates on both sides of Eq. (7.158) with the
N ×M operator U, one gets

U · α = U ·
(

U
T · U

)−1

· UT

︸ ︷︷ ︸

P

·x = xp. (7.159)

Here we have defined the N ×N projection matrix P as

P = U ·
(

U
T · U

)−1

· UT
. (7.160)

We have also defined xp = P · x as the projection of x onto the basis U. These topics will
be considered later in a strictly linear algebraic context in Sec. 8.9. When there are M = N
linearly independent basis vectors, Eq. (7.160) can be reduced to show P = I. In this case
U−1 exists, and we get

P = U · U−1
︸ ︷︷ ︸

I

·UT−1
· UT

︸ ︷︷ ︸

I

= I. (7.161)

So with M = N linearly independent basis vectors, we have U ·α = x, and recover the much
simpler

α = U−1 · x, M = N. (7.162)

CC BY-NC-ND. 29 July 2012, Sen & Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


258 CHAPTER 7. LINEAR ANALYSIS

Example 7.23

Project the vector x =

(
6
−3

)

onto the non-orthogonal basis composed of u1 =

(
2
1

)

, u2 =

(
1
−1

)

.

Here we have the length of x as N = 2, and we have M = N = 2 linearly independent basis vectors.
When the basis vectors are combined into a set of column vectors, they form the matrix

U =

(
2 1
1 −1

)

. (7.163)

Because we have a sufficient number of basis vectors to span the space, to get α, we can simply apply
Eq. (7.162) to get

α = U−1 · x, (7.164)

=

(
2 1
1 −1

)−1

·
(

6
−3

)

, (7.165)

=

(
1
3

1
3

1
3 − 2

3

)

·
(

6
−3

)

, (7.166)

=

(
1
4

)

. (7.167)

Thus

x = α1u1 + α2u2 = 1

(
2
1

)

+ 4

(
1
−1

)

=

(
6
−3

)

. (7.168)

The projection matrix P = I, and xp = x. Thus, the projection is actually a representation, with no
lost information.

Example 7.24

Project the vector x =

(
6
−3

)

on the basis composed of u1 =

(
2
1

)

.

Here we have a vector x with N = 2 and an M = 1 linearly independent basis vector which, when
cast into columns, forms

U =

(
2
1

)

. (7.169)

This vector does not span the space, so to get the projection, we must use the more general Eq. (7.158),
which reduces to

α =








( 2 1 )
︸ ︷︷ ︸

U
T

·
(

2
1

)

︸ ︷︷ ︸

U








−1

· ( 2 1 )
︸ ︷︷ ︸

U
T

·
(

6
−3

)

︸ ︷︷ ︸

x

= (5)−1(9) = ( 9
5 ) . (7.170)

So the projection is

xp = α1u1 = ( 9
5 )

(
2
1

)

=

(
18
5
9
5

)

. (7.171)
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Note that the projection is not obtained by simply setting α2 = 0 from the previous example. This is
because the component of x aligned with u2 itself has a projection onto u1. Had u1 been orthogonal
to u2, one could have obtained the projection onto u1 by setting α2 = 0.

The projection matrix is

P =

(
2
1

)

︸ ︷︷ ︸

U








( 2 1 )
︸ ︷︷ ︸

U
T

·
(

2
1

)

︸ ︷︷ ︸

U








−1

· ( 2 1 )
︸ ︷︷ ︸

U
T

=

(
4
5

2
5

2
5

1
5

)

. (7.172)

It is easily verified that xp = P · x.

Example 7.25
Project the function x(t) = t3, t ∈ [0, 1] onto the space spanned by the non-orthogonal basis

functions u1 = t, u2 = sin(4t).

This is an unusual projection. The M = 2 basis functions are not orthogonal. In fact they bear no
clear relation to each other. The success in finding approximations to the original function which are
accurate depends on how well the chosen basis functions approximate the original function.

The appropriateness of the basis functions notwithstanding, it is not difficult to calculate the
projection. Equation (7.155) reduces to

( ∫ 1

0
(t)(t) dt

∫ 1

0
(t) sin 4t dt

∫ 1

0 (sin 4t)(t) dt
∫ 1

0 sin2 4t dt

)

·
(
α1

α2

)

=

( ∫ 1

0
(t)(t3) dt

∫ 1

0 (sin 4t)(t3) dt

)

. (7.173)

Evaluating the integrals gives
(

0.333333 0.116111
0.116111 0.438165

)

·
(
α1

α2

)

=

(
0.2

−0.0220311

)

. (7.174)

Inverting and solving gives
(
α1

α2

)

=

(
0.680311
−0.230558

)

. (7.175)

So our projection of x(t) = t3 onto the basis functions yields the approximation xp(t):

x(t) = t3 ≃ xp(t) = α1u1 + α2u2 = 0.680311t− 0.230558 sin4t. (7.176)

Figure 7.4 shows the original function and its two-term approximation. It seems the approximation is
not bad; however, there is no clear path to improvement by adding more basis functions. So one might
imagine in a very specialized problem that the ability to project onto an unusual basis could be useful.
But in general this is not the approach taken.

Example 7.26
Project the function x = et, t ∈ [0, 1] onto the space spanned by the functions um = tm−1,m =

1, . . . ,M , for M = 4.
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0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0

x
x = t3

xp = 0.68 t - 0.23 sin 4t

Figure 7.4: Projection of x(t) = t3 onto a two-term non-orthogonal basis composed of
functions u1 = t, u2 = sin 4t.

Similar to the previous example, the basis functions are non-orthogonal. Unlike the previous
example, there is a clear way to improve the approximation by increasing M . For M = 4, Eq. (7.155)
reduces to








∫ 1

0
(1)(1) dt

∫ 1

0
(1)(t) dt

∫ 1

0
(1)(t2)

∫ 1

0
(1)(t3)

∫ 1

0
(t)(1) dt

∫ 1

0
(t)(t) dt

∫ 1

0
(t)(t2)

∫ 1

0
(t)(t3)

∫ 1

0 (t2)(1) dt
∫ 1

0 (t2)(t) dt
∫ 1

0 (t2)(t2)
∫ 1

0 (t2)(t3)
∫ 1

0
(t3)(1) dt

∫ 1

0
(t3)(t) dt

∫ 1

0
(t3)(t2)

∫ 1

0
(t3)(t3)








·






α1

α2

α3

α4




 =








∫ 1

0
(1)(et) dt

∫ 1

0
(t)(et) dt

∫ 1

0 (t2)(et) dt
∫ 1

0
(t3)(et) dt







. (7.177)

Evaluating the integrals, this becomes





1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7




 ·






α1

α2

α3

α4




 =






−1 + e
1

−2 + e
6 − 2e




 . (7.178)

Solving for αm, and composing the approximation gives

xp(t) = 0.999060 + 1.01830t+ 0.421246t2 + 0.278625t3. (7.179)

We can compare this to xT (t), the four-term Taylor series approximation of et about t = 0:

xT (t) = 1 + t+
t2

2
+
t3

6
≃ et, (7.180)

= 1.00000 + 1.00000t− 0.500000t2 + 0.166667t3. (7.181)

Obviously, the Taylor series approximation is very close to the M = 4 projection. The Taylor approxi-
mation, xT (t), gains accuracy as t → 0, while our xp(t) is better suited to the entire domain t ∈ [0, 1].
We can expect as M → ∞ for the value of each αm to approach those given by the independent Taylor
series approximation. Figure 7.5 shows the original function against its M = 1, 2, 3, 4-term approxima-
tions, as well as the error. Clearly the approximation improves as M increases; for M = 4, the graphs
of the original function and its approximation are indistinguishable at this scale.

Also we note that the so-called root-mean-square (rms) error, E2, is lower for our approximation
relative to the Taylor series approximation about t = 0. We define rms errors, Ep2 , ET2 , in terms of a
norm, for both our projection and the Taylor approximation, respectively, and find

Ep2 = ||xp(t) − x(t)||2 =

√
∫ 1

0

(xp(t) − et)2dt = 0.000331, (7.182)
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Figure 7.5: The original function x(t) = et, t ∈ [0, 1], its projection onto various polynomial
basis functions x(t) ≃ xp(t) =

∑M
m=1 αmt

m−1, and the error, x− xp, for M = 1, 2, 3, 4.

ET2 = ||xT (t) − x(t)||2 =

√
∫ 1

0

(xT (t) − et)2dt = 0.016827. (7.183)

Our M = 4 approximation is better, when averaged over the entire domain, than the M = 4 Taylor
series approximation. For larger M , the differences become more dramatic. For example, for M = 10,
we find Ep2 = 5.39 × 10−13 and ET2 = 6.58 × 10−8.

7.3.2.6.2 Orthogonal basis The process is simpler if the basis vectors are orthogonal.
If orthogonal,

<ui, um> = 0, i 6= m, (7.184)

and substituting this into Eq. (7.155), we get







<u1, u1> 0 . . . 0
0 <u2, u2> . . . 0
...

... . . .
...

0 0 . . . <uM , uM>













α1

α2
...
αM







=







<u1, x>
<u2, x>

...
<uM , x>






. (7.185)

Equation (7.185) can be solved directly for the coefficients:

αm =
<um, x>

<um, um>
. (7.186)

So, if the basis vectors are orthogonal, we can write Eq. (7.149) as

<u1, x>

<u1, u1>
u1 +

<u2, x>

<u2, u2>
u2 + . . .+

<uM , x>

<uM , uM>
uM ≃ x, (7.187)

M∑

m=1

<um, x>

<um, um>
um =

M∑

m=1

αmum ≃ x (7.188)
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If we use an orthonormal basis {ϕ1, ϕ2, . . . , ϕM}, then the projection is even more efficient.
We get the generalization of Eq. (5.222):

αm = <ϕm, x>, (7.189)

which yields

M∑

m=1

<ϕm, x>
︸ ︷︷ ︸

αm

ϕm ≃ x. (7.190)

In all cases, if M = N , we can replace the “≃” by an “=”, and the approximation becomes
in fact a representation.

Similar expansions apply to vectors in infinite-dimensional spaces, except that one must
be careful that the orthonormal set is complete. Only then is there any guarantee that any
vector can be represented as linear combinations of this orthonormal set. If {ϕ1, ϕ2, . . .} is a
complete orthonormal set of vectors in some domain Ω, then any vector x can be represented
as

x =

∞∑

n=1

αnϕn, (7.191)

where
αn = <ϕn, x>. (7.192)

This is a Fourier series representation, as previously studied in Chapter 5, and the values of
αn are the Fourier coefficients. It is a representation and not just a projection because the
summation runs to infinity.

Example 7.27
Expand the top hat function x(t) = H(t− 1/4)−H(t− 3/4) in a Fourier sine series in the domain

t ∈ [0, 1].

Here, the function x(t) is discontinuous at t = 1/4 and t = 3/4. While x(t) is not a member of
C[0, 1], it is a member of L2[0, 1]. Here we will see that the Fourier sine series projection, composed of
functions which are continuous in [0, 1], converges to the discontinuous function x(t).

Building on previous work, we know from Eq. (5.54) that the functions

ϕn(t) =
√

2 sin(nπt), n = 1, . . . ,∞, (7.193)

form an orthonormal set for t ∈ [0, 1]. We then find for the Fourier coefficients

αn =
√

2

∫ 1

0

(

H

(

t− 1

4

)

−H

(

t− 3

4

))

sin(nπt) dt =
√

2

∫ 3/4

1/4

sin(nπt) dt. (7.194)

Performing the integration for the first nine terms, we find

αn =
2

π

(

1, 0,−1

3
, 0,−1

5
, 0,

1

7
, 0,

1

9
, . . .

)

. (7.195)
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Figure 7.6: Expansion of top hat function x(t) = H(t − 1/4) − H(t − 3/4) in terms of
sinusoidal basis functions for two levels of approximation, N = 9, N = 36 along with a plot
of how the error converges as the number of terms increases.

Forming an approximation from these nine terms, we find

H

(

t− 1

4

)

−H

(

t− 3

4

)

=
2
√

2

π

(

sin(πt) − sin(3πt)

3
− sin(5πt)

5
+

sin(7πt)

7
+

sin(9πt)

9
+ . . .

)

. (7.196)

Generalizing, we get

H

(

t− 1

4

)

−H

(

t− 3

4

)

=
2
√

2

π

∞∑

k=1

(−1)k−1

(
sin((4k − 3)πt)

4k − 3
− sin((4k − 1)πt)

4k − 1

)

. (7.197)

The discontinuous function x(t), two continuous approximations to it, and a plot revealing how the
error decreases as the number of terms in the approximation increase are shown in Fig. 7.6. Note that as
more terms are added, the approximation gets better at most points. But there is always a persistently
large error at the discontinuities t = 1/4, t = 3/4. We say this function is convergent in L2[0, 1], but is
not convergent in L∞[0, 1]. This simply says that the rms error norm converges, while the maximum
error norm does not. This is an example of the well-known Gibbs phenomenon. Convergence in L2[0, 1]
is shown in Fig. 7.6. The achieved convergence rate is ||xp(t)−x(t)||2 ∼ 0.474088N−0.512. This suggests
that

lim
N→∞

||xp(t) − x(t)||2 ∼ 1√
N
, (7.198)

where N is the number of terms retained in the projection.

The previous example showed one could use continuous functions to approximate a dis-
continuous function. The converse is also true: discontinuous functions can be used to
approximate continuous functions.

Example 7.28
Show that the functions ϕ1(t), ϕ2(t), . . . , ϕN (t) are orthonormal in L2(0, 1], where

ϕn(t) =

{ √
N, n−1

N < t ≤ n
N ,

0, otherwise.
(7.199)

Expand x(t) = t2 in terms of these functions, and find the error for a finite N .
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We note that the basis functions are a set of “top hat” functions whose amplitude increases and
width decreases as N increases. For fixed N , the basis functions are a series of top hats that fills the
domain [0, 1]. The area enclosed by a single basis function is 1/

√
N . If n 6= m, the inner product

<ϕn, ϕm> =

∫ 1

0

ϕn(t)ϕm(t) dt = 0, (7.200)

because the integrand is zero everywhere. If n = m, the inner product is

∫ 1

0

ϕn(t)ϕn(t) dt =

∫ n−1

N

0

(0)(0) dt+

∫ n
N

n−1

N

√
N
√
N dt+

∫ 1

n
N

(0)(0) dt, (7.201)

= N

(
n

N
− n− 1

N

)

, (7.202)

= 1. (7.203)

So, {ϕ1, ϕ2, . . . , ϕN} is an orthonormal set. We can expand the function f(t) = t2 in the form

t2 =

N∑

n=1

αnϕn. (7.204)

Taking the inner product of both sides with ϕm(t), we get

∫ 1

0

ϕm(t)t2 dt =

∫ 1

0

ϕm(t)

N∑

n=1

αnϕn(t) dt, (7.205)

∫ 1

0

ϕm(t)t2 dt =

N∑

n=1

αn

∫ 1

0

ϕm(t)ϕn(t) dt

︸ ︷︷ ︸

= δnm

, (7.206)

∫ 1

0

ϕm(t)t2 dt =

N∑

n=1

αnδnm, (7.207)

∫ 1

0

ϕm(t)t2 dt = αm, (7.208)

∫ 1

0

ϕn(t)t2 dt = αn. (7.209)

Thus,

αn = 0 +

∫ n
N

n−1

N

t2
√
N dt+ 0. (7.210)

Thus,

αn =
1

3N5/2

(
3n2 − 3n+ 1

)
. (7.211)

The functions t2 and the partial sums fN(t) =
∑N

n=1 αnϕn(t) for N = 5 and N = 10 are shown in
Fig. 7.7. Detailed analysis not shown here reveals the L2 error for the partial sums can be calculated
as ∆N , where

∆2
N = ||f(t) − fN (t)||22, (7.212)

=

∫ 1

0

(

t2 −
N∑

n=1

αnϕn(t)

)2

dt, (7.213)
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Figure 7.7: Expansion of x(t) = t2 in terms of “top hat” basis functions for two levels of
approximation, N = 5, N = 10.

=
1

9N2

(

1 − 1

5N2

)

, (7.214)

∆N =
1

3N

√

1 − 1

5N2
, (7.215)

which vanishes as N → ∞ at a rate of convergence proportional to 1/N .

Example 7.29
Demonstrate the Fourier sine series for x(t) = 2t converges at a rate proportional to 1/

√
N , where

N is the number of terms used to approximate x(t), in L2[0, 1].

Consider the sequence of functions

ϕn(t) =
{√

2 sin(πt),
√

2 sin(2πt), . . . ,
√

2 sin(nπt), . . .
}

. (7.216)

It is easy to show linear independence for these functions. They are orthonormal in the Hilbert space
L2[0, 1], e.g.

<ϕ2, ϕ3> =

∫ 1

0

(√
2 sin(2πt)

)(√
2 sin(3πt)

)

dt = 0, (7.217)

<ϕ3, ϕ3> =

∫ 1

0

(√
2 sin(3πt)

)(√
2 sin(3πt)

)

dt = 1. (7.218)

Note that while the basis functions evaluate to 0 at both t = 0 and t = 1, that the function itself
only has value 0 at t = 0. We must tolerate a large error at t = 1, but hope that this error is confined
to an ever collapsing neighborhood around t = 1 as more terms are included in the approximation.

The Fourier coefficients are

αn = <2t, ϕn(t)> =

∫ 1

0

(2t)
√

2 sin(nπt) dt =
2
√

2(−1)n+1

nπ
. (7.219)
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Figure 7.8: Behavior of the error norm of the Fourier sine series approximation to x(t) = 2t
on t ∈ [0, 1] with the number N of terms included in the series.

The approximation then is

xp(t) =

N∑

n=1

4(−1)n+1

nπ
sin(nπt). (7.220)

The norm of the error is then

||x(t) − xp(t)||2 =

√
√
√
√

∫ 1

0

(

2t−
(

N∑

n=1

4(−1)n+1

nπ
sin(nπt)

))2

dt. (7.221)

This is difficult to evaluate analytically. It is straightforward to examine this with symbolic calculational
software.

A plot of the norm of the error as a function of the number of terms in the approximation, N ,
is given in the log-log plot of Fig. 7.8. A weighted least squares curve fit, with a weighting factor
proportional to N2 so that priority is given to data as N → ∞, shows that the function

||x(t) − xp(t)||2 ∼ 0.841 N−0.481, (7.222)

approximates the convergence performance well. In the log-log plot the exponent on N is the slope. It
appears from the graph that the slope may be approaching a limit, in which it is likely that

||x(t) − xp(t)||2 ∼ 1√
N
. (7.223)

This indicates convergence of this series. Note that the series converges even though the norm of the
nth basis function does not approach zero as n→ ∞:

lim
n→∞

||ϕn||2 = 1, (7.224)

since the basis functions are orthonormal. Also note that the behavior of the norm of the final term in
the series,

||αNϕN (t)||2 =

√
√
√
√

∫ 1

0

(

2
√

2(−1)N+1

Nπ

√
2 sin(Nπt)

)2

dt =
2
√

2

Nπ
, (7.225)

does not tell us how the series actually converges.
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Example 7.30
Show the Fourier sine series for x(t) = t− t2 converges at a rate proportional to 1/N5/2, where N

is the number of terms used to approximate x(t), in L2[0, 1].

Again, consider the sequence of functions

ϕn(t) =
{√

2 sin(πt),
√

2 sin(2πt), . . . ,
√

2 sin(nπt), . . .
}

. (7.226)

which are as before, linearly independent and moreover, orthonormal. Note that in this case, as opposed
to the previous example, both the basis functions and the function to be approximated vanish identically
at both t = 0 and t = 1. Consequently, there will be no error in the approximation at either end point.

The Fourier coefficients are

αn =
2
√

2
(
1 + (−1)n+1

)

n3π3
. (7.227)

Note that αn = 0 for even values of n. Taking this into account and retaining only the necessary basis
functions, we can write the Fourier sine series as

x(t) = t(1 − t) ∼ xp(t) =

N∑

m=1

4
√

2

(2m− 1)3π3
sin((2m− 1)πt). (7.228)

The norm of the error is then

||x(t) − xp(t)||2 =

√
√
√
√

∫ 1

0

(

t(1 − t) −
(

N∑

m=1

4
√

2

(2m− 1)3π3
sin((2m− 1)πt)

))2

dt. (7.229)

Again this is difficult to address analytically, but symbolic computation allows computation of the error
norm as a function of N .

A plot of the norm of the error as a function of the number of terms in the approximation, N ,
is given in the log-log plot of Fig. 7.9. A weighted least squares curve fit, with a weighting factor
proportional to N2 so that priority is given to data as N → ∞, shows that the function

||x(t) − xp(t)||2 ∼ 0.00995 N−2.492, (7.230)

approximates the convergence performance well. Thus, we might suspect that

lim
n→∞

||x(t) − xp(t)||2 ∼ 1

N5/2
. (7.231)

Note that the convergence is much more rapid than in the previous example! This can be critically
important in numerical calculations and demonstrates that a judicious selection of basis functions can
have fruitful consequences.
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Figure 7.9: Behavior of the error norm of the Fourier sine series approximation to x(t) =
t(1 − t) on t ∈ [0, 1] with the number N of terms included in the series.

7.3.2.7 Parseval’s equation, convergence, and completeness

We consider Parseval’s19 equation and associated issues here. For a basis to be complete, we require
that the norm of the difference of the series representation of all functions and the functions themselves
converge to zero in L2 as the number of terms in the series approaches infinity. For an orthonormal
basis ϕn(t), this is

lim
N→∞

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
x(t) −

N∑

n=1

αnϕn(t)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
2

= 0. (7.232)

Now for the orthonormal basis, we can show this reduces to a particularly simple form. Consider for
instance the error for a one-term Fourier expansion

||x− αϕ||22 = <x− αϕ, x− αϕ>, (7.233)

= <x, x>−<x, αϕ>−<αϕ, x>+<αϕ,αϕ>, (7.234)

= ||x||22 − α<x, ϕ>− α<ϕ, x>+ αα<ϕ,ϕ>, (7.235)

= ||x||22 − α<ϕ, x>− α<ϕ, x>+ αα<ϕ,ϕ>, (7.236)

= ||x||22 − αα− αα+ αα(1), (7.237)

= ||x||22 − αα, (7.238)

= ||x||22 − |α|2. (7.239)

Here we have used the definition of the Fourier coefficient <ϕ, x> = α, and orthonormality<ϕ,ϕ> = 1.
This is easily extended to multi-term expansions to give

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
x(t) −

N∑

n=1

αnϕn(t)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

2

= ||x(t)||22 −
N∑

n=1

|αn|2. (7.240)

So convergence, and thus completeness of the basis, is equivalent to requiring that

||x(t)||22 = lim
N→∞

N∑

n=1

|αn|2, (7.241)

19Marc-Antoine Parseval des Chênes, 1755-1835, French mathematician.
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for all functions x(t). Note that this requirement is stronger than just requiring that the last Fourier
coefficient vanish for large N ; also note that it does not address the important question of the rate of
convergence, which can be different for different functions x(t), for the same basis.

7.3.3 Reciprocal bases

Let {u1, · · · , uN} be a basis of a finite-dimensional inner product space. Also let {uR1 , · · · , uRN} be
elements of the same space such that

<un, u
R
m> = δnm. (7.242)

Then {uR1 , · · · , uRN} is called the reciprocal (or dual) basis of {u1, · · · , uN}. Of course an orthonormal
basis is its own reciprocal. Since {u1, · · · , uN} is a basis, we can write any vector x as

x =

N∑

m=1

αmum. (7.243)

Taking the inner product of both sides with uRn , we get

<uRn , x> = <uRn ,
N∑

m=1

αmum>, (7.244)

=

N∑

m=1

<uRn , αmum>, (7.245)

=

N∑

m=1

αm<u
R
n , um>, (7.246)

=

N∑

m=1

αmδnm, (7.247)

= αn, (7.248)

so that

x =
N∑

n=1

<uRn , x>
︸ ︷︷ ︸

=αn

un. (7.249)

The transformation of the representation of a vector x from a basis to a dual basis is a type of alias
transformation.

Example 7.31

A vector v resides in R2. Its representation in Cartesian coordinates is v = ξ =

(
3
5

)

. The vectors

u1 =

(
2
0

)

and u2 =

(
1
3

)

span the space R2 and thus can be used as a basis on which to represent v.

Find the reciprocal basis uR1 , u
R
2 , and use Eq. (7.249) to represent v in terms of both the basis u1, u2

and then the reciprocal basis uR1 , u
R
2 .

We adopt the dot product as our inner product. Let’s get α1, α2. To do this we first need the
reciprocal basis vectors which are defined by the inner product:

<un, u
R
m> = δnm. (7.250)
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We take

uR1 =

(
a11

a21

)

, uR2 =

(
a12

a22

)

. (7.251)

Expanding Eq. (7.250), we get,

<u1, u
R
1 > = uT1 u

R
1 = (2, 0) ·

(
a11

a21

)

= (2)a11 + (0)a21 = 1, (7.252)

<u1, u
R
2 > = uT1 u

R
2 = (2, 0) ·

(
a12

a22

)

= (2)a12 + (0)a22 = 0, (7.253)

<u2, u
R
1 > = uT2 u

R
1 = (1, 3) ·

(
a11

a21

)

= (1)a11 + (3)a21 = 0, (7.254)

<u2, u
R
2 > = uT2 u

R
2 = (1, 3) ·

(
a12

a22

)

= (1)a12 + (3)a22 = 1. (7.255)

Solving, we get

a11 =
1

2
, a21 = −1

6
, a12 = 0, a22 =

1

3
, (7.256)

so substituting into Eq. (7.251), we get expressions for the reciprocal base vectors:

uR1 =

(
1
2

− 1
6

)

, uR2 =

(
0
1
3

)

. (7.257)

We can now get the coefficients αi:

α1 = <uR1 , ξ> =

(
1

2
,−1

6

)

·
(

3
5

)

=
3

2
− 5

6
=

2

3
, (7.258)

α2 = <uR2 , ξ> =

(

0,
1

3

)

·
(

3
5

)

= 0 +
5

3
=

5

3
. (7.259)

So on the new basis, v can be represented as

v =
2

3
u1 +

5

3
u2. (7.260)

The representation is shown geometrically in Fig. 7.10. Note that uR1 is orthogonal to u2 and that uR2
is orthogonal to u1. Further since ||u1||2 > 1, ||u2||2 > 1, we get ||uR1 ||2 < 1 and ||uR2 ||2 < 1 in order to
have <ui, u

R
j > = δij .

In a similar manner it is easily shown that v can be represented in terms of the reciprocal basis as

v =

N∑

n=1

βnu
R
n = β1u

R
1 + β2u

R
2 , (7.261)

where

βn = <un, ξ>. (7.262)

For this problem, this yields

v = 6uR1 + 18uR2 . (7.263)

Thus, we see for the non-orthogonal basis that two natural representations of the same vector exist.
One of these is actually a covariant representation; the other is contravariant.
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18u2
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R

Figure 7.10: Representation of a vector x on a non-orthogonal contravariant basis u1, u2

and its reciprocal covariant basis uR1 , u
R
2 .

Let us show this is consistent with the earlier described notions using “upstairs-downstairs” notation
of Sec. 1.3. Note that our non-orthogonal coordinate system is a transformation of the form

ξi =
∂ξi

∂xj
xj , (7.264)

where ξi is the Cartesian representation, and xj is the contravariant representation in the transformed
system. In Gibbs form, this is

ξ = J · x. (7.265)

Inverting, we also have
x = J−1 · ξ. (7.266)

For this problem, we have

∂ξi

∂xj
= J =

(
2 1
0 3

)

=






...
...

u1 u2
...

...




 , (7.267)

so that (
ξ1

ξ2

)

=

(
2 1
0 3

)

·
(
x1

x2

)

. (7.268)

Note that the unit vector in the transformed space
(
x1

x2

)

=

(
1
0

)

, (7.269)

has representation in Cartesian space of (2, 0)T , and the other unit vector in the transformed space
(
x1

x2

)

=

(
0
1

)

, (7.270)
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has representation in Cartesian space of (1, 3)T .
Now the metric tensor is

gij = G = JT · J =

(
2 0
1 3

)

·
(

2 1
0 3

)

=

(
4 2
2 10

)

. (7.271)

The Cartesian vector ξ = (3, 5)T , has a contravariant representation in the transformed space of

x = J−1 · ξ =

(
2 1
0 3

)−1

·
(

3
5

)

=

(
1
2 − 1

6
0 1

3

)

·
(

3
5

)

=

(
2
3
5
3

)

= xj . (7.272)

This is consistent with our earlier finding.
This vector has a covariant representation as well by the formula

xi = gijx
j =

(
4 2
2 10

)(
2
3
5
3

)

=

(
6
18

)

. (7.273)

Once again, this is consistent with our earlier finding.
Note further that

J−1 =

(
1
2 − 1

6
0 1

3

)

=

(
. . . uR1 . . .
. . . uR2 . . .

)

. (7.274)

The rows of this matrix describe the reciprocal basis vectors, and is also consistent with our earlier
finding. So if we think of the columns of any matrix as forming a basis, the rows of the inverse of that
matrix form the reciprocal basis:





. . . uR1 . . .

. . . . . . . . .
. . . uRN . . .





︸ ︷︷ ︸

J−1

·







...
...

...

u1

... uN
...

...
...







︸ ︷︷ ︸

J

= I. (7.275)

Lastly note that detJ = 6, so the transformation is orientation-preserving, but not volume-
preserving. A unit volume element in ξ-space is larger than one in x-space. Moreover the mapping
ξ = J · x can be shown to involve both stretching and rotation.

Example 7.32
For the previous example problem, consider the tensor A, whose representation in the Cartesian

space is

A =

(
3 4
1 2

)

. (7.276)

Demonstrate the invariance of the scalar ξT · A · ξ in the non-Cartesian space.

First, in the Cartesian space we have

ξT · A · ξ = ( 3 5 ) ·
(

3 4
1 2

)

·
(

3
5

)

= 152. (7.277)

CC BY-NC-ND. 29 July 2012, Sen & Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


7.3. VECTOR SPACES 273

Now A has a different representation, A′, in the transformed coordinate system via the definition
of a tensor, Eq. (1.181), which for this linear alias transformation, reduces to:20

A′ = J−1 ·A · J. (7.278)

So

A′ =

(
1
2 − 1

6
0 1

3

)

︸ ︷︷ ︸

J−1

·
(

3 4
1 2

)

︸ ︷︷ ︸

A

·
(

2 1
0 3

)

︸ ︷︷ ︸

J

, (7.279)

=

(
8
3

19
3

2
3

7
3

)

, (7.280)

(7.281)

We also see by inversion that

A = J · A′ · J−1. (7.282)

Since ξ = J · x, our tensor invariant becomes in the transformed space

ξT · A · ξ = (J · x)T · (J ·A′ · J−1) · (J · x), (7.283)

= xT · JT · J
︸ ︷︷ ︸

G

·A′ · x, (7.284)

= xT ·G
︸ ︷︷ ︸

covariant x

·A′ · x, (7.285)

= ( 2
3

5
3 ) ·

(
4 2
2 10

)

·
(

8
3

19
3

2
3

7
3

)

·
(

2
3
5
3

)

, (7.286)

= ( 6 18 )
︸ ︷︷ ︸

covariant x

·
(

8
3

19
3

2
3

7
3

)

︸ ︷︷ ︸

A′

·
(

2
3
5
3

)

︸ ︷︷ ︸

contravariant x

, (7.287)

= 152. (7.288)

Note that xT ·G gives the covariant representation of x.

Example 7.33
Given a space spanned by the functions u1 = 1, u2 = t, u3 = t2, for t ∈ [0, 1] find a reciprocal basis

uR1 , uR2 , uR3 within this space.

We insist that

<un, u
R
m> =

∫ 1

0

un(t)u
R
m(t)dt = δnm. (7.289)

20If J had been a rotation matrix Q, for which QT = Q−1 and detQ = 1, then A′ = QT · A · Q from
Eq. (6.80). Here our linear transformation has both stretching and rotation associated with it.
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If we assume that

uR1 = a1 + a2t+ a3t
2, (7.290)

uR2 = b1 + b2t+ b3t
2, (7.291)

uR3 = c1 + c2t+ c3t
2, (7.292)

and substitute directly into Eq. (7.289), it is easy to find that

uR1 = 9 − 36t+ 30t2, (7.293)

uR2 = −36 + 192t− 180t2, (7.294)

uR3 = 30 − 180t+ 180t2. (7.295)

7.4 Operators

• For two sets X and Y, an operator (or mapping, or transformation) f is a rule that

associates every x ∈ X with an image y ∈ Y. We can write f : X → Y, X
f→ Y or

x 7→ y. X is the domain of the operator, and Y is the range.

• If every element of Y is not necessarily an image, then X is mapped into Y; this map
is called an injection.

• If, on the other hand, every element of Y is an image of some element of X, then X is
mapped onto Y and the map is a surjection.

• If, ∀x ∈ X there is a unique y ∈ Y, and for every y ∈ Y there is a unique x ∈ X, the
operator is one-to-one or invertible; it is a bijection.

• f and g are inverses of each other, when X
f→ Y and Y

g→ X.

• f : X → Y is continuous at x0 ∈ X if, for every ǫ > 0, there is a δ > 0, such that
||f(x) − f(x0)|| < ǫ ∀ x satisfying ||x− x0|| < δ.

• If for every bounded sequence xn in a Hilbert space the sequence f(xn) contains a
convergent subsequence, then f is said to be compact.

A Venn diagram showing various classes of operators is given in Fig. 7.11. Examples of
continuous operators are:

1. (x1, x2, · · · , xN) 7→ y, where y = f(x1, x2, · · · , xN).

2. f 7→ g, where g = df/dt.
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Figure 7.11: Venn diagram showing classes of operators.

3. f 7→ g, where g(t) =
∫ b

a
K(s, t)f(s) ds. K(s, t) is called the kernel of the integral

transformation. If
∫ b

a

∫ b

a
|K(s, t)|2 ds dt is finite, then f belongs to L2 if g does.

4. (x1, x2, · · · , xM)T 7→ (y1, y2, · · · , yN)T , where y = Ax with y, A, and x being N × 1,
N ×M , and M × 1 matrices, respectively (yN×1 = AN×MxM×1), and the usual matrix
multiplication is assumed. Here A is a left operator, and is the most common type of
matrix operator.

5. (x1, x2, · · · , xN) 7→ (y1, y2, · · · , yM), where y = xA with y, x, and A being 1 × M ,
1×N , and N ×M matrices, respectively (y1×M = x1×NAN×M), and the usual matrix
multiplication is assumed. Here A is a right operator.

7.4.1 Linear operators

• A linear operator L is one that satisfies

L(x+ y) = Lx+ Ly, (7.296)

L(αx) = αLx. (7.297)

• An operator L is bounded if ∀x ∈ X∃ a constant c such that

||Lx|| ≤ c||x||. (7.298)

A derivative is an example of an unbounded linear operator.
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• A special operator is the identity I, which is defined by Ix = x.

• The null space or kernel of an operator L is the set of all x such that Lx = 0. The null
space is a vector space.

• The norm of an operator L can be defined as

||L|| = sup
x 6=0

||Lx||
||x|| . (7.299)

• An operator L is

positive definite if <Lx, x> > 0,
positive semi-definite if <Lx, x> ≥ 0,
negative definite if <Lx, x> < 0,
negative semi-definite if <Lx, x> ≤ 0,

∀ x 6= 0.

• For a matrix A, Cm → CN , the spectral norm ||A||2 is defined as

||A||2 = sup
x 6=0

||Ax||2
||x||2

. (7.300)

This can be shown to reduce to

||A||2 =
√
κmax, (7.301)

where κmax is the largest eigenvalue of the matrix A
T · A. It will soon be shown in

Sec. 7.4.4 that because A
T ·A is symmetric, that all of its eigenvalues are guaranteed

real. Moreover, it can be shown that they are also all greater than or equal to zero.
Hence, the definition will satisfy all properties of the norm. This holds only for Hilbert
spaces and not for arbitrary Banach spaces. There are also other valid definitions of
norms for matrix operators. For example, the p-norm of a matrix A is

||A||p = sup
x 6=0

||Ax||p
||x||p

. (7.302)

7.4.2 Adjoint operators

The operator L∗ is the adjoint of the operator L, if

<Lx, y> = <x,L∗y>. (7.303)

If L∗ = L, the operator is self-adjoint.

CC BY-NC-ND. 29 July 2012, Sen & Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


7.4. OPERATORS 277

Example 7.34
Find the adjoint of the real matrix A : R2 → R2, where

A =

(
a11 a12

a21 a22

)

. (7.304)

We assume a11, a12, a21, a22 are known constants.

Let the adjoint of A be

A∗ =

(
a∗11 a∗12
a∗21 a∗22

)

. (7.305)

Here the starred quantities are to be determined. We also have for x and y:

x =

(
x1

x2

)

, (7.306)

y =

(
y1
y2

)

. (7.307)

We take Eq. (7.303) and expand:

<Ax, y> = <x,A∗y>, (7.308)
((

a11 a12

a21 a22

)(
x1

x2

))T (
y1
y2

)

=

(
x1

x2

)T ((
a∗11 a∗12
a∗21 a∗22

)(
y1
y2

))

, (7.309)

(
a11x1 + a12x2

a21x1 + a22x2

)T (
y1
y2

)

=

(
x1

x2

)T (
a∗11y1 + a∗12y2
a∗21y1 + a∗22y2

)

, (7.310)

( a11x1 + a12x2 a21x1 + a22x2 )

(
y1
y2

)

= (x1 x2 )

(
a∗11y1 + a∗12y2
a∗21y1 + a∗22y2

)

, (7.311)

(a11x1 + a12x2)y1 + (a21x1 + a22x2)y2 = x1(a
∗
11y1 + a∗12y2) + x2(a

∗
21y1 + a∗22y2). (7.312)

Rearrange and get

(a11 − a∗11)x1y1 + (a21 − a∗12)x1y2 + (a12 − a∗21)x2y1 + (a22 − a∗22)x2y2 = 0. (7.313)

Since this must hold for any x1, x2, y1, y2, we have

a∗11 = a11, (7.314)

a∗12 = a21, (7.315)

a∗21 = a12, (7.316)

a∗22 = a22. (7.317)

Thus,

A∗ =

(
a11 a21,
a12 a22

)

, (7.318)

= AT . (7.319)

Thus, a symmetric matrix is self-adjoint. This result is easily extended to complex matrices A : CN →
Cm:

A∗ = A
T
. (7.320)
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Example 7.35
Find the adjoint of the differential operator L : X → X, where

L =
d2

ds2
+

d

ds
, (7.321)

and X is the subspace of L2[0, 1] with x(0) = x(1) = 0 if x ∈ X.

Using integration by parts on the inner product

<Lx, y> =

∫ 1

0

(x′′(s) + x′(s)) y(s) ds, (7.322)

=

∫ 1

0

x′′(s)y(s) ds+

∫ 1

0

x′(s)y(s) ds, (7.323)

=

(

x′(1)y(1) − x′(0)y(0) −
∫ 1

0

x′(s)y′(s) ds

)

+



x(1)
︸︷︷︸

=0

y(1) − x(0)
︸︷︷︸

=0

y(0) −
∫ 1

0

x(s)y′(s) ds



 ,

(7.324)

= x′(1)y(1) − x′(0)y(0) −
∫ 1

0

x′(s)y′(s) ds−
∫ 1

0

x(s)y′(s) ds, (7.325)

= x′(1)y(1) − x′(0)y(0) −



x(1)
︸︷︷︸

=0

y′(1) − x(0)
︸︷︷︸

=0

y′(0) −
∫ 1

0

x(s)y′′(s)ds



−
∫ 1

0

x(s)y′(s)ds,

(7.326)

= x′(1)y(1) − x′(0)y(0) +

∫ 1

0

x(s)y′′(s) ds−
∫ 1

0

x(s)y′(s) ds, (7.327)

= x′(1)y(1) − x′(0)y(0) +

∫ 1

0

x(s) (y′′(s) − y′(s)) ds. (7.328)

This maintains the form of an inner product in L2[0, 1] if we require y(0) = y(1) = 0; doing this, we get

<Lx, y> =

∫ 1

0

x(s) (y′′(s) − y′(s)) ds = <x,L∗y>. (7.329)

We see by inspection that the adjoint operator is

L∗ =
d2

ds2
− d

ds
. (7.330)

Because the adjoint operator is not equal to the operator itself, the operator is not self-adjoint.

Example 7.36
Find the adjoint of the differential operator L : X → X, where L = d2/ds2, and X is the subspace

of L2[0, 1] with x(0) = x(1) = 0 if x ∈ X.
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Using integration by parts on the inner product

<Lx, y> =

∫ 1

0

x′′(s)y(s) ds, (7.331)

= x′(1)y(1) − x′(0)y(0) −
∫ 1

0

x′(s)y′(s) ds, (7.332)

= x′(1)y(1) − x′(0)y(0) −



x(1)
︸︷︷︸

=0

y′(1) − x(0)
︸︷︷︸

=0

y′(0) −
∫ 1

0

x(s)y′′(s) ds



 , (7.333)

= x′(1)y(1) − x′(0)y(0) +

∫ 1

0

x(s)y′′(s) ds. (7.334)

If we require y(0) = y(1) = 0, then

<Lx, y> =

∫ 1

0

x(s)y′′(s) dt = <x,L∗y>. (7.335)

In this case, we see that L = L∗, so the operator is self-adjoint.

Example 7.37
Find the adjoint of the integral operator L : L2[a, b] → L2[a, b], where

Lx =

∫ b

a

K(s, t)x(s) ds. (7.336)

The inner product

<Lx, y> =

∫ b

a

(
∫ b

a

K(s, t)x(s) ds

)

y(t) dt, (7.337)

=

∫ b

a

∫ b

a

K(s, t)x(s)y(t) ds dt, (7.338)

=

∫ b

a

∫ b

a

x(s)K(s, t)y(t) dt ds, (7.339)

=

∫ b

a

x(s)

(
∫ b

a

K(s, t)y(t) dt

)

ds, (7.340)

= <x,L∗y,> (7.341)

where

L∗y =

∫ b

a

K(s, t)y(t) dt, (7.342)

or equivalently

L∗y =

∫ b

a

K(t, s)y(s) ds. (7.343)
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Note in the definition of Lx, the second argument of K is a free variable, while in the consequent
definition of L∗y, the first argument of K is a free argument. So in general, the operator and its adjoint
are different. Note however, that

if K(s, t) = K(t, s), then the operator is self-adjoint. (7.344)

That is, a symmetric kernel yields a self-adjoint operator.

Properties:

||L∗|| = ||L||, (7.345)

(L1 + L2)
∗ = L∗

1 + L∗
2, (7.346)

(αL)∗ = αL∗, (7.347)

(L1L2)
∗ = L∗

2L
∗
1, (7.348)

(L∗)∗ = L, (7.349)

(L−1)∗ = (L∗)−1, if L−1 exists. (7.350)

7.4.3 Inverse operators

Let
Lx = y. (7.351)

If an inverse of L exists, which we will call L−1, then

x = L−1y. (7.352)

Using Eq. (7.352) to eliminate x in favor of y in Eq. (7.351), we get

LL−1y
︸ ︷︷ ︸

=x

= y, (7.353)

so that
LL−1 = I. (7.354)

A property of the inverse operator is

(LaLb)
−1 = L−1

b L−1
a (7.355)

Let’s show this. Say
y = LaLbx. (7.356)

Then

L−1
a y = Lbx, (7.357)

L−1
b L−1

a y = x. (7.358)
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Consequently, we see that
(LaLb)

−1 = L−1
b L−1

a . (7.359)

Example 7.38
Let L be the operator defined by

Lx =

(
d2

dt2
+ k2

)

x(t) = f(t), (7.360)

where x belongs to the subspace of L2[0, π] with x(0) = a and x(π) = b. Show that the inverse operator
L−1 is given by

x(t) = L−1f(t) = b
∂g

∂τ
(π, t) − a

∂g

∂τ
(0, t) +

∫ π

0

g(τ, t)f(τ) dτ, (7.361)

where g(τ, t) is the Green’s function.

From the definition of L and L−1 in Eqs. (7.360,7.361), we get

L−1(Lx) = b
∂g

∂τ
(π, t) − a

∂g

∂τ
(0, t) +

∫ π

0

g(τ, t)

(
d2x(τ)

dτ2
+ k2x(τ)

)

︸ ︷︷ ︸

=f(τ)

dτ. (7.362)

Using integration by parts and the property that g(0, t) = g(π, t) = 0, the integral on the right side of
Eq. (7.362 can be simplified as

∫ π

0

g(τ, t)

(
d2x(τ)

dτ2
+ k2x(τ)

)

︸ ︷︷ ︸

=f(τ)

dτ = − x(π)
︸︷︷︸

=b

∂g

∂τ
(π, t) + x(0)

︸︷︷︸

=a

∂g

∂τ
(0, t)

+

∫ π

0

x(τ)

(
∂2g

∂τ2
+ k2g

)

︸ ︷︷ ︸

=δ(t−τ)

dτ. (7.363)

Since x(0) = a, x(π) = b, and
∂2g

∂τ2
+ k2g = δ(t− τ), (7.364)

we have

L−1(Lx) =

∫ π

0

x(τ)δ(t − τ) dτ, (7.365)

= x(t). (7.366)

Thus, L−1L = I, proving the proposition.
Note, it is easily shown for this problem that the Green’s function is

g(τ, t) = − sin(k(π − τ)) sin(kt)

k sin(kπ)
t < τ, (7.367)

= − sin(kτ) sin(k(π − t))

k sin(kπ)
τ < t, (7.368)
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so that we can write x(t) explicitly in terms of the forcing function f(t) including the inhomogeneous
boundary conditions as follows:

x(t) =
b sin(kt)

sin(kπ)
+
a sin(k(π − t))

sin(kπ)
(7.369)

− sin(k(π − t))

k sin(kπ)

∫ t

0

f(τ) sin(kτ) dτ − sin(kt)

k sin(kπ)

∫ π

t

f(τ) sin(k(π − τ)) dτ. (7.370)

For linear algebraic systems, the reciprocal or dual basis can be easily formulated in
terms of operator notation and is closely related to the inverse operator. If we define U to
be a N × N matrix which has the N basis vectors un, each of length N , which span the
N -dimensional space, we seek UR, the N ×N matrix which has as its columns the vectors
uRm which form the reciprocal or dual basis. The reciprocal basis is found by enforcing the
equivalent of <un, u

R
m> = δnm:

U
T · UR = I. (7.371)

Solving for UR,

U
T · UR = I, (7.372)

UT · UR
= I, (7.373)

(

UT ·UR
)T

= IT , (7.374)

U
RT · U = I, (7.375)

U
RT · U ·U−1 = I ·U−1, (7.376)

U
RT

= U−1, (7.377)

UR = U−1
T
, (7.378)

we see that the set of reciprocal basis vectors is given by the conjugate transpose of the inverse
of the original matrix of basis vectors. Then the expression for the amplitudes modulating
the basis vectors, αn = <uRn , x>, is

α = UR
T · x. (7.379)

Substituting for UR in terms of its definition, we can also say

α = U−1
T
T

· x = U−1 · x. (7.380)

Then the expansion for the vector x =
∑N

n=1 αnun =
∑N

n=1<u
R
n , x>un is written in the

alternate notation as
x = U · α = U · U−1 · x = x. (7.381)
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Example 7.39

Consider the problem of a previous example with x =

(
3
5

)

and with basis vectors u1 =

(
2
0

)

and

u2 =

(
1
3

)

, find the reciprocal basis vectors and an expansion of x in terms of the basis vectors.

Using the alternate vector and matrix notation, we define the matrix of basis vectors as

U =

(
2 1
0 3

)

. (7.382)

Since this matrix is real, the complex conjugation process is not important, but it will be retained for
completeness. Using standard techniques, we find that the inverse is

U−1 =

(
1
2 − 1

6
0 1

3

)

. (7.383)

Thus, the matrix with the reciprocal basis vectors in its columns is

UR = U−1
T

=

(
1
2 0

− 1
6

1
3

)

. (7.384)

This agrees with the earlier analysis. For x = (3, 5)T , we find the coefficients α to be

α = UR
T · x =

(
1
2 − 1

6
0 1

3

)

·
(

3
5

)

=

(
2
3
5
3

)

. (7.385)

We see that we do indeed recover x upon taking the product

x = U · α =

(
2 1
0 3

)

·
(

2
3
5
3

)

=
2

3

(
2
0

)

+
5

3

(
1
3

)

=

(
3
5

)

. (7.386)

7.4.4 Eigenvalues and eigenvectors

Let us consider here in a more formal fashion topics that have been previously introduced
in Secs. 5.1 and 6.2.5. If L is a linear operator, its eigenvalue problem consists of finding a
nontrivial solution of the equation

Le = λe, (7.387)

where e is called an eigenvector, and λ an eigenvalue.

Theorem

The eigenvalues of an operator and its adjoint are complex conjugates of each other.
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Proof: Let λ and λ∗ be the eigenvalues of L and L∗, respectively, and let e and e∗ be the
corresponding eigenvectors. Consider then,

<Le, e∗> = <e,L∗e∗>, (7.388)

<λe, e∗> = <e, λ∗e∗>, (7.389)

λ<e, e∗> = λ∗<e, e∗>, (7.390)

λ = λ∗. (7.391)

This holds for <e, e∗> 6= 0, which will hold in general.

Theorem

The eigenvalues of a self-adjoint operator are real.

Proof:

Since the operator is self-adjoint, we have

<Le, e> = <e,Le>, (7.392)

<λe, e> = <e, λe>, (7.393)

λ<e, e> = λ<e, e>, (7.394)

λ = λ, (7.395)

λR − iλI = λR + iλI ; λR, λI ∈ R2, (7.396)

λR = λR, (7.397)

−λI = λI , (7.398)

λI = 0. (7.399)

Here we note that for non-trivial eigenvectors <e, e> > 0, so the division can be performed.
The only way a complex number can equal its conjugate is if its imaginary part is zero;
consequently, the eigenvalue must be strictly real.

Theorem

The eigenvectors of a self-adjoint operator corresponding to distinct eigenvalues are or-
thogonal.

Proof: Let λi and λj be two distinct, λi 6= λj , real, λi, λj ∈ R1, eigenvalues of the self-adjoint
operator L, and let ei and ej be the corresponding eigenvectors. Then,

<Lei, ej> = <ei,Lej>, (7.400)

<λiei, ej> = <ei, λjej>, (7.401)

λi<ei, ej> = λj<ei, ej>, (7.402)

<ei, ej> (λi − λj) = 0, (7.403)

<ei, ej> = 0, (7.404)

since λi 6= λj .
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Theorem

The eigenvectors of any self-adjoint operator on vectors of a finite-dimensional vector
space constitute a basis for the space.

As discussed by Friedman, the following conditions are sufficient for the eigenvectors in
an infinite-dimensional Hilbert space to be form a complete basis:

• the operator must be self-adjoint,

• the operator is defined on a finite domain, and

• the operator has no singularities in its domain.

If the operator is not self-adjoint, Friedman (p. 204) discusses how the eigenfunctions of
the adjoint operator can be used to obtain the coefficients αk on the eigenfunctions of the
operator.

Example 7.40
For x ∈ R2,A : R2 → R2, Find the eigenvalues and eigenvectors of

A =

(
2 1
1 2

)

. (7.405)

The eigenvalue problem is

Ax = λx, (7.406)

which can be written as

Ax = λIx, (7.407)

(A − λI)x = 0, (7.408)

where the identity matrix is

I =

(
1 0
0 1

)

. (7.409)

If we write

x =

(
x1

x2

)

, (7.410)

then (
2 − λ 1

1 2 − λ

)(
x1

x2

)

=

(
0
0

)

. (7.411)

By Cramer’s rule we could say

x1 =

det

(
0 1
0 2 − λ

)

det

(
2 − λ 1

1 2 − λ

) =
0

det

(
2 − λ 1

1 2 − λ

) , (7.412)
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x2 =

det

(
2 − λ 0

1 0

)

det

(
2 − λ 1

1 2 − λ

) =
0

det

(
2 − λ 1

1 2 − λ

) . (7.413)

An obvious, but uninteresting solution is the trivial solution x1 = 0, x2 = 0. Nontrivial solutions of x1

and x2 can be obtained only if ∣
∣
∣
∣

2 − λ 1
1 2 − λ

∣
∣
∣
∣
= 0, (7.414)

which gives the characteristic equation

(2 − λ)2 − 1 = 0. (7.415)

Solutions are λ1 = 1 and λ2 = 3. The eigenvector corresponding to each eigenvalue is found in the
following manner. The eigenvalue is substituted in Eq. (7.411). A dependent set of equations in x1 and
x2 is obtained. The eigenvector solution is thus not unique.

For λ = 1, Eq. (7.411) gives

(
2 − 1 1

1 2 − 1

)(
x1

x2

)

=

(
1 1
1 1

)(
x1

x2

)

=

(
0
0

)

, (7.416)

which are the two identical equations,

x1 + x2 = 0. (7.417)

If we choose x1 = γ, then x2 = −γ. So the eigenvector corresponding to λ = 1 is

e1 = γ

(
1
−1

)

. (7.418)

Since the magnitude of an eigenvector is arbitrary, we will take γ = 1 and thus

e1 =

(
1
−1

)

. (7.419)

For λ = 3, the equations are
(

2 − 3 1
1 2 − 3

)(
x1

x2

)

=

(
−1 1
1 −1

)(
x1

x2

)

=

(
0
0

)

, (7.420)

which yield the two identical equations,

− x1 + x2 = 0. (7.421)

This yields an eigenvector of

e2 = β

(
1
1

)

. (7.422)

We take β = 1, so that

e2 =

(
1
1

)

. (7.423)

Comments:

• Since the real matrix is symmetric (thus, self-adjoint), the eigenvalues are real, and the eigenvectors
are orthogonal.

CC BY-NC-ND. 29 July 2012, Sen & Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


7.4. OPERATORS 287

• We have actually solved for the right eigenvectors. This is the usual set of eigenvectors. The left
eigenvectors can be found from xTA = xT Iλ. Since here A is equal to its conjugate transpose,
xTA = Ax, so the left eigenvectors are the same as the right eigenvectors. More generally, we can

say the left eigenvectors of an operator are the right eigenvectors of the adjoint of that operator, A
T
.

• Multiplication of an eigenvector by any scalar is also an eigenvector.

• The normalized eigenvectors are

e1 =

(
1√
2

− 1√
2

)

, e2 =

(
1√
2

1√
2

)

. (7.424)

• A natural way to express a vector is on orthonormal basis as given here

x = α1

(
1√
2

− 1√
2

)

+ α2

(
1√
2

1√
2

)

=

(
1√
2

1√
2

− 1√
2

1√
2

)

︸ ︷︷ ︸

=Q

(
α1

α2

)

. (7.425)

• The set of orthonormalized eigenvectors forms an orthogonal matrix Q; see p. 183 or the upcoming
Sec. 8.6. Note that it has determinant of unity, so it is a rotation. As suggested by Eq. (6.54), the
angle of rotation here is α = sin−1(−1/

√
2) = −π/4.

Example 7.41
For x ∈ C2,A : C2 → C2, find the eigenvalues and eigenvectors of

A =

(
0 −2
2 0

)

. (7.426)

This matrix is anti-symmetric. We find the eigensystem by solving

(A − λI) e = 0. (7.427)

The characteristic equation which results is

λ2 + 4 = 0, (7.428)

which has two imaginary roots which are complex conjugates: λ1 = 2i, λ2 = −2i. The corresponding
eigenvectors are

e1 = α

(
i
1

)

, e2 = β

(
−i
1

)

, (7.429)

where α and β are arbitrary scalars. Let us take α = −i, β = 1, so

e1 =

(
1
−i

)

, e2 =

(
−i
1

)

. (7.430)
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Note that

<e1, e2> = e1
T e2 = ( 1 i )

(
−i
1

)

= (−i) + i = 0, (7.431)

so this is an orthogonal set of vectors, even though the generating matrix was not self-adjoint. We can
render it orthonormal by scaling by the magnitude of each eigenvector. The orthonormal eigenvector
set is

e1 =

(
1√
2

−i√
2

)

, e2 =

(

− i√
2

1√
2

)

. (7.432)

These two orthonormalized vectors can form a matrix Q:

Q =

(
1√
2

− i√
2

− i√
2

1√
2

)

. (7.433)

It is easy to check that ||Q||2 = 1 and detQ = 1, so it is a rotation. However, for the complex basis
vectors, it is difficult to define an angle of rotation in the traditional sense. Our special choices of α
and β were actually made to ensure detQ = 1.

Example 7.42
For x ∈ C2,A : C2 → C2, find the eigenvalues and eigenvectors of

A =

(
1 −1
0 1

)

. (7.434)

This matrix is asymmetric. We find the eigensystem by solving

(A − λI) e = 0. (7.435)

The characteristic equation which results is

(1 − λ)2 = 0, (7.436)

which has repeated roots λ = 1, λ = 1. For this eigenvalue, there is only one ordinary eigenvector

e = α

(
1
0

)

. (7.437)

We take arbitrarily α = 1 so that

e =

(
1
0

)

. (7.438)

We can however find a generalized eigenvector g such that

(A − λI)g = e. (7.439)

Note then that
(A − λI)(A − λI)g = (A − λI)e, (7.440)

(A − λI)2g = 0. (7.441)
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Now

(A− λI) =

(
0 −1
0 0

)

. (7.442)

So with g = (β, γ)T , take from Eq. (7.439)

(
0 −1
0 0

)

︸ ︷︷ ︸

A−λI

(
β
γ

)

︸ ︷︷ ︸

g

=

(
1
0

)

︸ ︷︷ ︸

e

. (7.443)

We get a solution if β ∈ R1, γ = −1. That is

g =

(
β
−1

)

. (7.444)

Take β = 0 to give an orthogonal generalized eigenvector. So

g =

(
0
−1

)

. (7.445)

Note that the ordinary eigenvector and the generalized eigenvector combine to form a basis, in this case
an orthonormal basis.

More properly, we should distinguish the generalized eigenvector we have found as a generalized
eigenvector in the first sense. There is another common, unrelated generalization in usage which we
will study later in Sec. 8.3.2.

Example 7.43
For x ∈ C2,A : C2 → C2, find the eigenvalues, right eigenvectors, and left eigenvectors if

A =

(
1 2
−3 1

)

. (7.446)

The right eigenvector problem is the usual

AeR = λIeR. (7.447)

The characteristic polynomial is
(1 − λ)2 + 6 = 0, (7.448)

which has complex roots. The eigensystem is

λ1 = 1 −
√

6i, e1R =

(√
2
3 i

1

)

, λ2 = 1 +
√

6i, e2R =

(

−
√

2
3 i

1

)

. (7.449)

Note as the operator is not self-adjoint, we are not guaranteed real eigenvalues. The right eigenvectors
are not orthogonal as e1R

T e2R = 1/3.
For the left eigenvectors, we have

eTLA = eTLIλ. (7.450)

We can put this in a slightly more standard form by taking the conjugate transpose of both sides:
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eTLA
T

= eTLIλ
T
, (7.451)

A
T
eL = IλeL, (7.452)

A
T
eL = IλeL, (7.453)

A∗eL = Iλ∗eL. (7.454)

So the left eigenvectors of A are the right eigenvectors of the adjoint of A. Now we have

A
T

=

(
1 −3
2 1

)

. (7.455)

The resulting eigensystem is

λ∗1 = 1 +
√

6i, e1L =

(√
3
2 i

1

)

, λ∗2 = 1 −
√

6i, e2L =

(

−
√

3
2 i

1

)

. (7.456)

Note that in addition to being complex conjugates of themselves, which does not hold for general
complex matrices, the eigenvalues of the adjoint are complex conjugates of those of the original matrix,
which does hold for general complex matrices. That is λ∗ = λ. The left eigenvectors are not orthogonal
as e1L

T e2L = − 1
2 . It is easily shown by taking the conjugate transpose of the adjoint eigenvalue problem

however that
eTLA = eTLλ, (7.457)

as desired. Note that the eigenvalues for both the left and right eigensystems are the same.

Example 7.44
Consider a small change from the previous example. For x ∈ C2,A : C2 → C2, find the eigenvalues,

right eigenvectors, and left eigenvectors if

A =

(
1 2
−3 1 + i

)

. (7.458)

The right eigenvector problem is the usual

AeR = λIeR. (7.459)

The characteristic polynomial is

λ2 − (2 + i)λ+ (7 + i) = 0, (7.460)

which has complex roots. The eigensystem is

λ1 = 1 − 2i, e1R =

(
i
1

)

, λ2 = 1 + 3i, e2R =

(
−2i
3

)

. (7.461)

Note as the operator is not self-adjoint, we are not guaranteed real eigenvalues. The right eigenvectors
are not orthogonal as e1R

T e2R = 1 6= 0
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For the left eigenvectors, we solve the corresponding right eigensystem for the adjoint of A which

is A∗ = A
T
.

A
T

=

(
1 −3
2 1 − i

)

. (7.462)

The eigenvalue problem is A
T
eL = λ∗eL. The eigensystem is

λ∗1 = 1 + 2i, e1L =

(
3i
2

)

; λ∗2 = 1 − 3i, e2L =

(
−i
1

)

. (7.463)

Note that here, the eigenvalues λ∗1, λ
∗
2 have no relation to each other, but they are complex conjugates

of the eigenvalues, λ1, λ2, of the right eigenvalue problem of the original matrix. The left eigenvectors
are not orthogonal as e1L

T e2L = −1. It is easily shown however that

eTLA = eTLλI, (7.464)

as desired.

Example 7.45
For x ∈ R3,A : R3 → R3, find the eigenvalues and eigenvectors of

A =





2 0 0
0 1 1
0 1 1



 . (7.465)

From ∣
∣
∣
∣
∣
∣

2 − λ 0 0
0 1 − λ 1
0 1 1 − λ

∣
∣
∣
∣
∣
∣

= 0, (7.466)

the characteristic equation is
(2 − λ)

(
(1 − λ)2 − 1

)
= 0. (7.467)

The solutions are λ = 0, 2, 2. The second eigenvalue is of multiplicity two. Next, we find the eigenvectors

e =





x1

x2

x3



 . (7.468)

For λ = 0, the equations for the components of the eigenvectors are




2 0 0
0 1 1
0 1 1









x1

x2

x3



 =





0
0
0



 , (7.469)

2x1 = 0, (7.470)

x2 + x3 = 0, (7.471)

from which

e1 = α





0
1
−1



 . (7.472)
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For λ = 2, we have




0 0 0
0 −1 1
0 1 −1









x1

x2

x3



 =





0
0
0



 . (7.473)

This yields only

− x2 + x3 = 0. (7.474)

We then see that the following eigenvector,

e =





β
γ
γ



 , (7.475)

satisfies Eq. (7.474). Here, we have two free parameters, β and γ; we can thus extract two independent
eigenvectors from this. For e2 we arbitrarily take β = 0 and γ = 1 to get

e2 =





0
1
1



 . (7.476)

For e3 we arbitrarily take β = 1 and γ = 0 to get

e3 =





1
0
0



 . (7.477)

In this case e1, e2, e3 are orthogonal even though e2 and e3 correspond to the same eigenvalue.

Example 7.46
For y ∈ L2[0, 1], find the eigenvalues and eigenvectors of L = −d2/dt2, operating on functions which

vanish at 0 and 1. Also find ||L||2.

The eigenvalue problem is

Ly = −d
2y

dt2
= λy, y(0) = y(1) = 0, (7.478)

or
d2y

dt2
+ λy = 0, y(0) = y(1) = 0. (7.479)

The solution of this differential equation is

y(t) = a sinλ1/2t+ b cosλ1/2t. (7.480)

The boundary condition y(0) = 0 gives b = 0. The other condition y(1) = 0 gives a sinλ1/2 = 0. A
nontrivial solution can only be obtained if

sinλ1/2 = 0. (7.481)
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There are an infinite but countable number of values of λ for which this can be satisfied. These are
λn = n2π2, n = 1, 2, · · ·. The eigenvectors (also called eigenfunctions in this case) yn(t), n = 1, 2, · · ·
are

yn(t) = sinnπt. (7.482)

The differential operator is self-adjoint so that the eigenvalues are real and the eigenfunctions are
orthogonal.

Consider ||L||2. Referring to the definition of Eq. (7.299), we see ||L||2 = ∞, since by allowing y to
be any eigenfunction, we have

||Ly||2
||y||2

=
||λy||2
||y||2

, (7.483)

=
|λ| · ||y||2
||y||2

, (7.484)

= |λ|. (7.485)

And since λ = n2π2, n = 1, 2, . . . ,∞, the largest value that can be achieved by ||Ly||2/||y||2 is infinite.

Example 7.47
For x ∈ L2[0, 1], and L = d2/ds2 + d/ds with x(0) = x(1) = 0, find the Fourier expansion of an

arbitrary function f(s) in terms of the eigenfunctions of L. Find the series representation of the “top
hat” function

f(s) = H

(

s− 1

4

)

−H

(

s− 3

4

)

. (7.486)

We seek expressions for αn in

f(s) =

N∑

n=1

αnxn(s). (7.487)

Here xn(s) is an eigenfunction of L.
The eigenvalue problem is

Lx =
d2x

ds2
+
dx

ds
= λx, x(0) = x(1) = 0. (7.488)

It is easily shown that the eigenvalues of L are given by

λn = −1

4
− n2π2, n = 1, 2, 3, . . . (7.489)

where n is a positive integer, and the unnormalized eigenfunctions of L are

xn(s) = e−s/2 sin (nπs) , n = 1, 2, 3, . . . (7.490)

Although the eigenvalues are real, the eigenfunctions are not orthogonal. We see this, for example,
by forming <x1, x2>:

<x1, x2> =

∫ 1

0

e−s/2 sin (πs)
︸ ︷︷ ︸

=x1(s)

e−s/2 sin (2πs)
︸ ︷︷ ︸

=x2(s)

ds, (7.491)

<x1, x2> =
4(1 + e)π2

e(1 + π2)(1 + 9π2)
6= 0. (7.492)
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By using integration by parts, we calculate the adjoint operator to be

L∗y =
d2y

ds2
− dy

ds
= λ∗y, y(0) = y(1) = 0. (7.493)

We then find the eigenvalues of the adjoint operator to be the same as those of the operator (this is
true because the eigenvalues are real; in general they are complex conjugates of one another).

λ∗m = λm = −1

4
−m2π2, m = 1, 2, 3, . . . (7.494)

where m is a positive integer.
The unnormalized eigenfunctions of the adjoint are

ym(s) = es/2 sin (mπs) , m = 1, 2, 3, . . . (7.495)

Now, since by definition <ym,Lxn> = <L∗ym, xn>, we have

<ym,Lxn>−<L∗ym, xn> = 0, (7.496)

<ym, λnxn>−<λ∗mym, xn> = 0, (7.497)

λn<ym, xn>− λ∗m<ym, xn> = 0, (7.498)

(λn − λm)<ym, xn> = 0. (7.499)

So, for m = n, we get <yn, xn> 6= 0, and for m 6= n, we get <ym, xn> = 0. Thus, we must have the
so-called bi-orthogonality condition

<ym, xn> = Dmn, (7.500)

Dmn = 0 if m 6= n. (7.501)

Here Dmn is a diagonal matrix which can be reduced to the identity matrix with proper normalization.
Now consider the following series of operations on the original form of the expansion we seek

f(s) =

N∑

n=1

αnxn(s), (7.502)

<yj(s), f(s)> = <yj(s),

N∑

n=1

αnxn(s)>, (7.503)

<yj(s), f(s)> =

N∑

n=1

αn<yj(s), xn(s)>, (7.504)

<yj(s), f(s)> = αj<yj(s), xj(s)>, (7.505)

αj =
<yj(s), f(s)>

<yj(s), xj(s)>
, (7.506)

αn =
<yn(s), f(s)>

<yn(s), xn(s)>
, n = 1, 2, 3, . . . (7.507)

Now in the case at hand, it is easily shown that

<yn(s), xn(s)> =
1

2
, n = 1, 2, 3, . . . , (7.508)

so we have
αn = 2<yn(s), f(s)>. (7.509)
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Figure 7.12: Twenty-term Fourier series approximation to a top hat function in terms of a
non-orthogonal basis.

The N -term approximate representation of f(s) is thus given by

f(s) ∼
N∑

n=1

(

2

∫ 1

0

et/2 sin (nπt) f(t) dt

)

︸ ︷︷ ︸

=αn

e−s/2 sin (nπs)
︸ ︷︷ ︸

=xn(s)

, (7.510)

∼ 2

∫ 1

0

e(t−s)/2f(t)

N∑

n=1

sin(nπt) sin(nπs) dt, (7.511)

∼
∫ 1

0

e(t−s)/2f(t)

N∑

n=1

(cos(nπ(s− t)) − cos(nπ(s+ t))) dt. (7.512)

For the top hat function, a two-term expansion yields

f(s) ∼ 2
√

2e1/8
(
−1 + 2π + e1/4(1 + 2π)

)

1 + 4π2
︸ ︷︷ ︸

=α1

e−s/2 sin(πs)
︸ ︷︷ ︸

=x1(s)

−4(e1/8 + e3/8)

1 + 16π2
︸ ︷︷ ︸

=α2

e−s/2 sin(2πs)
︸ ︷︷ ︸

=x2(s)

+ . . . . (7.513)

A plot of a twenty-term series expansion of the top hat function is shown in Fig. 7.12.

In this exercise, the eigenfunctions of the adjoint are closely related to the reciprocal basis functions.
In fact, we could have easily adjusted the constants on the eigenfunctions to obtain a true reciprocal
basis. Taking

xn =
√

2e−s/2 sin(nπs), (7.514)

ym =
√

2es/2 sin(mπs), (7.515)

gives <ym, xn> = δmn, as desired for a set of reciprocal basis functions. We see that getting the
Fourier coefficients for eigenfunctions of a non-self-adjoint operator requires consideration of the adjoint
operator. We also note that it is often a difficult exercise in problems with practical significance to
actually find the adjoint operator and its eigenfunctions.
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7.5 Equations

The existence and uniqueness of the solution x of the equation

Lx = y, (7.516)

for given linear operator L and y is governed by the following theorems.

Theorem

If the range of L is closed, Lx = y has a solution if and only if y is orthogonal to every
solution of the adjoint homogeneous equation L∗z = 0.

Theorem

The solution of Lx = y is non-unique if the solution of the homogeneous equation Lx = 0
is also non-unique, and conversely.

There are two basic ways in which the equation can be solved.

• Inverse: If an inverse of L exists then

x = L−1y. (7.517)

• Eigenvector expansion: Assume that x, y belong to a vector space S and the eigenvec-
tors (e1, e2, · · ·) of L span S. Then we can write

y =
∑

n

αnen, (7.518)

x =
∑

n

βnen, (7.519)

where the α’s are known and the β’s are unknown. We get

Lx = y, (7.520)

L

(
∑

n

βnen

)

︸ ︷︷ ︸

x

=
∑

n

αnen

︸ ︷︷ ︸

y

, (7.521)

∑

n

Lβnen =
∑

n

αnen, (7.522)

∑

n

βnLen =
∑

n

αnen, (7.523)

∑

n

βnλnen =
∑

n

αnen, (7.524)

∑

n

(βnλn − αn)
︸ ︷︷ ︸

=0

en = 0, (7.525)
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where the λs are the eigenvalues of L. Since the en are linearly independent, we must
demand for all n that

βnλn = αn. (7.526)

If all λn 6= 0, then βn = αn/λn and we have the unique solution

x =
∑

n

αn
λn
en. (7.527)

If, however, one of the λ’s, λk say, is zero, we still have βn = αn/λn for n 6= k. For
n = k, there are two possibilities:

– If αk 6= 0, no solution is possible since equation (7.526) is not satisfied for n = k.

– If αk = 0, we have the non-unique solution

x =
∑

n 6=k

αn
λn
en + γek, (7.528)

where γ is an arbitrary scalar. Equation (7.526) is satisfied ∀n.

Example 7.48
Solve for x in Lx = y if L = d2/dt2, with side conditions x(0) = x(1) = 0, and y(t) = 2t, via an

eigenfunction expansion.

This problem of course has an exact solution via straightforward integration:

d2x

dt2
= 2t; x(0) = x(1) = 0, (7.529)

integrates to yield

x(t) =
t

3
(t2 − 1). (7.530)

However, let’s use the series expansion technique. This can be more useful in other problems in
which exact solutions do not exist. First, find the eigenvalues and eigenfunctions of the operator:

d2x

dt2
= λx; x(0) = x(1) = 0. (7.531)

This has general solution

x(t) = A sin
(√

−λt
)

+B cos
(√

−λt
)

. (7.532)

To satisfy the boundary conditions, we require that B = 0 and λ = −n2π2, so

x(t) = A sin (nπt) . (7.533)

This suggests that we expand y(t) = 2t in a Fourier sine series. We know from Eq. (7.220) that the
Fourier sine series for y(t) = 2t is

2t =

∞∑

n=1

4(−1)n+1

(nπ)
sin(nπt). (7.534)
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Figure 7.13: Approximate and exact solution x(t); Error in solution xp(t) − x(t).

For x(t) then we have

x(t) =

∞∑

n=1

αnen
λn

=

∞∑

n=1

4(−1)n+1

(nπ)λn
sin(nπt). (7.535)

Substituting in for λn = −n2π2, we get

x(t) =

∞∑

n=1

4(−1)n+1

(−nπ)3
sin(nπt). (7.536)

Retaining only two terms in the expansion for x(t),

x(t) ∼ − 4

π3
sin(πt) +

1

2π3
sin(2πt), (7.537)

gives a very good approximation for the solution, which as shown in Fig. 7.13, has a peak error of about
0.008.

Example 7.49
Solve Ax = y using the eigenvector expansion technique when

A =

(
2 1
1 2

)

, y =

(
3
4

)

. (7.538)

We already know from an earlier example, p. 285, that for A

λ1 = 1, e1 =

(
1
−1

)

, (7.539)

λ2 = 3, e2 =

(
1
1

)

. (7.540)

We want to express y as

y = α1e1 + α2e2. (7.541)
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Since the eigenvectors are orthogonal, we have from Eq. (7.186)

α1 =
<e1, y>

<e1, e1>
=

3 − 4

1 + 1
= −1

2
, (7.542)

α2 =
<e2, y>

<e2, e2>
=

3 + 4

1 + 1
=

7

2
, (7.543)

so

y = −1

2
e1 +

7

2
e2. (7.544)

Then

x =
α1

λ1
e1 +

α2

λ2
e2, (7.545)

x = −1

2

1

λ1
e1 +

7

2

1

λ2
e2, (7.546)

x = −1

2

1

1
e1 +

7

2

1

3
e2, (7.547)

x = −1

2

1

1

(
1
−1

)

+
7

2

1

3

(
1
1

)

, (7.548)

x =

(
2
3
5
3

)

. (7.549)

Example 7.50
Solve Ax = y using the eigenvector expansion technique when

A =

(
2 1
4 2

)

, y =

(
3
4

)

, y =

(
3
6

)

. (7.550)

We first note that the two column space vectors,

(
2
4

)

,

(
1
2

)

, (7.551)

are linearly dependent. They span R1, but not R2.
It is easily shown that for A

λ1 = 4, e1 =

(
1
2

)

, (7.552)

λ2 = 0, e2 =

(
−1
2

)

. (7.553)

First consider y =

(
3
4

)

. We want to express y as

y = α1e1 + α2e2. (7.554)
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For this non-symmetric matrix, the eigenvectors are linearly independent, so they form a basis. However
they are not orthogonal, so there is not a direct way to compute α1 and α2. Matrix inversion shows
that α1 = 5/2 and α2 = −1/2, so

y =
5

2
e1 −

1

2
e2. (7.555)

Since the eigenvectors form a basis, y can be represented with an eigenvector expansion. However no
solution for x exists because λ2 = 0 and α2 6= 0, hence the coefficient β2 = α2/λ2 does not exist.

However, for y =

(
3
6

)

, we can say that

y = 3e1 + 0e2. (7.556)

We note that (3, 6)T is a scalar multiple of the so-called column space vector of A, (2, 4)T . Consequently,

x =
α1

λ1
e1 +

α2

λ2
e2, (7.557)

=
α1

λ1
e1 +

0

0
e2, (7.558)

=
3

4
e1 + γe2, (7.559)

=
3

4

(
1
2

)

+ γ

(
−1
2

)

, (7.560)

=

(
3/4 − γ
3/2 + 2γ

)

, (7.561)

where γ is an arbitrary constant. Note that the vector e2 = (−1, 2)T lies in the null space of A since

Ae2 =

(
2 1
4 2

)(
−1
2

)

, (7.562)

=

(
0
0

)

. (7.563)

Since e2 lies in the null space, any scalar multiple of e2, say γe2, also lies in the null space. We can
conclude that for arbitrary y, the inverse does not exist. For vectors y which lie in the column space of
A, the inverse exists, but it is not unique; arbitrary vectors from the null space of A are admitted as
part of the solution.

7.6 Method of weighted residuals

The method of weighted residuals is a quite general technique to solve equations. Two
important methods which have widespread use in the engineering world, spectral methods
and the even more pervasive finite element method, are special types of weighted residual
methods.

Consider the differential equation

Ly = f(t), t ∈ [a, b], (7.564)
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with homogeneous boundary conditions. Here, L is a differential operator that is not neces-
sarily linear. We will work with functions and inner products in L2[a, b] space.

Approximate y(t) by

y(t) ≈ yp(t) =

N∑

n=1

αnφn(t), (7.565)

where φn(t), (n = 1, · · · , N) are linearly independent functions (called trial functions) which
satisfy the boundary conditions. Forcing the trial functions to satisfy the boundary condi-
tions, in addition to having æsthetic appeal, makes it much more likely that if convergence
is obtained, the convergence will be to a solution which satisfies the differential equation
and boundary conditions. The trial functions can be orthogonal or non-orthogonal.21 The
constants αn, (n = 1, · · · , N) are to be determined. Substituting into the equation, we get a
residual

r(t) = Lyp(t) − f(t). (7.566)

Note that the residual r(t) is not the error in the solution, e(t), where

e(t) = y(t) − yp(t). (7.567)

The residual will almost always be non-zero for t ∈ [a, b]. However, if r(t) = 0, then e(t) = 0.
We can choose αn such that the residual, computed in a weighted average over the domain, is
zero. To achieve this, we select now a set of linearly independent weighting functions ψm(t),
(m = 1, · · · , N) and make them orthogonal to the residual. Thus,

<ψm(t), r(t)> = 0, m = 1, · · · , N. (7.568)

These are N equations for the constants αn.

There are several special ways in which the weight functions can be selected.

• Galerkin22 : ψi(t) = φi(t).

• Collocation: ψm(t) = δ(t− tm). Thus, r(tm) = 0.

• Subdomain ψm(t) = 1 for tm−1 ≤ t < tm and zero everywhere else. Note that these
functions are orthogonal to each other. Also this method is easily shown to reduce to
the well known finite volume method.

21It is occasionally advantageous, especially in the context of what is known as wavelet-based methods, to
add extra functions which are linearly dependent into the set of trial functions. Such a basis is known as a
frame. We will not consider these here; some background is given by Daubechies.

22 Boris Gigorievich Galerkin, 1871-1945, Belarussian-born Russian-based engineer and mathematician, a
participant, witness, and victim of much political turbulence, did much of his early great work in the Czar’s
prisons, developed a finite element method in 1915, professor of structural mechanics at what was once, and
is now again, St. Petersburg (at one time known as Petrograd, and later Leningrad).
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• Least squares: Minimize ||r(t)||. This gives

∂||r||2
∂αm

=
∂

∂αm

∫ b

a

r2 dt, (7.569)

= 2

∫ b

a

r
∂r

∂αm
︸ ︷︷ ︸

=ψm(t)

dt. (7.570)

So this method corresponds to ψn = ∂r/∂αn.

• Moments: ψm(t) = tm−1, m = 1, 2, . . ..

If the trial functions are orthogonal and the method is Galerkin, we will, following
Fletcher, who builds on the work of Finlayson, define the method to be a spectral method.
Other less restrictive definitions are in common usage in the present literature, and there is
no single consensus on what precisely constitutes a spectral method.23

Example 7.51
For x ∈ L2[0, 1], find a one-term approximate solution of the equation

d2x

dt2
+ x = t− 1, (7.571)

with x(0) = −1, x(1) = 1.

It is easy to show that the exact solution is

x(t) = −1 + t+ csc(1) sin(t). (7.572)

23An important school in spectral methods, exemplified in the work of Gottlieb and Orszag, Canuto,
et al., and Fornberg, uses a looser nomenclature, which is not always precisely defined. In these works,
spectral methods are distinguished from finite difference methods and finite element methods in that spectral
methods employ basis functions which have global rather than local support; that is spectral methods’ basis
functions have non-zero values throughout the entire domain. While orthogonality of the basis functions
within a Galerkin framework is often employed, it is not demanded that this be the distinguishing feature
by those authors. Within this school, less emphasis is placed on the framework of the method of weighted
residuals, and the spectral method is divided into subclasses known as Galerkin, tau, and collocation. The
collocation method this school defines is identical to that defined here, and is also called by this school the
“pseudospectral” method. In nearly all understandings of the word “spectral,” a convergence rate which is
more rapid than those exhibited by finite difference or finite element methods exists. In fact the accuracy of
a spectral method should grow exponentially with the number of nodes for a spectral method, as opposed
to that for a finite difference or finite element, whose accuracy grows only with the number of nodes raised
to some power.

Another concern which arises with methods of this type is how many terms are necessary to properly
model the desired frequency level. For example, take our equation to be d2u/dt2 = 1 + u2;u(0) = u(π) = 0,

and take u =
∑N
n=1 an sin(nt). If N = 1, we get r(t) = −a1 sin t− 1− a2

1 sin2 t. Expanding the square of the
sin term, we see the error has higher order frequency content: r(t) = −a1 sin t − 1 − a2

1(1/2 − 1/2 cos(2t)).
The result is that if we want to get things right at a given level, we may have to reach outside that level.
How far outside we have to reach will be problem dependent.
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Here we will see how well the method of weighted residuals can approximate this known solution. The
real value of the method is for problems in which exact solutions are not known.

Let y = x− (2t− 1), so that y(0) = y(1) = 0. The transformed differential equation is

d2y

dt2
+ y = −t. (7.573)

Let us consider a one-term approximation,

y ≃ yp(t) = αφ(t). (7.574)

There are many choices of basis functions φ(t). Let’s try finite dimensional non-trivial polynomials
which match the boundary conditions. If we choose φ(t) = a, a constant, we must take a = 0 to satisfy
the boundary conditions, so this does not work. If we choose φ(t) = a+ bt, we must take a = 0, b = 0
to satisfy both boundary conditions, so this also does not work. We can find a quadratic polynomial
which is non-trivial and satisfies both boundary conditions:

φ(t) = t(1 − t). (7.575)

Then

yp(t) = αt(1 − t). (7.576)

We have to determine α. Substituting into Eq. (7.566), the residual is found to be

r(t) = Lyp − f(t) =
d2yp
dt2

+ yp − f(t), (7.577)

= −2α
︸︷︷︸

d2yp/dt2

+αt(1 − t)
︸ ︷︷ ︸

yp

− (−t)
︸︷︷︸

f(t)

= t− α(t2 − t+ 2). (7.578)

Then, we choose α such that

<ψ(t), r(t)> = <ψ(t), t− α(t2 − t+ 2)> =

∫ 1

0

ψ(t)
(
t− α(t2 − t+ 2)

)

︸ ︷︷ ︸

=r(t)

dt = 0. (7.579)

The form of the weighting function ψ(t) is dictated by the particular method we choose:

1. Galerkin: ψ(t) = φ(t) = t(1 − t). The inner product gives 1
12 − 3

10α = 0, so that for non-trivial
solution, α = 5

18 = 0.277.

yp(t) = 0.277t(1 − t). (7.580)

xp(t) = 0.277t(1− t) + 2t− 1. (7.581)

2. Collocation: Choose ψ(t) = δ(t− 1
2 ) which gives − 7

2α+ 1 = 0, from which α = 2
7 = 0.286.

yp(t) = 0.286t(1− t), (7.582)

xp(t) = 0.286t(1− t) + 2t− 1. (7.583)

3. Subdomain: ψ(t) = 1, from which − 11
6 α+ 1

2 = 0, and α = 3
11 = 0.273

yp(t) = 0.273t(1− t), (7.584)

xp(t) = 0.273t(1− t) + 2t− 1. (7.585)
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Figure 7.14: One-term estimate xp(t) and exact solution x(t); Error in solution xp(t)− x(t).

4. Least squares: ψ(t) = ∂r(t)
∂α = −t2 + t− 2. Thus, − 11

12 + 101
30 α = 0, from which α = 55

202 = 0.273.

yp(t) = 0.273t(1− t), (7.586)

xp(t) = 0.273t(1− t) + 2t− 1. (7.587)

5. Moments: ψ(t) = 1 which, for this case, is the same as the subdomain method previously reported.

yp(t) = 0.273t(1− t), (7.588)

xp(t) = 0.273t(1− t) + 2t− 1. (7.589)

The approximate solution determined by the Galerkin method is overlaid against the exact solution in
Fig. 7.14. Also shown is the error in the approximation. The approximation is surprisingly accurate.
Note that the error, e(t) = xp(t) − x(t), is available because in this case we have the exact solution.

Some simplification can arise through use of integration by parts. This has the result of
admitting basis functions which have less stringent requirements on the continuity of their
derivatives. It is also a commonly used strategy in the finite element technique.

Example 7.52
Consider a slight variant of the previous example problem, and employ integration by parts.

d2y

dt2
+ y = f(t), y(0) = 0, y(1) = 0. (7.590)

Again, take a one-term expansion

yp(t) = αφ(t). (7.591)

At this point, we will only require φ(t) to satisfy the boundary conditions, and will specify it later. The
residual in the approximation is

r(t) =
d2yp
dt2

+ yp − f(t) = α
d2φ

dt2
+ αφ − f(t). (7.592)
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Now set a weighted residual to zero. We will also require the weighting function ψ(t) to vanish at the
boundaries.

<ψ, r> =

∫ 1

0

ψ(t)

(

α
d2φ

dt2
+ cφ(t) − f(t)

)

︸ ︷︷ ︸

=r(t)

dt = 0. (7.593)

Rearranging, we get

α

∫ 1

0

(

ψ(t)
d2φ

dt2
+ ψ(t)φ(t)

)

dt =

∫ 1

0

ψ(t)f(t) dt. (7.594)

Now integrate by parts to get

c

(

ψ(t)
dφ

dt

∣
∣
∣
∣

1

0

+

∫ 1

0

(

ψ(t)φ(t) − dψ

dt

dφ

dt

)

dt

)

=

∫ 1

0

ψ(t)f(t) dt. (7.595)

Since we have required ψ(0) = ψ(1) = 0, this simplifies to

α

∫ 1

0

(

ψ(t)φ(t) − dψ

dt

dφ

dt

)

dt =

∫ 1

0

ψ(t)f(t) dt. (7.596)

So, the basis function φ only needs an integrable first derivative rather than an integrable second
derivative. As an aside, we note that the term on the left hand side bears resemblance (but differs by

a sign) to an inner product in the Sobolov space W
1

2[0, 1] in which the Sobolov inner product <., .>s

(an extension of the inner product for Hilbert space) is <ψ(t), φ(t)>s =
∫ 1

0

(

ψ(t)φ(t) + dψ
dt

dφ
dt

)

dt.

Taking now, as before, φ = t(1− t) and then choosing a Galerkin method so ψ(t) = φ(t) = t(1− t),
and f(t) = −t, we get

α

∫ 1

0

(
t2(1 − t)2 − (1 − 2t)2

)
dt =

∫ 1

0

t(1 − t)(−t) dt, (7.597)

which gives

α

(

− 3

10

)

= − 1

12
, (7.598)

so

α =
5

18
, (7.599)

as was found earlier. So

yp =
5

18
t(1 − t), (7.600)

with the Galerkin method.

Example 7.53
For y ∈ L2[0, 1], find a two-term spectral approximation (which by our definition of “spectral”

mandates a Galerkin formulation) to the solution of

d2y

dt2
+
√
t y = 1, y(0) = 0, y(1) = 0. (7.601)
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Let’s try polynomial basis functions. At a minimum, these basis functions must satisfy the boundary
conditions. Assumption of the first basis function to be a constant or linear gives rise to a trivial basis
function when the boundary conditions are enforced. The first non-trivial basis function is a quadratic:

φ1(t) = a0 + a1t+ a2t
2. (7.602)

We need φ1(0) = 0 and φ1(1) = 0. The first condition gives a0 = 0; the second gives a1 = −a2, so we
have φ1 = a1(t− t2). Since the magnitude of a basis function is arbitrary, a1 can be set to unity to give

φ1(t) = t(1 − t). (7.603)

Alternatively, we could have chosen the magnitude in such a fashion to guarantee an orthonormal basis
function, but that is a secondary concern for the purposes of this example.

We need a second linearly independent basis function for the two-term approximation. We try a
third order polynomial:

φ2(t) = b0 + b1t+ b2t
2 + b3t

3. (7.604)

Enforcing the boundary conditions as before gives b0 = 0 and b1 = −(b2 + b3), so

φ2(t) = −(b2 + b3)t+ b2t
2 + b3t

3. (7.605)

To achieve a spectral method (which in general is not necessary to achieve an approximate solution!),
we enforce <φ1, φ2> = 0:

∫ 1

0

t(1 − t)
︸ ︷︷ ︸

=φ1(t)

(
−(b2 + b3)t+ b2t

2 + b3t
3
)

︸ ︷︷ ︸

=φ2(t)

dt = 0, (7.606)

− b2
30

− b3
20

= 0, (7.607)

b2 = −3

2
b3. (7.608)

Substituting and factoring gives

φ2(t) =
b3
2
t(1 − t)(2t− 1). (7.609)

Again, because φ2 is a basis function, the lead constant is arbitrary; we take for convenience b3 = 2 to
give

φ2 = t(1 − t)(2t− 1). (7.610)

Again, b3 could alternatively have been chosen to yield an orthonormal basis function.
Now we want to choose α1 and α2 so that our approximate solution

yp(t) = α1φ1(t) + α2φ2(t), (7.611)

has a zero weighted residual. With

L =

(
d2

dt2
+
√
t

)

, (7.612)

we have the residual as

r(t) = Lyp(t) − f(t) = L (α1φ1(t) + α2φ2(t)) − 1 = α1Lφ1(t) + α2Lφ2(t) − 1. (7.613)
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To drive the weighted residual to zero, take

<ψ1, r> = α1<ψ1,Lφ1>+ α2<ψ1,Lφ2>−<ψ1, 1> = 0, (7.614)

<ψ2, r> = α1<ψ2,Lφ1>+ α2<ψ2,Lφ2>−<ψ2, 1> = 0. (7.615)

This is easily cast in matrix form as a linear system of equations for the unknowns α1 and α2

(
<ψ1,Lφ1> <ψ1,Lφ2>
<ψ2,Lφ1> <ψ2,Lφ2>

)(
α1

α2

)

=

(
<ψ1, 1>
<ψ2, 1>

)

. (7.616)

We choose the Galerkin method, and thus set ψ1 = φ1 and ψ2 = φ2, so
(
<φ1,Lφ1> <φ1,Lφ2>
<φ2,Lφ1> <φ2,Lφ2>

)(
α1

α2

)

=

(
<φ1, 1>
<φ2, 1>

)

. (7.617)

Each of the inner products represents a definite integral which is easily evaluated via computer algebra.
For example,

<φ1,Lφ1> =

∫ 1

0

t(1 − t)
︸ ︷︷ ︸

φ1

(

−2 + (1 − t)t3/2
)

︸ ︷︷ ︸

Lφ1

dt = −215

693
. (7.618)

When each inner product is evaluated, the following system results




− 215
693

16
9009

16
9009 − 197

1001









α1

α2



 =





1
6

0



 . (7.619)

Inverting the system, it is found that

α1 = − 760617

1415794
= −0.537, α2 = − 3432

707897
= −0.00485. (7.620)

Thus, the estimate for the solution is

yp(t) = −0.537 t(1 − t) − 0.00485 t(1 − t)(2t− 1). (7.621)

The two-term approximate solution determined is overlaid against a more accurate solution obtained
by numerical integration of the full equation in Fig. 7.15. Also shown is the error in the approximation.
The two-term solution is surprisingly accurate.

By normalizing the basis functions, we can find an orthonormal expansion. One finds that

||φ1||2 =

√
∫ 1

0

φ2
1 dt, (7.622)

=

√
∫ 1

0

t2(1 − t)2 dt, (7.623)

=
1√
30
, (7.624)

||φ2||2 =

√
∫ 1

0

φ2
2 dt, (7.625)

=

√
∫ 1

0

t2(1 − t)2(2t− 1)2 dt, (7.626)

=
1√
210

. (7.627)
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and two-term spectral (Galerkin) approximation

0.0000

Figure 7.15: Two-term spectral (Galerkin) estimate yp(t) and highly accurate numerical
solution y(t); Error in approximation yp(t) − y(t).

The approximate solution can then be rewritten as an orthonormal expansion:

yp(t) = − 760617

1415794
√

30
(
√

30t(1 − t)) − 3432

707897
√

210
(
√

210t(1 − t)(2t− 1)), (7.628)

= −0.981 (
√

30t(1 − t))
︸ ︷︷ ︸

ϕ1

−0.000335 (
√

210t(1 − t)(2t− 1))
︸ ︷︷ ︸

ϕ2

. (7.629)

Because the trial functions have been normalized, one can directly compare the coefficients’ magnitude.
It is seen that the bulk of the solution is captured by the first term.

Example 7.54
For the equation of the previous example,

d2y

dt2
+
√
t y = 1, y(0) = 0, y(1) = 0, (7.630)

examine the convergence rates for a collocation method as the number of modes becomes large.

Let us consider a set of trial functions which do not happen to be orthogonal, but are, of course,
linearly independent. Take

φn(t) = tn(t− 1), n = 1, . . . , N. (7.631)

So we seek to find a vector α = αn, n = 1, . . . , N, such that for a given number of collocation points N
the approximation

yN (t) = α1φ1(t) + . . . αnφn(t) + . . .+ αNφN (t), (7.632)

drives a weighted residual to zero. Obviously each these trial functions satisfies both boundary con-
ditions, and they have the advantage of being easy to program for an arbitrary number of modes, as
no Gram-Schmidt orthogonalization process is necessary. The details of the analysis are similar to
those of the previous example, except we perform it many times, varying the number of nodes in each
calculation. For the collocation method, we take the weighting functions to be

ψn(t) = δ(t− tn), n = 1, . . . , N. (7.633)
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Figure 7.16: Error in solution yN(t)− yNmax
(t) as a function of number of collocation points

N demonstrating exponential convergence for the spectral-type collocation method.

Here we choose tn = n/(N + 1), n = 1, . . . , N , so that the collocation points are evenly distributed in
t ∈ [0, 1]. We then form the matrix

A =







<ψ1,Lφ1>, <ψ1,Lφ2> . . . <ψ1,LφN>
<ψ2,Lφ1>, <ψ2,Lφ2> . . . <ψ2,LφN>

...
...

...
...

<ψN ,Lφ1>, <ψN ,Lφ2> . . . <ψN ,LφN>






, (7.634)

and the vector

b =






<ψ1, 1>
...

<ψN , 1>




 , (7.635)

and then solve for α in
A · α = b. (7.636)

We then perform this calculation for N = 1, . . . , Nmax. We consider N = Nmax to give the most exact
solution and calculate an error by finding the norm of the difference of the solution for N < Nmax and
that at N = Nmax:

en = ||yN (t) − yNmax
(t)||2 =

√
∫ 1

0

(yN (t) − yNmax
(t))

2
dt. (7.637)

A plot of the error eN is plotted as a function of N in Fig. 7.16. We notice even on a logarithmic
plot that the error reduction is accelerating as the number of nodes N increases. If the slope had
relaxed to a constant, then the convergence would be a power law convergence; which is characteristic
of finite difference and finite element methods. For this example of the method of weighted residuals,
we see that the rate of convergence increases as the number of nodes increases, which is characteristic
of exponential convergence. For exponential convergence, we have eN ∼ exp(−aN), where a is some
positive constant; for power law convergence, we have eN ∼ N−β where β is some positive constant.
At the highest value of N , N = Nmax = 10, we have a local convergence rate of O(N−21.9) which is
remarkably fast. In comparison, a second order finite difference technique will converge at a rate of
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O(N−2). In general and if possible one would choose a method with the fastest convergence rate, all
else being equal.

7.7 Uncertainty quantification via polynomial chaos

The methods of this chapter can be applied to account for how potential uncertainties present
in model parameters affect the solutions of differential equations. To study this, we will
introduce a stochastic nature into our parameters. There are many ways to deal with these
so-called stochastic differential equations. One important method is known variously as
“polynomial chaos,” “Wiener24-Askey25 chaos,” as well as other names. The term “chaos”
in this context was introduced by Wiener; it is in no way connected to the more modern
interpretation of chaos from non-linear dynamics, as will be considered in Sec. 9.11.3.

Polynomial chaos is relevant, for example, to a differential equation of the form

dy

dt
= f(y; k), y(0) = yo, (7.638)

where k is a parameter. For an individual calculation, k is a fixed constant. But because k
is taken to possess an intrinsic uncertainty, it is allowed to take on a slightly different value
for the next calculation. We expect a solution of the form y = y(t; k); that is, the effect of
the parameter will be realized in the solution. One way to handle the uncertainty in k is to
examine a large number of solutions, each for a different value of k. The values chosen for k
are driven by its uncertainty distribution, assumed to be known. We thus see how uncertain
k is manifested in the solution y. This is known as the Monte Carlo method; it is an effective
strategy, although potentially expensive.

For many problems, we can more easily quantify the uncertainty of the output y by
propagating the known uncertainty of k via polynomial chaos, which has as its foundation
notions from linear analysis. The method has the advantage of being a fully deterministic
way to account for stochastic effects in differential equations. There are many variants on this
method; we shall focus only on one canonical linear example which illustrates key aspects of
the technique for ordinary differential equations. The method can be extended to algebraic
and partial differential equations, both for scalar equations as well as for systems.

Example 7.55
Given that

dy

dt
= −ky, y(0) = 1, (7.639)

24Norbert Wiener, 1894-1964, American mathematician.
25Richard Askey, 1933-, American mathematician.
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and that k has an associated uncertainty, such that

k = µ+ σξ, (7.640)

where µ and σ are known constants, and ξ ∈ (−∞,∞) is a random variable with a Gaussian distribution
about a mean of zero with standard deviation of unity, find a two-term estimate of the behavior of y(t)
which accounts for the variation in k.

For our k = µ+σξ, the mean value of k can be easily shown to be be µ, and the standard deviation
of k is σ. The solution to to Eq. (7.639) is

y = e−kt = e−(µ+σξ)t, (7.641)

and will have different values, depending on the value k possess for that calculation. If there is no
uncertainty in k, i.e. σ = 0, the solution to Eq. (7.639) is obviously

y = e−µt. (7.642)

Let us now try to account for the uncertainty in k in predicting the behavior of y when σ 6= 0. Let
us imagine that k has an N + 1-term Fourier expansion of

k(ξ) =

N∑

n=0

αnφn(ξ). (7.643)

where φn(ξ) are a known set of basis functions. Now as the random input ξ is varied, k will vary. And
we expect the output y(t) to vary, so we can imagine that we really seek y(t, k) = y(t, k(ξ)). Dispensing
with k in favor of ξ, we can actually seek y(t, ξ). Let us assume that y(t, ξ) has a similar Fourier
expansion,

y(t, ξ) =

N∑

n=0

yn(t)φn(ξ), (7.644)

where we have also employed a separation of variables technique, with φn(ξ), n = 0, . . . , N as a set of
basis functions and yn(t) as the time-dependent amplitude of each basis function. Let us choose the
basis functions to be orthogonal:

<φn(ξ), φm(ξ)> = 0, n 6= m. (7.645)

Since the domain of ξ is doubly infinite, a good choice for the basis functions is the Hermite polynomials;
following standard practice, we choose the probabilists’ form, φn(ξ) = Hen(ξ), Sec. 5.1.4.2, recalling
He0(ξ) = 1, He1(ξ) = ξ, He2(ξ) = −1 + ξ2, . . .. Note that other non-Gaussian distributions of
parametric uncertainty can render other basis functions to be better choices.

When we equip the inner product with the weighting function

w(ξ) =
1√
2π
e−ξ

2/2, (7.646)

we find our chosen basis functions are orthogonal:

<φn(ξ), φm(ξ)> =

∫ ∞

−∞
φn(ξ)φm(ξ)w(ξ)dξ, (7.647)

=

∫ ∞

−∞
Hen(ξ)Hem(ξ)

1√
2π
e−ξ

2/2dξ, (7.648)

= n!δnm. (7.649)
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Let us first find the coefficients αn in the Fourier-Hermite expansion of k(ξ):

k(ξ) =
N∑

n=0

αnφn(ξ), (7.650)

<φm(ξ), k(ξ)> = <φm(ξ),

∞∑

n=0

αnφn(ξ)>, (7.651)

=

∞∑

n=0

αn<φm(ξ), φn(ξ)>, (7.652)

=

N∑

n=0

αnn!δmn, (7.653)

= m!αm, (7.654)

αn =
<φn(ξ), k(ξ)>

n!
, (7.655)

=
<φn(ξ), µ+ σξ>

n!
, (7.656)

=
1√
2πn!

∫ ∞

−∞
Hen(ξ) (µ+ σξ) e−ξ

2/2dξ (7.657)

Because of the polynomial nature of k = µ + σξ and the orthogonality of the polynomial functions,
there are only two non-zero terms in the expansion: α0 = µ and α1 = σ; thus,

k(ξ) = µ+ σξ = α0He0(ξ) + α1He1(ξ) = µHe0(ξ) + σHe1(ξ). (7.658)

So for this simple distribution of k(ξ), the infinite Fourier series expansion of Eq. (7.644) is a finite
two-term expansion. We actually could have seen this by inspection, but it was useful to go through
the formal exercise.

Now, substitute the expansions of Eqs. (7.643, 7.644) into the governing Eq. (7.639):

d

dt









N∑

n=0

yn(t)φn(ξ)

︸ ︷︷ ︸

y









= −









N∑

n=1

αnφn(ξ)

︸ ︷︷ ︸

k

















N∑

m=0

ym(t)φm(ξ)

︸ ︷︷ ︸

y









. (7.659)

Equation (7.659) forms N + 1 ordinary differential equations, still with an explicit dependency on ξ.
We need an initial condition for each of them. The initial condition y(0) = 1 can be recast as

y(0, ξ) = 1 =
N∑

n=0

yn(0)φn(ξ). (7.660)

Now we could go through the same formal exercise as for k to determine the Fourier expansion of
y(0) = 1. But since φ0(ξ) = 1, we see by inspection the set of N + 1 initial conditions are

y0(0) = 1, y1(0) = 0, y2(0) = 0, . . . , yN (0) = 0. (7.661)

Let us now rearrange Eq. (7.659) to get

N∑

n=0

dyn
dt

φn(ξ) = −
N∑

n=1

N∑

m=1

αnym(t)φn(ξ)φm(ξ). (7.662)
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We still need to remove the explicit dependency on the random variable ξ. To achieve this, we will
take the inner product of Eq. (7.662) with a set of functions, so as to simplify the system into a cleaner
system of ordinary differential equations. Let us choose to invoke a Galerkin procedure by taking the
inner product of Eq. (7.662) with φl(ξ):

<φl(ξ),

N∑

n=0

dyn
dt

φn(ξ)> = −<φl(ξ),
N∑

n=1

N∑

m=1

αnym(t)φn(ξ)φm(ξ)>, (7.663)

N∑

n=0

dyn
dt

<φl(ξ), φn(ξ)> = −
N∑

n=1

N∑

m=1

αnym(t)<φl(ξ), φn(ξ)φm(ξ)>, (7.664)

dyl
dt
<φl(ξ), φl(ξ)> = −

N∑

n=1

N∑

m=1

αnym(t)<φl(ξ), φn(ξ)φm(ξ)>, (7.665)

dyl
dt

= − 1

<φl(ξ), φl(ξ)>

N∑

n=1

N∑

m=1

αnym(t)<φl(ξ), φn(ξ)φm(ξ)>, (7.666)

dyl
dt

= − 1

l!

N∑

n=1

N∑

m=1

αnym(t)<φl(ξ), φn(ξ)φm(ξ)>, l = 0, . . . , N. (7.667)

Equation (7.667) forms N +1 ordinary differential equations, with N +1 initial conditions provided by
Eq. (7.661). All dependency on ξ is removed by explicit evaluation of the inner products for all l, n,
and m. We could have arrived at an analogous system of ordinary differential equations had we chosen
any of the other standard set of functions for the inner product. For example, Dirac delta functions
would have led to a collocation method. Note the full expression of the unusual inner product which
appears in Eq. (7.667) is

<φl(ξ), φn(ξ)φm(ξ)> =

∫ ∞

−∞
φl(ξ)φn(ξ)φm(ξ)

1√
2π
e−ξ

2/2dξ. (7.668)

This relation can be reduced further, but it is not straightforward.
When N = 1, we have a two-term series, with l = 0, 1. Detailed evaluation of all inner products

yields two ordinary differential equations:

dy0
dt

= −µyo − σy1, y0(0) = 1, (7.669)

dy1
dt

= −σy0 − µy1, y1(0) = 0. (7.670)

Note when σ = 0, y0(t) = e−µt, y1(t) = 0, and we recover our original non-stochastic result. For
σ 6= 0, this linear system can be solved exactly using methods of the upcoming Section 9.5.1. Direct
substitution reveals that the solution is in fact

y0(t) = e−µt cosh (σt) , (7.671)

y1(t) = −e−µt sinh (σt) . (7.672)

Thus, the two-term approximation is

y(t, ξ) ∼ y0(t)φ0(ξ) + y1(t)φ1(ξ), (7.673)

= e−µt (cosh (σt) − sinh (σt) ξ) . (7.674)

The non-stochastic solution e−µt is obviously modulated by the uncertainty. Even when ξ = 0, there
is a weak modulation by cosh(σt) ∼ 1 + σ2t2/+ σ4t4/24 + . . ..
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Standard probability theory lets us estimate the mean value of y(t, ξ), which we call y(t), over a
range of normally distributed values of ξ:

y(t) =

∫ ∞

−∞
y(t, ξ)

1√
2π
e−ξ

2/2dξ, (7.675)

=

∫ ∞

−∞
e−µt (cosh (σt) − sinh (σt) ξ)

1√
2π
e−ξ

2/2dξ, (7.676)

= e−µt cosh (σt) . (7.677)

Thus, the mean value of y is y0(t) = e−µt cosh(σt). The standard deviation of the solution, σs(t) is
found by a similar process

σs(t) =

√
∫ ∞

−∞
(y(t, ξ) − y(t))2

1√
2π
e−ξ2/2dξ, (7.678)

=

√
∫ ∞

−∞
(−e−µt sinh (σt) ξ)

2 1√
2π
e−ξ2/2dξ, (7.679)

= e−µt sinh(σt). (7.680)

Note that σs(t) = |y1(t)|. Also note that σs is distinct from σ, the standard deviation of the parameter
k.

All of this is easily verified by direct calculation. If we take µ = 1 and σ = 1/3, we have k = 1+ξ/3,
recalling that ξ is a random number, with a Gaussian distribution with unity standard deviation about
zero. Let us examine various predictions at t = 1. Ignoring all stochastic effects, we might näıvely
predict that the expected value of y should be

y(t = 1) = e−µt = e−(1)(1) = 0.367879, (7.681)

with no standard deviation. However, if we execute so-called Monte Carlo simulations where k is varied
through its range, calculate y at t = 1 for each realization of k, and then take the mean value of all
predictions, we find for 106 simulations that the mean value is

yMonte Carlo(t = 1) = 0.388856. (7.682)

This number will slightly change if a different set of random values of k are tested. Remarkably though,
yMonte Carlo is well predicted by our polynomial chaos estimate of

y0(t = 1) = e−µt cosh(σt) = e−(1)(1) cosh

(
1

3

)

= 0.388507. (7.683)

We could further improve the Monte Carlo estimate by taking more samples. We could further improve
the polynomial chaos estimate by including more terms in the expansion. As the number of Monte
Carlo estimates and the number terms in the polynomial chaos expansion approached infinity, the two
estimates would converge. And they would converge to a number different than that of the näıve
estimate. The exponential function warped the effect of the Gaussian distributed k such that the
realization of y at t = 1 was distorted to a greater value.

For the same 106 simulations, the Monte Carlo method predicts a standard deviation of y at t = 1
of

σs, Monte Carlo = 0.133325. (7.684)

This number is well estimated by the magnitude, |y1(t = 1)|:

|y1(t = 1)| = e−µt sinh(σt) = e−(1)(1) sinh

(
1

3

)

= 0.124910. (7.685)
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Figure 7.17: Histograms for distribution of k and y(t = 1; k = 1 + ξ/3) for 106 Monte Carlo
simulations for various values of k.
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Figure 7.18: Estimates of y(t) which satisfies dy/dt = −ky, y(0) = 1, for k = 1 + ξ/3, where
ξ is a random variable, normally distributed about zero.

Again, both estimates could be improved by more samples, and more terms in the expansion, respec-
tively.

Histograms of the scaled frequency of occurrence of k and y(t = 1; k = 1 + ξ/3) within bins of
specified width from the Monte Carlo method for 106 realizations are plotted in Fig. 7.17. We show
fifty bins within which the scaled number of occurrences of k and y(t = 1) are realized. The scaling
factor applied to the number of occurrences was selected so that the area under the curve is unity.
This is achieved by scaling the number of occurrences within a bin by the product of the total number
of occurrences and the bin width; this allows the scaled number of occurrences to be thought of as a
probability density. As designed, k appears symmetric about its mean value of unity, with a standard
deviation of 1/3. Detailed analysis would reveal that k in fact has a Gaussian distribution. But
y(t = 1; k = 1 + ξ/3) does not have a Gaussian distribution about its mean, as it has been skewed
by the dynamics of the differential equation for y. The time-evolution of y is plotted in Fig. 7.18.
The black line gives the näıve estimate, e−t. The green line gives y0(t), and the two blue lines give
y0(t) ± y1(t), that is, the mean value of y, plus or minus one standard deviation.
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Problems

1. Use a one-term collocation method with a polynomial basis function to find an approximation for

y′′′′ + (1 + x)y = 1,

with y(0) = y′(0) = y′(1) = y′′(1) = 0.

2. Use two-term spectral, collocation, subdomain, least squares and moments methods to solve the
equation

y′′′′ + (1 + x)y = 1,

with y(0) = y′(0) = y(1) = y′′(1) = 0. Compare graphically with the exact solution.

3. If x1, x2, · · · , xN and y1, y2, · · · , yN are real numbers, show that

(
N∑

n=1

xnyn

)2

≤
(

N∑

n=1

x2
n

)(
N∑

n=1

y2
n

)

.

4. If x, y ∈ X, an inner product space, and x is orthogonal to y, then show that ||x + αy|| = ||x − αy||
where α is a scalar.

5. For an inner product space, show that

<x, y + z> = <x, y>+<x, z>,

<αx, y> = α<x, y>,

<x, y> = <y, x> in a real vector space.

6. The linear operator A : X → Y, where X = R2, Y = R2. The norms in X and Y are defined by

x = (ξ1, ξ2)
T ∈ X, ||x||∞ = max (|ξ1|, |ξ2|) ,

y = (η1, η2)
T ∈ Y, ||y||1 = |η1| + |η2|.

Find ||A|| if A =

(
3 −1
5 −2

)

.

7. Let Q, C and R be the sets of all rational, complex and real numbers respectively. For the following
determine if A is a vector space over the field F. For finite-dimensional vector spaces, find also a set
of basis vectors.

(a) A is the set of all polynomials which are all exactly of degree n, F = R.

(b) A is the set of all functions with continuous second derivatives over the interval [0, L] and
satisfying the differential equation y′′ + 2y′ + y = 0, F = R.

(c) A = R,F = R.

(d) A = {(a1, a2, a3) such that a1, a2 ∈ Q, 2a1 + a2 = 4a3},F = Q.

(e) A = C,F = Q.

(f) A = {aex + be−2x such that a, b ∈ R, x ∈ [0, 1]},F = R.
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8. Which of the following subsets of R3 constitute a subspace of R3 where x = (x1, x2, x3) ∈ R3:

(a) All x with x1 = x2 and x3 = 0.

(b) All x with x1 = x2 + 1.

(c) All x with positive x1, x2, x3.

(d) All x with x1 − x2 + x3 = constant k.

9. Given a set S of linearly independent vectors in a vector space V, show that any subset of S is also
linearly independent.

10. Do the following vectors, (3, 1, 4,−1)T , (1,−4, 0, 4)T , (−1, 2, 2, 1)T , (−1, 9, 5,−6)T , form a basis in R4?

11. Given x1, the iterative procedure xn+1 = Lxn generates x2, x3, x4, · · ·, where L is a linear operator
and all the x’s belong to a complete normed space. Show that {xn, n = 1, 2, · · ·} is a Cauchy sequence
if ||L|| < 1. Does it converge? If so find the limit.

12. If {en, n = 1, 2, · · ·} is an orthonormal set in a Hilbert space H, show that for every x ∈ H, the vector

y =
∑N

n=1<x, en>en exists in H, and that x− y is orthogonal to every en.

13. Let the linear operator A : C2 → C2 be represented by the matrix A =

(
2 −4
1 5

)

. Find ||A|| if all

vectors in the domain and range are within a Hilbert space.

14. Let the linear operator A : C2 → C2 be represented by the matrix A =

(
2 + i −4

1 5

)

. Find ||A||
if all vectors in the domain and range are within a Hilbert space.

15. Using the inner product (x, y) =
∫ b

a w(t)x(t)y(t) dt, where w(t) > 0 for a ≤ t ≤ b, show that the
Sturm-Liouville operator

L =
1

w(t)

(
d

dt

(

p(t)
d

dt

)

+ r(t)

)

,

with αx(a) + βx′(a) = 0, and γx(b) + δx′(b) = 0 is self-adjoint.

16. For elements x, y and z of an inner product space, prove the Apollonius26 identity:

||z − x||22 + ||z − y||22 =
1

2
||x − y||22 + 2

∣
∣
∣
∣

∣
∣
∣
∣
z − 1

2
(x+ y)

∣
∣
∣
∣

∣
∣
∣
∣

2

2

.

17. If x, y ∈ X an inner product space, and x is orthogonal to y, then show that ||x+ ay||2 = ||x− ay||2
where a is a scalar.

18. Using the Gram-Schmidt procedure, find the first three members of the orthonormal set belonging to
L2(−∞,∞), using the basis functions {exp(−t2/2), t exp(−t2/2), t2 exp(−t2/2), · · ·}. You may need
the following definite integral

∫ ∞

−∞
exp(−t2/2) dt =

√
2π.

19. Let C(0,1) be the space of all continuous functions in (0,1) with the norm

||f ||2 =

√
∫ 1

0

|f(t)|2 dt.

26Apollonius of Perga, ca. 262 BC-ca. 190 BC, Greek astronomer and geometer.
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Show that

fn(t) =

{
2ntn+1 for 0 ≤ t < 1

2
1 − 2n(1 − t)n+1 for 1

2 ≤ t ≤ 1,

belongs to C(0,1). Show also that {fn, n = 1, · · ·} is a Cauchy sequence, and that C(0,1) is not
complete.

20. Find the first three terms of the Fourier-Legendre series for f(x) = cos(πx/2) for x ∈ [−1, 1]. Compare
graphically with exact function.

21. Find the first three terms of the Fourier-Legendre series for

f(x) =

{
−1, for − 1 ≤ x < 0,

1, for 0 ≤ x ≤ 1.

22. Consider
d3y

dt3
+ 2t3y = 1 − t, y(0) = 0 y(2) = 0

dy

dt
(0) = 0.

Choosing polynomials as the basis functions, use a Galerkin and moments method to obtain a two-
term estimate to y(t). Plot your approximations and the exact solution on a single curve. Plot the
residual in both methods for t ∈ [0, 2]

23. Solve
x′′ + 2xx′ + t = 0,

with x(0) = 0, x(4) = 0, approximately using a two-term weighted residual method where the basis
functions are of the type sinλt. Do both a spectral (as a consequence Galerkin) and pseudospectral
(as a consequence collocation) method. Plot your approximations and the exact solution on a single
curve. Plot the residual in both methods for x ∈ [0, 4].

24. Show that the set of solutions of the linear equations

x1 + 3x2 + x3 − x4 = 0,

−2x1 + 2x2 − x3 + x4 = 0,

form a vector space. Find the dimension and a set of basis vectors.

25. Let

A =





1 1 1
0 1 1
0 0 1



 .

For A : R3 → R3, find ||A|| if the norm of x = (x1, x2, x3)
T ∈ R3 is given by

||x||∞ = max(|x1|, |x2|, |x3|).

26. For any complete orthonormal set {φi, i = 1, 2, · · ·} in a Hilbert space H, show that

u =
∑

i

<u, φi>φi,

<u, v> =
∑

i

<u, φi><v, φi>,

||u||22 =
∑

i

|<u, φi>|2,

where u and v belong to H.
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27. Show that the set P4[0, 1] of all polynomials of degree 4 or less in the interval 0 < x < 1 is a vector
space. What is the dimension of this space?

28. Show that

(x2
1 + x2

2 + . . .+ x2
N )(y2

1 + y2
2 + . . .+ y2

N ) ≥ (x1y1 + x2y2 + . . .+ xNyN )2,

where x1, x2, . . . , xN , y1, y2, . . . , yN are real numbers.

29. Show that the functions e1(t), e2(t), . . . , eN (t) are orthogonal in L2(0, 1], where

en(t) =

{
1 n−1

N < t ≤ n
N ,

0 otherwise.

Expand t2 in terms of these functions.

30. Find one-term collocation approximations for all solutions of

d2y

dx2
+ y4 = 1,

with y(0) = 0, y(1) = 0.

31. Show that √
∫ b

a

(f(x) + g(x))
2
dx ≤

√
∫ b

a

(f(x))
2
dx+

√
∫ b

a

(g(x))
2
dx,

where f(x) and y(x) belong to L2[a, b].

32. Find the eigenvalues and eigenfunctions of the operator

L = −
(
d2

dx2
+ 2

d

dx
+ 1

)

,

which operates on functions y ∈ L2[0, 5] that vanish at x = 0 and x = 5.

33. Find the supremum and infimum of the set S = {1/n, where n = 1, 2, · · ·}.
34. Find the L2[0, 1] norm of the function f(x) = x+ 1.

35. Find the distance between the functions x and x3 under the L2[0, 1] norm.

36. Find the inner product of the functions x and x3 using the L2[0,1] definition.

37. Find the Green’s function for the problem

d2x

dt2
+ k2x = f(t), with x(0) = a, x(π) = b.

Write the solution of the differential equation in terms of this function.

38. Find the first three terms of the Fourier-Legendre series for

f(x) =

{
−2 for − 1 ≤ x < 0

1 for 0 ≤ x ≤ 1

Graph f(x) and its approximation.

39. Find the null space of
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(a) the matrix operator

A =





1 1 1
2 2 1
2 2 1



 ,

(b) the differential operator

L =
d2

dt2
+ k2.

40. Test the positive definiteness of a diagonal matrix with positive real numbers on the diagonal.

41. Let S be a subspace of L2[0, 1] such that for every x ∈ S, x(0) = 0, and ẋ(0) = 1. Find the eigenvalues
and eigenfunctions of L = −d2/dt2 operating on elements of S.

42. Show that

lim
ǫ→0

∫ β

α

f(x)∆ǫ(x− a)dx = f(a),

for a ∈ (α, β), where

∆ǫ(x− a) =







0, if x < a− ǫ
2 ,

1
ǫ , if a− ǫ

2 ≤ x ≤ a+ ǫ
2 ,

0, if x > a+ ǫ
2 .

43. Consider functions of two variables in a domain Ω with the inner product defined as

<u, v> =

∫ ∫

Ω

u(x, y)v(x, y) dx dy.

Find the space of functions such that the Laplacian operator is self-adjoint.

44. Find the eigenvalues and eigenfunctions of the operator L where

Ly = (1 − t2)
d2y

dt2
− t

dy

dt
,

with t ∈ [−1, 1] and y(−1) = y(1) = 0. Show that there exists a weight function r(x) such that the
eigenfunctions are orthogonal in [−1, 1] with respect to it.

45. Show that the eigenvalues of an operator and its adjoint are complex conjugates of each other.

46. Using an eigenvector expansion, find the general solution of A · x = y where

A =





2 0 0
0 1 1
0 1 1



 ,

y =





2
3
5



 .

47. Show graphically that the Fourier trigonometric series representation of the function

f(t) =

{
−1, if −π ≤ t < 0,

1, if 0 ≤ t ≤ π,

always has an overshoot near x = 0, however many terms one takes (Gibbs phenomenon). Estimate
the overshoot.
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48. Let {e1, · · · , eN} be an orthonormal set in an inner product space S. Approximate x ∈ S by y =
β1e1 + · · · + βNeN , where the β’s are to be selected. Show that ||x − y|| is a minimum if we choose
βi = <x, ei>.

49. (a) Starting with a vector in the direction (1, 2, 0)T use the Gram-Schmidt procedure to find a set of
orthonormal vectors in R3. Using these vectors, construct (b) an orthogonal matrix Q, and then find
(c) the angles between x and Q · x, where x is (1, 0, 0)T , (0, 1, 0)T and (0, 0, 1)T , respectively. The
orthogonal matrix Q is defined as a matrix having orthonormal vectors in its columns.

50. Find the null space of the operator L defined by Lx = (d2/dt2)x(t). Also find the eigenvalues and
eigenfunctions (in terms of real functions) of L with x(0) = 1, (dx/dt)(0) = 0.

51. Find all approximate solutions of the boundary value problem

d2y

dx2
+ y + 5y2 = −x,

with y(0) = y(1) = 0 using a two-term collocation method. Compare graphically with the exact
solution determined by numerical methods.

52. Find a one-term approximation for the boundary value problem

y′′ − y = −x3,

with y(0) = y(1) = 0, using the collocation, Galerkin, least-squares, and moments methods. Compare
graphically with the exact solution.

53. Consider the sequence { 1+ 1
N

2+ 1
N

} in RN . Show that this is a Cauchy sequence. Does it converge?

54. Prove that (LaLb)
∗

= L∗
bL

∗
a when La and Lb are linear operators which operate on vectors in a Hilbert

space.

55. If {xi} is a sequence in an inner product space such that the series ||x1||+ ||x2||+ · · · converges, show
that {sN} is a Cauchy sequence, where sN = x1 + x2 + · · · + xN .

56. If L(x) = a0(t)
d2x
dt2 + a1(t)

dx
dt + a2(t)x, find the operator that is formally adjoint to it.

57. If

y(t) = L(x(t)) =

∫ t

0

x(τ) dτ,

where y(t) and x(t) are real functions in some properly defined space, find the eigenvalues and eigen-
functions of the operator L.

58. Using a dual basis, expand the vector (1, 3, 2)T in terms of the basis vectors (1, 1, 1)T , (1, 0,−1)T , and
(1, 0, 1)T in R3. The inner product is defined as usual.

59. With f1(x) = 1 + i+ x and f2(x) = 1 + ix+ ix2,

a) Find the L2[0, 1] norms of f1(x) and f2(x).

b) Find the inner product of f1(x) and f2(x) under the L2[0, 1] norm.

c) Find the “distance” between f1(x) and f2(x) under the L2[0, 1] norm.

60. Show the vectors u1 = (−i, 0, 2, 1 + i)T , u2 = (1, 2, i, 3)T , u3 = (3 + i, 3 − i, 0,−2)T , u4 = (1, 0, 1, 3)T

form a basis in C4. Find the set of reciprocal basis vectors. For x ∈ C4, and x = (i, 3 − i,−2, 2)T ,
express x as an expansion in the above-defined basis vectors. That is find αi such that x = αiui.
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61. The following norms can be used in RN , where x = (ξ1, · · · , ξN ) ∈ RN .

(a) ||x||∞ = max1≤n≤N |ξn|,
(b) ||x||1 =

∑N
n=1 |ξn|,

(c) ||x||2 = (
∑N

n=1 |ξn|2)1/2,
(d) ||x||p = (

∑N
n=1 |ξn|p)1/p, 1 ≤ p <∞.

Show by examples that these are all valid norms.

62. Show that the set of all matrices A : RN → RN is a vector space under the usual rules of matrix
manipulation.

63. Show that if A is a linear operator such that

(a) A : (RN , || · ||∞) → (RN , || · ||1), then ||A|| =
∑N

i,j=1 Aij .

(b) A : (RN , || · ||∞) → (RN , || · ||∞), then ||A|| = max1≤i≤N
∑N

j=1 Aij .

64. If

Lu = a(x)
d2u

dx2
+ b(x)

du

dx
+ c(x)u,

show

L∗u =
d2

dx2
(au) − d

dx
(bu) + cu.

65. Consider the function x(t) = sin(4t) for t ∈ [0, 1]. Project x(t) onto the space spanned by the functions

um(t) so as to find the coefficients αm, where x(t) ≃ xp(t) =
∑M

m=1 αmum(t) when the basis functions
are

(a) M = 2; u1(t) = t, u2(t) = t2.

(b) M = 3; u1(t) = 1, u2(t) = t2, u3(t) = tan t.

In each case plot x(t) and its approximation on the same plot.

66. Project the vector x = (1, 2, 3, 4)T onto the space spanned by the vectors, u1, u2, so as to find the
projection x ≃ xp = α1u1 + α2u2.

(a) u1 =






1
0
0
0




, u2 =






1
1
1
1




 ,

(b) u1 =






i
0
0
0




, u2 =






i
1
i
1




.

67. Show the vectors u1 = (−i, 3, 2−i, 1+i)T , u2 = (i+1, 2, i, 3)T , u3 = (3+i, 3−i, 0,−2)T , u4 = (1, 0, 2, 3)T

form a basis in C4. Find the set of reciprocal basis vectors. For x ∈ C4, and x = (i, 3− i,−5, 2 + i)T ,

(a) express x as an expansion in the above-defined basis vectors. That is find αi such that x =
∑4

i=1 αiui,

(b) project onto the space spanned by u1, u2, and u3. That is find the best set of αi such that

x ≃ xp =
∑3
i=1 αiui.

68. Consider d2y/dt2 = −ky, y(0) = 1, dy/dt(0) = 0. With ξ ∈ (−∞,∞) a random normally distributed
variable with mean of zero and standard deviation of unity, consider k = µ + σξ. Use the method
of polynomial chaos to get a two-term estimate for y when µ = 1, σ = 1/10. Compare the expected
value of y(t = 10) with that of a Monte Carlo simulation and that when σ = 0.
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Chapter 8

Linear algebra

see Kaplan, Chapter 1,

see Lopez, Chapters 33, 34,

see Riley, Hobson, and Bence, Chapter 7,

see Michel and Herget,

see Golub and Van Loan,

see Strang, Linear Algebra and its Applications,

see Strang, Introduction to Applied Mathematics.

The key problem in linear algebra is addressing the equation

A · x = b, (8.1)

where A is a known constant rectangular matrix, b is a known column vector, and x is
an unknown column vector. In this chapter, we will more often consider A to be an alibi
transformation in which the coordinate axes remain fixed, though occasionally we revert to
alias transformations. To explicitly indicate the dimension of the matrices and vectors, we
sometimes write this in expanded form:

AN×M · xM×1 = bN×1, (8.2)

where N,M ∈ N are the positive integers which give the dimensions. If N = M , the matrix
is square, and solution techniques are usually straightforward. For N 6= M , which arises
often in physical problems, the issues are not as straightforward. In some cases we find an
infinite number of solutions; in others we find none. Relaxing our equality constraint, we
can, however, always find a vector xp

xp = x such that ||A · x − b||2 → min. (8.3)

This vector xp is the best solution to the equation A · x = b, for cases in which there is no
exact solution. Depending on the problem, it may turn out that xp is not unique. It will
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always be the case, however, that of all the vectors xp which minimize ||A · x − b||2, that
one of them, x̂, will itself have a minimum norm. We will define here the residual r as

r = A · x − b. (8.4)

In general, we will seek an x that minimizes ||r||2.

8.1 Determinants and rank

We can take the determinant of a square matrix A, written det A. Details of computation of
determinants are found in any standard reference and will not be repeated here. Properties
of the determinant include

• detAN×N is equal to the volume of a parallelepiped in N -dimensional space whose
edges are formed by the rows of A.

• If all elements of a row (or column) are multiplied by a scalar, the determinant is also
similarly multiplied.

• The elementary operation of subtracting a multiple of one row from another leaves the
determinant unchanged.

• If two rows (or columns) of a matrix are interchanged the sign of the determinant
changes.

A singular matrix is one whose determinant is zero. The rank of a matrix is the size r of the
largest square non-singular matrix that can be formed by deleting rows and columns.

While the determinant is useful to some ends in linear algebra, most of the common
problems are better solved without using the determinant at all; in fact it is probably a fair
generalization to say that the determinant is less, rather than more, useful than imagined by
many. It is useful in solving linear systems of equations of small dimension, but becomes much
too cumbersome relative to other methods for commonly encountered large systems of linear
algebraic equations. While it can be used to find the rank, there are also other more efficient
means to calculate this. Further, while a zero value for the determinant almost always has
significance, other values do not. Some matrices which are particularly ill-conditioned for
certain problems often have a determinant which gives no clue as to difficulties which may
arise.
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8.2 Matrix algebra

We will denote a matrix of size N ×M as

AN×M =












a11 a12 · · · a1m · · · a1M

a21 a22 · · · a2m · · · a2M
...

...
. . .

...
...

...
an1 an2 · · · anm · · · anM
...

...
...

...
. . .

...
aN1 aN2 · · · aNm · · · aNM












. (8.5)

Addition of matrices can be defined as

AN×M + BN×M = CN×M , (8.6)

where the elements of C are obtained by adding the corresponding elements of A and B.
Multiplication of a matrix by a scalar α can be defined as

αAN×M = BN×M , (8.7)

where the elements of B are the corresponding elements of A multiplied by α.
It can be shown that the set of all N×M matrices is a vector space. We will also refer to

an N ×1 matrix as an N -dimensional column vector. Likewise a 1×M matrix will be called
an M-dimensional row vector. Unless otherwise stated vectors are assumed to be column
vectors. In this sense the inner product of two vectors xN×1 and yN×1 is <x,y> = x̄T · y.
In this chapter matrices will be represented by upper-case bold-faced letters, such as A, and
vectors by lower-case bold-faced letters, such as x.

8.2.1 Column, row, left and right null spaces

The M column vectors cm ∈ CN , m = 1, 2, . . . ,M , of the matrix AN×M are each one of
the columns of A. The column space is the subspace of CM spanned by the column vectors.
The N row vectors rn ∈ CM , n = 1, 2, . . . , N , of the same matrix are each one of the rows.
The row space is the subspace of CN spanned by the row vectors. The column space vectors
and the row space vectors span spaces of the same dimension. Consequently, the column
space and row space have the same dimension. The right null space is the set of all vectors
xM×1 ∈ CM for which AN×M · xM×1 = 0N×1. The left null space is the set of all vectors
yN×1 ∈ CN for which yTN×1 · AN×M = y1×N · AN×M = 01×M .

If we have AN×M : CM → CN , and recall that the rank of A is r, then we have the
following important results:

• The column space of AN×M has dimension r, (r ≤ M).

• The left null space of AN×M has dimension N − r.
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• The row space of AN×M has dimension r, (r ≤ N).

• The right null space of AN×M has dimension M − r.

We also can show

CN = column space ⊕ left null space, (8.8)

CM = row space ⊕ right null space. (8.9)

Also

• Any vector x ∈ CM can be written as a linear combination of vectors in the row space
and the right null space.

• Any M-dimensional vector x which is in the right null space of A is orthogonal to any
M-dimensional vector in the row space. This comes directly from the definition of the
right null space A · x = 0.

• Any vector y ∈ CN can be written as the sum of vectors in the column space and the
left null space.

• Any N -dimensional vector y which is in the left null space of A is orthogonal to any
N -dimensional vector in the column space. This comes directly from the definition of
the left null space yT ·A = 0T .

Example 8.1
Find the column and row spaces of

A =

(
1 0 1
0 1 2

)

, (8.10)

and their dimensions.

Restricting ourselves to real vectors, we note first that in the equation A · x = b, A is an operator
which maps three-dimensional real vectors x into vectors b which are elements of a two-dimensional
real space, i.e.

A : R3 → R2. (8.11)

The column vectors are

c1 =

(
1
0

)

, (8.12)

c2 =

(
0
1

)

, (8.13)

c3 =

(
1
2

)

. (8.14)
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The column space consists of the vectors α1c1 +α2c2 +α3c3, where the α’s are any scalars. Since only
two of the ci’s are linearly independent, the dimension of the column space is also two. We can see this
by looking at the sub-determinant

det

(
1 0
0 1

)

= 1, (8.15)

which indicates the rank, r = 2. Note that

• c1 + 2c2 = c3.

• The three column vectors thus lie in a single two-dimensional plane.

• The three column vectors are thus said to span a two-dimensional subspace of R3.

The two row vectors are

r1 =
(

1 0 1
)
, (8.16)

r2 =
(

0 1 2
)
. (8.17)

The row space consists of the vectors β1r1 + β2r2, where the β’s are any scalars. Since the two ri’s are
linearly independent, the dimension of the row space is also two. That is the two row vectors are both
three dimensional, but span a two-dimensional subspace.

We note for instance, if x = (1, 2, 1)T , that A · x = b gives

(
1 0 1
0 1 2

)




1
2
1



 =

(
2
4

)

. (8.18)

So
b = 1c1 + 2c2 + 1c3. (8.19)

That is b is a linear combination of the column space vectors and thus lies in the column space of A.
We note for this problem that since an arbitrary b is two-dimensional and the dimension of the column
space is two, that we can represent an arbitrary b as some linear combination of the column space
vectors. For example, we can also say that b = 2c1 + 4c2. We also note that x in general does not
lie in the row space of A, since x is an arbitrary three-dimensional vector, and we only have enough
row vectors to span a two-dimensional subspace (i.e. a plane embedded in a three-dimensional space).
However, as will be seen, x does lie in the space defined by the combination of the row space of A, and
the right null space of A (the set of vectors x for which A · x = 0). In special cases, x will in fact lie
in the row space of A.

8.2.2 Matrix multiplication

Multiplication of matrices A and B can be defined if they are of the proper sizes. Thus

AN×L ·BL×M = CN×M . (8.20)

It may be better to say here that A is a linear operator which operates on elements which are
in a space of dimension L×M so as to generate elements which are in a space of dimension
N ×M ; that is, A : RL × RM → RN × RM .
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Example 8.2
Consider the matrix operator

A =

(
1 2 1
−3 3 1

)

, (8.21)

which operates on 3 × 4 matrices, i.e.

A : R3 × R4 → R2 × R4, (8.22)

and show how it acts on another matrix.

We can use A to operate on a 3 × 4 matrix as follows:

(
1 2 1
−3 3 1

)




1 0 3 −2
2 −4 1 3
−1 4 0 2



 =

(
4 −4 5 6
2 −8 −6 17

)

. (8.23)

Note the operation does not exist if the order is reversed.

A vector operating on a vector can yield a scalar or a matrix, depending on the order of
operation.

Example 8.3
Consider the vector operations A1×3 · B3×1 and B3×1 ·A1×3 where

A1×3 = aT = ( 2 3 1 ) , (8.24)

B3×1 = b =





3
−2
5



 . (8.25)

Then

A1×3 · B3×1 = aT · b = ( 2 3 1 )





3
−2
5



 = (2)(3) + (3)(−2) + (1)(5) = 5. (8.26)

This is the ordinary inner product <a,b>. The commutation of this operation however yields a matrix:

B3×1 ·A1×3 = baT =





3
−2
5



 ( 2 3 1 ) =





(3)(2) (3)(3) (3)(1)
(−2)(2) (−2)(3) (−2)(1)
(5)(2) (5)(3) (5)(1)



 , (8.27)

=





6 9 3
−4 −6 −2
10 15 5



 . (8.28)

This is the dyadic product of the two vectors. Note that for vector (lower case notation) the dyadic
product usually is not characterized by the “dot” operator that we use for the vector inner product.
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A special case is that of a square matrix AN×N of size N . For square matrices of the
same size both A · B and B · A exist. While A · B and B · A both yield N × N matrices,
the actual value of the two products is different. In what follows, we will often assume that
we are dealing with square matrices.
Properties of matrices include

1. (A ·B) · C = A · (B · C) (associative),

2. A · (B + C) = A · B + A ·C (distributive),

3. (A + B) · C = A · C + B · C (distributive),

4. A ·B 6= B · A in general (not commutative),

5. detA · B = (detA)(detB).

8.2.3 Definitions and properties

8.2.3.1 Identity

The identity matrix I is a square diagonal matrix with 1 on the main diagonal. With this
definition, we get

AN×M · IM×M = AN×M , (8.29)

IN×N · AN×M = AN×M , or, more compactly, (8.30)

A · I = I · A = A, (8.31)

where the unsubscripted identity matrix is understood to be square with the correct dimen-
sion for matrix multiplication.

8.2.3.2 Nilpotent

A square matrix A is called nilpotent if there exists a positive integer n for which An = 0.

8.2.3.3 Idempotent

A square matrix A is called idempotent if A · A = A. The identity matrix I is idempotent.
Projection matrices P, see Eq. (7.160), are idempotent. All idempotent matrices which are
not the identity matrix are singular. The trace of an idempotent matrix gives its rank. More
generally, a function f is idempotent if f(f(x)) = f(x). As an example, the absolute value
function is idempotent since abs(abs(x)) = abs(x).
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8.2.3.4 Diagonal

A diagonal matrix D has nonzero terms only along its main diagonal. The sum and product
of diagonal matrices are also diagonal. The determinant of a diagonal matrix is the product
of all diagonal elements.

8.2.3.5 Transpose

Here we expand on the earlier discussion of Sec. 6.2.3. The transpose AT of a matrix A is an
operation in which the terms above and below the diagonal are interchanged. For any matrix
AN×M , we find that A · AT and AT · A are square matrices of size N and M , respectively.
Properties of the transpose include

1. detA = detAT ,

2. (AN×M ·BM×N)T = BT · AT ,

3. (AN×N · xN×1)
T · yN×1 = xT · AT · y = xT · (AT · y).

8.2.3.6 Symmetry, anti-symmetry, and asymmetry

To reiterate the earlier discussion of Sec. 6.2.3, a symmetric matrix is one for which AT = A.
An anti-symmetric or skew-symmetric matrix is one for which AT = −A. Any matrix A
can be written as

A =
1

2
(A + AT ) +

1

2
(A −AT ), (8.32)

where (1/2)(A + AT ) is symmetric and (1/2)(A − AT ) is anti-symmetric. An asymmetric

matrix is neither symmetric nor anti-symmetric.

8.2.3.7 Triangular

A lower (or upper) triangular matrix is one in which all entries above (or below) the main
diagonal are zero. Lower triangular matrices are often denoted by L, and upper triangular
matrices by either U or R.

8.2.3.8 Positive definite

A positive definite matrix A is a matrix for which xT ·A ·x > 0 for all nonzero vectors x. A
positive definite matrix has real, positive eigenvalues. Every positive definite matrix A can
be written as A = UT ·U, where U is an upper triangular matrix (Cholesky1 decomposition).

1after André-Louis Cholesky, 1875-1918, French mathematician and military officer.
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8.2.3.9 Permutation

A permutation matrix P is a square matrix composed of zeroes and a single one in each
column. None of the ones occur in the same row. It effects a row exchange when it operates
on a general matrix A. It is never singular, and is in fact its own inverse, P = P−1, so
P ·P = I. Also ||P||2 = 1, and | detP| = 1. However, we can have detP = ±1, so it can be
either a rotation or a reflection.

The permutation matrix P is not to be confused with a projection matrix P, which is
usually denoted in the same way. The context should be clear as to which matrix is intended.

Example 8.4
Find the permutation matrix P which effects the exchange of the first and second rows of A, where

A =





1 3 5 7
2 3 1 2
3 1 3 2



 . (8.33)

To construct P, we begin with at 3 × 3 identity matrix I. For a first and second row exchange, we
replace the ones in the (1, 1) and (2, 2) slot with zero, then replace the zeroes in the (1, 2) and (2, 1)
slot with ones. Thus

P · A =





0 1 0
1 0 0
0 0 1









1 3 5 7
2 3 1 2
3 1 3 2



 =





2 3 1 2
1 3 5 7
3 1 3 2



 . (8.34)

Example 8.5
Find the rank and right null space of

A =





1 0 1
5 4 9
2 4 6



 . (8.35)

The rank of A is not three since
detA = 0. (8.36)

Since ∣
∣
∣
∣

1 0
5 4

∣
∣
∣
∣
6= 0, (8.37)

the rank of A is 2.
Let

x =





x1

x2

x3



 , (8.38)
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belong to the right null space of A. Then

x1 + x3 = 0, (8.39)

5x1 + 4x2 + 9x3 = 0, (8.40)

2x1 + 4x2 + 6x3 = 0. (8.41)

One strategy to solve singular systems is to take one of the variables to be a known parameter, and see
if the resulting system can be solved. If the resulting system remains singular, take a second variable
to be a second parameter. This ad hoc method will later be made systematic.

So here take x1 = t, and consider the first two equations, which gives
(

0 1
4 9

)(
x2

x3

)

=

(
−t
−5t

)

. (8.42)

Solving, we find x2 = t, x3 = −t. So,

x =





x1

x2

x3



 =





t
t
−t



 = t





1
1
−1



 , t ∈ R1. (8.43)

Therefore, the right null space is the straight line in R3 which passes through (0,0,0) and (1,1,-1).

8.2.3.10 Inverse

Definition: A matrix A has an inverse A−1 if A · A−1 = A−1 ·A = I.

Theorem

A unique inverse exists if the matrix is non-singular.

Properties of the inverse include

1. (A ·B)−1 = B−1 · A−1,

2. (A−1)T = (AT )−1,

3. det(A−1) = (detA)−1.

If aij and a−1
ij are the elements of A and A−1, and we define the cofactor as

cij = (−1)i+jmij , (8.44)

where the minor, mij is the determinant of the matrix obtained by canceling out the j-th
row and i-th column, then the inverse is

a−1
ij =

cij
det A

. (8.45)

The inverse of a diagonal matrix is also diagonal, but with the reciprocals of the original
diagonal elements.
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Example 8.6
Find the inverse of

A =

(
1 1
−1 1

)

. (8.46)

The inverse is

A−1 =

(
1
2 − 1

2
1
2

1
2

)

. (8.47)

We can confirm that A ·A−1 = A−1 · A = I.

8.2.3.11 Similar matrices

Matrices A and B are similar if there exists a non-singular matrix S such that B = S−1 ·A·S.
Similar matrices have the same determinant, eigenvalues, multiplicities and eigenvectors.

8.2.4 Equations

In general, for matrices that are not necessarily square, the equation AN×M · xM×1 = bN×1

is solvable iff b can be expressed as combinations of the columns of A. Problems in which
M < N are over-constrained; in special cases, those in which b is in the column space of A,
a unique solution x exists. However in general no solution x exists; nevertheless, one can
find an x which will minimize ||A · x − b||2. This is closely related to what is known as the
method of least squares. Problems in which M > N are generally under-constrained, and
have an infinite number of solutions x which will satisfy the original equation. Problems for
which M = N (square matrices) have a unique solution x when the rank r of A is equal to
N . If r < N , then the problem is under-constrained.

8.2.4.1 Over-constrained systems

Example 8.7
For x ∈ R2, b ∈ R3, A : R2 → R3, consider





1 2
1 0
1 1





(
x1

x2

)

=





0
1
3



 . (8.48)

Here it turns out that b = (0, 1, 3)T is not in the column space of A, and there is no solution x for
which A · x = b! The column space is a plane defined by two vectors; the vector b does not happen to
lie in the plane defined by the column space. However, we can find a solution x = xp, where xp can be
shown to minimize the Euclidean norm of the residual ||A ·xp −b||2. This is achieved by the following

CC BY-NC-ND. 29 July 2012, Sen & Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


334 CHAPTER 8. LINEAR ALGEBRA

procedure, the same employed earlier in Sec. 7.3.2.6, in which we operate on both vectors A ·xp and b

by the operator AT so as to map both vectors into the same space, namely the row space of A. Once
the vectors are in the same space, a unique inversion is possible.

A · xp ≃ b, (8.49)

AT ·A · xp = AT · b, (8.50)

xp = (AT ·A)−1 · AT · b. (8.51)

These operations are, numerically,

(
1 1 1
2 0 1

)




1 2
1 0
1 1





(
x1

x2

)

=

(
1 1 1
2 0 1

)




0
1
3



 , (8.52)

(
3 3
3 5

)(
x1

x2

)

=

(
4
3

)

, (8.53)

(
x1

x2

)

=

(
11
6

− 1
2

)

. (8.54)

Note the resulting xp will not satisfy A · xp = b. We can define the difference of A · xp and b as the
residual vector, see Eq. (8.4), r = A · xp − b. In fact, ||r||2 = ||A · xp − b||2 = 2.0412. If we tried

any nearby x, say x = (2,−3/5)
T
, ||A · x − b||2 = 2.0494 > 2.0412. Since the problem is linear, this

minimum is global; if we take x = (10,−24)T , then ||A · x− b||2 = 42.5911 > 2.0412. Though we have
not proved it, our xp is the unique vector which minimizes the Euclidean norm of the residual.

Further manipulation shows that we can write our solution as a combination of vectors in the row
space of A. As the dimension of the right null space of A is zero, there is no possible contribution from
the right null space vectors.

(
11
6

− 1
2

)

= α1

(
1
2

)

+ α2

(
1
0

)

, (8.55)

(
11
6

− 1
2

)

=

(
1 1
2 0

)(
α1

α2

)

, (8.56)

(
α1

α2

)

=

(
− 1

4
25
12

)

. (8.57)

So (
x1

x2

)

= −1

4

(
1
2

)

+
25

12

(
1
0

)

︸ ︷︷ ︸

linear combination of row space vectors

. (8.58)

We could also have chosen to expand in terms of the other row space vector (1, 1)T , since any two of
the three row space vectors span the space R2.

The vector A ·xp actually represents the projection of b onto the subspace spanned by the column
vectors (i.e. the column space). Call the projected vector bp:

bp = A · xp = A · (AT · A)−1 ·AT

︸ ︷︷ ︸

projection matrix, P

·b. (8.59)

For this example bp = (5/6, 11/6, 4/3)
T
. We can think of bp as the shadow cast by b onto the column

space. Here, following Eq. (7.160), we have the projection matrix P as

P = A · (AT · A)−1 ·AT . (8.60)
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c 1

c
2

b

R
2

R
3

x   = P  bpA . =  b  = bp
.

r

Figure 8.1: Plot for b which lies outside of column space (space spanned by c1 and c2) of A.

A sketch of this system is shown in Fig. 8.1. Here we sketch what might represent this example
in which the column space of A does not span the entire space R3, and for which b lies outside of
the column space of A. In such a case ||A · xp − b||2 > 0. We have A as a matrix which maps
two-dimensional vectors x into three-dimensional vectors b. Our space is R3, and embedded within
that space are two column vectors c1 and c2 which span a column space R2, which is represented by a
plane within a three-dimensional volume. Since b lies outside the column space, there exists no unique
vector x for which A · x = b.

Example 8.8
For x ∈ R2, b ∈ R3, consider A : R2 → R3,





1 2
1 0
1 1





(
x1

x2

)

=





5
1
3



 . (8.61)

The column space of A is spanned by the two column vectors

c1 =





1
1
1



 , c2 =





2
0
1



 . (8.62)

Our equation can also be cast in the form which makes the contribution of the column vectors obvious:

x1





1
1
1



+ x2





2
0
1



 =





5
1
3



 . (8.63)

Here we have the unusual case that b = (5, 1, 3)T is in the column space of A (in fact b = c1 + 2c2),
and we have a unique solution of

x =

(
1
2

)

. (8.64)
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c 1

c
2

R 2

R
3

xA . =  b

Figure 8.2: Plot for b which lies in column space (space spanned by c1 and c2) of A.

In most cases, however, it is not obvious that b lies in the column space. We can still operate on
both sides by the transpose and solve, which will reveal the correct result:

(
1 1 1
2 0 1

)




1 2
1 0
1 1





(
x1

x2

)

=

(
1 1 1
2 0 1

)




5
1
3



 , (8.65)

(
3 3
3 5

)(
x1

x2

)

=

(
9
13

)

, (8.66)

(
x1

x2

)

=

(
1
2

)

. (8.67)

A quick check of the residual shows that in fact r = A · xp − b = 0. So, we have an exact solution for
which x = xp.

Note that the solution vector x lies entirely in the row space of A; here, it is identically the first row
vector r1 = (1, 2)T . Note also that here the column space is a two-dimensional subspace, in this case a
plane defined by the two column vectors, embedded within a three-dimensional space. The operator A

maps arbitrary two-dimensional vectors x into the three-dimensional b; however, these b vectors are
confined to a two-dimensional subspace within the greater three-dimensional space. Consequently, we
cannot always expect to find a vector x for arbitrary b!

A sketch of this system is shown in Fig. 8.2. Here we sketch what might represent this example
in which the column space of A does not span the entire space R3, but for which b lies in the column
space of A. In such a case ||A · x − b||2 = 0. We have A as a matrix which maps two-dimensional
vectors x into three-dimensional vectors b. Our space is R3 and embedded within that space are two
column vectors c1 and c2 which span a column space R2, which is represented by a plane within a
three-dimensional volume. Since b in this example happens to lie in the column space, there exists a
unique vector x for which A · x = b.

8.2.4.2 Under-constrained systems

Example 8.9
Consider now A : R3 → R2 such that

(
1 1 1
2 0 1

)




x1

x2

x3



 =

(
1
3

)

. (8.68)
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In this case operating on both sides by the transpose is not useful because (AT · A)−1 does not
exist. We take an alternate strategy.

Certainly b = (1, 3)T lies in the column space of A, since for example, b = 0(1, 2)T − 2(1, 0)T +
3(1, 1)T . Setting x1 = t, where t is an arbitrary number, lets us solve for x2, x3:

(
1 1 1
2 0 1

)




t
x2

x3



 =

(
1
3

)

, (8.69)

(
1 1
0 1

)(
x2

x3

)

=

(
1 − t
3 − 2t

)

. (8.70)

Inversion gives
(
x2

x3

)

=

(
−2 + t
3 − 2t

)

, (8.71)

so 



x1

x2

x3



 =





t
−2 + t
3 − 2t



 =





0
−2
3



+ t





1
1
−2





︸ ︷︷ ︸

right null space

, t ∈ R1. (8.72)

A useful way to think of problems such as this which are undetermined is that the matrix A maps
the additive combination of a unique vector from the row space of A plus an arbitrary vector from the
right null space of A into the vector b. Here the vector (1, 1,−2)T is in the right null space; however,
the vector (0,−2, 3)T has components in both the right null space and the row space. Let us extract
the parts of (0,−2, 3)T which are in each space. Since the row space and right null space are linearly
independent, they form a basis, and we can say





0
−2
3



 = a1





1
1
1



+ a2





2
0
1





︸ ︷︷ ︸

row space

+ a3





1
1
−2





︸ ︷︷ ︸

right null space

. (8.73)

In matrix form, we then get




0
−2
3



 =





1 2 1
1 0 1
1 1 −2





︸ ︷︷ ︸

invertible





a1

a2

a3



 . (8.74)

The coefficient matrix is non-singular and thus invertible. Solving, we get




a1

a2

a3



 =





− 2
3

1
− 4

3



 . (8.75)

So x can be rewritten as

x = −2

3





1
1
1



+





2
0
1





︸ ︷︷ ︸

row space

+

(

t− 4

3

)




1
1
−2





︸ ︷︷ ︸

right null space

, t ∈ R1. (8.76)

The first two terms in the right-hand side of Eq. (8.76) are the unique linear combination of the row
space vectors, while the third term is from the right null space. As by definition, A maps any vector
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from the right null space into the zero element, it makes no contribution to forming b; hence, one can
allow for an arbitrary constant. Note the analogy here with solutions to inhomogeneous differential
equations. The right null space vector can be thought of as a solution to the homogeneous equation,
and the terms with the row space vectors can be thought of as particular solutions.

We can also write the solution x in matrix form. The matrix is composed of three column vectors,
which are the original two row space vectors and the right null space vector, which together form a
basis in R3:

x =





1 2 1
1 0 1
1 1 −2









− 2
3

1
t− 4

3



 , t ∈ R1. (8.77)

While the right null space vector is orthogonal to both row space vectors, the row space vectors are not
orthogonal to themselves, so this basis is not orthogonal. Leaving out the calculational details, we can
use the Gram-Schmidt procedure to cast the solution on an orthonormal basis:

x =
1√
3






1√
3

1√
3

1√
3




+

√
2





1√
2

− 1√
2

0





︸ ︷︷ ︸

row space

+
√

6

(

t− 4

3

)






1√
6

1√
6

−
√

2
3






︸ ︷︷ ︸

right null space

, t ∈ R1. (8.78)

The first two terms are in the row space, now represented on an orthonormal basis, the third is in the
right null space. In matrix form, we can say that

x =






1√
3

1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 −
√

2
3










1√
3√
2√

6
(
t− 4

3

)



 , t ∈ R1. (8.79)

Of course, there are other orthonormal bases on which the system can be cast.

We see that the minimum length of the vector x occurs when t = 4/3, that is when x is entirely in
the row space. In such a case we have

min||x||2 =

√
(

1√
3

)2

+
(√

2
)2

=

√

7

3
. (8.80)

Lastly note that here, we achieved a reasonable answer by setting x1 = t at the outset. We could
have achieved an equivalent result by starting with x2 = t, or x3 = t. This will not work in all problems,
as will be discussed in Sec. 8.8.3 on row echelon form.

8.2.4.3 Simultaneously over- and under-constrained systems

Some systems of equations are both over- and under-constrained simultaneously. This often
happens when the rank r of the matrix is less than both N and M , the matrix dimensions.
Such matrices are known as less than full rank matrices.
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Example 8.10
Consider A : R4 → R3 such that





1 2 0 4
3 2 −1 3
−1 2 1 5










x1

x2

x3

x4




 =





1
3
2



 . (8.81)

Using elementary row operations to perform Gaussian elimination gives rise to the equivalent sys-
tem:





1 0 −1/2 −1/2
0 1 1/4 9/4
0 0 0 0










x1

x2

x3

x4




 =





0
0
1



 . (8.82)

We immediately see that there is a problem in the last equation, which purports 0 = 1! What is actually
happening is that A is not full rank r = 3, but actually has r = 2, so vectors x ∈ R4 are mapped
into a two-dimensional subspace. So, we do not expect to find any solution to this problem, since our
vector b is an arbitrary three-dimensional vector which most likely does not lie in the two-dimensional
subspace. We can, however, find an x which minimizes the Euclidean norm of the residual. We return
to the original equation and operate on a both sides with AT to form AT · A · x = AT · b. It can be
easily verified that if we chose to operate on the system which was reduced by Gaussian elimination
that we would not recover a solution which minimized ||A · x − b||!






1 3 −1
2 2 2
0 −1 1
4 3 5










1 2 0 4
3 2 −1 3
−1 2 1 5










x1

x2

x3

x4




 =






1 3 −1
2 2 2
0 −1 1
4 3 5










1
3
2



 , (8.83)






11 6 −4 8
6 12 0 24
−4 0 2 2
8 24 2 50











x1

x2

x3

x4




 =






8
12
−1
23




 . (8.84)

This operation has mapped both sides of the equation into the same space, namely, the column space
of AT , which is also the row space of A. Since the rank of A is r = 2, the dimension of the row space
is also two, and now the vectors on both sides of the equation have been mapped into the same plane.
Again using row operations to perform Gaussian elimination gives rise to






1 0 −1/2 −1/2
0 1 1/4 9/4
0 0 0 0
0 0 0 0











x1

x2

x3

x4




 =






1/4
7/8
0
0




 . (8.85)

This equation suggests that here x3 and x4 are arbitrary, so we set x3 = s, x4 = t and, treating s and
t as known quantities, reduce the system to the following

(
1 0
0 1

)(
x1

x2

)

=

(
1/4 + s/2 + t/2
7/8 − s/4 − 9t/4

)

, (8.86)

so





x1

x2

x3

x4




 =






1/4
7/8
0
0




+ s






1/2
−1/4

1
0




+ t






1/2
−9/4

0
1




 . (8.87)
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The vectors which are multiplied by s and t are in the right null space of A. The vector (1/4, 7/8, 0, 0)T

is not entirely in the row space of A; it has components in both the row space and right null space. We
can, thus, decompose this vector into a linear combination of row space vectors and right null space
vectors using the procedure in the previous section, solving the following equation for the coefficients
a1, . . . , a4, which are the coefficients of the row and right null space vectors:






1/4
7/8
0
0




 =






1 3 1/2 1/2
2 2 −1/4 −9/4
0 −1 1 0
4 3 0 1











a1

a2

a3

a4




 . (8.88)

Solving, we get





a1

a2

a3

a4




 =






−3/244
29/244
29/244
−75/244




 . (8.89)

So we can recast the solution as






x1

x2

x3

x4




 = − 3

244






1
2
0
4




+

29

244






3
2
−1
3






︸ ︷︷ ︸

row space

+

(

s+
29

244

)






1/2
−1/4

1
0




+

(

t− 75

244

)






1/2
−9/4

0
1






︸ ︷︷ ︸

right null space

. (8.90)

This choice of x guarantees that we minimize ||A · x− b||2, which in this case is 1.22474. So there are
no vectors x which satisfy the original equation A · x = b, but there are a doubly infinite number of
vectors x which can minimize the Euclidean norm of the residual.

We can choose special values of s and t such that we minimize ||x||2 while maintaining ||A ·x−b||2
at its global minimum. This is done simply by forcing the magnitude of the right null space vectors to
zero, so we choose s = −29/244, t = 75/244, giving






x1

x2

x3

x4




 = − 3

244






1
2
0
4




+

29

244






3
2
−1
3






︸ ︷︷ ︸

row space

=






21/61
13/61

−29/244
75/244




 . (8.91)

This vector has ||x||2 = 0.522055.

8.2.4.4 Square systems

A set of N linear algebraic equations in N unknowns can be represented as

AN×N · xN×1 = bN×1. (8.92)

There is a unique solution if detA 6= 0 and either no solution or an infinite number of
solutions otherwise. In the case where there are no solutions, one can still find an x which
minimizes the normed residual ||A · x − b||2.
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Theorem

(Cramer’s rule) The solution of the equation is

xi =
detAi

detA
, (8.93)

where Ai is the matrix obtained by replacing the i-th column of A by y. While generally
valid, Cramer’s rule is most useful for low dimension systems. For large systems, Gaussian
elimination is a more efficient technique.

Example 8.11
For A: R2 → R2, Solve for x in A · x = b:

(
1 2
3 2

)(
x1

x2

)

=

(
4
5

)

. (8.94)

By Cramer’s rule

x1 =

∣
∣
∣
∣

4 2
5 2

∣
∣
∣
∣

∣
∣
∣
∣

1 2
3 2

∣
∣
∣
∣

=
−2

−4
=

1

2
, (8.95)

x2 =

∣
∣
∣
∣

1 4
3 5

∣
∣
∣
∣

∣
∣
∣
∣

1 2
3 2

∣
∣
∣
∣

=
−7

−4
=

7

4
. (8.96)

So

x =

(
1
2
7
4

)

. (8.97)

We get the same result by Gaussian elimination. Subtracting three times the first row from the second
yields

(
1 2
0 −4

)(
x1

x2

)

=

(
4
−7

)

. (8.98)

Thus, x2 = 7/4. Back substitution into the first equation then gives x1 = 1/2.

Example 8.12
With A : R2 → R2, find the most general x which best satisfies A · x = b for

(
1 2
3 6

)(
x1

x2

)

=

(
2
0

)

. (8.99)

Obviously, there is no unique solution to this system since the determinant of the coefficient matrix
is zero. The rank of A is 1, so in actuality, A maps vectors from R2 into a one-dimensional subspace,
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R1. For a general b, which does not lie in the one-dimensional subspace, we can find the best solution
x by first multiplying both sides by AT :

(
1 3
2 6

)(
1 2
3 6

)(
x1

x2

)

=

(
1 3
2 6

)(
2
0

)

, (8.100)

(
10 20
20 40

)(
x1

x2

)

=

(
2
4

)

. (8.101)

This operation maps both sides of the equation into the column space of AT , which is the row space
of A, which has dimension 1. Since the vectors are now in the same space, a solution can be found.
Using row reductions to perform Gaussian elimination, we get

(
1 2
0 0

)(
x1

x2

)

=

(
1/5
0

)

. (8.102)

We set x2 = t, where t is any arbitrary real number and solve to get

(
x1

x2

)

=

(
1/5
0

)

+ t

(
−2
1

)

. (8.103)

The vector which t multiplies, (−2, 1)T , is in the right null space of A. We can recast the vector
(1/5, 0)T in terms of a linear combination of the row space vector (1, 2)T and the right null space vector
to get the final form of the solution:

(
x1

x2

)

=
1

25

(
1
2

)

︸ ︷︷ ︸

row space

+

(

t− 2

25

)(
−2
1

)

︸ ︷︷ ︸

right null space

. (8.104)

This choice of x guarantees that the Euclidean norm of the residual ||A · x−b||2 is minimized. In this
case the Euclidean norm of the residual is 1.89737. The vector x with the smallest norm that minimizes
||A · x − b||2 is found by setting the magnitude of the right null space contribution to zero, so we can
take t = 2/25 giving

(
x1

x2

)

=
1

25

(
1
2

)

︸ ︷︷ ︸

row space

. (8.105)

This gives rise to ||x||2 = 0.0894427.

8.3 Eigenvalues and eigenvectors

8.3.1 Ordinary eigenvalues and eigenvectors

Much of the general discussion of eigenvectors and eigenvalues has been covered in Chap. 7,
see especially Sec. 7.4.4, and will not be repeated here. A few new concepts are introduced,
and some old ones reinforced.

First, we recall that when one refers to eigenvectors, one typically is referring to the right

eigenvectors which arise from A · e = λI · e; if no distinction is made, it can be assumed
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that it is the right set that is being discussed. Though it does not arise as often, there are
occasions when one requires the left eigenvectors which arise from eT · A = eT · Iλ. Some
important properties and definitions involving eigenvalues are listed next:

• If the matrix A is self-adjoint, it can be shown that it has the same left and right
eigenvectors.

• If A is not self-adjoint, it has different left and right eigenvectors. The eigenvalues are
the same for both left and right eigenvectors of the same operator, whether or not the
system is self-adjoint.

• The polynomial equation that arises in the eigenvalue problem is the characteristic

equation of the matrix.

• The Cayley-Hamilton2 theorem states that a matrix satisfies its own characteristic
equation.

• If a matrix is triangular, then its eigenvalues are its diagonal terms.

• Eigenvalues of A · A = A2 are the square of the eigenvalues of A.

• Every eigenvector of A is also an eigenvector of A2.

• A matrix A has spectral radius, ρ(A), defined as the largest of the absolute values of
its eigenvalues:

ρ(A) ≡ max
n

(|λn|). (8.106)

• Recall from Eq. (7.301) that a matrix A has a spectral norm, ||A||2 where

||A||2 =
√

max
i

(κi), (8.107)

where for real valued A, κi is an eigenvalue of AT · A. Note in general ρ(A) 6= ||A||2.

• If A is self-adjoint, ρ(A) = ||A||2.

• In general, Gelfand’s3 formula holds

ρ(A) = lim
k→∞

||Ak||1/k. (8.108)

The norm here holds for any matrix norm, including our spectral norm.

• The trace of a matrix is the sum of the terms on the leading diagonal.

2after Arthur Cayley, 1821-1895, English mathematician, and William Rowan Hamilton, 1805-1865,
Anglo-Irish mathematician.

3Israel Gelfand, 1913-2009, Soviet mathematician.
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• The trace of a N ×N matrix is the sum of its N eigenvalues.

• The product of the N eigenvalues is the determinant of the matrix.

Example 8.13
Demonstrate the theorems and definitions just described for

A =





0 1 −2
2 1 0
4 −2 5



 . (8.109)

The characteristic equation is

λ3 − 6λ2 + 11λ− 6 = 0. (8.110)

The Cayley-Hamilton theorem is easily verified by direct substitution:

A3 − 6A2 + 11A− 6I = 0, (8.111)





0 1 −2
2 1 0
4 −2 5









0 1 −2
2 1 0
4 −2 5









0 1 −2
2 1 0
4 −2 5



− 6





0 1 −2
2 1 0
4 −2 5









0 1 −2
2 1 0
4 −2 5





+11





0 1 −2
2 1 0
4 −2 5



− 6





1 0 0
0 1 0
0 0 1



 =





0 0 0
0 0 0
0 0 0



 , (8.112)





−30 19 −38
−10 13 −24
52 −26 53



+





36 −30 60
−12 −18 24
−96 48 −102



+





0 11 −22
22 11 0
44 −22 55



+





−6 0 0
0 −6 0
0 0 −6





=





0 0 0
0 0 0
0 0 0



 . (8.113)

Considering the traditional right eigenvalue problem, A·e = λI·e, it is easily shown that the eigenvalues
and (right) eigenvectors for this system are

λ1 = 1, e1 =





0
2
1



 , (8.114)

λ2 = 2, e2 =





1
2
1
0



 , (8.115)

λ3 = 3, e3 =





−1
−1
1



 . (8.116)
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One notes that while the eigenvectors do form a basis in R3, that they are not orthogonal; this is a
consequence of the matrix not being self-adjoint (or more specifically asymmetric). The spectral radius
is ρ(A) = 3. Now

A2 = A · A =





0 1 −2
2 1 0
4 −2 5









0 1 −2
2 1 0
4 −2 5



 =





−6 5 −10
2 3 −4
16 −8 17



 . (8.117)

It is easily shown that the eigenvalues for A2 are 1, 4, 9, precisely the squares of the eigenvalues of A.
The trace is

tr(A) = 0 + 1 + 5 = 6. (8.118)

Note this is the equal to the sum of the eigenvalues

3∑

i=1

λi = 1 + 2 + 3 = 6. (8.119)

Note also that
detA = 6 = λ1λ2λ3 = (1)(2)(3) = 6. (8.120)

Note that since all the eigenvalues are positive, A is a positive matrix. It is not positive definite. Note
for instance if x = (−1, 1, 1)T , that xT · A · x = −1. We might ask about the positive definiteness of
the symmetric part of A, As = (A + AT )/2 :

As =





0 3
2 1

3
2 1 −1
1 −1 5



 . (8.121)

In this case As has real eigenvalues, both positive and negative, λ1 = 5.32, λ2 = −1.39, λ3 = 2.07.
Because of the presence of a negative eigenvalue in the symmetric part of A, we can conclude that both
A and As are not positive definite.

We also note that for real-valued problems x ∈ RN , A ∈ RN×N , the antisymmetric part of a matrix
can never be positive definite by the following argument. We can say xT · A · x = xT · (As + Aa) · x.
Then one has xT · Aa · x = 0 for all x because the tensor inner product of the real antisymmetric Aa

with the symmetric xT and x is identically zero. So to test the positive definiteness of a real A, it
suffices to consider the positive definiteness of its symmetric part: xT · As · x ≥ 0.

For complex-valued problems, x ∈ CN , A ∈ CN×N , it is not quite as simple. Recalling that the
eigenvalues of an antisymmetric matrix Aa are purely imaginary, we have, if x is an eigenvector of Aa,
that xT ·Aa · x = xT · (λ)x = xT · (iλI)x = iλIx

T · x = iλI ||x||22, where λI ∈ R1. Hence whenever the
vector x is an eigenvector of Aa, the quantity xT · Aa · x is a pure imaginary number.

We can also easily solve the left eigenvalue problem, eTL ·A = λeTL · I:

λ1 = 1, e(L1) =





2
−1
1



 , (8.122)

λ2 = 2, eL2 =





−3
1
−2



 , (8.123)

λ3 = 3, eL3 =





2
−1
2



 . (8.124)
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We see eigenvalues are the same, but the left and right eigenvectors are different.
We find ||A||2 by considering eigenvalues of AT · A, the real variable version of that described in

Eq. (7.301):

AT · A =





0 2 4
1 1 −2
−2 0 5



 ·





0 1 −2
2 1 0
4 −2 5



 , (8.125)

=





20 −6 20
−6 6 −12
20 −12 29



 . (8.126)

This matrix has eigenvalues κ = 49.017, 5.858, 0.125. The spectral norm is the square root of the largest,
giving

||A||2 =
√

49.017 = 7.00122. (8.127)

The eigenvector of AT · A corresponding to κ = 49.017 is ê1 = (0.5829,−0.2927, 0.7579)T . When we
compute the quantity associated with the norm of an operator, we find this vector maps to the norm:

||A · ê1||2
||ê1||2

=

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣





0 1 −2
2 1 0
4 −2 5



 ·





0.5829
−0.2927
0.7579





∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
2∣

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣





0.582944
−0.292744
0.757943





∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
2

=

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣





−1.80863
0.873144
6.70698





∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
2

1
= 7.00122. (8.128)

Had we chosen the eigenvector associated with the eigenvalue of largest magnitude, e3 = (−1,−1, 1)T ,
we would have found ||A · e3||2/||e3||2 = 3, the spectral radius. Obviously, this is not the maximum of
this operation and thus cannot be a norm.

We can easily verify Gelfand’s theorem by direct calculation of ||Ak||1/k2 for various k. We find the
following.

k ||Ak||1/k2

1 7.00122
2 5.27011
3 4.61257
4 4.26334
5 4.03796

10 3.52993
100 3.04984

1000 3.00494
∞ 3

As k → ∞, ||Ak||1/k2 approaches the spectral radius ρ(A) = 3.

8.3.2 Generalized eigenvalues and eigenvectors in the second sense

On p. 288, we studied generalized eigenvectors in the first sense. Here we consider a dis-
tinct problem which leads to generalized eigenvalues and eigenvectors in the second sense.
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Consider the problem
A · e = λB · e, (8.129)

where A and B are square matrices, possibly singular, of dimension N×N , e is a generalized
eigenvector in the second sense, and λ is a generalized eigenvalue. If B were not singular,
we could form (B−1 ·A) · e = λI · e, which amounts to an ordinary eigenvalue problem. But
let us assume that the inverses do not exist. Then Eq. (8.129) can be re-cast as

(A − λB) · e = 0. (8.130)

For non-trivial solutions, we simply require

det(A− λB) = 0, (8.131)

and analyze in a similar manner.

Example 8.14
Find the generalized eigenvalues and eigenvectors in the second sense for

(
1 2
2 1

)

︸ ︷︷ ︸

A

·e = λ

(
1 0
1 0

)

︸ ︷︷ ︸

B

·e. (8.132)

Here B is obviously singular. We rewrite as
(

1 − λ 2
2 − λ 1

)

·
(
e1
e2

)

=

(
0
0

)

. (8.133)

For a non-trivial solution, we require
∣
∣
∣
∣

1 − λ 2
2 − λ 1

∣
∣
∣
∣
= 0, (8.134)

which gives a generalized eigenvalue of

1 − λ− 2(2 − λ) = 0, (8.135)

1 − λ− 4 + 2λ = 0, (8.136)

λ = 3. (8.137)

For e, we require
(

1 − 3 2
2 − 3 1

)

·
(
e1
e2

)

=

(
0
0

)

, (8.138)

(
−2 2
−1 1

)

·
(
e1
e2

)

=

(
0
0

)

. (8.139)

By inspection, the generalized eigenvector in the second sense

e =

(
e1
e2

)

= α

(
1
1

)

, (8.140)

satisfies Eq. (8.132) when λ = 3, and α is any scalar.
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Figure 8.3: Unit square transforming via stretching and rotation under a linear area- and
orientation-preserving alibi mapping.

8.4 Matrices as linear mappings

By considering a matrix as an operator which effects a linear mapping and applying it
to a specific geometry, one can better envision the characteristics of the matrix. This is
demonstrated in the following example.

Example 8.15
Consider how the matrix

A =

(
0 −1
1 −1

)

, (8.141)

acts on vectors x, including those that form a unit square with vertices as A : (0, 0), B : (1, 0), C :
(1, 1), D : (0, 1).

The original square has area of A = 1. Each of the vertices map under the linear homogeneous
transformation to

(
0 −1
1 −1

)(
0
0

)

︸ ︷︷ ︸

A

=

(
0
0

)

︸ ︷︷ ︸

A

,

(
0 −1
1 −1

)(
1
0

)

︸ ︷︷ ︸

B

=

(
0
1

)

︸ ︷︷ ︸

B

, (8.142)

(
0 −1
1 −1

)(
1
1

)

︸ ︷︷ ︸

C

=

(
−1
0

)

︸ ︷︷ ︸

C

,

(
0 −1
1 −1

)(
0
1

)

︸ ︷︷ ︸

D

=

(
−1
−1

)

︸ ︷︷ ︸

D

. (8.143)

In the mapped space, the square has transformed to a parallelogram. This is plotted in Fig. 8.3. Here,
the alibi approach to the mapping is clearly evident. We keep the coordinate axes fixed in Fig. 8.3 and
rotate and stretch the vectors, instead of keeping the vectors fixed and rotating the axes, as would have
been done in an alias transformation. Now we have

detA = (0)(−1) − (1)(−1) = 1. (8.144)
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Thus, the mapping is both orientation- and area-preserving. The orientation-preserving feature is
obvious by inspecting the locations of the points A, B, C, and D in both configurations shown in
Fig. 8.3. We easily calculate the area in the mapped space by combining the areas of two triangles
which form the parallelogram:

A =
1

2
(1)(1) +

1

2
(1)(1) = 1. (8.145)

The eigenvalues of A are −(1/2) ±
√

3/2, both of which have magnitude of unity. Thus, the spectral
radius ρ(A) = 1. However, the spectral norm of A is non-unity, because

AT · A =

(
0 1
−1 −1

)

·
(

0 −1
1 −1

)

=

(
1 −1
−1 2

)

, (8.146)

which has eigenvalues

κ =
1

2
(3 ±

√
5). (8.147)

The spectral norm is the square root of the maximum eigenvalue of AT · A, which is

||A||2 =

√

1

2
(3 +

√
5) = 1.61803. (8.148)

It will later be shown, Sec. 8.8.4, that the action of A on the unit square can be decomposed into a
deformation and a rotation. Both are evident in Fig. 8.3.

8.5 Complex matrices

If x and y are complex vectors, we know that their inner product involves the conjugate
transpose. The conjugate transpose operation occurs so often we give it a name, the Her-
mitian transpose, and denote it by a superscript H . Thus, we define the inner product
as

<x,y> = xT · y = xH · y. (8.149)

Then the norm is given by

||x||2 = +
√

xH · x. (8.150)

Example 8.16
If

x =






1 + i
3 − 2i

2
−3i




 , (8.151)

find ||x||2.
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||x||2 = +
√

xH · x = +

√
√
√
√
√
√(1 − i, 3 + 2i, 2,+3i)






1 + i
3 − 2i

2
−3i




 = +

√
2 + 13 + 4 + 9 = 2

√
7. (8.152)

Example 8.17
If

x =





1 + i
−2 + 3i
2 − i



 , (8.153)

y =





3
4 − 2i
3 + 3i



 , (8.154)

find <x,y>.

<x,y> = xH · y, (8.155)

= (1 − i,−2 − 3i, 2 + i)





3
4 − 2i
3 + 3i



 , (8.156)

= (3 − 3i) + (−14 − 8i) + (3 + 9i), (8.157)

= −8 − 2i. (8.158)

Likewise, the conjugate or Hermitian transpose of a matrix A is AH , given by the trans-
pose of the matrix with each element being replaced by its conjugate:

AH = ĀT . (8.159)

As the Hermitian transpose is the adjoint operator corresponding to a given complex matrix,
we can apply an earlier proved theorem for linear operators, Sec. 7.4.4, to deduce that the
eigenvalues of a complex matrix are the complex conjugates of the Hermitian transpose of
that matrix.

The Hermitian transpose is distinguished from a matrix which is Hermitian as follows. A
Hermitian matrix is one which is equal to its conjugate transpose. So a matrix which equals
its Hermitian transpose is Hermitian. A matrix which does not equal its Hermitian transpose
is non-Hermitian. A skew-Hermitian matrix is the negative of its Hermitian transpose. A
Hermitian matrix is self-adjoint.

Properties:
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• xH · A · x is real if A is Hermitian.

• The eigenvalues of a Hermitian matrix are real.

• The eigenvectors of a Hermitian matrix that correspond to different eigenvalues, are
orthogonal to each other.

• The determinant of a Hermitian matrix is real.

• The spectral radius of a Hermitian matrix is equal to its spectral norm, ρ(A) = ||A||2.

• If A is skew-Hermitian, then iA is Hermitian, and vice-versa.

Note the diagonal elements of a Hermitian matrix must be real as they must be unchanged
by conjugation.

Example 8.18
Consider A · x = b, where A : C3 → C3 with A the Hermitian matrix and x the complex vector:

A =





1 2 − i 3
2 + i −3 2i

3 −2i 4



 , x =





3 + 2i
−1

2 − i



 . (8.160)

First, we have

b = A · x =





1 2 − i 3
2 + i −3 2i

3 −2i 4









3 + 2i
−1

2 − i



 =





7
9 + 11i
17 + 4i



 . (8.161)

Now, demonstrate that the properties of Hermitian matrices hold for this case. First

xH · A · x = ( 3 − 2i −1 2 + i )





1 2 − i 3
2 + i −3 2i

3 −2i 4









3 + 2i
−1

2 − i



 = 42 ∈ R1. (8.162)

The eigenvalues and (right, same as left here) eigenvectors are

λ1 = 6.51907, e1 =





0.525248
0.132451 + 0.223964i
0.803339− 0.105159i



 , (8.163)

λ2 = −0.104237, e2 =





−0.745909
−0.385446 + 0.0890195i
0.501844− 0.187828i



 , (8.164)

λ3 = −4.41484, e3 =





0.409554
−0.871868− 0.125103i
−0.116278− 0.207222i



 . (8.165)

By inspection ρ(A) = 6.51907. Because A is Hermitian, we also have ||A||2 = ρ(A) = 6.51907. We find
this by first finding the eigenvalues of AH · A, which are 42.4983, 19.4908, and 0.010865. The square
roots of these are 6.51907, 4.41484, and 0.104237; the spectral norm is the maximum, 6.51907.
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Check for orthogonality between two of the eigenvectors, e.g. e1, e2:

<e1, e2> = eH1 · e2, (8.166)

= ( 0.525248 0.132451− 0.223964i 0.803339 + 0.105159i ) ·





−0.745909
−0.385446 + 0.0890195i
0.501844− 0.187828i



 ,

(8.167)

= 0 + 0i. (8.168)

The same holds for other eigenvectors. It can then be shown that

detA = 3, (8.169)

which is also equal to the product of the eigenvalues. This also tells us that A is not volume-preserving,
but it is orientation-preserving.

Lastly,

iA =





i 1 + 2i 3i
−1 + 2i −3i −2

3i 2 4i



 , (8.170)

is skew-symmetric. It is easily shown the eigenvalues of iA are

λ1 = 6.51907i, λ2 = −0.104237i, λ3 = −4.41484i. (8.171)

Note the eigenvalues of this matrix are just those of the previous multiplied by i.

8.6 Orthogonal and unitary matrices

8.6.1 Orthogonal matrices

Expanding on a topic introduced on p. 24, discussed on p. 183 and briefly discussed on
p. 287, a set of N N -dimensional real orthonormal vectors {e1, e2, · · · , eN} can be formed
into an orthogonal matrix

Q =






...
...

...
e1 e2 . . . eN
...

...
...




 . (8.172)

Properties of orthogonal matrices include

1. QT = Q−1, and both are orthogonal.

2. QT · Q = Q · QT = I.

3. ||Q||2 = 1, when the domain and range of Q are in Hilbert spaces.

4. ||Q · x||2 = ||x||2, where x is a vector.
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5. (Q · x)T · (Q · y) = xT · y, where x and y are real vectors.

6. Eigenvalues of Q have |λi| = 1, λi ∈ C1, thus, ρ(Q) = 1.

7. | detQ| = 1.

Geometrically, an orthogonal matrix is an operator which transforms but does not stretch
a vector. For an orthogonal matrix to be a rotation, which is orientation-preserving, we must
have detQ = 1. Rotation matrices, reflection matrices, and permutation matrices P are all
orthogonal matrices. Recall that permutation matrices can also be reflection or rotation
matrices.

Example 8.19
Find the orthogonal matrix corresponding to

A =

(
2 1
1 2

)

. (8.173)

The normalized eigenvectors are (1/
√

2, 1/
√

2)T and (−1/
√

2, 1/
√

2)T . The orthogonal matrix is
thus

Q =

(
1√
2

− 1√
2

1√
2

1√
2

)

(8.174)

In the sense of Eq. (6.54), we can say

Q =

(
cos π4 − sin π

4
sin π

4 cos π4

)

, (8.175)

and the angle of rotation of the coordinate axes is α = π/4. We calculate the eigenvalues of Q to be
λ = (1 ± i)/

√
2, which in exponential form becomes λ = exp(±iπ/4), and so we see the rotation angle

is embedded within the argument of the polar representation of the eigenvalues. We also see |λ| = 1.
Note that Q is not symmetric. Also note that detQ = 1, so this orthogonal matrix is also a rotation
matrix.

If ξ is an unrotated Cartesian vector, and our transformation to a rotated frame is ξ = Q ·x, so that
x = QT · ξ, we see that the Cartesian unit vector ξ = (1, 0)T is represented in the rotated coordinate
system by

x =

(
1√
2

1√
2

− 1√
2

1√
2

)

︸ ︷︷ ︸

QT

·
(

1
0

)

=

(
1√
2

− 1√
2

)

. (8.176)

Thus, the counterclockwise rotation of the axes through angle α = π/4 gives the Cartesian unit vector
(1, 0)T a new representation of (1/

√
2,−1/

√
2)T . We see that the other Cartesian unit vector ξ = (0, 1)T

is represented in the rotated coordinate system by

x =

(
1√
2

1√
2

− 1√
2

1√
2

)

︸ ︷︷ ︸

QT

·
(

0
1

)

=

(
1√
2

1√
2

)

. (8.177)

Had detQ = −1, the transformation would have been non-orientation preserving.
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Example 8.20
Analyze the three-dimensional orthogonal matrix

Q =






1√
3

1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 −
√

2
3




 . (8.178)

Direct calculation reveals ||Q||2 = 1, detQ = 1, and QT = Q−1, so clearly the matrix is a volume-
and orientation-preserving rotation matrix. It can also be shown to have a set of eigenvalues and
eigenvectors of

λ1 = 1, e1 =





0.886452
0.36718
0.281747



 , (8.179)

λ2 = exp(2.9092i), e2 =





−0.18406 + 0.27060i
−0.076240− 0.653281i

0.678461



 , (8.180)

λ3 = exp(−2.9092i), e3 =





−0.18406− 0.27060i
−0.076240 + 0.653281i

0.678461



 . (8.181)

As expected, each eigenvalue has |λ| = 1. It can be shown that the eigenvector e1 which is associated
with real eigenvalue, λ1 = 1, is aligned with the so-called Euler axis, i.e. the axis in three-space about
which the rotation occurs. The remaining two eigenvalues are of the form exp(±αi), where α is the
angle of rotation about the Euler axis. For this example, we have α = 2.9092.

Example 8.21
Consider the composite action of three rotations on a vector x:

Q1 · Q2 · Q3 · x =





1 0 0
0 cosα1 − sinα1

0 sinα1 cosα1





︸ ︷︷ ︸

Q1

·





cosα2 0 sinα2

0 1 0
− sinα2 0 cosα2





︸ ︷︷ ︸

Q2

·





cosα3 − sinα3 0
sinα3 cosα3 0

0 0 1





︸ ︷︷ ︸

Q3

·x. (8.182)

It is easy to verify that ||Q1||2 = ||Q2||2 = ||Q3||2 = 1, detQ1 = detQ2 = detQ3 = 1, so each is a
rotation. For Q3, we find eigenvalues of λ = 1, cosα3± i sinα3. These can be rewritten as λ = 1, e±α3i.
The eigenvector associated with the eigenvalue of 1 is (0, 0, 1). Thus, we can consider Q3 to effect a
rotation of α3 about the 3-axis. Similarly, Q2 effects a rotation of α2 about the 2-axis, and Q1 effects
a rotation of α1 about the 1-axis.

So the action of the combination of rotations on a vector x is an initial rotation of α3 about the
3-axis: Q3 · x. This vector is then rotated through α2 about the 2-axis: Q2 · (Q3 · x). Finally, there
is a rotation through α1 about the 1-axis: Q1 · (Q2 · (Q3 · x)). This is called a 3-2-1 rotation through
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the so-called Euler angles of α3, α2, and α1. Note because in general matrix multiplication does not
commute, that the result will depend on the order of application of the rotations, e.g.

Q1 · Q2 · Q3 · x 6= Q2 · Q1 ·Q3 · x, ∀x ∈ R3, Q1,Q2,Q3 ∈ R3 × R3. (8.183)

In contrast, it is not difficult to show that rotations in two dimensions do commute

Q1 · Q2 · Q3 · x = Q2 · Q1 ·Q3 · x, ∀x ∈ R2, Q1,Q2,Q3 ∈ R2 × R2. (8.184)

8.6.2 Unitary matrices

A unitary matrix U is a complex matrix with orthonormal columns. It is the complex analog
of an orthogonal matrix.

Properties of unitary matrices include

• UH = U−1, and both are unitary.

• UH · U = U · UH = I.

• ||U||2 = 1, when the domain and range of U are in Hilbert spaces.

• ||U · x||2 = ||x||2, where x is a vector.

• (U · x)H · (U · y) = xH · y, where x and y are vectors.

• Eigenvalues of U have |λi| = 1, λi ∈ C1, thus, ρ(U) = 1.

• Eigenvectors of U corresponding to different eigenvalues are orthogonal.

• | detU| = 1.

If detU = 1, one is tempted to say the unitary matrix operating on a vector induces a pure
rotation in a complex space; however, the notion of an angle of rotation is elusive.

Example 8.22
Consider the unitary matrix

U =

(
1+i√

3
1−2i√

15
1√
3

1+3i√
15

)

. (8.185)

The column vectors are easily seen to be normal. They are also orthogonal:

(
1 − i√

3
,

1√
3

)( 1−2i√
15

1+3i√
15

)

= 0 + 0i. (8.186)

CC BY-NC-ND. 29 July 2012, Sen & Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


356 CHAPTER 8. LINEAR ALGEBRA

The matrix itself is not Hermitian. Still, its Hermitian transpose exists:

UH =

(
1−i√

3
1√
3

1+2i√
15

1−3i√
15

)

. (8.187)

It is then easily verified that
U−1 = UH , (8.188)

U ·UH = UH · U = I. (8.189)

The eigensystem is

λ1 = −0.0986232 + 0.995125i, e1 =

(
0.688191− 0.425325i

0.587785

)

, (8.190)

λ2 = 0.934172 + 0.356822i, e2 =

(
−0.306358 + 0.501633i
−0.721676− 0.36564i

)

. (8.191)

It is easily verified that the eigenvectors are orthogonal and the eigenvalues have magnitude of one. We
find detU = (1 + 2i)/

√
5, which yields | detU| = 1. Also, ||U||2 = 1.

8.7 Discrete Fourier transforms

It is a common practice in experimental and theoretical science and engineering to decompose
a function or a signal into its Fourier modes. The amplitudes of these modes is often a
useful description of the function. A Fourier transform is a linear integral operator which
operates on continuous functions and yields results from which amplitudes of each frequency
component can be determined. Its discrete analog is the Discrete Fourier transform (DFT).
The DFT is a matrix which operates on a vector of data to yield a vector of transformed
data. There exists a popular, albeit complicated, algorithm to compute the DFT, known
as the Fast Fourier Transform (FFT). This will not be studied here; instead, a simpler and
slower method is presented, which will be informally known as a Slow Fourier Transform
(SFT). This discussion will simply present the algorithm for the SFT and demonstrate its
use by example.

The Fourier transform (FT) Y (κ) of a function y(x) is defined as

Y (κ) = Y [y(x)] =

∫ ∞

−∞
y(x)e−(2πi)κx dx, (8.192)

and the inverse FT is defined as

y(x) = Y−1[Y (κ)] =

∫ ∞

−∞
Y (κ)e(2πi)κx dκ. (8.193)

Here κ is the wavenumber, and is the reciprocal of the wavelength. The FT has a discrete
analog. The connection between the two is often not transparent in the literature. With some
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effort a connection can be made at the expense of diverging from one school’s notation to
the other’s. Here, we will be satisfied with a form which demonstrates the analogs between
the continuous and discrete transform, but will not be completely linked. To make the
connection, one can construct a discrete approximation to the integral of the FT, and with
some effort, arrive at an equivalent result.

For the DFT, consider a function y(x), x ∈ [xmin, xmax], x ∈ R1, y ∈ R1. Now discretize
the domain into N uniformly distributed points so that every xj is mapped to a yj for
j = 0, . . . , N−1. Here we comply with the traditional, yet idiosyncratic, limits on j which are
found in many texts on DFT. This offsets standard vector and matrix numbering schemes by
one, and so care must be exercised in implementing these algorithms with common software.
We seek a discrete analog of the continuous Fourier transformation of the form

yj =
1√
N

N−1∑

k=0

ck exp

(

(2πi)k

(
N − 1

N

)(
xj − xmin
xmax − xmin

))

, j = 0, . . . , N − 1. (8.194)

Here k plays the role of κ, and ck plays the role of Y (κ). For uniformly spaced xj, one has

j = (N − 1)

(
xj − xmin
xmax − xmin

)

, (8.195)

so that we then seek

yj =
1√
N

N−1∑

k=0

ck exp

(

(2πi)
kj

N

)

, j = 0, . . . , N − 1. (8.196)

Now consider the equation
zN = 1, z ∈ C1. (8.197)

This equation has N distinct roots

z = e2πi
j

N , j = 0, . . . , N − 1, (8.198)

Taking for convenience
w ≡ e2πi/N , (8.199)

one sees that theN roots are also described by w0, w1, w2, . . . , wN−1. Now define the following
matrix

F =
1√
N









1 1 1 . . . 1
1 w w2 . . . wN−1

1 w2 w4 . . . w2(N−1)

...
...

...
...

...
1 wN−1 w2(N−1) . . . w(N−1)2









. (8.200)

It is easy to demonstrate for arbitrary N that F is unitary, that is

FH · F = I. (8.201)
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Since F is unitary, it is immediately known that FH = F−1, that ||F||2 = 1, that the
eigenvalues of F have magnitude of unity, and that the column vectors of F are orthonormal.
Note that F is not Hermitian. Also note that many texts omit the factor 1/

√
N in the

definition of F; this is not a major problem, but does render F to be non-unitary.
Now given a vector y = yj, j = 0, . . . , N−1, the DFT is defined as the following mapping

c = FH · y. (8.202)

The inverse transform is trivial due to the unitary nature of F:

F · c = F · FH · y, (8.203)

F · c = F · F−1 · y, (8.204)

F · c = I · y, (8.205)

y = F · c. (8.206)

Because our F is unitary, it preserves the length of vectors. Thus, it induces a Parseval’s
equation

||y||2 = ||c||2. (8.207)

Example 8.23
Consider a five term DFT of the function

y = x2, x ∈ [0, 4]. (8.208)

Take then for N = 5, a set of uniformly distributed points in the domain and their image in the
range:

x0 = 0, x1 = 1, x2 = 2, x3 = 3, x4 = 4, (8.209)

y0 = 0, y1 = 1, y2 = 4, y3 = 9, y4 = 16. (8.210)

Now for N = 5, one has

w = e2πi/5 =

(
1

4
(−1 +

√
5)

)

︸ ︷︷ ︸

=ℜ(w)

+

(

1

2

√

1

2
(5 +

√
5)

)

︸ ︷︷ ︸

=ℑ(w)

i = 0.309 + 0.951i. (8.211)

The five distinct roots of z5 = 1 are

z(0) = w0 = 1, (8.212)

z(1) = w1 = 0.309 + 0.951i, (8.213)

z(2) = w2 = −0.809 + 0.588i, (8.214)

z(3) = w3 = −0.809− 0.588i, (8.215)

z(4) = w4 = 0.309− 0.951i. (8.216)
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The matrix F is then

F =
1√
5








1 1 1 1 1
1 w w2 w3 w4

1 w2 w4 w6 w8

1 w3 w6 w9 w12

1 w4 w8 w12 w16








=
1√
5








1 1 1 1 1
1 w w2 w3 w4

1 w2 w4 w1 w3

1 w3 w1 w4 w2

1 w4 w3 w2 w1







, (8.217)

=
1√
5








1 1 1 1 1
1 0.309 + 0.951i −0.809 + 0.588i −0.809− 0.588i 0.309− 0.951i
1 −0.809 + 0.588i 0.309 − 0.951i 0.309 + 0.951i −0.809− 0.588i
1 −0.809− 0.588i 0.309 + 0.951i 0.309 − 0.951i −0.809 + 0.588i
1 0.309 − 0.951i −0.809− 0.588i −0.809 + 0.588i 0.309 + 0.951i







.

(8.218)

Now c = FH · y, so








c0
c1
c2
c3
c4








=
1√
5








1 1 1 1 1
1 0.309− 0.951i −0.809− 0.588i −0.809 + 0.588i 0.309 + 0.951i
1 −0.809− 0.588i 0.309 + 0.951i 0.309 − 0.951i −0.809 + 0.588i
1 −0.809 + 0.588i 0.309 − 0.951i 0.309 + 0.951i −0.809− 0.588i
1 0.309 + 0.951i −0.809 + 0.588i −0.809− 0.588i 0.309 − 0.951i















0
1
4
9
16







,

=








13.416
−2.354 + 7.694i
−4.354 + 1.816i
−4.354− 1.816i
−2.354− 7.694i







. (8.219)

Now one is often interested in the magnitude of the components of c, which gives a measure of the
so-called energy associated with each Fourier mode. So one calculates a vector of the magnitude of
each component as








√
c0c0√
c1c1√
c2c2√
c3c3√
c4c4








=








|c0|
|c1|
|c2|
|c3|
|c4|








=








13.4164
8.0463
4.7178
4.7178
8.0463







. (8.220)

Now due to a phenomena known as aliasing, explained in detail in standard texts, the values of ck
which have the most significance are the first half ck, k = 0, . . . , N/2.

Here
||y||2 = ||c||2 =

√
354 = 18.8149. (8.221)

Note that by construction

y0 =
1√
5

(c0 + c1 + c2 + c3 + c4) , (8.222)

y1 =
1√
5

(

c0 + c1e
2πi/5 + c2e

4πi/5 + c3e
6πi/5 + c4e

8πi/5
)

, (8.223)

y2 =
1√
5

(

c0 + c1e
4πi/5 + c2e

8πi/5 + c3e
12πi/5 + c4e

16πi/5
)

, (8.224)

y3 =
1√
5

(

c0 + c1e
6πi/5 + c2e

12πi/5 + c3e
18πi/5 + c4e

24πi/5
)

, (8.225)

y4 =
1√
5

(

c0 + c1e
8πi/5 + c2e

16πi/5 + c3e
24πi/5 + c4e

32πi/5
)

. (8.226)
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In general, it is seen that yj can be described by

yj =
1√
N

N−1∑

k=0

ck exp

(

(2πi)
kj

N

)

, j = 0, . . . , N − 1. (8.227)

Realizing now that for a uniform discretization, such as done here, that

∆x =
xmax − xmin

N − 1
, (8.228)

and that
xj = j∆x+ xmin, j = 0, . . . , N − 1, (8.229)

one has

xj = j

(
xmax − xmin

N − 1

)

+ xmin, j = 0, . . . , N − 1. (8.230)

Solving for j, one gets

j = (N − 1)

(
xj − xmin
xmax − xmin

)

, (8.231)

so that yj can be expressed as a Fourier-type expansion in terms of xj as

yj =
1√
N

N∑

k=1

ck exp

(

(2πi)k

(
N − 1

N

)(
xj − xmin
xmax − xmin

))

, j = 0, . . . , N − 1. (8.232)

Here, the wavenumber of mode k, κk, is seen to be

κk = k
N − 1

N
. (8.233)

And as N → ∞, one has
κk ∼ k. (8.234)

Example 8.24
The real power of the DFT is seen in its ability to select amplitudes of modes of signals at certain

frequencies. Consider the signal for x ∈ [0, 3]

y(x) = 10 sin

(

(2π)
2x

3

)

+ 2 sin

(

(2π)
10x

3

)

+ sin

(

(2π)
100x

3

)

. (8.235)

Rescaling the domain so as to take x ∈ [0, 3] into x̃ ∈ [0, 1] via the transformation x̃ = x/3, one has

y(x̃) = 10 sin ((2π)2x̃) + 2 sin ((2π)10x̃) + sin ((2π)100x̃) . (8.236)

To capture the high wavenumber components of the signal, one must have a sufficiently large value of
N . Note in the transformed domain that the smallest wavelength is λ = 1/100 = 0.01. So for a domain
length of unity, one needs at least N = 100 sampling points. In fact, let us choose to take more points,
N = 523. There is no problem in choosing an unusual number of points for this so-called slow Fourier
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Figure 8.4: Plot of a three term sinusoid y(x) and its discrete Fourier transform for N = 523.
The first DFT is plotted from k = 0, . . . , N/2 and thus represents the original signal well.
The second DFT is plotted from k = 0, . . . , N − 1 and exhibits aliasing effects at high k.

transform. If an FFT were attempted, one would have to choose integral powers of 2 as the number of
points.

A plot of the function y(x) and two versions of its DFT, |ck| vs. k, is given in in Fig. 8.4 Note that
|ck| has its peaks at k = 2, k = 10, and k = 100, equal to the wave numbers of the generating sine
functions, κ1 = 2, κ2 = 10, and κ3 = 100. To avoid the confusing, and non-physical, aliasing effect,
only half the |ck| values have been plotted the first DFT of Fig. 8.4. The second DFT here plots all
values of |ck| and thus exhibits aliasing for large k.

Example 8.25
Now take the DFT of a signal which is corrupted by so-called white, or random, noise. The signal

here is given in x ∈ [0, 1] by

y(x) = sin ((2π)10x) + sin ((2π)100x) + frand[−1, 1](x). (8.237)

Here frand[−1, 1](x) returns a random number between −1 and 1 for any value of x. A plot of the
function y(x) and two versions of its 607 point DFT, |ck| vs. k, is given in in Fig. 8.5 In the raw data
plotted in Fig. 8.5, it is difficult to distinguish the signal from the random noise. But on examination
of the accompanying DFT plot, it is clear that there are unambiguous components of the signal which
peak at k = 10 and k = 100, which indicates there is a strong component of the signal with κ = 10 and
κ = 100. Once again, to avoid the confusing, and non-physical, aliasing effect, only half the |ck| values
have been plotted in the first DFT of Fig. 8.5. The second DFT gives all values of |ck| and exhibits
aliasing.
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Figure 8.5: Plot of a two-term sinusoid accompanied by random noise y(x) and its discrete
Fourier transform for N = 607 points. The first DFT is plotted from k = 0, . . . , N/2 and
thus represents the original signal well. The second DFT is plotted from k = 0, . . . , N − 1
and exhibits aliasing effects at high k.

8.8 Matrix decompositions

One of the most important tasks, especially in the numerical solution of algebraic and dif-
ferential equations, is decomposing general matrices into simpler components. A brief dis-
cussion will be given here of some of the more important decompositions. Full discussions
can be found in Strang’s text. It is noted that many popular software programs, such as
MATLAB, Mathematica, LAPACK libraries, etc. have routines which routinely calculate these
decompositions.

8.8.1 L · D · U decomposition

Probably the most important technique in solving linear systems of algebraic equations of
the form A · x = b, uses the decomposition

A = P−1 · L · D · U, (8.238)
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where A is a square matrix,4 P is a never-singular permutation matrix, L is a lower trian-
gular matrix, D is a diagonal matrix, and U is an upper triangular matrix. The notation of
U for the upper triangular matrix is common, and should not be confused with the identical
notation for a unitary matrix. In other contexts R is sometimes used for an upper trian-
gular matrix, and P is sometimes used for a projection matrix. All terms can be found by
ordinary Gaussian elimination. The permutation matrix is necessary in case row exchanges
are necessary in the Gaussian elimination.

A common numerical algorithm to solve for x in A · x = b is as follows

• Factor A into P−1 · L · D · U so that A · x = b becomes

P−1 · L · D · U
︸ ︷︷ ︸

A

·x = b. (8.239)

• Operate on both sides of Eq. (8.239) with (P−1 · L · D)
−1

to get

U · x =
(
P−1 · L ·D

)−1 · b. (8.240)

• Solve next for the new variable c in the new equation

P−1 · L · D · c = b, (8.241)

so
c =

(
P−1 · L · D

)−1 · b. (8.242)

The triangular form of L · D renders the inversion of (P−1 · L · D) to be much more
computationally efficient than inversion of an arbitrary square matrix.

• Substitute c from Eq. (8.242) into Eq. (8.240), the modified version of the original
equation, to get

U · x = c, (8.243)

so
x = U−1 · c. (8.244)

Again since U is triangular, the inversion is computationally efficient.

Example 8.26
Find the L · D ·U decomposition of the matrix:

A =





−5 4 9
−22 14 18
16 −8 −6



 . (8.245)

4If A is not square, there is an equivalent decomposition, known as row echelon form, to be discussed in
Sec. 8.8.3.
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The process is essentially a series of row operations, which is the essence of Gaussian elimination.
First we operate to transform the −22 and 16 in the first column into zeroes. Crucial in this step is the
necessity of the term in the 1,1 slot, known as the pivot, to be non-zero. If it is zero, a row exchange will
be necessary, mandating a permutation matrix which is not the identity matrix. In this case there are
no such problems. We multiply the first row by 22/5 and subtract from the second row, then multiply
the first row by −16/5 and subtract from the third row. The factors 22/5 and −16/5 will go in the 2,1
and 3,1 slots of the matrix L. The diagonal of L always is filled with ones. This row operation yields

A =





−5 4 9
−22 14 18
16 −8 −6



 =





1 0 0
22/5 1 0
−16/5 0 1









−5 4 9
0 −18/5 −108/5
0 24/5 114/5



 . (8.246)

Now multiplying the new second row by −4/3, subtracting this from the third row, and depositing the
factor −4/3 into 3,2 slot of the matrix L, we get

A =





−5 4 9
−22 14 18
16 −8 −6



 =





1 0 0
22/5 1 0
−16/5 −4/3 1





︸ ︷︷ ︸

L





−5 4 9
0 −18/5 −108/5
0 0 −6





︸ ︷︷ ︸

U

. (8.247)

The form given in Eq. (8.247) is often described as the L · U decomposition of A. We can force the
diagonal terms of the upper triangular matrix to unity by extracting a diagonal matrix D to form the
L ·D · U decomposition:

A =





−5 4 9
−22 14 18
16 −8 −6



 =





1 0 0
22/5 1 0
−16/5 −4/3 1





︸ ︷︷ ︸

L





−5 0 0
0 −18/5 0
0 0 −6





︸ ︷︷ ︸

D





1 −4/5 −9/5
0 1 6
0 0 1





︸ ︷︷ ︸

U

. (8.248)

Note that D does not contain the eigenvalues of A. Also since there were no row exchanges necessary
P = P−1 = I, and it has not been included.

Example 8.27
Find the L · D ·U decomposition of the matrix A:

A =





0 1 2
1 1 1
1 0 0



 . (8.249)

There is a zero in the pivot, so a row exchange is necessary:

P ·A =





0 0 1
0 1 0
1 0 0









0 1 2
1 1 1
1 0 0



 =





1 0 0
1 1 1
0 1 2



 . (8.250)
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Performing Gaussian elimination by subtracting 1 times the first row from the second and depositing
the 1 in the 2,1 slot of L, we get

P ·A = L · U →





0 0 1
0 1 0
1 0 0









0 1 2
1 1 1
1 0 0



 =





1 0 0
1 1 0
0 0 1









1 0 0
0 1 1
0 1 2



 . (8.251)

Now subtracting 1 times the second row, and depositing the 1 in the 3,2 slot of L

P ·A = L · U →





0 0 1
0 1 0
1 0 0









0 1 2
1 1 1
1 0 0



 =





1 0 0
1 1 0
0 1 1









1 0 0
0 1 1
0 0 1



 . (8.252)

Now U already has ones on the diagonal, so the diagonal matrix D is simply the identity matrix. Using
this and inverting P, which is P itself(!), we get the final decomposition

A = P−1 · L ·D ·U →





0 1 2
1 1 1
1 0 0



 =





0 0 1
0 1 0
1 0 0





︸ ︷︷ ︸

P−1





1 0 0
1 1 0
0 1 1





︸ ︷︷ ︸

L





1 0 0
0 1 0
0 0 1





︸ ︷︷ ︸

D





1 0 0
0 1 1
0 0 1





︸ ︷︷ ︸

U

. (8.253)

8.8.2 Cholesky decomposition

If A is a Hermitian positive definite matrix, we can define a Cholesky decomposition. Because
A must be positive definite, it must be square. The Cholesky decomposition is as follows:

A = UH · U. (8.254)

Here U is an upper triangular matrix. One might think of U as the rough equivalent of the
square root of the positive definite A. We also have the related decomposition

A = ÛH · D · Û, (8.255)

where Û is upper triangular with a value of unity on its diagonal, and D is diagonal.
If we define a lower triangular L as L = UH , the Cholesky decomposition can be rewritten

as
A = L · LH . (8.256)

There also exists an analogous decomposition

A = L̂ · D · L̂H , (8.257)

Note also that these definitions hold as well for real A; in such cases, we can simply replace
the Hermitian transpose by the ordinary transpose.
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Example 8.28
The Cholesky decomposition of a Hermitian matrix A is as follows

A =

(
5 4i

−4i 5

)

= UH ·U =

( √
5 0

− 4i√
5

3√
5

)

︸ ︷︷ ︸

UH

·
(√

5 4i√
5

0 3√
5

)

︸ ︷︷ ︸

U

. (8.258)

Note the eigenvalues of A are λ = 1, λ = 9, so the matrix is indeed positive definite.
We can also write in alternative form

A =

(
5 4i

−4i 5

)

= ÛH ·D · Û =

(
1 0

− 4i
5 1

)

︸ ︷︷ ︸

ÛH

·
(

5 0
0 9

5

)

︸ ︷︷ ︸

D

·
(

1 4i
5

0 1

)

︸ ︷︷ ︸

Û

. (8.259)

8.8.3 Row echelon form

When A is not square, we can still use Gaussian elimination to cast the matrix in row echelon

form:
A = P−1 · L ·D · U. (8.260)

Again P is a never-singular permutation matrix, L is lower triangular and square, D is
diagonal and square, U is upper triangular and rectangular and of the same dimension as
A. The strategy is to use row operations in such a fashion that ones or zeroes appear on the
diagonal.

Example 8.29
Determine the row-echelon form of the non-square matrix,

A =

(
1 −3 2
2 0 3

)

. (8.261)

We take 2 times the first row and subtract the result from the second row. The scalar 2 is deposited
in the 2,1 slot in the L matrix. So

A =

(
1 −3 2
2 0 3

)

=

(
1 0
2 1

)

︸ ︷︷ ︸

L

(
1 −3 2
0 6 −1

)

︸ ︷︷ ︸

U

. (8.262)

Again, Eq. (8.262) is also known as an L · U decomposition, and is often as useful as the L · D · U
decomposition. There is no row exchange so the permutation matrix and its inverse are the identity
matrix. We extract a 1 and 6 to form the diagonal matrix D, so the final form is

A = P−1 · L · D ·U =

(
1 0
0 1

)

︸ ︷︷ ︸

P−1

(
1 0
2 1

)

︸ ︷︷ ︸

L

(
1 0
0 6

)

︸ ︷︷ ︸

D

(
1 −3 2
0 1 − 1

6

)

︸ ︷︷ ︸

U

. (8.263)
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Row echelon form is an especially useful form for under-constrained systems as illustrated
in the following example.

Example 8.30
Consider solutions for the unknown x in the equation A · x = b where A is known A : R5 → R3,

and b is left general, but considered to be known:





2 1 −1 1 2
4 2 −2 1 0
−2 −1 1 −2 −6












x1

x2

x3

x4

x5








=





b1
b2
b3



 . (8.264)

We perform Gaussian elimination row operations on the second and third rows to get zeros in the
first column:





2 1 −1 1 2
0 0 0 −1 −4
0 0 0 −1 −4












x1

x2

x3

x4

x5








=





b1
−2b1 + b2
b1 + b3



 . (8.265)

The next round of Gaussian elimination works on the third row and yields





2 1 −1 1 2
0 0 0 −1 −4
0 0 0 0 0












x1

x2

x3

x4

x5








=





b1
−2b1 + b2

3b1 − b2 + b3



 . (8.266)

Note that the reduced third equation gives

0 = 3b1 − b2 + b3. (8.267)

This is the equation of a plane in R3. Thus, arbitrary b ∈ R3 will not satisfy the original equation.
Said another way, the operator A maps arbitrary five-dimensional vectors x into a two-dimensional
subspace of a three-dimensional vector space. The rank of A is 2. Thus, the dimension of both the row
space and the column space is 2; the dimension of the right null space is 3, and the dimension of the
left null space is 1.

We also note there are two non-trivial equations remaining. The first non-zero elements from the
left of each row are known as the pivots. The number of pivots is equal to the rank of the matrix.
Variables which correspond to each pivot are known as basic variables. Variables with no pivot are
known as free variables. Here the basic variables are x1 and x4, while the free variables are x2, x3, and
x5.

Now enforcing the constraint 3b1 − b2 + b3 = 0, without which there will be no solution, we can
set each free variable to an arbitrary value, and then solve the resulting square system. Take x2 = r,
x3 = s, x5 = t, where here r, s, and t are arbitrary real scalar constants. So





2 1 −1 1 2
0 0 0 −1 −4
0 0 0 0 0












x1

r
s
x4

t








=





b1
−2b1 + b2

0



 , (8.268)
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which gives
(

2 1
0 −1

)(
x1

x4

)

=

(
b1 − r + s− 2t
−2b1 + b2 + 4t

)

, (8.269)

which yields
x4 = 2b1 − b2 − 4t, (8.270)

x1 =
1

2
(−b1 + b2 − r + s+ 2t). (8.271)

Thus

x =








x1

x2

x3

x4

x5








=








1
2 (−b1 + b2 − r + s+ 2t)

r
s

2b1 − b2 − 4t
t







, (8.272)

=








1
2 (−b1 + b2)

0
0

2b1 − b2
0








+ r








− 1
2

1
0
0
0








+ s








1
2
0
1
0
0








+ t








1
0
0
−4
1







, r, s, t ∈ R1. (8.273)

The coefficients r, s, and t multiply the three right null space vectors. These in combination with two
independent row space vectors, form a basis for any vector x. Thus, we can again cast the solution as a
particular solution which is a unique combination of independent row space vectors and a non-unique
combination of the right null space vectors (the homogeneous solution):

x =








x1

x2

x3

x4

x5








=
25b1 − 13b2

106








2
1
−1
1
2








+
−13b1 + 11b2

106








4
2
−2
1
0








︸ ︷︷ ︸

row space

+ r̂








− 1
2

1
0
0
0








+ ŝ








1
2
0
1
0
0








+ t̂








1
0
0
−4
1








︸ ︷︷ ︸

right null space

. (8.274)

In matrix form, we can say that

x =








x1

x2

x3

x4

x5








=








2 4 − 1
2

1
2 1

1 2 1 0 0
−1 −2 0 1 0
1 1 0 0 −4
2 0 0 0 1
















25b1−13b2
106

−13b1+11b2
106
r̂
ŝ
t̂









. (8.275)

Here we have taken r̂ = r + (b1 − 9b2)/106, ŝ = s + (−b1 + 9b2)/106, and t̂ = (−30b1 + 26b2)/106; as
they are arbitrary constants multiplying vectors in the right null space, the relationship to b1 and b2
is actually unimportant. As before, while the null space basis vectors are orthogonal to the row space
basis vectors, the entire system is not orthogonal. The Gram-Schmidt procedure could be used to cast
the solution on either an orthogonal or orthonormal basis.

It is also noted that we have effectively found the L · U decomposition of A. The terms in L are
from the Gaussian elimination, and we have already U:

A = L ·U →





2 1 −1 1 2
4 2 −2 1 0
−2 −1 1 −2 −6





︸ ︷︷ ︸

A

=





1 0 0
2 1 0
−1 1 1





︸ ︷︷ ︸

L





2 1 −1 1 2
0 0 0 −1 −4
0 0 0 0 0





︸ ︷︷ ︸

U

. (8.276)
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The L ·D ·U decomposition is





2 1 −1 1 2
4 2 −2 1 0
−2 −1 1 −2 −6





︸ ︷︷ ︸

A

=





1 0 0
2 1 0
−1 1 1





︸ ︷︷ ︸

L





2 0 0
0 −1 0
0 0 0





︸ ︷︷ ︸

D





1 1
2 − 1

2
1
2 1

0 0 0 1 4
0 0 0 0 0





︸ ︷︷ ︸

U

. (8.277)

There were no row exchanges, so in effect the permutation matrix P is the identity matrix, and there
is no need to include it.

Lastly, we note that a more robust alternative to the method shown here would be to first apply
the AT operator to both sides of the equation so to map both sides into the column space of A. Then
there would be no need to restrict b so that it lies in the column space. Our results are then interpreted
as giving us only a projection of x. Taking AT · A · x = AT · b and then casting the result into row
echelon form gives








1 1/2 −1/2 0 −1
0 0 0 1 4
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0















x1

x2

x3

x4

x5








=








(1/22)(b1 + 7b2 + 4b3)
(1/11)(b1 − 4b2 − 7b3)

0
0
0







. (8.278)

This suggests we take x2 = r, x3 = s, and x5 = t and solve so to get








x1

x2

x3

x4

x5








=








(1/22)(b1 + 7b2 + 4b3)
0
0

(1/11)(b1 − 4b2 − 7b3)
0








+ r








−1/2
1
0
0
0








+ s








1/2
0
1
0
0








+ t








1
0
0
−4
1







. (8.279)

We could go on to cast this in terms of combinations of row vectors and right null space vectors, but
will not do so here. It is reiterated that this result is valid for arbitrary b, but that it only represents
a solution which minimizes the residual in ||A · x− b||2.

8.8.4 Q ·R decomposition

The Q · R decomposition allows us to formulate a matrix as the product of an orthogonal
(unitary if complex) matrix Q and an upper triangular matrix R, of the same dimension as
A. That is we seek Q and R such that

A = Q · R. (8.280)

The matrix A can be square or rectangular. See Strang for details of the algorithm. It
can be thought of as a deformation due to R followed by a volume-preserving rotation or
reflection due to Q.
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Example 8.31
The Q · R decomposition of the matrix we considered in a previous example, p. 364, is as follows:

A =





−5 4 9
−22 14 18
16 −8 −6





︸ ︷︷ ︸

A

= Q · R =





−0.1808 −0.4982 0.8480
−0.7954 −0.4331 −0.4240
0.5785 −0.7512 −0.3180





︸ ︷︷ ︸

Q





27.6586 −16.4867 −19.4153
0 −2.0465 −7.7722
0 0 1.9080





︸ ︷︷ ︸

R

.

(8.281)
Note that detQ = 1, so it is volume- and orientation-preserving. Noting further that ||Q||2 = 1, we
deduce that ||R||2 = ||A||2. And it is easy to show that ||R||2 = ||A||2 = 37.9423. Also recalling how
matrices can be thought of as transformations, we see how to think of A as a stretching (R) followed
by rotation (Q).

Example 8.32
Find the Q ·R decomposition for our non-square matrix from p. 366,

A =

(
1 −3 2
2 0 3

)

. (8.282)

The decomposition is

A =

(
0.4472 −0.8944
0.8944 0.4472

)

︸ ︷︷ ︸

Q

·
(

2.2361 −1.3416 3.577
0 2.6833 −0.4472

)

︸ ︷︷ ︸

R

. (8.283)

Once again detQ = 1, so it is volume- and orientation-preserving. It is easy to show ||A||2 = ||R||2 =
4.63849.

Example 8.33
Give a geometric interpretation of the Q · R decomposition in the context of the discussion sur-

rounding the transformation of a unit square by the matrix A considered earlier on p. 348.

A =

(
0 −1
1 −1

)

. (8.284)

The decomposition is

A =

(
0 −1
1 0

)

︸ ︷︷ ︸

Q

·
(

1 −1
0 1

)

︸ ︷︷ ︸

R

. (8.285)
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Figure 8.6: Unit square transforming via explicit stretching (R), and rotation (Q) under a
linear area- and orientation-preserving alibi mapping.

Now detA = 1. Moreover, detQ = 1 and detR = 1, so both of these matrices preserve area and
orientation. As usual ||Q||2 = 1, so its operation preserves the lengths of vectors. The deformation
is embodied in R which has ||R||2 = ||A||2 = 1.61803. Decomposing the transformation of the unit
square depicted in Fig. 8.3 by first applying R to each of the vertices, and then applying Q to each
of the stretched vertices, we see that R effects an area- and orientation-preserving shear deformation,
and Q effects a counter-clockwise rotation of π/2. This is depicted in Fig. 8.6.

The Q ·R decomposition can be shown to be closely related to the Gram-Schmidt orthog-
onalization process. It is also useful in increasing the efficiency of estimating x for A ·x ≃ b
when the system is over-constrained; that is b is not in the column space of A, R(A). If we,
as usual operate on both sides as follows,

A · x ≃ b, b 6∈ R(A), (8.286)

AT ·A · x = AT · b, A = Q · R, (8.287)

(Q · R)T · Q ·R · x = (Q · R)T · b, (8.288)

RT · QT · Q ·R · x = RT · QT · b, (8.289)

RT · Q−1 · Q ·R · x = RT · QT · b, (8.290)

RT ·R · x = RT · QT · b, (8.291)

x =
(
RT · R

)−1 ·RT · QT · b, (8.292)

Q ·R · x = Q ·
(

R ·
(
RT · R

)−1 · RT
)

· QT · b, (8.293)

A · x = Q ·
(

R ·
(
RT · R

)−1 · RT
)

· QT

︸ ︷︷ ︸

P

·b. (8.294)
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When rectangular R has no zeros on its diagonal, R ·
(
RT · R

)−1 ·RT has all zeroes, except
for r ones on the diagonal, where r is the rank of R. This makes solution of over-constrained

problems particularly simple. We note lastly that Q · R ·
(
RT ·R

)−1 · RT · QT = P, a
projection matrix, defined first in Eq. (7.160), and to be discussed in Sec. 8.9.

8.8.5 Diagonalization

Casting a matrix into a form in which all (or sometimes most) of its off-diagonal elements
have zero value has its most important application in solving systems of differential equations
but also in other scenarios. For many cases, we can decompose a square matrix A into the
form

A = S · Λ · S−1, (8.295)

where S is non-singular matrix and Λ is a diagonal matrix. To diagonalize a square matrix
A, we must find S, a diagonalizing matrix, such that S−1 ·A ·S is diagonal. Not all matrices
are diagonalizable. Note that by inversion, we can also say

Λ = S−1 · A · S. (8.296)

Considering A to be the original matrix, we have subjected it to a general linear transfor-
mation, which in general stretches and rotates, to arrive at Λ; this transformation has the
same form as that previously considered in Eq. (7.278).

Theorem

A matrix with distinct eigenvalues can be diagonalized, but the diagonalizing matrix is
not unique.

Definition: The algebraic multiplicity of an eigenvalue is the number of times it occurs. The
geometric multiplicity of an eigenvalue is the number of eigenvectors it has.

Theorem

Nonzero eigenvectors corresponding to different eigenvalues are linearly independent.

Theorem

If A is anN×N matrix withN linearly independent right eigenvectors {e1, e2, · · · , en, · · · , eN}
corresponding to eigenvalues {λ1, λ2, · · · , λn, · · · , λN} (not necessarily distinct), then the
N ×N matrix S whose columns are populated by the eigenvectors of A

S =






...
... . . .

... . . .
...

e1 e2 . . . en . . . eN
...

... . . .
... . . .

...




 (8.297)

makes

S−1 · A · S = Λ, (8.298)
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where

Λ =













λ1 0 · · · · · · · · · 0
0 λ2 · · · · · · · · · · · ·
...

...
. . .

...
...

...
...

...
... λn

...
...

...
...

...
...

. . . 0
0 · · · · · · · · · 0 λN













, (8.299)

is a diagonal matrix of eigenvalues. The matrices A and Λ are similar.
Let’s see if this recipe works when we fill the columns of S with the eigenvectors. First

operate on Eq. (8.298) with S to arrive at a more general version of the eigenvalue problem:

A · S = S · Λ, (8.300)




a11 · · · a1N
...

. . .
...

aN1 · · · aNN





︸ ︷︷ ︸

=A






... · · · ...
e1 . . . eN
... · · · ...






︸ ︷︷ ︸

=S

=






... · · · ...
e1 . . . eN
... · · · ...






︸ ︷︷ ︸

=S





λ1 · · · 0
...

. . .
...

0 · · · λN





︸ ︷︷ ︸

=Λ

,

(8.301)

=






... · · · ...
λ1e1 . . . λNeN

... · · · ...






︸ ︷︷ ︸

=S·Λ

, (8.302)

A · e1 + · · · + A · eN = λ1e1 + · · ·+ λNeN , (8.303)

A · e1 + · · · + A · eN = λ1I · e1 + · · · + λNI · eN . (8.304)

Rearranging, we get

(A − λ1I) · e1
︸ ︷︷ ︸

=0

+ . . .+ (A − λNI) · eN
︸ ︷︷ ︸

=0

= 0. (8.305)

Now {e1, . . . , eN} are linearly independent. Thus, this induces N eigenvalue problems for
each eigenvector:

A · e1 = λ1I · e1, (8.306)

A · e2 = λ2I · e2, (8.307)
...

...

A · eN = λNI · eN . (8.308)

Note also the effect of post-multiplication of both sides of Eq. (8.300) by S−1:

A · S · S−1 = S · Λ · S−1, (8.309)

A = S · Λ · S−1. (8.310)
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Example 8.34
Diagonalize the matrix considered in a previous example, p. 364:

A =





−5 4 9
−22 14 18
16 −8 −6



 , (8.311)

and check. See the example around Eq. (8.245).

The eigenvalue-eigenvector pairs are

λ1 = −6, e1 =





−1
−2
1



 , (8.312)

λ2 = 3, e2 =





1
2
0



 , (8.313)

λ3 = 6, e3 =





2
1
2



 . (8.314)

(8.315)

Then

S =






...
...

...
e1 e2 e3
...

...
...




 =





−1 1 2
−2 2 1
1 0 2



 . (8.316)

The inverse is

S−1 =





− 4
3

2
3 1

− 5
3

4
3 1

2
3 − 1

3 0



 . (8.317)

Thus,

A · S =





6 3 12
12 6 6
−6 0 12



 , (8.318)

and

Λ = S−1 ·A · S =





−6 0 0
0 3 0
0 0 6



 . (8.319)

Let us also note the complementary decomposition of A:

A = S ·Λ · S−1 =





−1 1 2
−2 2 1
1 0 2





︸ ︷︷ ︸

S





−6 0 0
0 3 0
0 0 6





︸ ︷︷ ︸

Λ





− 4
3

2
3 1

− 5
3

4
3 1

2
3 − 1

3 0





︸ ︷︷ ︸

S−1

=





−5 4 9
−22 14 18
16 −8 −6





︸ ︷︷ ︸

A

. (8.320)

Note that because the matrix is not symmetric, the eigenvectors are not orthogonal, e.g. eT1 ·e2 = −5.
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Note that if A is symmetric (Hermitian), then its eigenvectors must be orthogonal; thus,
it is possible to normalize the eigenvectors so that the matrix S is in fact orthogonal (unitary
if complex). Thus, for symmetric A we have

A = Q · Λ ·Q−1. (8.321)

Since Q−1 = QT , we have
A = Q · Λ · QT . (8.322)

Geometrically, the action of a symmetric A on a geometric entity can be considered as
volume-preserving rotation or reflection via QT , followed by a stretching due to Λ, completed
by another volume-preserving rotation or reflection via Q, which acts opposite to the effect
of QT . Note also that with A · S = S · Λ, the column vectors of S (which are the right
eigenvectors of A) form a basis in CN .

Example 8.35
Consider the action of the matrix

A =

(
2 1
1 1

)

, (8.323)

on a unit square in terms of the diagonal decomposition of A.

We first note that detA = 1, so it preserves volumes and orientations. We easily calculate that
||A||2 = 3/2 +

√
5/2 = 2.61803, so it has the potential to stretch a vector. It is symmetric, so it has

real eigenvalues, which are λ = 3/2 ±
√

5/2. Its spectral radius is thus ρ(A) = 3/2 +
√

5/2, which is
equal to its spectral norm. Its eigenvectors are orthogonal, so they can be orthonormalized to form an
orthogonal matrix. After detailed calculation, one finds the diagonal decomposition to be

A =





√

5+
√

5
10 −

√
2

5+
√

5
√

2
5+

√
5

√

5+
√

5
10





︸ ︷︷ ︸

Q

(
3+

√
5

2 0

0 3−
√

5
2

)

︸ ︷︷ ︸

Λ





√

5+
√

5
10

√
2

5+
√

5

−
√

2
5+

√
5

√

5+
√

5
10





︸ ︷︷ ︸

QT

(8.324)

The action of this composition of matrix operations on a unit square is depicted in Fig. 8.7. The first
rotation is induced by QT and is clockwise through an angle of π/5.67511 = 31.717◦. This is followed
by an eigen-stretching of Λ. The action is completed by a rotation induced by Q. The second rotation
reverses the angle of the first in a counterclockwise rotation of π/5.67511 = 31.717◦.

Consider now the right eigensystem of the adjoint of A, denoted by A∗:

A∗ ·V = V · Λ∗, (8.325)

where Λ∗ is the diagonal matrix containing the eigenvalues of A∗, and V is the matrix
whose columns are populated by the (right) eigenvectors of A∗. Now we know from an
earlier proof, Sec. 7.4.4, that the eigenvalues of the adjoint are the complex conjugates of
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Figure 8.7: Unit square transforming via rotation, stretching, and rotation of the diagonal-
ization decomposition under a linear area- and orientation-preserving alibi mapping.

those of the original operator, thus Λ∗ = ΛH . Also the adjoint operator for matrices is the
Hermitian transpose. So, we find that

AH · V = V ·ΛH . (8.326)

Taking the Hermitian transpose of both sides, we recover

VH ·A = Λ · VH. (8.327)

So we see clearly that the left eigenvectors of a linear operator are the right eigenvectors of
the adjoint of that operator.

It is also possible to show that, remarkably, when we take the product of the matrix of
right eigenvectors of the operator with the matrix of right eigenvectors of its adjoint, that
we obtain a diagonal matrix, which we denote as D:

SH · V = D. (8.328)

Equivalently, this states that the inner product of the left eigenvector matrix with the right
eigenvector matrix is diagonal. Let us see how this comes about. Let si be a right eigenvector
of A with eigenvalue λi and vj be a left eigenvector of A with eigenvalue λj. Then

A · si = λisi, (8.329)

and
vHj · A = λjv

H
j . (8.330)

If we premultiply the first eigen-relation, Eq. (8.329), by vHj , we obtain

vHj · A
︸ ︷︷ ︸

=λjv
H
j

·si = vHj · (λisi) . (8.331)

Substituting from the second eigen-relation, Eq. (8.330) and rearranging, Eq. (8.331) becomes

λjv
H
j · si = λiv

H
j · si. (8.332)

CC BY-NC-ND. 29 July 2012, Sen & Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


8.8. MATRIX DECOMPOSITIONS 377

Rearranging
(λj − λi)

(
vHj · si

)
= 0. (8.333)

Now if i 6= j and λi 6= λj, we must have

vHj · si = 0, (8.334)

or, taking the Hermitian transpose,
sHi · vj = 0. (8.335)

If i = j, then all we can say is sHi · vj is some arbitrary scalar. Hence we have shown the
desired relation that SH · V = D.

Since eigenvectors have an arbitrary magnitude, it is a straightforward process to scale
either V or S such that the diagonal matrix is actually the identity matrix. Here we choose
to scale V, given that our task was to find the reciprocal basis vectors of S. We take then

SH · V̂ = I. (8.336)

Here V̂ denotes the matrix in which each eigenvector (column) of the original V has been
scaled such that Eq. (8.336) is achieved. Hence V̂ is seen to give the set of reciprocal basis
vectors for the basis defined by S:

SR = V̂. (8.337)

It is also easy to see then that the inverse of the matrix S is given by

S−1 = V̂H. (8.338)

Example 8.36
For a matrix A considered in an earlier example, p. 363, consider the basis formed by its matrix

of eigenvectors S, and use the properly scaled matrix of eigenvectors of A∗ = AH to determine the
reciprocal basis SR.

We will take

A =





−5 4 9
−22 14 18
16 −8 −6



 . (8.339)

As found before, the eigenvalue- (right) eigenvector pairs are

λ1 = −6, e1R =





−1
−2
1



 , (8.340)

λ2 = 3, e2R =





1
2
0



 , (8.341)

λ3 = 6, e3R =





2
1
2



 . (8.342)

(8.343)
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Then we take the matrix of basis vectors to be

S =






...
...

...
e1 e2 e3
...

...
...




 =





−1 1 2
−2 2 1
1 0 2



 . (8.344)

The adjoint of A is

AH =





−5 −22 16
4 14 −8
9 18 −6



 . (8.345)

The eigenvalues-(right) eigenvectors of AH , which are the left eigenvectors of A, are found to be

λ1 = −6, e1L =





−4
2
3



 , (8.346)

λ2 = 3, e2L =





−5
4
3



 , (8.347)

λ3 = 6, e3L =





−2
1
0



 . (8.348)

(8.349)

So the matrix of right eigenvectors of the adjoint, which contains the left eigenvectors of the original
matrix, is

V =






...
...

...
e1L e2L e3L
...

...
...




 =





−4 −5 −2
2 4 1
3 3 0



 . (8.350)

We indeed find that the inner product of S and V is a diagonal matrix D:

SH ·V =





−1 −2 1
1 2 0
2 1 2



 ·





−4 −5 −2
2 4 1
3 3 0



 =





3 0 0
0 3 0
0 0 −3



 . (8.351)

Using our knowledge of D, we individually scale each column of V to form the desired reciprocal basis

V̂ =





−4/3 −5/3 2/3
2/3 4/3 −1/3
1 1 0



 = SR. (8.352)

Then we see that the inner product of S and the reciprocal basis V̂ = SR is indeed the identity matrix:

SH · V̂ =





−1 −2 1
1 2 0
2 1 2



 ·





−4/3 −5/3 2/3
2/3 4/3 −1/3
1 1 0



 =





1 0 0
0 1 0
0 0 1



 . (8.353)

CC BY-NC-ND. 29 July 2012, Sen & Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


8.8. MATRIX DECOMPOSITIONS 379

8.8.6 Jordan canonical form

A square matrix A without a sufficient number of linearly independent eigenvectors can still
be decomposed into a near-diagonal form:

A = S · J · S−1, (8.354)

This form is known as the Jordan5 (upper) canonical form in which the near-diagonal matrix
J:

J = S−1 · A · S, (8.355)

has zeros everywhere except for eigenvalues along the principal diagonal and unity above the
missing eigenvectors. The form is sometimes called a Jordan normal form.

Consider the eigenvalue λ of algebraic multiplicity N −L+1 of the matrix AN×N . Then

(A− λI) · e = 0, (8.356)

gives some linearly independent eigenvectors e1, e2, . . . , eL. If L = N , the algebraic multi-
plicity is unity, and the matrix can be diagonalized. If, however, L < N we need N−L more
linearly independent vectors. These are the generalized eigenvectors. One can be obtained
from

(A − λI) · g1 = e, (8.357)

and others from

(A − λI) · gj+1 = gj for j = 1, 2, . . . , N − L− 1. (8.358)

This procedure is continued until N linearly independent eigenvectors and generalized eigen-
vectors are obtained, which is the most that we can have in RN . Then

S =






... . . .
...

... . . .
...

e1 . . . eL g1 . . . gN−L
... . . .

...
... . . .

...




 (8.359)

gives S−1 · A · S = J, where J is of the Jordan canonical form.
Notice that gn also satisfies (A − λI)n · gn = 0. For example, if

(A − λI) · g = e, (8.360)

(A− λI) · (A − λI) · g = (A− λI) · e, (8.361)

(A− λI) · (A − λI) · g = 0, (8.362)

(A − λI)2 · g = 0. (8.363)

However any solution of Eq. (8.363) is not necessarily a generalized eigenvector.

5Marie Ennemond Camille Jordan, 1838-1922, French mathematician.
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Example 8.37
Find the Jordan canonical form of

A =





4 1 3
0 4 1
0 0 4



 . (8.364)

The eigenvalues are λ = 4 with multiplicity three. For this value

(A − λI) =





0 1 3
0 0 1
0 0 0



 . (8.365)

The eigenvectors are obtained from (A − λI) · e1 = 0, which gives x2 + 3x3 = 0, x3 = 0. The most
general form of the eigenvector is

e1 =





a
0
0



 . (8.366)

Only one eigenvector can be obtained from this eigenvalue. To get a generalized eigenvector, we take
(A − λI) · g1 = e1, which gives x2 + 3x3 = a, x3 = 0, so that

g1 =





b
a
0



 . (8.367)

Another generalized eigenvector can be similarly obtained from (A−λI) ·g2 = g1, so that x2 +3x3 = b,
x3 = a. Thus, we get

g2 =





c
b− 3a
a



 . (8.368)

From the eigenvector and generalized eigenvectors

S =






...
...

...
e1 g1 g2
...

...
...




 =





a b c
0 a b− 3a
0 0 a



 , (8.369)

and

S−1 =





1
a − b

a2

−b2+3ba+ca
a3

0 1
a

−b+3a
a2

0 0 1
a



 . (8.370)

The Jordan canonical form is

J = S−1 ·A · S =





4 1 0
0 4 1
0 0 4



 . (8.371)

Note that in Eq. (8.370), a, b, and c are any constants. Choosing a = 1, b = c = 0, for example,
simplifies the algebra giving

S =





1 0 0
0 1 −3
0 0 1



 , (8.372)
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and

S−1 =





1 0 0
0 1 3
0 0 1



 . (8.373)

8.8.7 Schur decomposition

The Schur6 decomposition is as follows:

A = Q · R · QT . (8.374)

Here Q is an orthogonal (unitary if complex) matrix, and R is upper triangular, with the
eigenvalues this time along the diagonal. The matrix A must be square.

Example 8.38
The Schur decomposition of the matrix we diagonalized in a previous example, p. 364, is as follows:

A =





−5 4 9
−22 14 18
16 −8 −6





︸ ︷︷ ︸

A

= Q · R ·QT = (8.375)





−0.4082 0.1826 0.8944
−0.8165 0.3651 −0.4472
0.4082 0.9129 0





︸ ︷︷ ︸

Q

·





−6 −20.1246 31.0376
0 3 5.7155
0 0 6





︸ ︷︷ ︸

R

·





−0.4082 −0.8165 0.4082
0.1826 0.3651 0.9129
0.8944 −0.4472 0





︸ ︷︷ ︸

QT

. (8.376)

This decomposition was achieved with numerical software. This particular Q has detQ = −1, so if it
were used in a coordinate transformation it would be volume-preserving but not orientation-preserving.
Since the Schur decomposition is non-unique, it could be easily re-calculated if one also wanted to
preserve orientation.

Example 8.39
The Schur decomposition of another matrix considered in earlier examples, see p. 348, is as follows:

A =

(
0 −1
1 −1

)

, (8.377)

=

(
1+

√
3i

2
√

2
− 1√

2
1√
2

1−
√

3i
2
√

2

)

︸ ︷︷ ︸

U

·
(

−1+
√

3i
2

−1+
√

3i
2

0 −1−
√

3i
2

)

︸ ︷︷ ︸

R

·
(

1−
√

3i
2
√

2
1√
2

− 1√
2

1+
√

3i
2
√

2

)

︸ ︷︷ ︸

UH

. (8.378)

6Issai Schur, 1875-1941, Belrussian-born German-based mathematician.
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This is a non-unique decomposition. Unusually, the form given here is exact; most require numerical
approximation. Note that because R has the eigenvalues of A on its diagonal, that we must consider
complex unitary matrices. When this is recomposed, we recover the original real A. Once again, we
have ||R||2 = ||A||2 = 1.61803. Here detU = detUH = 1, so both are area- and orientation-preserving.

We can imagine the operation of A on a real vector x as an initial rotation into the complex plane
effected by application of UH : x′ = UH · x. This is followed by an eigen-stretching effected by R:
x′′ = R · x′. Application of U rotates back into the real plane: x′′′ = U · x′′. The composite effect is
x′′′ = U ·R · UH · x = A · x.

If A is symmetric, then the upper triangular matrix R reduces to the diagonal matrix
with eigenvalues on the diagonal, Λ; the Schur decomposition is in this case simply A =
Q · Λ ·QT .

8.8.8 Singular value decomposition

The singular value decomposition (SVD) is used for non-square matrices and is the most
general form of diagonalization. Any complex matrix AN×M can be factored into the form

AN×M = QN×N ·BN×M · QH
M×M , (8.379)

where QN×N and QH
M×M are orthogonal (unitary, if complex) matrices, and B has positive

numbers µi, (i = 1, 2, . . . , r) in the first r positions on the main diagonal, and zero everywhere
else. It turns out that r is the rank of AN×M . The columns of QN×N are the eigenvectors
of AN×M · AH

N×M . The columns of QM×M are the eigenvectors of AH
N×M · AN×M . The

values µi, (i = 1, 2, . . . , r) ∈ R1 are called the singular values of A. They are analogous to
eigenvalues and are in fact the positive square roots of the eigenvalues of AN×M · AH

N×M
or AH

N×M · AN×M . Note that since the matrix from which the eigenvalues are drawn is
Hermitian, that the eigenvalues, and thus the singular values, are guaranteed real. Note
also that if A itself is square and Hermitian, that the absolute value of the eigenvalues of A
will equal its singular values. If A is square and non-Hermitian, there is no simple relation
between its eigenvalues and singular values. The factorization QN×N · BN×M · QH

M×M is
called the singular value decomposition.

As discussed by Strang, the column vectors of QN×N and QM×M are even more than
orthonormal. They also must be chosen in such a way that AN×M ·QM×M is a scalar multiple
of QN×N . This comes directly from post-multiplying the general form of the singular value
decomposition by QM×M : AN×M · QM×M = QN×N · BN×M . So in fact a more robust
way of computing the singular value decomposition is to first compute one of the orthogonal
matrices, and then compute the other orthogonal matrix with which the first one is consistent.

Example 8.40
Find the singular value decomposition of the matrix from p. 366,

A2×3 =

(
1 −3 2
2 0 3

)

. (8.380)
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The matrix is real so we do not need to consider the conjugate transpose; we will retain the notation
for generality though here the ordinary transpose would suffice. First consider A · AH :

A · AH =

(
1 −3 2
2 0 3

)

︸ ︷︷ ︸

A





1 2
−3 0
2 3





︸ ︷︷ ︸

AH

=

(
14 8
8 13

)

. (8.381)

The diagonal eigenvalue matrix and corresponding orthogonal matrix composed of the normalized
eigenvectors in the columns are

Λ2×2 =

(
21.5156 0

0 5.48439

)

, Q2×2 =

(
0.728827 −0.684698
0.684698 0.728827

)

. (8.382)

Next we consider AH · A:

AH ·A =





1 2
−3 0
2 3





︸ ︷︷ ︸

AH

(
1 −3 2
2 0 3

)

︸ ︷︷ ︸

A

=





5 −3 8
−3 9 −6
8 −6 13



 . (8.383)

The diagonal eigenvalue matrix and corresponding orthogonal matrix composed of the normalized
eigenvectors in the columns are

Λ3×3 =





21.52 0 0
0 5.484 0
0 0 0



 , Q3×3 =





0.4524 0.3301 −0.8285
−0.4714 0.8771 0.09206
0.7571 0.3489 0.5523



 . (8.384)

We take

B2×3 =

(√
21.52 0 0
0

√
5.484 0

)

=

(
4.639 0 0

0 2.342 0

)

, (8.385)

and can easily verify that

Q2×2 ·B2×3 ·QH
3×3 =

(
0.7288 −0.6847
0.6847 0.7288

)

︸ ︷︷ ︸

Q2×2

(
4.639 0 0

0 2.342 0

)

︸ ︷︷ ︸

B2×3





0.4524 −0.4714 0.7571
0.3301 0.8771 0.3489
−0.8285 0.09206 0.5523





︸ ︷︷ ︸

QH
3×3

,

(8.386)

=

(
1 −3 2
2 0 3

)

= A2×3. (8.387)

The singular values here are µ1 = 4.639, µ2 = 2.342. As an aside, both detQ2×2 = 1 and detQ3×3 = 1,
so they are orientation-preserving.

Let’s see how we can get another singular value decomposition of the same matrix. Here we will
employ the more robust technique of computing the decomposition. The orthogonal matrices Q3×3 and
Q2×2 are not unique as one can multiply any row or column by −1 and still maintain orthonormality.
For example, instead of the value found earlier, let us presume that we found

Q3×3 =





−0.4524 0.3301 −0.8285
0.4714 0.8771 0.09206
−0.7571 0.3489 0.5523



 . (8.388)
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Here, the first column of the original Q3×3 has been multiplied by −1. If we used this new Q3×3 in
conjunction with the previously found matrices to form Q2×2 ·A2×3 ·QH

3×3, we would not recover A2×3!
The more robust way is to take

A2×3 = Q2×2 ·B2×3 ·QH
3×3, (8.389)

A2×3 ·Q3×3 = Q2×2 · B2×3, (8.390)

(
1 −3 2
2 0 3

)

︸ ︷︷ ︸

A2×3





−0.4524 0.3301 −0.8285
0.4714 0.8771 0.09206
−0.7571 0.3489 0.5523





︸ ︷︷ ︸

Q3×3

=

(
q11 q12
q21 q22

)

︸ ︷︷ ︸

Q2×2

(
4.639 0 0

0 2.342 0

)

︸ ︷︷ ︸

B2×3

, (8.391)

(
−3.381 −1.603 0
−3.176 1.707 0

)

=

(
4.639q11 2.342q12 0
4.639q21 2.342q22 0

)

. (8.392)

Solving for qij , we find that

Q2×2 =

(
−0.7288 −0.6847
−0.6847 0.7288

)

. (8.393)

It is easily seen that this version of Q2×2 differs from the first version by a sign change in the first
column. Direct substitution shows that the new decomposition also recovers A2×3:

Q2×2 ·B2×3 ·QH
3×3 =

(
−0.7288 −0.6847
−0.6847 0.7288

)

︸ ︷︷ ︸

Q2×2

(
4.639 0 0

0 2.342 0

)

︸ ︷︷ ︸

B2×3





−0.4524 0.4714 −0.7571
0.3301 0.8771 0.3489
−0.8285 0.09206 0.5523





︸ ︷︷ ︸

QH
3×3

,

(8.394)

=

(
1 −3 2
2 0 3

)

= A2×3. (8.395)

Both of the orthogonal matrices Q used in this section have determinant of −1, so they do not preserve
orientation.

Example 8.41
The singular value decomposition of another matrix considered in earlier examples, p. 348, is as

follows:

A =

(
0 −1
1 −1

)

, (8.396)

=





√
2

5+
√

5
−
√

2
5−

√
5

√
2

5−
√

5

√
2

5+
√

5





︸ ︷︷ ︸

Q2

·





√
1
2 (3 +

√
5) 0

0
√

1
2 (3 −

√
5)





︸ ︷︷ ︸

B

·





√
2

5+
√

5
−
√

2
5−

√
5

√
2

5−
√

5

√
2

5+
√

5





︸ ︷︷ ︸

QT
1

. (8.397)

The singular value decomposition here is A = Q2 · B · QT
1 . All matrices are 2 × 2, since A is

square of dimension 2 × 2. Interestingly Q2 = QT
1 . Both induce a counterclockwise rotation of
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Figure 8.8: Unit square transforming via rotation, stretching, and rotation of the singular
value decomposition under a linear area- and orientation-preserving alibi mapping.

α = arcsin
√

2/(5 −
√

5) = π/3.0884 = 58.2◦. We also have detQ1 = detQ2 = ||Q2||2 = ||Q1||2 = 1.

Thus, both are pure rotations. By inspection ||B||2 = ||A||2 =
√

(3 +
√

5)/2 = 1.61803.

The action of this composition of matrix operations on a unit square is depicted in Fig. 8.8. The
first rotation is induced by QT

1 . This is followed by an eigen-stretching of B. The action is completed
by a rotation induced by Q2.

It is also easily shown that the singular values of a square Hermitian matrix are identical
to the eigenvalues of that matrix. The singular values of a square non-Hermitian matrix are
not, in general, the eigenvalues of that matrix.

8.8.9 Hessenberg form

A square matrix A can be decomposed into Hessenberg7 form

A = Q · H ·QT , (8.398)

where Q is an orthogonal (or unitary) matrix and H has zeros below the first sub-diagonal.
When A is Hermitian, Q is tridiagonal, which is very easy to invert numerically. Also H has
the same eigenvalues as A. Here the H of the Hessenberg form is not to be confused with
the Hessian matrix, which often is denoted by the same symbol; see Eq. (1.283).

Example 8.42
The Hessenberg form of our example square matrix A from p. 364 is

A =





−5 4 9
−22 14 18
16 −8 −6



 = Q ·H · QT = (8.399)

7Karl Hessenberg, 1904-1959, German mathematician and engineer.
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1 0 0
0 −0.8087 0.5882
0 0.5882 0.8087





︸ ︷︷ ︸

Q





−5 2.0586 9.6313
27.2029 2.3243 −24.0451

0 1.9459 5.6757





︸ ︷︷ ︸

H





1 0 0
0 −0.8087 0.5882
0 0.5882 0.8087





︸ ︷︷ ︸

QT

. (8.400)

The matrix Q found here has determinant of −1; it could be easily recalculated to arrive at an
orientation-preserving value of +1.

8.9 Projection matrix

Here we consider a topic discussed earlier in a broader context, the projection matrix defined
in Eq. (7.160). The vector A ·x belongs to the column space of A. Here A is not necessarily
square. Consider the equation A · x = b, where A and b are given. If the given vector b
does not lie in the column space of A, the equation cannot be solved for x. Still, we would
like to find xp such that

A · xp = bp, (8.401)

which does lie in the column space of A, such that bp is the projection of b onto the column
space. The residual vector from Eq. (8.4) is also expressed as

r = bp − b. (8.402)

For a projection, this residual should be orthogonal to all vectors A · z which belong to the
column space, where the components of z are arbitrary. Enforcing this condition, we get

0 = (A · z)T · r, (8.403)

= (A · z)T · (bp − b)
︸ ︷︷ ︸

r

, (8.404)

= zT · AT · (A · xp
︸ ︷︷ ︸

bp

−b), (8.405)

= zT · (AT · A · xp −AT · b). (8.406)

Since z is an arbitrary vector,

AT · A · xp −AT · b = 0. (8.407)

from which

AT · A · xp = AT · b, (8.408)

xp = (AT · A)−1 · AT · b, (8.409)

A · xp = A · (AT ·A)−1 · AT · b, (8.410)

bp = A · (AT ·A)−1 · AT

︸ ︷︷ ︸

≡P

·b. (8.411)

CC BY-NC-ND. 29 July 2012, Sen & Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


8.9. PROJECTION MATRIX 387

This is equivalent to that given in Eq. (7.160). The projection matrix P defined by bp = P·b
is

P = A · (AT · A)−1 · AT . (8.412)

The projection matrix for an operator A, when operating on an arbitrary vector b yields
the projection of b onto the column space of A. Note that many vectors b could have the
same projection onto the column space of A. It can be shown that an N × N matrix P
is a projection matrix iff P · P = P. Because of this, the projection matrix is idempotent:
P · x = P ·P · x = . . . = Pn · x. Moreover, the rank of P is its trace.

Example 8.43
Determine and analyze the projection matrix associated with projecting a vector b ∈ R3 onto the

two-dimensional space spanned by the basis vectors (1, 2, 3)T and (1, 1, 1)T .

We form the matrix A by populating its columns with the basis vectors. So

A =





1 1
2 1
3 1



 . (8.413)

The we find the projection matrix P via Eq. (8.412):

P =





1 1
2 1
3 1



 ·





(
1 2 3
1 1 1

)

·





1 1
2 1
3 1









−1

·
(

1 2 3
1 1 1

)

=





5
6

1
3 − 1

6
1
3

1
3

1
3

− 1
6

1
3

5
6



 . (8.414)

By inspection P is self-adjoint, thus it is guaranteed to possess real eigenvalues, which are λ = 1, 1, 0.
There is one non-zero eigenvalue for each of the two linearly independent basis vectors which form A.
It is easily shown that ||P||2 = 1, ρ(P) = 1, and detP = 0. Thus, P is singular. This is because it
maps vectors in three space to two space. The rank of P is 2 as is its trace. Note that, as required of
all projection matrices, P · P = P:





5
6

1
3 − 1

6
1
3

1
3

1
3

− 1
6

1
3

5
6



 ·





5
6

1
3 − 1

6
1
3

1
3

1
3

− 1
6

1
3

5
6



 =





5
6

1
3 − 1

6
1
3

1
3

1
3

− 1
6

1
3

5
6



 . (8.415)

That is to say, P is idempotent.
It is easily shown the singular value decomposition of P is equivalent to a diagonalization, giving

P = Q · Λ · QT =






1√
2

1√
3

1√
6

0 1√
3

−
√

2
3

− 1√
2

1√
3

1√
6




 ·





1 0 0
0 1 0
0 0 0



 ·






1√
2

0 − 1√
2

1√
3

1√
3

1√
3

1√
6

−
√

2
3

1√
6




 . (8.416)

The matrix Q has ||Q||2 = 1 and detQ = 1, so it is a true rotation. Thus, when P is applied to a
vector b to obtain bp, we can consider b to be first rotated into the configuration aligned with the two
basis vectors via application of QT . Then in this configuration, one of the modes of b is suppressed
via application of Λ, while the other two modes are preserved. The result is returned to its original
configuration via application of Q, which precisely provides a counter-rotation to QT . Note also that

the decomposition is equivalent to that previously discussed on p. 372; here, Λ = R ·
(
RT ·R

)−1 ·RT ,
where R is as was defined on p. 372. Note specifically that P has rank r = 2 and that Λ has r = 2
values of unity on its diagonal.
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8.10 Method of least squares

One important application of projection matrices is the method of least squares. This method
is often used to fit data to a given functional form. The form is most often in terms of polyno-
mials, but there is absolutely no restriction; trigonometric functions, logarithmic functions,
Bessel functions can all serve as well. Now if one has say, ten data points, one can in princi-
ple, find a ninth order polynomial which will pass through all the data points. Often times,
especially when there is much experimental error in the data, such a function may be subject
to wild oscillations, which are unwarranted by the underlying physics, and thus is not useful
as a predictive tool. In such cases, it may be more useful to choose a lower order curve which
does not exactly pass through all experimental points, but which does minimize the residual.

In this method, one

• examines the data,

• makes a non-unique judgment of what the functional form might be,

• substitutes each data point into the assumed form so as to form an over-constrained
system of linear equations, and

• uses the technique associated with projection matrices to solve for the coefficients which
best represent the given data.

8.10.1 Unweighted least squares

This is the most common method used when one has equal confidence in all the data.

Example 8.44
Find the best straight line to approximate the measured data relating x to t.

t x

0 5
1 7
2 10
3 12
6 15

(8.417)

A straight line fit will have the form

x = a0 + a1t, (8.418)

where a0 and a1 are the terms to be determined. Substituting each data point to the assumed form,
we get five equations in two unknowns:

5 = a0 + 0a1, (8.419)
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7 = a0 + 1a1, (8.420)

10 = a0 + 2a1, (8.421)

12 = a0 + 3a1, (8.422)

15 = a0 + 6a1. (8.423)

Rearranging, we get







1 0
1 1
1 2
1 3
1 6








(
a0

a1

)

=








5
7
10
12
15







. (8.424)

This is of the form A · a = b. We then find that

a =
(
AT · A

)−1 ·AT · b. (8.425)

Substituting, we find that

(
a0

a1

)

︸ ︷︷ ︸

a

=













(
1 1 1 1 1
0 1 2 3 6

)

︸ ︷︷ ︸

AT








1 0
1 1
1 2
1 3
1 6








︸ ︷︷ ︸

A













−1

(
1 1 1 1 1
0 1 2 3 6

)

︸ ︷︷ ︸

AT








5
7
10
12
15








︸ ︷︷ ︸

b

=

(
5.7925
1.6698

)

. (8.426)

So the best fit estimate is
x = 5.7925 + 1.6698 t. (8.427)

The Euclidean norm of the residual is ||A · a − b||2 = 1.9206. This represents the ℓ2 residual of the
prediction. A plot of the raw data and the best fit straight line is shown in Fig. 8.9.

8.10.2 Weighted least squares

If one has more confidence in some data points than others, one can define a weighting
function to give more priority to those particular data points.

Example 8.45
Find the best straight line fit for the data in the previous example. Now however, assume that we

have five times the confidence in the accuracy of the final two data points, relative to the other points.
Define a square weighting matrix W:

W =








1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 5 0
0 0 0 0 5







. (8.428)
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Figure 8.9: Plot of x− t data and best least squares straight line fit.

Now we perform the following operations:

A · a = b, (8.429)

W · A · a = W · b, (8.430)

(W · A)
T · W · A · a = (W ·A)

T · W · b, (8.431)

a =
(

(W · A)
T ·W ·A

)−1

(W ·A)
T ·W · b. (8.432)

With values of W from Eq. (8.428), direct substitution leads to

a =

(
a0

a1

)

=

(
8.0008
1.1972

)

. (8.433)

So the best weighted least squares fit is

x = 8.0008 + 1.1972 t. (8.434)

A plot of the raw data and the best fit straight line is shown in Fig. 8.10.

When the measurements are independent and equally reliable, W is the identity matrix.
If the measurements are independent but not equally reliable, W is at most diagonal. If the
measurements are not independent, then non-zero terms can appear off the diagonal in W.
It is often advantageous, for instance in problems in which one wants to control a process in
real time, to give priority to recent data estimates over old data estimates and to continually
employ a least squares technique to estimate future system behavior. The previous example
does just that. A famous fast algorithm for such problems is known as a Kalman8 Filter.

8Rudolf Emil Kálmán, 1930-, Hungarian/American electrical engineer.
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Figure 8.10: Plot of x− t data and best weighted least squares straight line fit.

8.11 Matrix exponential

Definition: The exponential matrix is defined as

eA = I + A +
1

2!
A2 +

1

3!
A3 + · · · (8.435)

Thus

eAt = I + At+
1

2!
A2t2 +

1

3!
A3t3 + · · · , (8.436)

d

dt

(
eAt
)

= A + A2t+
1

2!
A3t2 + · · · , (8.437)

= A ·
(

I + At+
1

2!
A2t2 +

1

3!
A3t3 + · · ·

)

︸ ︷︷ ︸

=eAt

, (8.438)

= A · eAt. (8.439)

Properties of the matrix exponential include

eaI = eaI, (8.440)

(eA)−1 = e−A, (8.441)

eA(t+s) = eAteAs. (8.442)

But eA+B = eAeB only if A · B = B · A. Thus, etI+sA = etesA.
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Example 8.46
Find eAt if

A =





a 1 0
0 a 1
0 0 a



 . (8.443)

We have

A = aI + B, (8.444)

where

B =





0 1 0
0 0 1
0 0 0



 . (8.445)

Thus

B2 =





0 0 1
0 0 0
0 0 0



 , (8.446)

B3 =





0 0 0
0 0 0
0 0 0



 , (8.447)

... (8.448)

Bn =





0 0 0
0 0 0
0 0 0



 , for n ≥ 4. (8.449)

(8.450)

Furthermore

I · B = B · I = B. (8.451)

Thus

eAt = e(aI+B)t, (8.452)

= eatI · eBt, (8.453)

=







I + atI +
1

2!
a2t2I2 +

1

3!
a3t3I3 + · · ·

︸ ︷︷ ︸

=eatI=eatI







·







I + Bt+
1

2!
B2t2 +

=0
︷ ︸︸ ︷

1

3!
B3t3 + · · ·

︸ ︷︷ ︸

=eBt






, (8.454)

= eatI ·
(

I + Bt+ B2 t
2

2

)

, (8.455)

= eat





1 t t2

2 ,
0 1 t
0 0 1



 . (8.456)
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If A can be diagonalized, the calculation is simplified. Then

eAt = eS·Λ·S−1t = I + S · Λ · S−1t+ . . .+
1

N !

(
S · Λ · S−1t

)N
. (8.457)

Noting that

(
S · Λ · S−1

)2
= S · Λ · S−1 · S ·Λ · S−1 = S · Λ2 · S−1, (8.458)

(
S ·Λ · S−1

)N
= S · Λ · S−1 · . . . · S · Λ · S−1 = S · ΛN · S−1, (8.459)

the original expression reduces to

eAt = S ·
(

I + Λt+ . . .+
1

N !

(
ΛN tN

)
)

· S−1, (8.460)

= S · eΛt · S−1. (8.461)

8.12 Quadratic form

At times one may be given a polynomial equation for which one wants to determine conditions
under which the expression is positive. For example if we have

f(ξ1, ξ2, ξ3) = 18ξ2
1 − 16ξ1ξ2 + 5ξ2

2 + 12ξ1ξ3 − 4ξ2ξ3 + 6ξ2
3 , (8.462)

it is not obvious whether or not there exist (ξ1, ξ2, ξ3) which will give positive or negative
values of f . However, it is easily verified that f can be rewritten as

f(ξ1, ξ2, ξ3) = 2(ξ1 − ξ2 + ξ3)
2 + 3(2ξ1 − ξ2)

2 + 4(ξ1 + ξ3)
2. (8.463)

So in this case f ≥ 0 for all (ξ1, ξ2, ξ3). How to demonstrate positivity (or non-positivity) of
such expressions is the topic of this section. A quadratic form is an expression

f(ξ1, · · · , ξN) =

N∑

j=1

N∑

i=1

aijξiξj, (8.464)

where {aij} is a real, symmetric matrix which we will also call A. The surface represented by

the equation
∑N

j=1

∑N
i=1 aijξiξj= constant is a quadric surface. With the coefficient matrix

defined, we can represent f as
f = ξT · A · ξ. (8.465)

Now, by Eq. (8.321), A can be decomposed as Q · Λ ·Q−1, where Q is the orthogonal matrix
populated by the orthonormalized eigenvectors of A, and Λ is the corresponding diagonal
matrix of eigenvalues. Thus, Eq. (8.465) becomes

f = ξT · Q ·Λ · Q−1

︸ ︷︷ ︸

A

·ξ. (8.466)
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Since Q is orthogonal, QT = Q−1, and we find

f = ξT · Q · Λ · QT · ξ. (8.467)

Now, define x so that x = QT · ξ = Q−1 · ξ. Consequently, ξ = Q · x. Thus, Eq. (8.467)
becomes

f = (Q · x)T ·Q · Λ · x, (8.468)

= xT ·QT · Q · Λ · x, (8.469)

= xT ·Q−1 · Q · Λ · x, (8.470)

= xT ·Λ · x. (8.471)

This standard form of a quadratic form is one in which the cross-product terms (i.e. ξiξj,
i 6= j) do not appear.

Theorem

(Principal axis theorem) If Q is the orthogonal matrix and λ1, · · · , λN the eigenvalues
corresponding to {aij}, a change in coordinates






ξ1
...
ξN




 = Q ·






x1
...
xN




 , (8.472)

will reduce the quadratic form, Eq. (8.464), to its standard quadratic form

f(x1, . . . , xN) = λ1x
2
1 + λ2x

2
2 + · · · + λNx

2
N . (8.473)

It is perhaps better to consider this as an alias rather than an alibi transformation.

Example 8.47
Change

f(ξ1, ξ2) = 2ξ21 + 2ξ1ξ2 + 2ξ22 , (8.474)

to a standard quadratic form.

For N = 2, Eq. (8.464) becomes

f(ξ1, ξ2) = a11ξ
2
1 + (a12 + a21)ξ1ξ2 + a22ξ

2
2 . (8.475)

We choose {aij} such that the matrix is symmetric. This gives us

a11 = 2, (8.476)

a12 = 1, (8.477)

a21 = 1, (8.478)

a22 = 2. (8.479)
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So we get

A =

(
2 1
1 2

)

. (8.480)

The eigenvalues of A are λ = 1, λ = 3. The orthogonal matrix corresponding to A is

Q =

(
1√
2

1√
2

− 1√
2

1√
2

)

, Q−1 = QT =

(
1√
2

− 1√
2

1√
2

1√
2

)

. (8.481)

The transformation ξ = Q · x is

ξ1 =
1√
2
(x1 + x2), (8.482)

ξ2 =
1√
2
(−x1 + x2). (8.483)

We have detQ = 1, so the transformation is orientation-preserving. The inverse transformation x =
Q−1 · ξ = QT · ξ is

x1 =
1√
2
(ξ1 − ξ2), (8.484)

x2 =
1√
2
(ξ1 + ξ2). (8.485)

Using Eqs. (8.482,8.483) to eliminate ξ1 and ξ2 in Eq. (8.474), we get a result in the form of Eq. (8.473):

f(x1, x2) = x2
1 + 3x2

2. (8.486)

In terms of the original variables, we get

f(ξ1, ξ2) =
1

2
(ξ1 − ξ2)

2 +
3

2
(ξ1 + ξ2)

2. (8.487)

Example 8.48
Change

f(ξ1, ξ2, ξ3) = 18ξ21 − 16ξ1ξ2 + 5ξ22 + 12ξ1ξ3 − 4ξ2ξ3 + 6ξ23 , (8.488)

to a standard quadratic form.

For N = 3, Eq. (8.464) becomes

f(ξ1, ξ2, ξ3) = ( ξ1 ξ2 ξ3 )





18 −8 6
−8 5 −2
6 −2 6









ξ1
ξ2
ξ3



 = ξ
T · A · ξ. (8.489)

The eigenvalues of A are λ1 = 1, λ2 = 4, λ3 = 24. The orthogonal matrix corresponding to A is

Q =







− 4√
69

− 1√
30

13√
230

− 7√
69

√
2
15 −3

√
2

115

2√
69

√
5
6

√
5
46






, Q−1 = QT =







− 4√
69

− 7√
69

2√
69

− 1√
30

√
2
15

√
5
6

13√
230

−3
√

2
115

√
5
46






. (8.490)
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For this non-unique choice of Q, we note that detQ = −1, so it fails to satisfy the requirements
of a right-handed coordinate system. For the purposes of this particular problem, this fact has no
consequence. The inverse transformation x = Q−1 · ξ = QT · ξ is

x1 =
−4√
69
ξ1 −

7√
69
ξ2 +

2√
69
ξ3, (8.491)

x2 = − 1√
30
ξ1 +

√

2

15
ξ2 +

√

5

6
ξ3, (8.492)

x3 =
13√
230

ξ1 − 3

√

2

115
ξ2 +

√

5

46
ξ3. (8.493)

Directly imposing then the standard quadratic form of Eq. (8.473) onto Eq. (8.488), we get

f(x1, x2, x3) = x2
1 + 4x2

2 + 24x2
3. (8.494)

In terms of the original variables, we get

f(ξ1, ξ2, ξ3) =

( −4√
69
ξ1 −

7√
69
ξ2 +

2√
69
ξ3

)2

+4

(

− 1√
30
ξ1 +

√

2

15
ξ2 +

√

5

6
ξ3

)2

+24

(

13√
230

ξ1 − 3

√

2

115
ξ2 +

√

5

46
ξ3

)2

. (8.495)

It is clear that f(ξ1, ξ2, ξ3) is positive definite. Moreover, by performing the multiplications, it is easily
seen that the original form is recovered. Further manipulation would also show that

f(ξ1, ξ2, ξ3) = 2(ξ1 − ξ2 + ξ3)
2 + 3(2ξ1 − ξ2)

2 + 4(ξ1 + ξ3)
2, (8.496)

so we see the particular quadratic form is not unique.

8.13 Moore-Penrose inverse

We seek the Moore-Penrose9 inverse: A+
M×N such that the following four conditions are

satisfied

AN×M · A+
M×N ·AN×M = AN×M , (8.497)

A+
M×N · AN×M ·A+

M×N = A+
M×N , (8.498)

(
AN×M ·A+

M×N
)H

= AN×M ·A+
M×N , (8.499)

(
A+
M×N ·AN×M

)H
= A+

M×N ·AN×M . (8.500)

9after Eliakim Hastings Moore, 1862-1932, American mathematician, and Sir Roger Penrose, 1931-, En-
glish mathematician. It is also credited to Arne Bjerhammar, 1917-2011, Swedish geodesist.
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This will be achieved if we define

A+
M×N = QM×M · B+

M×N · QH
N×N . (8.501)

The matrix B+ is M×N with µ−1
i , (i = 1, 2, . . .) in the first r positions on the main diagonal.

This is closely related to the N ×M matrix B, defined in Sec. 8.8.8, having µi on the same
diagonal positions. The Moore-Penrose inverse, A+

M×N , is also known as the pseudo-inverse.
This is because in the special case in which N ≤M and N = r that it can be shown that

AN×M ·A+
M×N = IN×N . (8.502)

Let’s check this with our definitions for the case when N ≤M , N = r.

AN×M · A+
M×N =

(
QN×N · BN×M · QH

M×M
)
·
(
QM×M · B+

M×N ·QH
N×N

)
, (8.503)

= QN×N · BN×M · Q−1
M×M · QM×M · B+

M×N · QH
N×N , (8.504)

= QN×N · BN×M · B+
M×N · QH

N×N , (8.505)

= QN×N · IN×N ·QH
N×N , (8.506)

= QN×N · QH
N×N , (8.507)

= QN×N · Q−1
N×N , (8.508)

= IN×N . (8.509)

We note for this special case that precisely because of the way we defined B+ that BN×M ·
B+
M×N = IN×N . When N > M , BN×M · B+

M×N yields a matrix with r ones on the diagonal
and zeros elsewhere.

Example 8.49
Find the Moore-Penrose inverse, A+

3×2, of A2×3 from the matrix of a previous example, p. 366:

A2×3 =

(
1 −3 2
2 0 3

)

. (8.510)

A+
3×2 = Q3×3 ·B+

3×2 ·QH
2×2, (8.511)

A+
3×2 =





0.452350 0.330059 −0.828517
−0.471378 0.877114 0.0920575
0.757088 0.348902 0.552345



 ·





1
4.6385 0

0 1
2.3419

0 0



 ·
(

0.728827 0.684698
−0.684698 0.728827

)

,

(8.512)

A+
3×2 =





−0.0254237 0.169492
−0.330508 0.20339
0.0169492 0.220339



 . (8.513)

Note that

A2×3 · A+
3×2 =

(
1 −3 2
2 0 3

)

·





−0.0254237 0.169492
−0.330508 0.20339
0.0169492 0.220339



 =

(
1 0
0 1

)

. (8.514)

Both Q matrices have a determinant of +1 and are thus volume- and orientation-preserving.
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Example 8.50
Use the Moore-Penrose inverse to solve the problem A ·x = b studied in an earlier example, p. 341:

(
1 2
3 6

)

·
(
x1

x2

)

=

(
2
0

)

. (8.515)

We first seek the singular value decomposition of A, A = Q2 · B · QH
1 . Now

AH · A =

(
1 3
2 6

)

·
(

1 2
3 6

)

=

(
10 20
20 40

)

. (8.516)

The eigensystem with normalized eigenvectors corresponding to AH · A is

λ1 = 50, e1 =

(
1√
5

2√
5

)

, (8.517)

λ2 = 0, e2 =

(

− 2√
5

1√
5

)

, (8.518)

so

Q1 =

(
1√
5

− 2√
5

2√
5

1√
5

)

, (8.519)

B =

(√
50 0
0 0

)

=

(
5
√

2 0
0 0

)

, (8.520)

so taking A ·Q1 = Q2 · B, gives

(
1 2
3 6

)

︸ ︷︷ ︸

A

·
(

1√
5

− 2√
5

2√
5

1√
5

)

︸ ︷︷ ︸

=Q1

=

(
q11 q12
q21 q22

)

︸ ︷︷ ︸

Q2

·
(

5
√

2 0
0 0

)

︸ ︷︷ ︸

B

, (8.521)

√
5

(
1 0
3 0

)

=

(
5
√

2q11 0
5
√

2q21 0

)

. (8.522)

Solving, we get
(
q11
q21

)

=

(
1√
10
3√
10

)

. (8.523)

Imposing orthonormality to find q12 and q22, we get

(
q12
q22

)

=

(
3√
10

− 1√
10

)

, (8.524)

so

Q2 =

(
1√
10

3√
10

3√
10

− 1√
10

)

, (8.525)
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and

A = Q2 · B ·QH
1 =

(
1√
10

3√
10

3√
10

− 1√
10

)

︸ ︷︷ ︸

Q2

·
(

5
√

2 0
0 0

)

︸ ︷︷ ︸

B

·
(

1√
5

2√
5

− 2√
5

1√
5

)

︸ ︷︷ ︸

QH
1

=

(
1 2
3 6

)

. (8.526)

As an aside, note that Q1 is orientation-preserving, while Q2 is not, though this property is not
important for this analysis.

We will need B+, which is easily calculated by taking the inverse of each diagonal term of B:

B+ =

(
1

5
√

2
0

0 0

)

. (8.527)

Now the Moore-Penrose inverse is

A+ = Q1 · B+ · QH
2 =

(
1√
5

− 2√
5

2√
5

1√
5

)

︸ ︷︷ ︸

Q1

·
(

1
5
√

2
0

0 0

)

︸ ︷︷ ︸

B+

·
(

1√
10

3√
10

3√
10

− 1√
10

)

︸ ︷︷ ︸

QH
2

=

(
1
50

3
50

2
50

6
50

)

. (8.528)

Direct multiplication shows that A ·A+ 6= I. This is a consequence of A not being a full rank matrix.
However, the four Moore-Penrose conditions are satisfied: A · A+ · A = A, A+ · A · A+ = A+,
(A ·A+)H = A · A+, and (A+ · A)H = A+ ·A.

Lastly, applying the Moore-Penrose inverse operator to the vector b to form x = A+ · b, we get

x = A+ · b =

(
1
50

3
50

2
50

6
50

)

︸ ︷︷ ︸

A+

·
(

2
0

)

︸ ︷︷ ︸

b

=

(
1
25
2
25

)

. (8.529)

We see that the Moore-Penrose operator acting on b has yielded an x vector which is in the row space
of A. As there is no right null space component, it is the minimum length vector that minimizes the
residual ||A · x − b||2. It is fully consistent with the solution we found using Gaussian elimination in
an earlier example, p. 341.

Problems

1. Find the x with smallest ||x||2 which minimizes ||A · x− b||2 for

A =





1 0 3
2 −1 3
3 −1 5



 , b =





1
0
1



 .

2. Find the most general x which minimizes ||A · x − b||2 for

A =





1 0
2 −1
3 −2



 , b =





1
0
1



 .
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3. Find x with the smallest ||x||2 which minimizes ||A · x− b||2 for

A =





1 0 1 4
1 0 2 −1
2 1 3 −2



 , b =





2
1
−3



 .

4. Find eA if

A =





1 1 1
0 3 2
0 0 5



 .

5. Diagonalize or reduce to Jordan canonical form

A =





5 2 −1
0 5 1
0 0 5



 .

6. Find the eigenvectors and generalized eigenvectors of

A =







1 1 1 1
0 1 1 1
0 0 0 1
0 0 0 0






.

7. Decompose A into Jordan form S · J · S−1, P−1 · L · D · U, Q · R, Schur form, and Hessenberg form

A =







0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0






.

8. Find the matrix S that will convert the following to the Jordan canonical form

(a)







6 −1 −3 1
−1 6 1 −3
−3 1 6 −1
1 −3 −1 6






,

(b)







8 −2 −2 0
0 6 2 −4
−2 0 8 −2
2 −4 0 6






,

and show the Jordan canonical form.

9. Show that the eigenvectors and generalized eigenvectors of







1 1 2 0
0 1 3 0
0 0 2 2
0 0 0 1







span the space.

10. Find the projection matrix onto the space spanned by (1, 2, 3)T and (2, 3, 5)T . Find the projection of
the vector (7, 8, 9)T onto this space.

11. Reduce 4x2 + 4y2 + 2z2 − 4xy + 4yz + 4zx to standard quadratic form.
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12. Find the inverse of 



1/4 1/2 3/4
3/4 1/2 1/4
1/4 1/2 1/2



 .

13. Find exp





0 0 i
0 1 0
1 0 0



 .

14. Find the nth power of

(
1 3
3 1

)

.

15. If

A =

(
5 4
1 2

)

,

find a matrix S such that S−1 · A · S is a diagonal matrix. Show by multiplication that it is indeed
diagonal.

16. Determine if A =

(
6 2
−2 1

)

and B =

(
8 6
−3 −1

)

are similar.

17. Find the eigenvalues, eigenvectors, and the matrix S such that S−1 · A · S is diagonal or of Jordan
form, where A is

(a)





5 0 0
1 0 1
0 0 −2



 ,

(b)





−2 0 2
2 1 0
0 0 −2i



 ,

(c)





3 0 −1
−1 2 2i
1 0 1 + i



 .

18. Put each of the matrices above in L ·D ·U form.

19. Put each of the matrices above in Q ·R form.

20. Put each of the matrices above in Schur form.

21. Let

A =





1 1 2
0 1 1
0 0 1



 .

Find S such that S−1 · A · S = J, where J is of the Jordan form. Show by multiplication that
A · S = S · J.

22. Show that

eA =

(
cos(1) sin(1)
− sin(1) cos(1)

)

,

if

A =

(
0 1
−1 0

)

.
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23. Write A in row echelon form

A =





0 0 1 0
2 −2 0 0
1 0 1 2



 .

24. Show that the function
f(x, y, z) = x2 + y2 + z2 + yz − zx− xy,

is always non-negative.

25. If A : ℓ22 → ℓ22, find ||A|| when

A =

(
1 −1
1 1

)

.

Also find its inverse and adjoint.

26. Is the quadratic form
f(x1, x2, x3) = 4x2

1 + 2x1x2 + 4x1x3,

positive definite?

27. Find the Schur decomposition and Cholesky decompositions of A:

A =







0 0 0 0
0 1 −3 0
0 −3 1 0
0 0 0 0






.

28. Find the x with minimum ||x||2 which minimizes ||A · x − b||2 in the following problems:

(a)

A =





−4 1 0
2 0 0
−2 1 0



 , b =





1
3
2



 ,

(b)

A =





1 3 2 5 6
7 2 1 −4 5
1 4 2 13 7



 , b =





1
4
1



 .

29. In each part of the previous problem, find the right null space and show the most general solution
vector can be represented as a linear combination of a unique vector in the row space of A plus an
arbitrary scalar multiple of the right null space of A.

30. An experiment yields the following data:

t x
0.00 1.001
0.10 1.089
0.23 1.240
0.70 1.654
0.90 1.738
1.50 2.120
2.65 1.412
3.00 1.301

We have fifteen times as much confidence in the first four data points than we do in all the others.
Find the least squares best fit coefficients a, b, and c if the assumed functional form is
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(a) x = a+ bt+ ct2,

(b) x = a+ b sin t+ c sin 2t.

Plot on a single graph the data points and the two best fit estimates. Which best fit estimate has the
smallest least squares residual?

31. For

A =





8 5 −2 −1
6 8 −2 8
−1 2 0 1



 ,

a) find the P−1 · L ·D ·U decomposition, and

b) find the singular values and the singular value decomposition.

32. For the complex matrices A find eigenvectors, eigenvalues, demonstrate whether or not the eigenvec-
tors are orthogonal, find (if possible) the matrix S such that S−1 · A · S is of Jordan form, and find
the singular value decomposition if

A =

(
2 + i 2

2 1

)

, A =





2 4i 2 + i
−4i 1 3
2 − i 3 −2



 .

33. Consider the action of the matrix

A =

(
3 1
2 2

)

,

on the unit square with vertices at (0, 0), (1, 0), (1, 1), and (0, 1). Give a plot of the original unit
square and its image following the alibi mapping. Also decompose A under a) Q · R decomposition,
and b) singular value decomposition, and for each decomposition plot the series of mappings under
the action of each component of the decomposition.
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Chapter 9

Dynamical systems

see Kaplan, Chapter 9,

see Drazin,

see Lopez, Chapter 12,

see Hirsch and Smale,

see Guckenheimer and Holmes,

see Wiggins,

see Strogatz.

In this chapter we consider the evolution of systems, often called dynamic systems. Generally,
we will be concerned with systems which can be described by sets of ordinary differential
equations, both linear and non-linear. Some other classes of systems will also be studied.

9.1 Paradigm problems

We first consider some paradigm problems which will illustrate the techniques used to solve
non-linear systems of ordinary differential equations. Systems of equations are typically more
complicated than scalar differential equations. The fundamental procedure for analyzing
systems of non-linear ordinary differential equations is to

• Cast the system into a standard form.

• Identify the equilibria of the system.

• If possible, linearize the system about its equilibria.

• If linearizable, ascertain the stability of the linearized system to small disturbances.

• If not linearizable, attempt to ascertain the stability of the non-linear system near its
equilibria.

• Solve the full non-linear system.
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9.1.1 Autonomous example

First consider a simple example of what is known as an autonomous system. An autonomous
system of ordinary differential equations can be written in the form

dx

dt
= f(x). (9.1)

Notice that the independent variable t does not appear explicitly.

Example 9.1
For x ∈ R2, t ∈ R1, f : R2 → R2, consider

dx1

dt
= x2 − x2

1 = f1(x1, x2), (9.2)

dx2

dt
= x2 − x1 = f2(x1, x2). (9.3)

The curves defined in the (x1, x2) plane by f1 = 0 and f2 = 0 are very useful in determining both the
fixed points (found at the intersection) and in the behavior of the system of differential equations. In fact
one can sketch trajectories of paths in this phase space by inspection in many cases. The loci of points
where f1 = 0 and f2 = 0 are plotted in Fig. 9.1. The zeroes are found at (x1, x2)

T = (0, 0)T , (1, 1)T .
Linearize about both points by neglecting quadratic and higher powers of deviations from the critical
points to find the local behavior of the solution near these points. Near (0,0), the linearization is

dx1

dt
= x2, (9.4)

dx2

dt
= x2 − x1, (9.5)

or
d

dt

(
x1

x2

)

=

(
0 1
−1 1

)(
x1

x2

)

. (9.6)

This is of the form
dx

dt
= A · x. (9.7)

And with
S · z ≡ x, (9.8)

where S is a constant matrix, we get

d

dt
(S · z) = S · dz

dt
= A · S · z, (9.9)

dz

dt
= S−1 ·A · S · z. (9.10)

At this point we assume that A has distinct eigenvalues and linearly independent eigenvectors; other
cases are easily handled. If we choose S such that its columns contain the eigenvectors of A, we will
get a diagonal matrix, which will lead to a set of uncoupled differential equations; each of these can be
solved individually. So for our A, standard linear algebra gives

S =

(
1
2 +

√
3

2 i
1
2 −

√
3

2 i
1 1

)

, S−1 =

(
i√
3

1
2 +

√
3

6 i

− i√
3

1
2 −

√
3

6 i

)

. (9.11)
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Figure 9.1: Phase plane for dx1/dt = x2 − x2
1, dx2/dt = x2 − x1, along with equilibrium

points (0, 0) and (1, 1), separatrices x2 − x2
1 = 0, x2 − x1 = 0, solution trajectories, and

corresponding vector field.

With this choice we get the eigenvalue matrix

S−1 · A · S =

(
1
2 −

√
3

2 i 0

0 1
2 +

√
3

2 i

)

. (9.12)

So we get two uncoupled equations for z:

dz1
dt

=

(

1

2
−

√
3

2
i

)

︸ ︷︷ ︸

=λ1

z1, (9.13)

dz2
dt

=

(

1

2
+

√
3

2
i

)

︸ ︷︷ ︸

=λ2

z2, (9.14)

which have solutions

z1 = c1 exp

((

1

2
−

√
3

2
i

)

t

)

, (9.15)
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z2 = c2 exp

((

1

2
+

√
3

2
i

)

t

)

. (9.16)

Then we form x by taking x = S · z so that

x1 =

(

1

2
+

√
3

2
i

)

c1 exp

((

1

2
−

√
3

2
i

)

t

)

︸ ︷︷ ︸

=z1

+

(

1

2
−

√
3

2
i

)

c2 exp

((

1

2
+

√
3

2
i

)

t

)

︸ ︷︷ ︸

=z2

, (9.17)

x2 = c1 exp

((

1

2
−

√
3

2
i

)

t

)

︸ ︷︷ ︸

=z1

+ c2 exp

((

1

2
+

√
3

2
i

)

t

)

︸ ︷︷ ︸

=z2

. (9.18)

Since there is a positive real coefficient in the exponential terms, both x1 and x2 grow exponentially.
The imaginary component indicates that this is an oscillatory growth. Hence, there is no tendency for
a solution which is initially close to (0, 0), to remain there. So the fixed point is unstable.

Consider the next fixed point near (1, 1). First define a new set of local variables:

x̃1 = x1 − 1, (9.19)

x̃2 = x2 − 1. (9.20)

Then

dx1

dt
=

dx̃1

dt
= (x̃2 + 1) − (x̃1 + 1)2, (9.21)

dx2

dt
=

dx̃2

dt
= (x̃2 + 1) − (x̃1 + 1). (9.22)

Expanding, we get

dx̃1

dt
= (x̃2 + 1) − x̃2

1 − 2x̃1 − 1, (9.23)

dx̃2

dt
= (x̃2 + 1) − (x̃1 + 1). (9.24)

Linearizing about (x̃1, x̃2) = (0, 0), we find

dx̃1

dt
= x̃2 − 2x̃1, (9.25)

dx̃2

dt
= x̃2 − x̃1, (9.26)

or
d

dt

(
x̃1

x̃2

)

=

(
−2 1
−1 1

)(
x̃1

x̃2

)

. (9.27)

Going through an essentially identical exercise gives the eigenvalues to be

λ1 = −1

2
+

√
5

2
> 0, (9.28)

λ2 = −1

2
−

√
5

2
< 0, (9.29)
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which in itself shows the solution to be essentially unstable since there is a positive eigenvalue. After
the usual linear algebra and back transformations, one obtains the local solution:

x1 = 1 + c1

(

3 −
√

5

2

)

exp

((

−1

2
+

√
5

2

)

t

)

+ c2

(

3 +
√

5

2

)

exp

((

−1

2
−

√
5

2

)

t

)

, (9.30)

x2 = 1 + c1 exp

((

−1

2
+

√
5

2

)

t

)

+ c2 exp

((

−1

2
−

√
5

2

)

t

)

. (9.31)

Note that while this solution is generally unstable, if one has the special case in which c1 = 0, that the
fixed point in fact is stable. Such is characteristic of a saddle node.

As an interesting aside, we can use Eq. (6.371) to calculate the curvature field for this system. With
the notation of the present section, the curvature field is given by

κ =

√

(fT ·F ·FT · f)(fT · f) − (fT · FT · f)2
(fT · f)3/2

, (9.32)

where F, the gradient of the vector field f , is given by the analog of Eq. (6.370)

F = ∇fT . (9.33)

So with

f =

(
f1(x1, x2)
f2(x1, x2)

)

=

(
x2 − x2

1

x2 − x1

)

, F =

( ∂f1
∂x1

∂f2
∂x1

∂f1
∂x2

∂f2
∂x2

)

=

(
−2x1 −1

1 1

)

, (9.34)

detailed calculation reveals that

κ =

√

(−x2
1 + x3

1 + x4
1 + x1x2 − x2

1x2 − 2x3
1x2 − x2

2 + 2x1x2
2)

2

(x2
1 + x4

1 − 2x1x2 − 2x2
1x2 + 2x2

2)
3/2

(9.35)

A plot of the curvature field is shown in Fig. 9.2. Because κ varies over orders of magnitude, the contours
are for lnκ to more easily visualize the variation. Regions of high curvature are noted near both critical
points and in the regions between the curves x2 = x1 and x2 = x2

1 for x1 ∈ [0, 1]. Comparison with
Fig. 9.1 reveals consistency.

9.1.2 Non-autonomous example

Next, consider a more complicated example. Among other things, the system as originally
cast is non-autonomous in that the independent variable t appears explicitly. Additionally,
it is coupled and contains hidden singularities. Some operations are necessary in order to
cast the system in standard form.

Example 9.2
For x ∈ R2, t ∈ R1, f : R2 × R1 → R2, analyze

t
dx1

dt
+ x2x1

dx2

dt
= x1 + t = f1(x1, x2, t), (9.36)

x1
dx1

dt
+ x2

2

dx2

dt
= x1t = f2(x1, x2, t), (9.37)

x1(0) = x10, x2(0) = x20. (9.38)
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Figure 9.2: Contours of lnκ, where κ is trajectory curvature for trajectories of solutions to
dx1/dt = x2 − x2

1, dx2/dt = x2 − x1. Separatrices x2 − x2
1 = 0 and x2 − x1 = 0 are also

plotted. Red shading corresponds to large trajectory curvature; blue shading corresponds to
small trajectory curvature.

Let
dt

ds
= 1, t(0) = 0, (9.39)

and further y1 = x1, y2 = x2, y3 = t. Then with s ∈ R1, y ∈ R3, g : R3 → R3,

y3
dy1
ds

+ y2y1
dy2
ds

= y1 + y3 = g1(y1, y2, y3), (9.40)

y1
dy1
ds

+ y2
2

dy2
ds

= y1y3 = g2(y1, y2, y3), (9.41)

dy3
ds

= 1 = g3(y1, y2, y3), (9.42)

y1(0) = y10, y2(0) = y20, y3(0) = 0. (9.43)

In matrix form, we have




y3 y2y1 0
y1 y2

2 0
0 0 1









dy1
ds
dy2
ds
dy3
ds



 =





y1 + y3
y1y3

1



 . (9.44)

Inverting the coefficient matrix, we obtain the following equation which is in autonomous form:

d

ds





y1
y2
y3



 =







y1y2−y2
1y3+y2y3

y2y3−y2
1

y1(y2
3−y1−y3)

y2(y2y3−y2
1)

1







=





h1(y1, y2, y3)
h2(y1, y2, y3)
h3(y1, y2, y3)



 . (9.45)

There are potential singularities at y2 = 0 and y2y3 = y2
1. Under such conditions, the determinant of

the coefficient matrix is zero, and dyi/ds is not uniquely determined. One way to address the potential
singularities is by defining a new independent variable u ∈ R1 via the equation

ds

du
= y2

(
y2y3 − y2

1

)
. (9.46)
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The system, Eq. (9.45), then transforms to

d

du





y1
y2
y3



 =





y2
(
y1y2 − y2

1y3 + y2y3
)

y1
(
y2
3 − y1 − y3

)

y2
(
y2y3 − y2

1

)



 =





p1(y1, y2, y3)
p2(y1, y2, y3)
p3(y1, y2, y3)



 . (9.47)

This equation actually has an infinite number of fixed points, all of which lie on a line in the three-
dimensional phase volume. The line is given parametrically by (y1, y2, y3)

T = (0, 0, v)T , v ∈ R1

Here v is just a parameter used in describing the line of fixed points. However, it turns out in this
case that the Taylor series expansions yield no linear contribution near any of the fixed points, so
we don’t get to use the standard linear analysis technique! The problem has an essential non-linear
essence, even near fixed points. More potent methods would need to be employed, but the example
demonstrates the principle. Figure 9.3 gives a numerically obtained solution for y1(u), y2(u), y3(u)
along with a trajectory in (y1, y2, y3) space when y1(0) = 1, y2(0) = −1, y3(0) = 0. This corresponds to
x1(t = 0) = 1, x2(t = 0) = −1.
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Figure 9.3: Solutions for one set of initial conditions, y1(0) = 1, y2(0) = −1, y3(0) = 0,
for second paradigm example: trajectory in phase volume (y1, y2, y3); also y1(u), y2(u), y3(u)
and x1(t), x2(t). Here y1 = x1, y2 = x2, y3 = t.

We note that while the solutions are monotonic in the variable u, that they are not monotonic
in t, after the transformation back to x1(t), x2(t) is effected. Also, while it appears there are points
(u = 0.38, u = 0.84, u = 1.07) where the derivatives dy1/du, dy2/du, dy3/du become unbounded, closer
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inspection reveals that they are simply points of steep, but bounded, derivatives. However at points
where the slope dy3/du = dt/du changes sign, the derivatives dx1/dt and dx2/dt formally are infinite,
as is reflected in the cyclic behavior exhibited in the plots of x1 versus t or x2 versus t.

9.2 General theory

Consider x ∈ RN , t ∈ R1, g : RN × RN × R1 → RN . A general non-linear system of
differential-algebraic equations takes on the form

g

(
dx

dt
,x, t

)

= 0. (9.48)

Such general problems can be challenging. Let us here restrict to a form which is quasi-
linear in the time-derivatives. Thus, consider x ∈ RN , t ∈ R1,A : RN × R1 → RN × RN , f :
RN × R1 → RN . Then the quasi-linear problem of the form

A(x, t) · dx
dt

= f(x, t), x(0) = xo, (9.49)

can be reduced to autonomous form in the following manner. With

x =





x1
...
xN



 , A(x, t) =





a11(x, t) . . . a1N (x, t)
...

. . .
...

aN1(x, t) . . . aNN (x, t)



 , f(x, t) =





f1(x1, . . . , xN , t)
...

fN(x1, . . . , xN , t)



 ,

(9.50)

define s ∈ R1 such that
dt

ds
= 1, t(0) = 0. (9.51)

Then define y ∈ RN+1,B : RN+1 → RN+1 × RN+1, g : RN+1 → RN+1, such that along with
s ∈ R1 that

y =







y1
...
yN
yN+1







=







x1
...
xN
t






, (9.52)

B(y) =







a11(y) . . . a1N (y) 0
...

. . .
...

...
aN1(y) . . . aNN (y) 0

0 . . . 0 1






, (9.53)

g(y) =







g1(y1, . . . , yN+1)
...

gN(y1, . . . , yN+1)
gN+1(y1, . . . , yN+1)







=







f1(x1, . . . , xN , t)
...

fN(x1, . . . , xN , t)
1






. (9.54)
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Equation (9.49) then transforms to

B(y) · dy
ds

= g(y). (9.55)

By forming B−1, assuming B is non-singular, Eq. (9.55) can be written as

dy

ds
= B−1(y) · g(y), (9.56)

or by taking
B−1(y) · g(y) ≡ h(y), (9.57)

we get the form, commonly called autonomous form, with s ∈ R1,y ∈ RN+1,h : RN+1 →
RN+1:

dy

ds
= h(y). (9.58)

If B(y) is singular, then h has singularities. At such singular points, we cannot form a
linearly independent set of dy/ds, and the system is better considered as a set of differential-
algebraic equations. If the source of the singularity can be identified, a singularity-free
autonomous set of equations can often be written. For example, suppose h can be rewritten
as

h(y) =
p(y)

q(y)
, (9.59)

where p and q have no singularities. Then we can remove the singularity by introducing the
new independent variable u ∈ R1 such that

ds

du
= q(y). (9.60)

Using the chain rule, the system then becomes

dy

ds
=

p(y)

q(y)
, (9.61)

ds

du

dy

ds
= q(y)

p(y)

q(y)
, (9.62)

dy

du
= p(y), (9.63)

which has no singularities.
Casting ordinary differential equations systems in autonomous form is the starting point

for most problems and most theoretical development. The task from here generally proceeds
as follows:

• Find all the zeroes of h. This is an algebra problem, which can be topologically difficult
for non-linear problems.
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• If h has any singularities, redefine variables in the manner demonstrated to remove the
singularity

• If possible, linearize h (or its equivalent) about each of its zeroes

• Perform a local analysis of the system of differential equations near zeroes.

• If the system is linear, an eigenvalue analysis is sufficient to reveal stability; for non-
linear systems, the situation is not always straightforward.

9.3 Iterated maps

A map f : RN → RN can be iterated to give a dynamical system of the form

xk+1
n = fn(x

k
1, x

k
2, · · · , xkN), n = 1, · · · , N. (9.64)

Given an initial point x0
n, (n = 1, . . . , N) in RN , a series of images x1

n, x
2
n, x

3
n, . . . can be found

as k = 0, 1, 2, . . .. The map is dissipative or conservative according to whether the diameter
of a set is larger than that of its image or the same, respectively, i.e. if the determinant of
the Jacobian matrix, det ∂fn/∂xj ≤ 1.

The point xi = xi is a fixed point of the map if it maps to itself, i.e. if

xn = fn(x1, x2, · · · , xN), n = 1, · · · , N. (9.65)

The fixed point xn = 0 is linearly unstable if a small perturbation from it leads the images
farther and farther away. Otherwise it is stable. A special case of this is asymptotic stability
wherein the image returns arbitrarily close to the fixed point.

A linear map can be written as xk+1
i =

∑N
j=1Aijx

k
j , (i = 1, 2, . . .) or xk+1 = A · xk. The

origin x = 0 is a fixed point of this map. If ||A|| > 1, then ||xk+1|| > ||xk||, and the map is
unstable. Otherwise it is stable.

Example 9.3
Examine the linear stability of the fixed points of the logistics map, popularized by May.1

xk+1 = rxk(1 − xk), (9.66)

We take r ∈ [0, 4] so that xk ∈ [0, 1] maps onto xk+1 ∈ [0, 1]. That is, the mapping is onto itself.
The fixed points are solutions of

x = rx(1 − x), (9.67)

which are

x = 0, x = 1 − 1

r
. (9.68)

1Robert McCredie May, 1936-, Australian-Anglo ecologist.
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Consider the mapping itself. For an initial seed x0, we generate a series of xk. For example if we take
r = 0.4 and x0 = 0.3, we get

x0 = 0.3, (9.69)

x1 = 0.4(0.3)(1 − 0.3) = 0.084, (9.70)

x2 = 0.4(0.084)(1− 0.084) = 0.0307776, (9.71)

x3 = 0.4(0.0307776)(1− 0.0307776) = 0.0119321, (9.72)

x4 = 0.4(0.0119321)(1− 0.0119321) = 0.0047159, (9.73)

x5 = 0.4(0.0047159)(1− 0.0047159) = 0.00187747, (9.74)

...

x∞ = 0. (9.75)

For this value of r, the solution approaches the fixed point of 0. Consider r = 4/3 and x0 = 0.3

x0 = 0.3, (9.76)

x1 = (4/3)(0.3)(1 − 0.3) = 0.28, (9.77)

x2 = (4/3)(0.28)(1 − 0.28) = 0.2688, (9.78)

x3 = (4/3)(0.2688)(1− 0.2688) = 0.262062, (9.79)

x4 = (4/3)(0.262062)(1− 0.262062) = 0.257847, (9.80)

x5 = (4/3)(0.257847)(1− 0.257847) = 0.255149, (9.81)

...

x∞ = 0.250 = 1 − 1

r
. (9.82)

In this case, the solution was attracted to the alternate fixed point.

To analyze the stability of each fixed point, we give it a small perturbation x̃. Thus, x + x̃ is
mapped to x+ ˜̃x, where

x+ ˜̃x = r(x + x̃)(1 − x− x̃) = r(x − x2 + x̃− 2xx̃+ x̃2). (9.83)

Neglecting small terms, we get

x+ ˜̃x = r(x − x2 + x̃− 2xx̃) = rx(1 − x) + rx̃(1 − 2x). (9.84)

Simplifying, we get
˜̃x = rx̃(1 − 2x). (9.85)

A fixed point is stable if |˜̃x/x̃| ≤ 1. This indicates that the perturbation is decaying. Now consider
each fixed point in turn.

x = 0:

˜̃x = rx̃(1 − 2(0)), (9.86)

˜̃x = rx̃, (9.87)
∣
∣
∣
∣

˜̃x

x̃

∣
∣
∣
∣

= r. (9.88)

This is stable if r < 1.
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x = 1 − 1/r:

˜̃x = rx̃

(

1 − 2

(

1 − 1

r

))

, (9.89)

˜̃x = (2 − r)x̃, (9.90)
∣
∣
∣
∣

˜̃x

x̃

∣
∣
∣
∣

= |2 − r| . (9.91)

This is unstable for r < 1, stable for 1 ≤ r ≤ 3, unstable for r > 3.
What happens to the map for r > 3. Consider r = 3.2 and x0 = 0.3

x0 = 0.3, (9.92)

x1 = 3.2(0.3)(1 − 0.3) = 0.672, (9.93)

x2 = 3.2(0.672)(1− 0.672) = 0.705331, (9.94)

x3 = 3.2(0.705331)(1− 0.705331) = 0.665085, (9.95)

x4 = 3.2(0.665085)(1− 0.665085) = 0.71279, (9.96)

x5 = 3.2(0.71279)(1− 0.71279) = 0.655105, (9.97)

x6 = 3.2(0.655105)(1− 0.655105) = 0.723016, (9.98)

x7 = 3.2(0.723016)(1− 0.723016) = 0.640845, (9.99)

x8 = 3.2(0.640845)(1− 0.640845) = 0.736521, (9.100)

...

x∞−1 = 0.799455, (9.101)

x∞ = 0.513045. (9.102)

This system has bifurcated. It oscillates between two points, never going to the fixed point. The two
points about which it oscillates are quite constant for this value of r. For greater values of r, the system
moves between 4, 8, 16, ... points. Such is the essence of bifurcation phenomena. A plot, known as a
bifurcation diagram, of the equilibrium values of x as a function of r is given in Fig. 9.4.

Other maps that have been studied are:

• Hénon2 map:

xk+1 = yk + 1 − ax2
k, (9.103)

yk+1 = bxk. (9.104)

For a = 1.3, b = 0.34, the attractor is periodic, while for a = 1.4, b = 0.34, the map
has a strange attractor.

• Dissipative standard map:

xk+1 = xk + yk+1 mod 2π, (9.105)

yk+1 = λyk + k sin xk. (9.106)

If λ = 1, the map is area preserving.

2Michel Hénon, 1931-, French mathematician and astronomer.
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Figure 9.4: Bifurcation diagram of x = limk→∞ xk as a function of r for the logistics map,
xk+1 = rxk(1 − xk) for r ∈ [0, 4].

9.4 High order scalar differential equations

An equation with x ∈ R1, t ∈ R1, a : R1 × R1 → RN , f : R1 → R1 of the form

dNx

dtN
+ aN (x, t)

dN−1x

dtN−1
+ · · ·+ a2(x, t)

dx

dt
+ a1(x, t)x = f(t), (9.107)

can be expressed as a system of n + 1 first order autonomous equations. Let x = y1,
dx/dt = y2,· · · , dN−1x/dtN−1 = yN , t = yN+1. Then with y ∈ RN+1, s = t ∈ R1, a :
R1 × R1 → RN , f : R1 → R1,

dy1

ds
= y2, (9.108)

dy2

ds
= y3, (9.109)

...
dyN−1

ds
= yN , (9.110)

dyN
ds

= −aN (y1, yN+1)yN − aN−1(y1, yN+1)yN−1 − · · · − a1(y1, yN+1)y1 + f(yN+1),

(9.111)

dyN+1

ds
= 1. (9.112)
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Example 9.4
For x ∈ R1, t ∈ R1, consider the forced Duffing equation:

d2x

dt2
+ x+ x3 = sin(2t), x(0) = 0,

dx

dt

∣
∣
∣
∣
t=0

= 0. (9.113)

Here a2(x, t) = 0, a1(x, t) = 1 + x2, f(t) = sin(2t). Now this non-linear differential equation with
homogeneous boundary conditions and forcing has no analytic solution. It can be solved numerically;
most solution techniques require a recasting as a system of first order equations. To recast this as an
autonomous set of equations, with y ∈ R3, s ∈ R1, consider

x = y1,
dx

dt
= y2, t = s = y3. (9.114)

Then d/dt = d/ds, and the equations transform to

d

ds





y1
y2
y3



 =





y2
−y1 − y3

1 + sin(2y3)
1



 =





h1(y1, y2, y3)
h2(y1, y2, y3)
h3(y1, y2, y3)



 ,





y1(0)
y2(0)
y3(0)



 =





0
0
0



 . (9.115)

Note that this system has no equilibrium point as there exists no y for which h = 0. Once the numerical
solution is obtained, one transforms back to (x, t) space. Fig. 9.5 gives the trajectory in the (y1, y2, y3)
phase space and a plot of the corresponding solution x(t) for t ∈ [0, 50].
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1y  = dx/dt

2

y  =  t3

Figure 9.5: Phase space trajectory and solution x(t) for forced Duffing equation.
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9.5 Linear systems

For a linear system the coefficients aN , . . . , a2, a1 in equation (9.107) are independent of x.
In general, for x ∈ RN , t ∈ R1,A : R1 → RN × RN , f : R1 → RN , any linear system may be
written in matrix form as

dx

dt
= A(t) · x + f(t), (9.116)

where

x =








x1(t)
x2(t)

...
xN (t)







, (9.117)

A =








a11(t) a12(t) · · · a1N (t)
a21(t) a22(t) · · · a2N (t)

...
...

...
...

aN1(t) aN2(t) · · · aNN (t)







, (9.118)

f =








f1(t)
f2(t)

...
fN (t)







. (9.119)

Here A and f are known. The solution can be written as x = xH + xP , where xH is the
solution to the homogeneous equation, and xP is the particular solution.

9.5.1 Homogeneous equations with constant A

For x ∈ RN , t ∈ R1,A ∈ RN × RN , the solution of the homogeneous equation

dx

dt
= A · x, (9.120)

where A is a matrix of constants is obtained by setting

x = eeλt, (9.121)

with a constant vector e ∈ RN . Substituting into Eq. (9.120), we get

λeeλt = A · eeλt, (9.122)

λe = A · e. (9.123)

This is an eigenvalue problem where λ is an eigenvalue and e is an eigenvector.
In this case there is only one fixed point, namely the null vector:

x = 0. (9.124)
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9.5.1.1 N eigenvectors

We will assume that there is a full set of eigenvectors even though not all the eigenvalues are
distinct. If e1, e2, . . . , eN are the eigenvectors corresponding to eigenvalues λ1, λ2, . . . , λN ,
then

x =

N∑

n=1

cnene
λnt, (9.125)

is the general solution, where c1, c2, . . . , cN are arbitrary constants.

Example 9.5
For x ∈ R3, t ∈ R1,A ∈ R3 × R3, solve dx/dt = A · x where

A =





1 −1 4
3 2 −1
2 1 −1



 . (9.126)

The eigenvalues and eigenvectors are

λ1 = 1, e1 =





−1
4
1



 , (9.127)

λ2 = 3, e2 =





1
2
1



 , (9.128)

λ3 = −2, e3 =





−1
1
1



 . (9.129)

Thus, the solution is

x = c1





−1
4
1



 et + c2





1
2
1



 e3t + c3





−1
1
1



 e−2t. (9.130)

Expanding, we get

x1(t) = −c1et + c2e
3t − c3e

−2t, (9.131)

x2(t) = 4c1e
t + 2c2e

3t + c3e
−2t, (9.132)

x3(t) = c1e
t + c2e

3t + c3e
−2t. (9.133)

Example 9.6
For x ∈ R3, t ∈ R1,A ∈ R3 × R3, solve dx/dt = A · x where

A =





2 −1 −1
2 1 −1
0 −1 1



 . (9.134)
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The eigenvalues and eigenvectors are

λ1 = 2, e1 =





0
1
−1



 , (9.135)

λ2 = 1 + i, e2 =





1
−i
1



 , (9.136)

λ3 = 1 − i, e3 =





1
i
1



 . (9.137)

Thus, the solution is

x = c1





0
1
−1



 e2t + c2





1
−i
1



 e(1+i)t + c3





1
i
1



 e(1−i)t, (9.138)

= c1





0
1
−1



 e2t + c′2





cos t
sin t
cos t



 et + c′3





sin t
− cos t
sin t



 et, (9.139)

(9.140)

where c′2 = c2 + c3, c
′
3 = i(c2 − c3).

9.5.1.2 < N eigenvectors

One solution of dx/dt = A · x is x = eAt · e, where e is a constant vector. If e1, e2,· · ·, eN
are linearly independent vectors, then xn = eAt · en, n = 1, · · · , N, are linearly independent
solutions. We would like to choose en, n = 1, 2, · · · , N , such that each eAt ·en is a series with
a finite number of terms. This can be done in the following manner. Since

eAt · e = eλIt · e(A−λI)t · e, (9.141)

= eλtI · e(A−λI)t · e, (9.142)

= eλte(A−λI)t · e, (9.143)

= eλt
(

I + (A − λI)t+

(
1

2!

)

(A− λI)2t2 + · · ·
)

· e. (9.144)

the series will be finite if

(A − λI)k · e = 0, (9.145)

for some positive integer k.
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9.5.1.3 Summary of method

The procedure to find xn, (n = 1, 2, . . . , N), the N linearly independent solutions of

dx

dt
= A · x, (9.146)

where A is a constant, is the following. First find all eigenvalues λn, n = 1, · · · , N , and as
many eigenvectors ek, i = 1, 2, · · · , K as possible.

1. If K = N , the N linearly independent solutions are xn = eλnten.

2. If K < N , there are only K linearly independent solutions of the type xk = eλktek.
To find additional solutions corresponding to a multiple eigenvalue λ, find all linearly
independent g such that (A−λI)2 ·g = 0, but (A−λI) ·g 6= 0. Notice that generalized
eigenvectors will satisfy the requirement, though it has other solutions as well. For each
such g, we have

eAt · g = eλt (g + t(A− λI) · g) , (9.147)

which is a solution.

3. If more solutions are needed, then find all linearly independent g for which (A− λI)3 ·
g = 0, but (A − λI)2 · g 6= 0. The corresponding solution is

eAt · g = eλt
(

g + t(A− λI) · g +
t2

2
(A − λI)2 · g

)

. (9.148)

4. Continue until N linearly independent solutions have been found.

A linear combination of the N linearly independent solutions

x =

N∑

n=1

cnxn, (9.149)

is the general solution, where c1, c2, . . . , cN are arbitrary constants.

9.5.1.4 Alternative method

As an alternative to the method just described, which is easily seen to be equivalent, we can
use the Jordan canonical form in a straightforward way to arrive at the solution. Recall that
the Jordan form exists for all matrices. We begin with

dx

dt
= A · x. (9.150)

Then we use the Jordan decomposition, Eq. (8.354), A = S · J · S−1 to write

dx

dt
= S · J · S−1
︸ ︷︷ ︸

=A

·x. (9.151)
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If we apply the matrix operator S−1, which is a constant, to both sides, we get

d

dt

(

S−1 · x
︸ ︷︷ ︸

≡z

)

= J · S−1 · x
︸ ︷︷ ︸

≡z

. (9.152)

Now taking z ≡ S−1 · x, we get
dz

dt
= J · z. (9.153)

We then solve each equation one by one, starting with the last equation dzN/dt = λNzN ,
and proceeding to the first. In the process of solving these equations sequentially, there will
be feedback for each off-diagonal term which will give rise to a secular term in the solution.
Once z is determined, we solve for x by taking x = S · z.

It is also noted that this method works in the common case in which the matrix J is
diagonal; that is, it applies for cases in which there are n differential equations and n ordinary
eigenvectors.

Example 9.7
For x ∈ R3, t ∈ R1,A ∈ R3 × R3, find the general solution of

dx

dt
= A · x, (9.154)

where

A =





4 1 3
0 4 1
0 0 4



 . (9.155)

A has an eigenvalue λ = 4 with multiplicity three. The eigenvector is

e =





1
0
0



 , (9.156)

which gives a solution

e4t





1
0
0



 . (9.157)

A generalized eigenvector is

g1 =





0
1
0



 , (9.158)

which leads to the solution

e4t (g1 + t(A − λI) · g1) = e4t









0
1
0



+ t





0 1 3
0 0 1
0 0 0









0
1
0







 , (9.159)

= e4t





t
1
0



 . (9.160)
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Another generalized eigenvector

g2 =





0
−3
1



 , (9.161)

gives the solution

e4t
(

g2 + t(A − λI) · g2 +
t2

2
(A − λI)2 · g2

)

=

e4t









0
−3
1



+ t





0 1 3
0 0 1
0 0 0









0
−3
1



+
t2

2





0 0 1
0 0 0
0 0 0









0
−3
1







 , (9.162)

= e4t





t2

2
−3 + t

1



 . (9.163)

The general solution is

x = c1e
4t





1
0
0



+ c2e
4t





t
1
0



+ c3e
4t





t2

2
−3 + t

1



 , (9.164)

where c1, c2, c3 are arbitrary constants.

Alternative method

Alternatively, we can simply use the Jordan decomposition to form the solution. When we form
the matrix S from the eigenvectors and generalized eigenvectors, we have

S =






...
...

...
e g1 g2
...

...
...




 =





1 0 0
0 1 −3
0 0 1



 . (9.165)

We then get

S−1 =





1 0 0
0 1 3
0 0 1



 , (9.166)

J = S−1 · A · S =





4 1 0
0 4 1
0 0 4



 . (9.167)

Now with z = S−1 · x, we solve dz/dt = J · z,

d

dt





z1
z2
z3



 =





4 1 0
0 4 1
0 0 4









z1
z2
z3



 . (9.168)

The final equation is totally uncoupled; solving dz3/dt = 4z3, we get

z3(t) = c3e
4t. (9.169)

Now consider the second equation,
dz2
dt

= 4z2 + z3. (9.170)
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Using our solution for z3, we get
dz2
dt

= 4z2 + c3e
4t. (9.171)

Solving, we get

z2(t) = c2e
4t + c3te

4t. (9.172)

Now consider the first equation,
dz1
dt

= 4z1 + z2. (9.173)

Using our solution for z2, we get

dz1
dt

= 4z1 + c2e
4t + c3te

4t. (9.174)

Solving, we get

z1(t) = c1e
4t +

1

2
te4t (2c2 + tc3) . (9.175)

so we have

z(t) =





c1e
4t + 1

2 te
4t (2c2 + tc3)

c2e
4t + c3te

4t

c3e
4t



 (9.176)

Then for x = S · z, we recover

x = c1e
4t





1
0
0



+ c2e
4t





t
1
0



+ c3e
4t





t2

2
−3 + t

1



 , (9.177)

which is identical to our earlier result.

Example 9.8
Examine the linear homogeneous system dx/dt = A · x in terms of an explicit finite difference

approximation and give a geometric interpretation of the of the combined action of the differential and
matrix operator on x.

A first order explicit finite difference approximation to the differential equation takes the form

xk+1 − xk

∆t
= A · xk, (9.178)

xk+1 = xk + ∆tA · xk, (9.179)

= (I + ∆tA) · xk. (9.180)

Let us decompose A into a symmetric and anti-symmetric part:

As =
A + AT

2
, (9.181)

Aa =
A − AT

2
, (9.182)
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so that A = As + Aa. Then Eq. (9.180) becomes

xk+1 = (I + ∆tAs + ∆tAa) · xk. (9.183)

Now since As is symmetric, it can be diagonally decomposed as

As = Q ·Λs · QT , (9.184)

where Q is an orthogonal matrix, which we will restrict to be a rotation matrix, and Λs is a diagonal
matrix with the guaranteed real eigenvalues of As on its diagonal. It can also be shown that the
anti-symmetric Aa has a related decomposition,

Aa = U · Λa · UH , (9.185)

where U is a unitary matrix and Λa is a diagonal matrix with the purely imaginary eigenvalues of Aa

on its diagonal. Substituting Eqs. (9.184,9.185) into Eq. (9.183), we get

xk+1 =




I + ∆tQ · Λs ·QT

︸ ︷︷ ︸

As

+∆tU · Λa · UH

︸ ︷︷ ︸

Aa




 · xk. (9.186)

Now since Q ·QT = I = Q · I · QT , we can operate on the first and third terms of Eq. (9.186) to get

xk+1 =
(
Q · I ·QT + ∆tQ ·Λs · QT + ∆tQ ·QT ·U ·Λa ·UH · Q · QT

)
· xk, (9.187)

xk+1 = Q ·
(
I + ∆tΛs + ∆tQT · U ·Λa ·UH · Q

)
·QT · xk, (9.188)

QT · xk+1 = QT ·Q
︸ ︷︷ ︸

=I

·
(
I + ∆tΛs + ∆tQT · U · Λa · UH ·Q

)
·QT · xk. (9.189)

Now, let us define a rotated coordinate system as x̂ = QT · x, so that Eq. (9.189) becomes

x̂k+1 =




I + ∆tΛs

︸ ︷︷ ︸

stretching

+ ∆tQT · U ·Λa ·UH · Q
︸ ︷︷ ︸

rotation




 · x̂k. (9.190)

This rotated coordinate system is aligned with the principal axes of deformation associated with As.
We see that the new value, x̂k+1, is composed of the sum of three terms: 1) the old value, due to the
action of I, 2) a stretching along the coordinate axes by the term ∆tΛs, and 3) a rotation, normal to
the coordinate axes by the term ∆tQT · U · Λa · UH · Q. We note that since both Q and U have a
norm of unity, that it is the magnitude of the eigenvalues, along with ∆t that determines the amount of
stretching and rotation that occurs. Note that although Λa and U have imaginary components, when
combined together, they yield a real result.

9.5.1.5 Fundamental matrix

If xn, n = 1, · · · , N, are linearly independent solutions of dx/dt = A · x, then

Ω =






...
... . . .

...
x1 x2 . . . xN
...

... . . .
...




 , (9.191)
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is called a fundamental matrix. The general solution is

x = Ω · c, (9.192)

where

c =






c1
...
cN




 . (9.193)

The term eAt = Ω(t) · Ω−1(0) is a fundamental matrix.

Example 9.9
Find the fundamental matrix of the previous example problem.

The fundamental matrix is

Ω = e4t





1 t t2

2
0 1 −3 + t
0 0 1



 , (9.194)

so that

x = Ω · c = e4t





1 t t2

2
0 1 −3 + t
0 0 1









c1
c2
c3



 . (9.195)

9.5.2 Inhomogeneous equations

If A is a constant matrix that is diagonalizable, the system of differential equations repre-
sented by

dx

dt
= A · x + f(t), (9.196)

can be decoupled into a set of scalar equations, each of which is in terms of a single dependent
variable. From Eq. (8.296), let S be such that S−1 ·A ·S = Λ, where Λ is a diagonal matrix
of eigenvalues. Taking x = S · z, we get

d(S · z)

dt
= A · S · z + f(t), (9.197)

S · dz
dt

= A · S · z + f(t). (9.198)

Applying S−1 to both sides,

dz

dt
= S−1 · A · S

︸ ︷︷ ︸

=Λ

·z + S−1 · f(t), (9.199)

dz

dt
= Λ · z + g(t), (9.200)
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where Λ = S−1 · A · S and g(t) = S−1 · f(t). This is the decoupled form of the original
equation.

Example 9.10
For x ∈ R2, t ∈ R1, solve

dx1

dt
= 2x1 + x2 + 1, (9.201)

dx2

dt
= x1 + 2x2 + t. (9.202)

This can be written as

d

dt

(
x1

x2

)

=

(
2 1
1 2

)(
x1

x2

)

+

(
1
t

)

. (9.203)

We have

S =

(
1 1
−1 1

)

, S−1 =

(
1
2 − 1

2
1
2

1
2

)

, Λ =

(
1 0
0 3

)

, (9.204)

so that
d

dt

(
z1
z2

)

=

(
1 0
0 3

)(
z1
z2

)

+
1

2

(
1 − t
1 + t

)

. (9.205)

The solution is

z1 = aet +
t

2
, (9.206)

z2 = be3t − 2

9
− t

6
, (9.207)

(9.208)

which, using x1 = z1 + z2 and x2 = −z1 + z2 transforms to

x1 = aet + be3t − 2

9
+
t

3
, (9.209)

x2 = −aet + be3t − 2

9
− 2t

3
. (9.210)

Example 9.11
Solve the system

dx

dt
= A · (x − xo) + b, x(to) = xo. (9.211)

Such a system arises naturally when one linearizes a non-linear system of the form dx/dt = f(x)
about a point x = xo. Here then, A is the Jacobian matrix A = ∂f/∂x|x=xo

. Note that the system is
in equilibrium when

A · (x − xo) = −b, (9.212)

CC BY-NC-ND. 29 July 2012, Sen & Powers.

http://creativecommons.org/licenses/by-nc-nd/3.0/


9.5. LINEAR SYSTEMS 429

or
x = xo − A−1 · b. (9.213)

Further note that if b = 0, the initial condition x = xo is also an equilibrium condition, and is the
unique solution to the differential equation.

First define a new dependent variable z:

z ≡ x− xo + A−1 · b. (9.214)

So we have
x = z + xo − A−1 · b. (9.215)

At t = to, we then get
z(to) = A−1 · b. (9.216)

Then substitute into the original differential equation system to get

d

dt

(
z + xo − A−1 · b

)
= A ·

(
z − A−1 · b

)
+ b, z(to) = A−1 · b, (9.217)

dz

dt
= A · z, z(to) = A−1 · b. (9.218)

Now assume that the Jacobian is fully diagonalizable so that we can take A = S · Λ · S−1. Thus, we
have

dz

dt
= S ·Λ · S−1 · z, z(to) = A−1 · b. (9.219)

Take now
w ≡ S−1 · z, z = S · w, (9.220)

so that the differential equation becomes

d

dt
(S · w) = S · Λ · w, S · w(to) = A−1 · b. (9.221)

Since S and S−1 are constant, we can apply the operator S−1 to both sides of the differential equation
system to get

S−1 · d
dt

(S ·w) = S−1 · S · Λ ·w, S−1 · S · w(to) = S−1 ·A−1 · b, (9.222)

d

dt

(
S−1 · S · w

)
= I · Λ ·w, I · w(to) = S−1 ·A−1 · b, (9.223)

dw

dt
= Λ ·w, w(to) = S−1 ·A−1 · b, (9.224)

(9.225)

This is in diagonal form and has solution

w(t) = eΛ(t−to) · S−1 · A−1 · b. (9.226)

In terms of z, then the solution has the form

z(t) = S · eΛ(t−to) · S−1 ·A−1 · b. (9.227)

Then using the definition of z, one can write the solution in terms of the original x as

x(t) = xo +
(

S · eΛ(t−to) · S−1 − I
)

· A−1 · b. (9.228)
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Note that the time scales of evolution are entirely determined by Λ; in particular the time scales of
each mode, τi, are τi = 1/λi, where λi is an entry in Λ. The constant vector b plays a secondary role
in determining the time scales.

Lastly, one infers from the discussion of the matrix exponential, Eq. (8.461), that eA(t−to) =

S · eΛ(t−to) · S−1, so we get the final form of

x(t) = xo +
(

eA(t−to) − I
)

·A−1 · b. (9.229)

9.5.2.1 Undetermined coefficients

This method is similar to that presented for scalar equations.

Example 9.12
For x ∈ R3, t ∈ R1,A ∈ R3 × R3, f : R1 → R3, solve dx/dt = A · x + f(t) with

A =





4 1 3
0 4 1
0 0 4



 , f =





3et

0
0



 . (9.230)

The homogeneous part of this problem has been solved before. Let the particular solution be

xP = cet. (9.231)

Substituting into the equation, we get

cet = A · cet +





3
0
0



 et. (9.232)

We can cancel the exponential to get

(I − A) · c =





3
0
0



 , (9.233)

which can be solved to get

c =





−1
0
0



 . (9.234)

Therefore,

x = xH +





−1
0
0



 et. (9.235)

The method must be modified if f = ceλt, where λ is an eigenvalue of A. Then the
particular solution must be of the form xP = (c0 + tc1 + t2c2 + · · ·)eλt, where the series is
finite, and we take as many terms as necessary.
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9.5.2.2 Variation of parameters

This follows the general procedure explained in Section 3.3.2, page 90.

9.6 Non-linear systems

Non-linear systems can be difficult to solve. Even for algebraic systems, general solutions do
not exist for polynomial equations of arbitrary degree. Non-linear differential equations, both
ordinary and partial, admit analytical solutions only in special cases. Since these equations
are quite common in engineering applications, many techniques for approximate numerical
and analytical solutions have been developed. Our purpose here is more restricted; it is to
analyze the long-time stability of the solutions as a function of a system parameter. We will
first develop some of the basic ideas of stability, and then illustrate them through examples.

9.6.1 Definitions

With x ∈ RN , t ∈ R1, f : RN → RN , consider a system of N non-linear first-order ordinary
differential equations

dxn
dt

= fn(x1, x2, · · · , xN), n = 1, · · · , N. (9.236)

where t is time, and fn is a vector field. The system is autonomous since fn is not a function
of t. The coordinates x1, x2, · · · , xN form a phase or state space. The divergence of the vector
field, divfn =

∑N
n=1 ∂fn/∂xn, indicates the change of a given volume of initial conditions

in phase space. If the divergence is zero, the volume remains constant, and the system is
said to be conservative. If the divergence is negative, the volume shrinks with time, and the
system is dissipative. The volume in a dissipative system eventually goes to zero. This final
state to which some initial set of points in phase space goes is called an attractor. Attractors
may be points, closed curves, tori, or fractals (strange). A given dynamical system may have
several attractors that co-exist. Each attractor has its own basin of attraction in RN ; initial
conditions that lie on this basin tend to that particular attractor.

The steady state solutions xn = xn of Eq. (9.236) are called critical (or fixed, singular or
stationary) points. Thus, by definition

fn(x1, x2, · · · , xN ) = 0, n = 1, · · · , N, (9.237)

which is an algebraic, potentially transcendental, set of equations. The dynamics of the
system are analyzed by studying the stability of the critical point. For this we perturb the
system so that

xn = xn + x̃n, (9.238)

where the ∼ denotes a perturbation. If ||x̃n|| is bounded for t→ ∞, the critical point is said
to be stable, otherwise it is unstable. As a special case, if ||x̃n|| → 0 as t → ∞, the critical
point is asymptotically stable.
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Example 9.13
Evaluate some of the properties of non-linear systems for the degenerate case of the linear system

d

dt

(
x1

x2

)

=

(
0 −1
1 −1

)(
x1

x2

)

. (9.239)

This is of the form dx/dt = A · x. This particular alibi mapping f = A · x was studied in an
earlier example in Sec. 8.4. Here f1 = −x2 and f2 = x1 − x2 defines a vector field in phase space. Its
divergence is

div f =
∂f1
∂x1

+
∂f2
∂x2

= 0 − 1 = −1, (9.240)

so the system is dissipative; that is, a volume composed of a set of points shrinks with time. In this
case the equilibrium state, fi = 0, exists at a unique point, the origin, x1 = x1 = 0, x2 = x2 = 0. The
eigenvalues of A = ∂fi/∂xj are −1/2±

√
3i/2. Thus, ρ(A) = | − 1/2 ±

√
3i/2| = 1, the equilibrium is

stable, and the basin of attraction is the entire x1, x2 plane.
Note that detA = 1, and thus the mapping A · x is volume- and orientation-preserving. We also

find from Eq. (7.301) that ||A||2 =
√

(3 +
√

5)/2 = 1.61803, so A operating on x tends to lengthen x.

This seems to contradict the dissipative nature of the dynamical system, which is volume-shrinking! A
way to reconcile this is to consider that the mapping of a vector x by the dynamical system is more
complicated. Returning to the definition of the derivative, the dynamical system can also be expressed,
using the so-called “implicit” formulation, as

lim
∆t→0

(
xk+1

1
−xk

1

∆t
xk+1

2
−xk

2

∆t

)

= lim
∆t→0

(
0 −1
1 −1

)(
xk+1

1

xk+1
2

)

. (9.241)

Had the right-hand side been evaluated at k instead of k + 1, the formulation would be known as
“explicit.” We have selected the implicit formulation so as to maintain the proper dissipative property
of the continuous system, which for this problem would not be obtained with an explicit scheme. We
demand here that lim∆t→0 x

k
i = xi, i = 1, 2. We focus small finite ∆t, though our analysis allows for

large ∆t as well, and rearrange Eq. (9.241) to get

(
xk+1

1

xk+1
2

)

=

(
0 −∆t

∆t −∆t

)(
xk+1

1

xk+1
2

)

+

(
xn1
xn2

)

, (9.242)

(
1 ∆t

−∆t 1 + ∆t

)(
xk+1

1

xk+1
2

)

=

(
xk1
xk2

)

, (9.243)

(
xk+1

1

xk+1
2

)

=

( 1+∆t
1+∆t+∆t2

−∆t
1+∆t+∆t2

∆t
1+∆t+∆t2

1
1+∆t+∆t2

)

︸ ︷︷ ︸

=B

(
xk1
xk2

)

. (9.244)

So our dynamical system, for finite ∆t, is appropriately considered as an iterated map of the form

xk+1 = B · xk, (9.245)

where

B =

( 1+∆t
1+∆t+∆t2

−∆t
1+∆t+∆t2

∆t
1+∆t+∆t2

1
1+∆t+∆t2

)

. (9.246)

The matrix B has

detB =
1

1 + ∆t+ ∆t2
. (9.247)
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For ∆t > 0, detB < 1 indicating a shrinking of the volume element, consistent with div f < 0. The
eigenvalues of B are

1 + ∆t
2 ±

√
3

2 i

1 + ∆t+ ∆t2
, (9.248)

which for small ∆t expand as

1 −
(

1 ±
√

3i
) ∆t

2
+ . . . (9.249)

More importantly, the spectral norm of B is the square root of the largest eigenvalue of B ·BT . Detailed
calculation reveals this, and its series expansion in two limits, to be

||B||2 =
1 + ∆t+ 3

2∆t2 + ∆t
√

1 + ∆t+ 5
4∆t2

1 + 2∆t+ 3∆t2 + 2∆t3 + ∆t4
, (9.250)

lim
∆t→0

||B||2 = 1 − ∆t2

2
+ . . . , (9.251)

lim
∆t→∞

||B||2 =

√

3 +
√

5

2

1

∆t
=

||A||2
∆t

. (9.252)

In both limits of ∆t, we see that ||B||2 < 1; this can be shown to hold for all ∆t. It takes on a value
of unity only for ∆t = 0. Then, since ||B||2 ≤ 1, ∀∆t, the action of B on any x is to diminish its
norm; thus, the system is dissipative. Now B has a non-zero anti-symmetric part, which is typically
associated with rotation. One could show via a variety of decompositions that the action of B on a
vector is to compress and rotate it.

9.6.2 Linear stability

The linear stability of the critical point is determined by restricting the analysis to a small
neighborhood of the critical point, i.e. for small values of ||x̃i||. We substitute Eq. (9.238)
into Eq. (9.236), and linearize by keeping only the terms that are linear in x̃i and neglecting
all products of x̃i. Thus, Eq. (9.236) takes a linearized local form

dx̃n
dt

=
N∑

j=1

Anjx̃j . (9.253)

Another way of obtaining the same result is to expand the vector field in a Taylor series
around xj = xj so that

fn(xj) =
N∑

j=1

∂fn
∂xj

∣
∣
∣
∣
xj=xj

x̃j + . . . , (9.254)

which has neglecting the higher order terms. Thus, in Eq. (9.253)

Anj =
∂fn
∂xj

∣
∣
∣
∣
xj=xj

, (9.255)
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is the Jacobian of fn evaluated at the critical point. In matrix form the linearized equation
for the perturbation x̃ is

dx̃

dt
= A · x̃. (9.256)

The real parts of the eigenvalues of A determine the linear stability of the critical point
x̃ = 0, and the behavior of the solution near it:

• If all eigenvalues have real parts < 0, the critical point is asymptotically stable.

• If at least one eigenvalue has a real part > 0, the critical point is unstable.

• If all eigenvalues have real parts ≤ 0, and some have zero real parts, then the critical
point is stable if A has k linearly independent eigenvectors for each eigenvalue of
multiplicity k. Otherwise it is unstable.

The following are some terms used in classifying critical points according to the real and
imaginary parts of the eigenvalues of A.

Classification Eigenvalues

Hyperbolic Non-zero real part
Saddle Some real parts negative, others positive
Stable node or sink All real parts negative

ordinary sink All real parts negative, imaginary parts zero
spiral sink All real parts negative, imaginary parts non-zero

Unstable node or source All real parts positive
ordinary source All real parts positive, imaginary parts zero
spiral source All real parts positive, imaginary parts non-zero

Center All purely imaginary and non-zero

Figures 9.6 and 9.7 show examples of phase planes for simple systems which describe
an ordinary source node, a spiral sink node, an ordinary center node, and a saddle node.
Figure 9.8 gives a phase plane, vector field, and trajectories for a complex system with many
nodes present. Here the nodes are spiral and saddle nodes.
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dx/dt = x
dy/dt = y
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Figure 9.6: Phase plane for system with ordinary source node and spiral sink node.
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dx/dt  = − y
dy/dt  = x  
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Figure 9.7: Phase plane for systems with center node and saddle node.
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Figure 9.8: Phase plane for system with many nodes.
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9.6.3 Lyapunov functions

For x ∈ RN , t ∈ R1, f : RN → RN Consider the system of differential equations

dxn
dt

= fn(x1, x2, · · · , xN ), n = 1, 2, · · · , N, (9.257)

with xn = 0 as a critical point. If there exists a V (x1, x2, · · · , xN) : RN → R1 such that

• V > 0 for xn 6= 0,

• V = 0 for xn = 0,

• dV/dt < 0 for xn 6= 0, and

• dV/dt = 0 for xn = 0,

then the equilibrium point of the differential equations, xi = 0, is globally stable to all per-

turbations, large or small. The function V (x1, x2, · · · , xN) is called a Lyapunov3 function.
Although one cannot always find a Lyapunov function for a given system of differential

equations, we can pose a method to seek a Lyapunov function given a set of autonomous
ordinary differential equations. While the method lacks robustness, it is always straight-
forward to guess a functional form for a Lyapunov function and test whether or not the
proposed function satisfies the criteria:

1. Choose a test function V (x1, · · · , xN ). The function should be chosen to be strictly
positive for xn 6= 0 and zero for xn = 0.

2. Calculate

dV

dt
=

∂V

∂x1

dx1

dt
+
∂V

∂x2

dx2

dt
+ · · · + ∂V

∂xN

dxN
dt

, (9.258)

dV

dt
=

∂V

∂x1
f1(x1, · · · , xN) +

∂V

∂x2
f2(x1, · · · , xN) + · · ·+ ∂V

∂xN
fN (x1, · · · , xN).

(9.259)

It is this step where the differential equations actually enter into the calculation.

3. Determine if for the proposed V (x1, · · · , xN) whether or not dV/dt < 0, xn 6= 0; dV/dt =
0, xn = 0. If so, then it is a Lyapunov function. If not, there may or may not be a
Lyapunov function for the system; one can guess a new functional form and test again.

Example 9.14
Show that x = 0 is globally stable, if

m
d2x

dt2
+ β

dx

dt
+ k1x+ k2x

3 = 0, where m,β, k1, k2 > 0. (9.260)

3Alexandr Mikhailovich Lyapunov, 1857-1918, Russian mathematician.
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This system models the motion of a mass-spring-damper system when the spring is non-linear.
Breaking the original second order differential equation into two first order equations, we get

dx

dt
= y, (9.261)

dy

dt
= − β

m
y − k1

m
x− k2

m
x3. (9.262)

Here x represents the position, and y represents the velocity. Let us guess that the Lyapunov function
has the form

V (x, y) = ax2 + by2 + cx4, where a, b, c > 0. (9.263)

Note that V (x, y) ≥ 0 and that V (0, 0) = 0. Then

dV

dt
=

∂V

∂x

dx

dt
+
∂V

∂y

dy

dt
, (9.264)

= 2ax
dx

dt
+ 4cx3 dx

dt
+ 2by

dy

dt
, (9.265)

= (2ax+ 4cx3)y + 2by

(

− β

m
y − k1

m
x− k2

m
x3

)

, (9.266)

= 2

(

a− bk1

m

)

xy + 2

(

2c− bk2

m

)

x3y − 2b

m
βy2. (9.267)

If we choose b = m/2, a = 1/2k1, c = k2/4, then the coefficients on xy and x3y in the expression for
dV/dt are identically zero, and we get

dV

dt
= −βy2, (9.268)

which for β > 0 is negative for all y 6= 0 and zero for y = 0. Further, with these choices of a, b, c, the
Lyapunov function itself is

V =
1

2
k1x

2 +
1

4
k2x

4 +
1

2
my2 ≥ 0. (9.269)

Checking, we see

dV

dt
= k1x

dx

dt
+ k2x

3 dx

dt
+my

dy

dt
, (9.270)

= k1xy + k2x
3y +my

(

− β

m
y − k1

m
x− k2

m
x3

)

, (9.271)

= k1xy + k2x
3y − βy2 − k1xy − k2x

3y, (9.272)

= −βy2 ≤ 0. (9.273)

Thus, V is a Lyapunov function, and x = y = 0 is globally stable. Actually, in this case, V = (kinetic
energy + potential energy), where kinetic energy = (1/2)my2, and potential energy = (1/2)k1x

2 +
(1/4)k2x

4. Note that V (x, y) is just an algebraic function of the system’s state variables. When we
take the time derivative of V , we are forced to invoke our original system, which defines the differential
equations. We note for this system that precisely since V is strictly positive or zero for all x, y, and
moreover that it is decaying for all time, that this necessarily implies that V → 0, hence x, y → 0.
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9.6.4 Hamiltonian systems

Closely related to the Lyapunov function of a system is the Hamiltonian, which exists for
systems which are non-dissipative, that is those systems for which dV/dt = 0. In such a case
we define the Hamiltonian H to be the Lyapunov function H = V with dH/dt ≡ 0. For
such systems, we integrate once to find that H(xi, yi) must be a constant for all xi, yi. Such
systems are said to be conservative.

With x ∈ RN , y ∈ RN , t ∈ R1, f : R2N → RN , g : R2N → RN We say a system of
equations of the form

dxn
dt

= fn(x1, · · · , xN , y1, · · · , yN),
dyn
dt

= gn(x1, · · · , xN , y1, · · · , yN), n = 1, · · · , N,
(9.274)

is Hamiltonian if we can find a function H(xn, yn) : RN × RN → R1 such that

dH

dt
=
∂H

∂xn

dxn
dt

+
∂H

∂yn

dyn
dt

= 0, (9.275)

dH

dt
=
∂H

∂xn
fn(x1, · · · , xN , y1, · · · , yN) +

∂H

∂yn
gn(x1, · · · , xN , y1, · · · , yN) = 0. (9.276)

This differential equation can at times be solved directly by the method of separation of
variables in which we assume a specific functional form for H(xi, yi).

Alternatively, we can also determine H by demanding that

∂H

∂yn
=
dxn
dt

,
∂H

∂xn
= −dyn

dt
. (9.277)

Substituting from the original differential equations, we are led to equations for H(xi, yi)

∂H

∂yi
= fi(x1, · · · , xN , y1, · · · , yN),

∂H

∂xi
= −gi(x1, · · · , xN , y1, · · · , yN). (9.278)

Example 9.15
Find the Hamiltonian for a linear mass spring system:

m
d2x

dt2
+ kx = 0, x(0) = x0,

dx

dt

∣
∣
∣
∣
0

= ẋ0. (9.279)

Taking dx/dt = y to reduce this to a system of two first order equations, we have

dx

dt
= f(x, y) = y, x(0) = x0, (9.280)

dy

dt
= g(x, y) = − k

m
x, y(0) = y0. (9.281)

For this system N = 1.
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We seek H(x, y) such that dH/dt = 0. That is

dH

dt
=
∂H

∂x

dx

dt
+
∂H

∂y

dy

dt
= 0. (9.282)

Substituting from the given system of differential equations we have

∂H

∂x
y +

∂H

∂y

(

− k

m
x

)

= 0. (9.283)

As with all partial differential equations, one has to transform to a system of ordinary equations in
order to solve. Here we will take the approach of the method of separation of variables and assume a
solution of the form

H(x, y) = A(x) +B(y), (9.284)

where A and B are functions to be determined. With this assumption, we get

y
dA

dx
− k

m
x
dB

dy
= 0. (9.285)

Rearranging, we get
1

x

dA

dx
=

k

my

dB

dy
. (9.286)

Now the term on the left is a function of x only, and the term on the right is a function of y only. The
only way this can be generally valid is if both terms are equal to the same constant, which we take to
be C. Hence,

1

x

dA

dx
=

k

my

dB

dy
= C, (9.287)

from which we get two ordinary differential equations:

dA

dx
= Cx,

dB

dy
=
Cm

k
y. (9.288)

The solution is

A(x) =
1

2
Cx2 +K1, B(y) =

1

2

Cm

k
y2 +K2. (9.289)

A general solution is

H(x, y) =
1

2
C
(

x2 +
m

k
y2
)

+K1 +K2. (9.290)

While this general solution is perfectly valid, we can obtain a common physical interpretation by taking
C = k,K1 +K2 = 0. With these choices, the Hamiltonian becomes

H(x, y) =
1

2
kx2 +

1

2
my2. (9.291)

The first term represents the potential energy of the spring, the second term represents the kinetic
energy. Since by definition dH/dt = 0, this system conserves its mechanical energy. Verifying the
properties of a Hamiltonian, we see

dH

dt
=

∂H

∂x

dx

dt
+
∂H

∂y

dy

dt
, (9.292)

= kxy +my

(

− k

m
x

)

, (9.293)

= 0. (9.294)
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Since this system has dH/dt = 0, then H(x, y) must be constant for all time, including t = 0, when the
initial conditions apply. So

H(x(t), y(t)) = H(x(0), y(0)) =
1

2

(
kx2

0 +my2
0

)
. (9.295)

Thus, the system has the integral

1

2

(
kx2 +my2

)
=

1

2

(
kx2

0 +my2
0

)
. (9.296)

We can take an alternate solution approach by consideration of Eq. (9.278) as applied to this
problem:

∂H

∂y
= f = y,

∂H

∂x
= −g =

k

m
x. (9.297)

Integrating the first of these, we get

H(x, y) =
1

2
y2 + F (x). (9.298)

Differentiating with respect to x, we get

∂H

∂x
=
dF

dx
, (9.299)

and this must be
dF

dx
=

k

m
x. (9.300)

So

F (x) =
k

2m
x2 +K. (9.301)

Thus,

H(x, y) =
1

2m

(
kx2 +my2

)
+K. (9.302)

We can choose K = 0, and since dH/dt = 0, we have H as a constant which is set by the initial
conditions, thus giving

1

2m

(
kx2 +my2

)
=

1

2m

(
kx2

0 +my2
0

)
, (9.303)

which gives identical information as does Eq. (9.296).

9.7 Differential-algebraic systems

Many dynamic systems are better considered as differential-algebraic systems of equations
of the general form given in Eq. (9.48). There is a rich theory on such systems, which we
will not be able to fully exploit here. Instead, we shall consider briefly certain types of linear
and non-linear differential-algebraic systems.
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9.7.1 Linear homogeneous

Consider the system of homogeneous differential-algebraic equations of the form

B · dx
dt

= A · x. (9.304)

Here A and B are constant matrices, and we take B to be singular; thus, it cannot be
inverted. We will assume A is invertible. There is an apparent equilibrium when x = 0, but
the singularity of B gives us concern that this may not always hold. In any case, we can
assume solutions of the type x = eeλt and substitute into Eq. (9.304) to get

B · eλeλt = A · eeλt, (9.305)

B · eλ = A · e, (9.306)

(A − λB) · e = 0. (9.307)

Eq. (9.307) is a generalized eigenvalue problem in the second sense, as considered in Sec. 8.3.2.

Example 9.16
Solve the linear homogeneous differential-algebraic system

dx1

dt
+ 2

dx2

dt
= x1 + x2, (9.308)

0 = 2x1 − x2. (9.309)

While this problem is simple enough to directly eliminate x2 in favor of x1, other problems are not that
simple, so let us illustrate the general method. In matrix form, we can say

(
1 2
0 0

)

·
( dx1

dt
dx2

dt

)

=

(
1 1
2 −1

)

·
(
x1

x2

)

. (9.310)

Taking x1 = e1e
λt and x2 = e2e

λt gives

λ

(
1 2
0 0

)

·
(
e1
e2

)

eλt =

(
1 1
2 −1

)

·
(
e1
e2

)

eλt, (9.311)

(
λ 2λ
0 0

)

·
(
e1
e2

)

=

(
1 1
2 −1

)

·
(
e1
e2

)

, (9.312)

(
1 − λ 1 − 2λ

2 −1

)

·
(
e1
e2

)

=

(
0
0

)

. (9.313)

The determinant of the coefficient matrix must be zero, giving

− (1 − λ) − 2(1 − 2λ) = 0, (9.314)

−1 + λ− 2 + 4λ = 0, (9.315)

λ =
3

5
. (9.316)

With this generalized eigenvalue, our generalized eigenvectors in the second sense are found via
(

1 − 3
5 1 − 2

(
3
5

)

2 −1

)

·
(
e1
e2

)

=

(
0
0

)

, (9.317)

(
2
5 − 1

5
2 −1

)

·
(
e1
e2

)

=

(
0
0

)

. (9.318)
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By inspection, the non-unique solution must be of the form
(
e1
e2

)

= C1

(
1
2

)

. (9.319)

So the general solution is
(
x1

x2

)

=

(
C1e

3t/5

2C1e
3t/5

)

. (9.320)

There is only one arbitrary constant for this system.
A less desirable approach to differential algebraic systems is to differentiate the constraint. This

requires care in that an initial condition must be imposed which is consistent with the original constraint.
Applying this method to our example problem gives rise to the system

dx1

dt
+ 2

dx2

dt
= x1 + x2, (9.321)

2
dx1

dt
− dx2

dt
= 0. (9.322)

In matrix form, this gives
(

1 2
2 −1

)

·
( dx1

dt
dx2

dt

)

=

(
1 1
0 0

)

·
(
x1

x2

)

, (9.323)

( dx1

dt
dx2

dt

)

=

(
1
5

1
5

2
5

2
5

)

·
(
x1

x2

)

. (9.324)

The eigenvectors of the coefficient matrix are λ = 0 and λ = 3/5. Whenever one finds an eigen-
value of zero in a dynamic system, there is actually a hidden algebraic constraint within the system.
Diagonalization allows us to write the system as

( dx1

dt
dx2

dt

)

=

(
2
3

2
3

− 2
3

1
3

)−1( 3
5 0
0 0

)(
2
3

2
3

− 2
3

1
3

)

·
(
x1

x2

)

, (9.325)

(
2
3

2
3

− 2
3

1
3

)( dx1

dt
dx2

dt

)

=

(
3
5 0
0 0

)(
2
3

2
3

− 2
3

1
3

)

·
(
x1

x2

)

. (9.326)

Regrouping, we can say

d

dt
(x1 + x2) =

3

5
(x1 + x2), (9.327)

d

dt
(−2x1 + x2) = 0. (9.328)

Solving gives

x1 + x2 = C1e
3t/5, (9.329)

−2x1 + x2 = C2. (9.330)

So the problem with the differentiated constraint yields two arbitrary constants. For consistency with
the original formulation, we must take C2 = 0, thus x2 = 2x1. Thus,

x1 =
1

3
C1e

3t/5, (9.331)

x2 =
2

3
C1e

3t/5. (9.332)

Because C1 is arbitrary, this is fully consistent with our previous solution.
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9.7.2 Non-linear

Let us consider two simple non-linear examples for differential-algebraic equation systems.

Example 9.17
Solve

dx

dt
= −y, (9.333)

x2 + y2 = 1, (9.334)

x(0) = 0.99 (9.335)

The system is non-linear because of the non-linear constraint. However, we can also view this
system as a Hamiltonian system for a linear oscillator. The non-linear constraint is the Hamiltonian.
We recognize that if we differentiate the non-linear constraint, the system of non-linear differential
algebraic equations reduces to a linear system of differential equations, dx/dt = −y, dy/dt = x, which
is that of a linear oscillator.

Formulated as a differential-algebraic system, we can say
(

1 0
0 0

)

·
( dx

dt
dy
dt

)

=

(
−y

x2 + y2 − 1

)

, x(0) = 0.99. (9.336)

We might imagine an equilibrium to be located at (x, y) = (±1, 0). Certainly at such a point dx/dt = 0,
and the constraint is satisfied. However, at such a point, dy/dt 6= 0, so it is not a true equilibrium.
Linearization near (±1, 0) would induce another generalized eigenvalue problem in the second sense.
For the full problem, the form presented is suitable for numerical integration by many appropriate
differential-algebraic software packages. We do so and find the result plotted in Fig. 9.9. For this

2 4 6 8 10
t

-1

1

x

2 4 6 8 10
t

-1

1

y

-1 1
x

-1

1
y

0 0

Figure 9.9: Solution to the differential-algebraic system of Eq. (9.336).

system, what is seen to be a pseudo-equilibrium at (x, y) = (±1, 0) is realized periodically. The point
is not a formal equilibrium, since it does not remain there as t → ∞. We also clearly see that the
trajectory in the (x, y) plane is confined to the unit circle, as required by the constraint.

Example 9.18
Solve

dx

dt
= y2 + xy, (9.337)
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2x2 + y2 = 1, (9.338)

x(0) = 0. (9.339)

Formulated as a differential-algebraic system, we can say

(
1 0
0 0

)

·
( dx

dt
dy
dt

)

=

(
y2 + xy

2x2 + y2 − 1

)

, x(0) = 0. (9.340)

We could linearize near the potential equilibria, located at (x, y) = (±1/
√

3,∓1/
√

3), (±
√

1/2, 0). This
would induce another generalized eigenvalue problem in the second sense. For the full problem, the
form presented is suitable for numerical integration by many appropriate differential-algebraic software
packages. We do so and find the result plotted in Fig. 9.10. For this system, a true equilibrium at

2 4 6 8 10
t

0.2

0.4

0.6

x

2 4 6 8 10
t

-0.5

0.5

1.0

y

0.2 0.4 0.6
x

-0.5

0.5

1.0

y

0.0
0.0

0

Figure 9.10: Solution to the differential-algebraic system of Eq. (9.340).

(x, y) = (1/
√

3,−1/
√

3) is realized. We also clearly see that the trajectory in the (x, y) plane is confined
to the ellipse, as required by the constraint.

9.8 Fixed points at infinity

Often in dynamic systems there are additional fixed points, not readily seen in finite phase
space. These fixed points are actually at infinity, and such points can play a role in deter-
mining the dynamics of a system as well as aiding in finding basins of attraction. Fixed
points at infinity can be studied in a variety of ways. One method involves the so-called
Poincaré sphere. Another method uses what is called projective space.

9.8.1 Poincaré sphere

For two-dimensional dynamic systems, a good way is to transform the doubly-infinite phase
plane onto the surface of a sphere with radius unity. The projection will be such that points
at infinity are mapped onto the equator of the sphere. One can then view the sphere from
the north pole and see more clearly how the dynamics develop on the surface of the sphere.
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Example 9.19
Using the Poincaré sphere, find the global dynamics, including at infinity, for the simple system

dx

dt
= x, (9.341)

dy

dt
= −y. (9.342)

Obviously the equilibrium point is at (x, y) = (0, 0), and that point is a saddle node. Let us project
the two state variables x and y into a three-dimensional space by the mapping R2 → R3:

X =
x

√

1 + x2 + y2
, (9.343)

Y =
y

√

1 + x2 + y2
, (9.344)

Z =
1

√

1 + x2 + y2
. (9.345)

We actually could alternatively analyze this system with a closely related mapping from R2 → R2, but
this makes some of the analysis less geometrically transparent.

Note that

lim
x→∞

X = 1 ∀y <∞, (9.346)

lim
y→∞

Y = 1 ∀x <∞. (9.347)

Note further if both x and y go to infinity, say on the line y = mx, then

lim
x→∞,y=mx

X =
1√

m2 + 1
, (9.348)

lim
x→∞,y=mx

Y =
m√

m2 + 1
, (9.349)

lim
x→∞,y=mx

X2 + Y 2 = 1. (9.350)

So points at infinity are mapping onto a unit circle in (X,Y ) space. Also, going into the saddle node
at (x, y) = (0, 0) along the same line gives

lim
x→0,y=mx

X = x+ . . . , (9.351)

lim
x→0,y=mx

Y = y + . . . . (9.352)

So the original and transformed space have the same essential behavior near the finite equilibrium point.
Last, note that

X2 + Y 2 + Z2 =
x2 + y2 + 1

1 + x2 + y2
= 1. (9.353)

Thus, in fact, the mapping takes one onto a unit sphere in (X,Y, Z) space. The surfaceX2+Y 2+Z2 = 1
is called the Poincaré sphere. One can actually view this in the same way one does an actual map of
the surface of the Earth. Just as a Mercator4 projection map is a representation of the spherical surface

4Geradus Mercator, 1512-1594, Flemish cartographer.
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of the earth projected onto a flat surface (and vice versa), the original (x, y) phase space is a planar
representation of the surface of the Poincaré sphere.

Let us find the inverse transformation. By inspection, it is seen that

x =
X

Z
, (9.354)

y =
Y

Z
. (9.355)

Now apply the transformation, Eqs. (9.354,9.355) to our dynamical system, Eqs. (9.341,9.342):

d

dt

(
X

Z

)

︸ ︷︷ ︸

dx/dt

=
X

Z
︸︷︷︸

x

, (9.356)

d

dt

(
Y

Z

)

︸ ︷︷ ︸

dy/dt

= −Y
Z

︸︷︷︸

−y

. (9.357)

Expand using the quotient rule to get

1

Z

dX

dt
− X

Z2

dZ

dt
=

X

Z
, (9.358)

1

Z

dY

dt
− Y

Z2

dZ

dt
= −Y

Z
. (9.359)

Now on the unit sphere X2 + Y 2 + Z2 = 1, we must have

2XdX + 2Y dY + 2ZdZ = 0, (9.360)

so dividing by dt and solving for dZ/dt, we must have

dZ

dt
= −X

Z

dX

dt
− Y

Z

dY

dt
. (9.361)

Using Eq. (9.361) to eliminate dZ/dt in Eqs. (9.358,9.359), our dynamical system can be written as

1

Z

dX

dt
− X

Z2

(

−X
Z

dX

dt
− Y

Z

dY

dt

)

︸ ︷︷ ︸

dZ/dt

=
X

Z
, (9.362)

1

Z

dY

dt
− Y

Z2

(

−X
Z

dX

dt
− Y

Z

dY

dt

)

︸ ︷︷ ︸

dZ/dt

= −Y
Z
. (9.363)

Multiply Eqs. (9.362,9.363) by Z3 to get

Z2 dX

dt
+X

(

X
dX

dt
+ Y

dY

dt

)

= Z2X, (9.364)

Z2dY

dt
+ Y

(

X
dX

dt
+ Y

dY

dt

)

= −Z2Y. (9.365)

Regroup to find

(X2 + Z2)
dX

dt
+XY

dY

dt
= Z2X, (9.366)

XY
dX

dt
+ (Y 2 + Z2)

dY

dt
= −Z2Y. (9.367)
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Now, eliminate Z by demanding X2 + Y 2 + Z2 = 1 to get

(1 − Y 2)
dX

dt
+XY

dY

dt
= (1 −X2 − Y 2)X, (9.368)

XY
dX

dt
+ (1 −X2)

dY

dt
= −(1 −X2 − Y 2)Y. (9.369)

Solve this quasi-linear system for dX/dt and dY/dt to get

dX

dt
= X −X3 +XY 2, (9.370)

dY

dt
= −Y + Y 3 −X2Y. (9.371)

The five equilibrium points, and their stability, for this system are easily verified to be

(X,Y ) = (0, 0), saddle, (9.372)

(X,Y ) = (1, 0), sink, (9.373)

(X,Y ) = (−1, 0), sink, (9.374)

(X,Y ) = (0, 1), source, (9.375)

(X,Y ) = (0,−1), source. (9.376)

Note that in this space, four new equilibria have appeared. As we are also confined to the Poincaré
sphere on which X2 + Y 2 + Z2 = 1, we can also see that each of the new equilibria has Z = 0; that is,
the new equilibrium points lie on the equator of the Poincaré sphere. Transforming back to the original
space, we find the equilibria are at

(x, y) = (0, 0), saddle, (9.377)

(x, y) = (∞, 0), sink, (9.378)

(x, y) = (−∞, 0), sink, (9.379)

(x, y) = (0,∞), source, (9.380)

(x, y) = (0,−∞), source. (9.381)

Phase portraits showing several trajectories projected into (X,Y ) and (X,Y, Z) space are shown
in Fig. 9.11. Fig. 9.11a represents the Poincaré sphere from above the north pole; Fig. 9.11b depicts
the entire Poincaré sphere. On the sphere itself there are some additional complexities due to so-called
anti-podal equilibrium points. In this example, both the north pole and the south pole are saddle
equilibria, when the entire sphere is considered. For more general problems, one must realize that
this projection induces pairs of equilibria, and that usually only one member of the pairs needs to be
considered in detail.

Additionally, one notes in the global phase portraits two interesting features for two-dimensional
phase spaces:

• except at critical points, individual trajectories never cross each other,

• all trajectories connect one critical point to another, and

• it formally takes an infinite amount of time to reach a critical point.

Any trajectory can also be shown to be a so-called invariant manifold. An invariant manifold is a
set of points with the special property that if any one of them is used as an initial condition for the
dynamic system, the time-evolution due to the dynamic system restricts the system to the invariant
manifold. Certain of these manifolds are so-called slow invariant manifolds in that nearby trajectories
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Figure 9.11: Global phase portraits of the system dx/dt = x, dy/dt = −y: a) projection
from the Poincaré sphere onto the (X, Y ) plane, b) full projection onto the Poincaré sphere
in (X, Y, Z) space.

are attracted to them. The line Y = 0, and so y = 0, represents a slow invariant manifold for this
system. Note that a finite initial condition can only approach two fixed points at infinity. But the curve
representing points at infinity, Z = 0, is an invariant manifold. Except for trajectories that originate
at the two source points, a point at infinity must remain at infinity.

9.8.2 Projective space

When extended to higher dimension, the Poincaré sphere approach becomes lengthy. A more
efficient approach is provided by projective space. This approach does not have the graphical
appeal of the Poincaré sphere.

Example 9.20
Using projective space, find the global dynamics, including at infinity, for the same simple system

dx

dt
= x, (9.382)

dy

dt
= −y. (9.383)

Again, it is obvious that the equilibrium point is at (x, y) = (0, 0), and that point is a saddle
node. Let us project the two state variables x and y into a new two-dimensional space by the mapping
R2 → R2:

X =
1

x
, (9.384)

Y =
y

x
. (9.385)
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Note along the line y = mx, as x → ∞, we get X → 0, Y → m. So for x 6= 0, a point at infinity in
(x, y) space maps to a finite point in (X,Y ) space. By inspection, the inverse mapping is

x =
1

X
, (9.386)

y =
Y

X
. (9.387)

Under this transformation, Eqs. (9.382-9.383) become

d

dt

(
1

X

)

=
1

X
, (9.388)

d

dt

(
Y

X

)

= −Y

X
. (9.389)

Expanding, we find

− 1

X2

dX

dt
=

1

X
, (9.390)

1

X

dY

dt
− Y

X2

dX

dt
= −Y

X
. (9.391)

Simplifying gives

dX

dt
= −X, (9.392)

X
dY

dt
− Y

dX

dt
= −XY. (9.393)

Solving for the derivatives, the system reduces to

dX

dt
= −X, (9.394)

dY

dt
= −2Y. (9.395)

By inspection, there is a sink at (X,Y ) = (0, 0). At such a point, the inverse mapping tells us x→ ±∞
depending on whether X is positive or negative, and y is indeterminate. If we approach (X,Y ) = (0, 0)
along the line Y = mX , then y approaches the finite number m. This is consistent with trajectories
being swept away from the origin towards x→ ±∞ in the original phase space, indicating an attraction
at x → ±∞. But it does not account for the trajectories emanating from y → ±∞. This is because
the transformation selected obscured this root.

To recover it, we can consider the alternate transformation X̂ = x/y, Ŷ = 1/y. Doing so leads to
the system dX̂/dt = 2X̂, dŶ /dt = Ŷ , which has a source at (X̂, Ŷ ) = (0, 0), which is consistent with
the source-like behavior in the original x, y space as y → ±∞. This transformation, however, obscures
the sink like behavior at x→ ±∞.

To capture both points at infinity, we can consider a non-degenerate transformation, of which there
are infinitely many. One is X̃ = 1/(x + y), Ỹ = (x − y)/(x + y). Doing so leads to the system
dX̃/dt = −X̃Ỹ , dỸ /dt = 1 − Ỹ 2. This system has two roots, a source at (X̃, Ỹ ) = (0,−1) and a sink
at (X̃, Ỹ ) = (0, 1). The source corresponds to y → ±∞. The sink corresponds to x→ ±∞.
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9.9 Fractals

In the discussion on attractors in Section 9.6.1, we included geometrical shapes called frac-
tals. These are objects that are not smooth, but occur frequently in the dynamical systems
literature either as attractors or as boundaries of basins of attractions.

A fractal can be defined as a geometrical shape in which the parts are in some way similar
to the whole. This self-similarity may be exact, i.e. a piece of the fractal, if magnified, may
look exactly like the whole fractal. Before discussing examples we need to put forward
a working definition of dimension. Though there are many definitions in current use, we
present here the Hausdorff-Besicovitch5 dimension D. If Nǫ is the number of ‘boxes’ of side
length ǫ needed to cover an object, then

D = lim
ǫ→0

lnNǫ

ln(1/ǫ)
. (9.396)

We can check that this definition corresponds to the common geometrical shapes.

1. Point: Nǫ = 1, D = 0 since D = limǫ→0
ln 1
− ln ǫ

= 0,

2. Line of length l: Nǫ = l/ǫ,D = 1 since D = limǫ→0
ln(l/ǫ)
− ln ǫ

= ln l−ln ǫ
− ln ǫ

= 1,

3. Surface of size l2: Nǫ = (l/ǫ)2, D = 2 since D = limǫ→0
ln(l2/ǫ2)
− ln ǫ

= 2 ln l−2 ln ǫ
− ln ǫ

= 2,

4. Volume of size l3: Nǫ = (l/ǫ)3, D = 3 since D = limǫ→0
ln(l3/ǫ3)
− ln ǫ

= 3 ln l−3 ln ǫ
− ln ǫ

= 3.

A fractal has a dimension that is not an integer. Many physical objects are fractal-like, in
that they are fractal within a range of length scales. Coastlines are among the geographical
features that are of this shape. If there are Nǫ units of a measuring stick of length ǫ, the
measured length of the coastline will be of the power-law form ǫNǫ = ǫ1−D, where D is the
dimension.

9.9.1 Cantor set

Consider the line corresponding to k = 0 in Fig. 9.12. Take away the middle third to leave

k=0 
k=1 
k=2 
k=3 
k=4 

Figure 9.12: Cantor set.

5after Felix Hausdorff, 1868-1942, German mathematician, and Abram Samoilovitch Besicovitch, 1891-
1970, Russian mathematician.
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the two portions; this is shown as k = 1. Repeat the process to get k = 2, 3, . . .. If k → ∞,
what is left is called the Cantor6 set. Let us take the length of the line segment to be unity
when k = 0. Since Nǫ = 2k and ǫ = 1/3k, the dimension of the Cantor set is

D = lim
ǫ→0

lnNǫ

ln(1/ǫ)
= lim

k→∞

ln 2k

ln 3k
=
k ln 2

k ln 3
=

ln 2

ln 3
= 0.6309 . . . . (9.397)

It can be seen that the endpoints of the removed intervals are never removed; it can be
shown the Cantor set contains an infinite number of points, and it is an uncountable set. It
is totally disconnected and has a Lebesgue measure zero.

9.9.2 Koch curve

Here we start with an equilateral triangle shown in Fig. 9.13 as k = 0. Each side of the

k = 0 k = 1 k = 2

Figure 9.13: Koch curve.

original triangle has unit length. The middle third of each side of the triangle is removed,
and two sides of a triangle drawn on that. This is shown as k = 1. The process is continued,
and in the limit gives a continuous, closed curve that is nowhere smooth. Since Nǫ = 3× 4k

and ǫ = 1/3k, the dimension of the Koch7 curve is

D = lim
ǫ→0

lnNǫ

ln(1/ǫ)
= lim

k→∞

ln(3)4k

ln 3k
= lim

k→∞

ln 3 + k ln 4

k ln 3
=

ln 4

ln 3
= 1.261 . . . . (9.398)

The limit curve itself has infinite length, it is nowhere differentiable, and it surrounds a finite
area.

9.9.3 Menger sponge

An example of a fractal which is an iterate of an object which starts in three-dimensional
space is a “Menger sponge.”8 A Menger sponge is depicted in Fig. 9.14.

6Georg Ferdinand Ludwig Philipp Cantor, 1845-1918, Russian-born, German-based mathematician.
7Niels Fabian Helge von Koch, 1870-1924, Swedish mathematician.
8Karl Menger, 1902-1985, Austrian-born mathematician and member of the influential “Vienna Circle.”

He served on the faculties of the Universities of Amsterdam, Vienna, Notre Dame, and the Illinois Institute
of Technology.
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Figure 9.14: Menger sponge.

9.9.4 Weierstrass function

For a, b, t ∈ R1,W : R1 → R1, the Weierstrass9 function

W (t) =
∞∑

k=1

ak cos bkt, (9.399)

where a is real, b is odd, and ab > 1+3π/2. It is everywhere continuous, but nowhere differ-
entiable! Both require some effort to prove. A Weierstrass function is plotted in Fig. 9.15. Its

0.1 0.2 0.3 0.4 0.5
t

-1.0

-0.5

0.5

1.0
WHtL

Figure 9.15: Four term (k = 1, . . . , 4) approximation to the Weierstrass function, W (t) for
b = 13, a = 1/2.

fractal character can be seen when one recognizes that cosine waves of ever higher frequency
are superposed onto low frequency cosine waves.

9.9.5 Mandelbrot and Julia sets

For z ∈ C1, c ∈ C1, the Mandelbrot10 set is the set of all c for which

zk+1 = z2
k + c, (9.400)

9Karl Theodor Wilhelm Weierstrass, 1815-1897, Westphalia-born German mathematician.
10Benôıt Mandelbrot, 1924-2010, Polish-born mathematician based mainly in France.
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stays bounded as k → ∞, when z0 = 0. The boundaries of this set are fractal. A Mandelbrot
set is sketched in Fig. 9.16.

Figure 9.16: Mandelbrot set. Black regions stay bounded; colored regions become unbounded
with shade indicating how rapidly the system becomes unbounded. Image generated from
http://cs.clarku.edu/∼djoyce/julia/explorer.html.

Associated with each c for the Mandelbrot set is a Julia11 set. In this case, the Julia set
is the set of complex initial seeds z0 which allow zk+1 = z2

k + c to converge for fixed complex
c. A Julia set for c = 0.49 + 0.57i is plotted in Fig. 9.17.

Figure 9.17: Julia set for c = 0.49+0.57i. Black regions stay bounded; colored regions become
unbounded with shade of color indicating how rapidly the system becomes unbounded. Image
generated from http://cs.clarku.edu/∼djoyce/julia/explorer.html.

9.10 Bifurcations

Dynamical systems representing some physical problem frequently have parameters associ-
ated with them. Thus, for x ∈ RN , t ∈ R1, r ∈ R1, f : RN → RN , we can write

dxn
dt

= fn(x1, x2, · · · , xN ; r) (n = 1, · · · , N), (9.401)

11Gaston Maurice Julia, 1893-1978, Algerian-born French mathematician.
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where r is a parameter. The theory can easily be extended if there is more than one param-
eter.

We would like to consider the changes in the behavior of t → ∞ solutions as the real
number r, called the bifurcation parameter, is varied. The nature of the critical point may
change as the parameter r is varied; other critical points may appear or disappear, or its
stability may change. This is a bifurcation, and the r at which it happens is the bifurcation
point. The study of the solutions and bifurcations of the steady state falls under singularity

theory.
Let us look at some of the bifurcations obtained for different vector fields. Some of the

examples will be one-dimensional, i.e. x ∈ R1, r ∈ R1, f : R1 → R1.

dx

dt
= f(x; r). (9.402)

Even though this can be solved exactly in most cases, we will assume that such a solution
is not available so that the techniques of analysis can be developed for more complicated
systems. For a coefficient matrix that is a scalar, the eigenvalue is the coefficient itself. The
eigenvalue will be real and will cross the imaginary axis of the complex plane through the
origin as r is changed. This is called a simple bifurcation.

9.10.1 Pitchfork bifurcation

For x ∈ R1, t ∈ R1, r ∈ R1, r0 ∈ R1, consider

dx

dt
= −x(x2 − (r − r0)). (9.403)

The critical points are x = 0, and ±√
r − r0. r = r0 is a bifurcation point; for r < r0 there

is only one critical point, while for r > r0 there are three.
Linearizing around the critical point x = 0, we get

dx̃

dt
= (r − r0)x̃. (9.404)

This has solution
x̃(t) = x̃(0) exp ((r − r0)t) . (9.405)

For r < r0, the critical point is asymptotically stable; for r > r0 it is unstable.
Notice that the function V (x) = x2 satisfies the following conditions: V > 0 for x 6= 0,

V = 0 for x = 0, and dV/dt = (dV/dx)(dx/dt) = −2x2(x2 − (r − r0)) ≤ 0 for r < r0. Thus,
V (x) is a Lyapunov function and x = 0 is globally stable for all perturbations, large or small,
as long as r < r0.

Now let us examine the critical point x =
√
r − r0 which exists only for r > r0. Putting

x = x+ x̃, the right side of Eq. (9.403) becomes

f(x) = −
(√

r − r0 + x̃
) ((√

r − r0 + x̃
)2 − (r − r0)

)

. (9.406)
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Linearizing for small x̃, we get
dx̃

dt
= −2(r − r0)x̃. (9.407)

This has solution
x̃(t) = x̃(0) exp (−2(r − r0)t) . (9.408)

For r > r0, this critical point is stable. The other critical point x = −√
r − r0 is also found

to be stable for r > r0. The results are summarized in the bifurcation diagram sketched in
Figure 9.18. At the bifurcation point, r = r0, we have

x

r0
r

Figure 9.18: Sketch of a pitchfork bifurcation. Heavy lines are stable equilibria; dashed lines
are unstable equilibria.

dx

dt
= −x3. (9.409)

This equation has a critical point at x = 0 but has no linearization. We must do a non-linear
analysis to determine the stability of the critical point. In this case it is straightforward.
Solving directly and applying an initial condition, we obtain

x(t) = ± x(0)
√

1 + 2x(0)2t
, (9.410)

lim
t→∞

x(t) = 0. (9.411)

Since the system approaches the critical point as t → ∞ for all values of x(0), the critical
point x = 0 is unconditionally stable.

9.10.2 Transcritical bifurcation

For x ∈ R1, t ∈ R1, r ∈ R1, r0 ∈ R1, consider

dx

dt
= −x(x − (r − r0)). (9.412)
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The critical points are x = 0 and r − r0. The bifurcation occurs at r = r0. Once again the
linear stability of the solutions can be determined. Near x = 0, the linearization is

dx̃

dt
= (r − r0)x̃, (9.413)

which has solution

x̃(t) = x̃(0) exp ((r − r0)t) . (9.414)

So this solution is stable for r < r0. Near x = r− r0, we take x̃ = x− (r− r0). The resulting
linearization is

dx̃

dt
= −(r − r0)x̃, (9.415)

which has solution

x̃(t) = x̃(0) exp (−(r − r0)t) . (9.416)

So this solution is stable for r > r0.

At the bifurcation point, r = r0, there is no linearization, and the system becomes

dx

dt
= −x2, (9.417)

which has solution

x(t) =
x(0)

1 + x(0)t
. (9.418)

Here the asymptotic stability depends on the initial condition! For x(0) ≥ 0, the critical
point at x = 0 is stable. For x(0) < 0, there is a blowup phenomena at t = −1/x(0). The
results are summarized in the bifurcation diagram sketched in Figure 9.19.

x

r0
r

Figure 9.19: Sketch of a transcritical bifurcation. Heavy lines are stable equilibria; dashed
lines are unstable equilibria.
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9.10.3 Saddle-node bifurcation

For x ∈ R1, t ∈ R1, r ∈ R1, r0 ∈ R1, consider

dx

dt
= −x2 + (r − r0). (9.419)

The critical points are x = ±√
r − r0. Taking x̃ = x∓√

r − r0 and linearizing, we obtain

dx̃

dt
= ∓2

√
r − r0x̃, (9.420)

which has solution

x̃(t) = x̃(0) exp
(
∓
√
r − r0t

)
. (9.421)

For r > r0, the root x = +
√
r − r0 is asymptotically stable. The root x = −√

r − r0 is
asymptotically unstable.

At the point, r = r0, there is no linearization, and the system becomes

dx

dt
= −x2, (9.422)

which has solution

x(t) =
x(0)

1 + x(0)t
. (9.423)

Here the asymptotic stability again depends on the initial condition For x(0) ≥ 0, the critical
point at x = 0 is stable. For x(0) < 0, there is a blowup phenomena at t = −1/x(0). The
results are summarized in the bifurcation diagram sketched in Figure 9.20.

x

rr0

Figure 9.20: Sketch of saddle-node bifurcation. Heavy lines are stable equilibria; dashed
lines are unstable equilibria.
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9.10.4 Hopf bifurcation

To give an example of complex eigenvalues, one must go to a two-dimensional vector field.

Example 9.21
With x, y, t, r, r0 ∈ R1, take

dx

dt
= (r − r0)x− y − x(x2 + y2), (9.424)

dy

dt
= x+ (r − r0)y − y(x2 + y2). (9.425)

The origin (0,0) is a critical point. The linearized perturbation equations are

d

dt

(
x̃
ỹ

)

=

(
r − r0 −1

1 r − r0

)(
x̃
ỹ

)

. (9.426)

The eigenvalues λ of the coefficient matrix are λ = (r − r0) ± i. For r < r0, the real part is negative,
and the origin is stable. At r = r0 there is a Hopf12 bifurcation as the eigenvalues cross the imaginary
axis of the complex plane as r is changed. For r > r0, a periodic orbit in the (x, y) phase plane appears.
The linear analysis will not give the amplitude of the motion. Writing the given equation in polar
coordinates (ρ, θ) yields

dρ

dt
= ρ(r − r0) − ρ3, (9.427)

dθ

dt
= 1. (9.428)

This is a pitchfork bifurcation in the amplitude of the oscillation ρ.

9.11 Lorenz equations

For independent variable t ∈ R1, dependent variables (x, y, z)T ∈ R3, and parameters σ, r, b ∈
R1, σ > 0, r > 0, b > 0, the Lorenz13 equations are

dx

dt
= σ(y − x), (9.429)

dy

dt
= rx− y − xz, (9.430)

dz

dt
= −bz + xy. (9.431)

The bifurcation parameter will be taken to be r.

12Eberhard Frederich Ferdinand Hopf, 1902-1983, Austrian-born, German mathematician.
13Edward Norton Lorenz, 1917-2008, American meteorologist.
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9.11.1 Linear stability

The critical points are obtained from

y − x = 0, (9.432)

rx− y − x z = 0, (9.433)

−bz + x y = 0, (9.434)

which gives




x
y
z



 =





0
0
0



 ,





√

b(r − 1)
√

b(r − 1)
r − 1



 ,





−
√

b(r − 1)

−
√

b(r − 1)
r − 1



 . (9.435)

Note when r = 1, there is only one critical point at the origin. For more general r, a linear
stability analysis of each of the three critical points follows.

• x = y = z = 0. Small perturbations around this point give

d

dt





x̃
ỹ
z̃



 =





−σ σ 0
r −1 0
0 0 −b









x̃
ỹ
z̃



 . (9.436)

The characteristic equation is

(λ+ b)(λ2 + λ(σ + 1) − σ(r − 1)) = 0, (9.437)

from which we get the eigenvalues

λ = −b, λ =
1

2

(

−(1 + σ) ±
√

(1 + σ)2 − 4σ(1 − r)
)

. (9.438)

For 0 < r < 1, the eigenvalues are real and negative, since (1 + σ)2 > 4σ(1 − r). At
r = 1, there is a pitchfork bifurcation with one zero eigenvalue. For r > 1, the origin
becomes unstable.

• x = y =
√

b(r − 1), z = r − 1. We first note we need r ≥ 1 for a real solution. Small
perturbations give

d

dt





x̃
ỹ
z̃



 =





−σ σ 0

1 −1 −
√

b(r − 1)
√

b(r − 1)
√

b(r − 1) −b









x̃
ỹ
z̃



 . (9.439)

The characteristic equation is

λ3 + (σ + b+ 1)λ2 + (σ + r)bλ + 2σb(r − 1) = 0. (9.440)
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This system is difficult to fully analyze. Detailed analysis reveals of a critical value of
r:

r = rc =
σ(σ + b+ 3)

σ − b− 1
. (9.441)

At r = rc the characteristic equation, Eq. (9.440), can be factored to give the eigen-
values

λ = −(σ + b+ 1), λ = ±i
√

2bσ(σ + 1)

σ − b− 1
, (9.442)

If σ > b + 1, two of the eigenvalues are purely imaginary, and this corresponds to
a Hopf bifurcation. The periodic solution which is created at this value of r can be
shown to be unstable so that the bifurcation is subcritical.

If r = rc and σ < b+1, one can find all real eigenvalues, including at least one positive
eigenvalue, which tells us this is unstable.

We also find instability if r > rc. If r > rc and σ > b + 1, we can find one negative
real eigenvalue and two complex eigenvalues with positive real parts; hence, this is
unstable. If r > rc, and σ < b+ 1, we can find three real eigenvalues, with at least one
positive; this is unstable.

For 1 < r < rc and σ < b+ 1, we find three real eigenvalues, one of which is positive;
this is unstable.

For stability, we can take

1 < r < rc, and σ > b+ 1. (9.443)

In this case, we can find one negative real eigenvalue and two eigenvalues (which could
be real or complex) with negative real parts; hence, this is stable.

• x = y = −
√

b(r − 1), z = r − 1. Analysis of this critical point is essentially identical
to that of the previous point.

For a particular case, these results are summarized in the bifurcation diagram of Fig. 9.21.
Shown here are results when σ = 10, b = 8/3. For these values, Eq. (9.441) tells us rc = 24.74.
Note also that σ > b + 1. For real equilibria, we need r > 0. The equilibrium at the origin
is stable for r ∈ [0, 1] and unstable for r > 1; the instability is denoted by the dashed
line. At r = 1, there is a pitchfork bifurcation, and two new real equilibria are available.
These are both linearly stable for r ∈ [1, rc]. For r ∈ [1, 1.34562], the eigenvalues are both
real and negative. For r ∈ [1.134562, rc], two of the eigenvalues become complex, but all
three have negative real parts, so local linear stability is maintained. For r > rc, all three
equilibria are unstable and indicated by dashed lines. As an aside, we note that because of
non-linear effects, some initial conditions in fact yield trajectories which do not relax to a
stable equilibrium for r < rc. It can be shown, for example, that if x(0) = y(0) = z(0) = 1,
that r = 24 < rc gives rise to a trajectory which never reaches either of the linearly stable
critical points.
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Figure 9.21: Bifurcation diagram for Lorenz equations, with σ = 10, b = 8/3.

9.11.2 Non-linear stability: center manifold projection

This is a procedure for obtaining the non-linear behavior near an eigenvalue with zero real
part. As an example we will look at the Lorenz system at the bifurcation point r = 1. Recall
when r = 1, the Lorenz equations have a single equilibrium at the origin. Linearization of
the Lorenz equations near the equilibrium point at (0, 0, 0) gives rise to a system of the form
dx/dt = A · x, where

A =





−σ σ 0
1 −1 0
0 0 −b



 . (9.444)

The matrix A has eigenvalues and eigenvectors

λ1 = 0, e1 =





1
1
0



 , (9.445)

λ2 = −(σ + 1), e2 =





−σ
1
0



 , (9.446)

λ3 = −b, e3 =





0
0
1



 . (9.447)

The fact that λ1 = 0 suggests that there is a local algebraic dependency between at least two
of the state variables, and that locally, the system behaves as a differential-algebraic system,
such as studied in Sec. 9.7.
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We use the eigenvectors as a basis to define new coordinates (u, v, w) where





x
y
z



 =





1 −σ 0
1 1 0
0 0 1









u
v
w



 . (9.448)

This linear transformation has a Jacobian whose determinant is J = 1+σ; thus, for σ > −1,
it is orientation-preserving. It is volume-preserving only if σ = 0 or −2. Inversion shows
that

u =
x+ σy

1 + σ
, (9.449)

v =
y − x

1 + σ
, (9.450)

w = z. (9.451)

In terms of the new variables, the derivatives are expressed as

dx

dt
=

du

dt
− σ

dv

dt
, (9.452)

dy

dt
=

du

dt
+
dv

dt
, (9.453)

dz

dt
=

dw

dt
, (9.454)

so that original non-linear Lorenz equations (9.429-9.431) become

du

dt
− σ

dv

dt
= σ(1 + σ)v, (9.455)

du

dt
+
dv

dt
= −(1 + σ)v − (u− σv)w, (9.456)

dw

dt
= −bw + (u− σv)(u+ v). (9.457)

Solving directly for the derivatives so as to place the equations in autonomous form, we get

du

dt
= 0u− σ

1 + σ
(u− σv)w = λ1u+ non-linear terms, (9.458)

dv

dt
= −(1 + σ)v − 1

1 + σ
(u− σv)w = λ2v + non-linear terms, (9.459)

dw

dt
= −bw + (u− σv)(u+ v) = λ3w + non-linear terms. (9.460)

The objective of using the eigenvectors as basis vectors is to change the original system to
diagonal form in the linear terms. Notice that the linear portion of the system is in diagonal
form with the coefficients on each linear term as a distinct eigenvalue. Furthermore, the
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eigenvalues λ2 = −(1 + σ) and λ3 = −b are negative ensuring that the linear behavior
v = e−(1+σ)t and w = e−bt takes the solution very quickly to zero in these variables.

It would appear then that we are only left with an equation in u(t) for large t. However,
if we put v = w = 0 in the right side, dv/dt and dw/dt would be zero if it were not for the
u2 term in dw/dt, implying that the dynamics is confined to v = w = 0 only if we ignore
this term. According to the center manifold theorem it is possible to find a manifold (called
the center manifold) which is tangent to u = 0, but is not necessarily the tangent itself, to
which the dynamics is indeed confined.

We can get as good an approximation to the center manifold as we want by choosing new
variables. Expanding Eq. (9.460), which has the potential problem, we get

dw

dt
= −bw + u2 − (σ − 1)uv − σv2. (9.461)

Letting

w̃ = w − u2

b
, (9.462)

so that −bw + u2 = −bw̃, we can eliminate the potential problem with the derivative of w.
In the new variables (u, v, w̃), the full Lorenz equations are written as

du

dt
= − σ

1 + σ
(u− σv)

(

w̃ +
u2

b

)

, (9.463)

dv

dt
= −(1 + σ)v − 1

1 + σ
(u− σv)

(

w̃ +
u2

b

)

, (9.464)

dw̃

dt
= −bw̃ − (σ − 1)uv − σv2 +

2σ

b(1 + σ)
u(u− σv)

(

w̃ +
u2

b

)

. (9.465)

Once again, the variables v and w̃ go to zero quickly. Formally setting them to zero, we
recast Eqs. (9.463-9.465) as

du

dt
= − σ

b(1 + σ)
u3, (9.466)

dv

dt
= − 1

b(1 + σ)
u3, (9.467)

dw̃

dt
=

2σ

b2(1 + σ)
u4. (9.468)

Here, dv/dt and dw̃/dt approach zero if u approaches zero. Now the equation for the evolution
of u, Eq. (9.466), suggests that this is the case. Simply integrating Eq. (9.466) and applying
an initial condition, we get

u(t) = ±(u(0))

√

b(1 + σ)

b(1 + σ) + 2σ(u(0))2t
, (9.469)
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which is asymptotically stable as t→ ∞. So to this approximation the dynamics is confined
to the v = w̃ = 0 line. The bifurcation at r = 1 is said to be supercritical. Higher order
terms can be included to obtain improved accuracy, if necessary.

We next focus attention on a particular case where the parameters were chosen to be
r = 1, σ = 1, and b = 8/3. Figure 9.22 gives the projection onto the (u, w) phase space of
several solution trajectories calculated in (u, v, w) phase space for a wide variety of initial
conditions along with the center manifold, w̃ = w−u2/b = 0. It is seen that a given solution

-1.0 -0.5 0.5 1.0
u

0.2

0.4

0.6

0.8

1.0

w

center  manifold
w-u2/b = 0

sample
trajectories

Lorenz equation solutions
at bifurcation point, 
r = 1, σ = 1, b = 8/3
x = u - v, y = u + v,  z = w

stable
equilibrium

Figure 9.22: Projection onto the (u, w) plane of solution trajectories (blue curves) and center
manifold (black curve) for Lorenz equations at the bifurcation point; r = 1, σ = 1, b = 8/3.

trajectory indeed approaches the center manifold on its way to the equilibrium point at the
origin. The center manifold approximates the solution trajectories well in the neighborhood
of the origin. Far from the origin, not shown here, it is not an attracting manifold.

We can gain more insight into the center manifold by transforming back into (x, y, z)
space. Figure 9.23 shows in that space several solution trajectories, a representation of the
surface which constitutes the center manifold, as well as a curve embedded within the center
manifold to which trajectories are further attracted. We can in fact decompose the motion
of a trajectory into the following regimes, for the parameters r = 1, σ = 1, b = 8/3.

• Very fast attraction to the two-dimensional center manifold, w̃ = 0: Because b > σ+1,
for this case, w̃ approaches zero faster than v approaches zero, via exponential decay
dictated by Eqs. (9.464, 9.465). So on a time scale of 1/b, the trajectory first approaches
w̃ = 0, which means it approaches w − u2/b = 0. Transforming back to (x, y, z) via
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Figure 9.23: Solution trajectories (blue curves) and center manifold (green surface and black
curve) for Lorenz equations at the bifurcation point; r = 1, σ = 1, b = 8/3.

Eqs. (9.449-9.451), a trajectory thus approaches the surface

z =
1

b







x

1 + σ
+

σy

1 + σ
︸ ︷︷ ︸

u







2∣∣
∣
∣
∣
∣
∣
∣
σ=1,b=8/3

=
3

8

(
x+ y

2

)2

. (9.470)

• Fast attraction to the one-dimensional curve, v = 0: Once on the two dimensional
manifold, the slower time scale relaxation with time constant 1/(σ + 1) to the curve
given by v = 0 occurs. When v = 0, we also have x = y, so this curve takes the
parametric form

x(s) = s, (9.471)

y(s) = s, (9.472)

z(s) =
1

b

(
s

1 + σ
+

σs

1 + σ

)2
∣
∣
∣
∣
∣
σ=1,b=8/3

=
3

8
s2. (9.473)

• Slow attraction to the zero-dimensional equilibrium point at (0, 0, 0): This final relax-
ation brings the system to rest.
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For different parameters, this sequence of events is modified, as depicted in Fig. 9.24. In

a) b)

Figure 9.24: Solution trajectories (blue curves) and center manifold (green surface and black
curve) for Lorenz equations at the bifurcation point; a) r = 1, σ = 1, b = 100, and b) r = 1,
σ = 100, b = 8/3.

Fig. 9.24a, we take r = 1, σ = 1, b = 100. By Eqs. (9.464,9.465), these parameters induce
an even faster relaxation to w̃ = 0; as before, this is followed by a fast relaxation to v = 0,
where x = y, and a final slow relaxation to equilibrium. One finds that the center manifold
surface w̃ = 0 has less curvature and that the trajectories, following an initial nearly vertical
descent, have sharp curvature as they relax onto the flatter center manifold, where the again
approach equilibrium at the origin.

In Fig. 9.24b, we take r = 1, σ = 100, b = 8/3. By Eqs. (9.464,9.465), these parameters
induce an initial very fast relaxation to v = 0, where x = y. This is followed by a fast
relaxation to the center manifold where w̃ = 0, and then a slow relaxation to equilibrium at
the origin.

9.11.3 Transition to chaos

By varying the bifurcation parameter r, we can predict what is called a transition to chaos.
We illustrate this transition for two sets of parameters for the Lorenz equations. The first will
have trajectories which relax to a stable fixed point; the second will have so-called chaotic

trajectories which relax to what is known as a strange attractor.
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Example 9.22
Consider the solution to the Lorenz equations for conditions: σ = 10, r = 10, b = 8/3 with initial

conditions x(0) = y(0) = z(0) = 1.

We first note that r > 1, so we expect the origin to be unstable. Next note from Eq. (9.441) that

rc =
σ(σ + b + 3)

σ − b− 1
=

10(10 + 8
3 + 3)

10 − 8
3 − 1

=
470

19
= 24.74. (9.474)

So we have 1 < r < rc. We also have σ > b+1. Thus, by Eq. (9.443), we expect the other equilibria to
be stable. From Eq. (9.435), the first fixed point we examine is the origin (x, y, z) = (0, 0, 0). We find
its stability by solving the characteristic equation, Eq. (9.437):

(λ+ b)(λ2 + λ(σ + 1) − σ(r − 1) = 0, (9.475)
(

λ+
8

3

)

(λ2 + 11λ− 90) = 0. (9.476)

Solution gives

λ = −8

3
, λ =

1

2

(

−11 ±
√

481
)

, (9.477)

Numerically, this is λ = −2.67,−16.47, 5.47. Since one of the eigenvalues is positive, the origin is
unstable. From Eq. (9.435), a second fixed point is given by

x =
√

b(r − 1) =

√

8

3
(10 − 1) = 2

√
6 = 4.90, (9.478)

y =
√

b(r − 1) =

√

8

3
(10 − 1) = 2

√
6 = 4.90, (9.479)

z = r − 1 = 10 − 1 = 9. (9.480)

Consideration of the roots of Eq. (9.440) shows the second fixed point is stable:

λ3 + (σ + b+ 1)λ2 + (σ + r)bλ + 2σb(r − 1) = 0, (9.481)

λ3 +
41

3
λ2 +

160

3
λ+ 480 = 0. (9.482)

Solution gives
λ = −12.48, λ = −0.595 ± 6.17 i. (9.483)

From Eq. (9.435), a third fixed point is given by

x = −
√

b(r − 1) = −
√

8

3
(10 − 1) = −2

√
6 = −4.90, (9.484)

y = −
√

b(r − 1) = −
√

8

3
(10 − 1) = −2

√
6 = −4.90, (9.485)

z = r − 1 = 10 − 1 = 9. (9.486)

The stability analysis for this point is essentially identical as that for the second point. The eigenvalues
are identical λ = −12.48,−0.595± 6.17i; thus, the root is linearly stable. Because we have two stable
roots, we might expect some initial conditions to induce trajectories to one of the stable roots, and
other initial conditions to induce trajectories to the other.

Figure 9.25 shows the phase space trajectories in (x, y, z) space and the behavior in the time domain,
x(t), y(t), z(t). Examination of the solution reveals that for this set of initial conditions, the second
equilibrium is attained.
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Figure 9.25: Solution to Lorenz equations, σ = 10, r = 10, b = 8/3. Initial conditions are
x(0) = y(0) = z(0) = 1.
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Example 9.23
Now consider the conditions: σ = 10, r = 28, b = 8/3. Initial conditions remain x(0) = y(0) =

z(0) = 1.

The analysis is very similar to the previous example, except that we have changed the bifurcation
parameter r. We first note that r > 1, so we expect the origin to be an unstable equilibrium. We next
note from Eq. (9.441) that

rc =
σ(σ + b+ 3)

σ − b− 1
=

10(10 + 8
3 + 3)

10 − 8
3 − 1

=
470

19
= 24.74, (9.487)

remains unchanged from the previous example. So we have r > rc. Thus, we expect the other equilibria
to be unstable as well.

From Eq. (9.435), the origin is again a fixed point, and again it can be shown to be unstable. From
Eq. (9.435), the second fixed point is now given by

x =
√

b(r − 1) =

√

8

3
(28 − 1) = 8.485, (9.488)

y =
√

b(r − 1) =

√

8

3
(28 − 1) = 8.485, (9.489)

z = r − 1 = 28 − 1 = 27. (9.490)

Now, consideration of the roots of the characteristic equation, Eq. (9.440), shows the second fixed point
here is unstable:

λ3 + (σ + b+ 1)λ2 + (σ + r)bλ + 2σb(r − 1) = 0, (9.491)

λ3 +
41

3
λ2 +

304

3
λ+ 1440 = 0. (9.492)

Solution gives
λ = −13.8546, λ = 0.094 ± 10.2 i. (9.493)

Moreover, the third fixed point is unstable in exactly the same fashion as the second. The consequence
of this is that there is no possibility of achieving an equilibrium as t→ ∞. More importantly, numerical
solution reveals the solution to approach what is known as a strange attractor. Moreover, numerical
experimentation would reveal an extreme, exponential sensitivity of the solution trajectories to the
initial conditions. That is, a small change in initial conditions would induce a large deviation of a
trajectory in a finite time. Such systems are known as chaotic.

Figure 9.26 shows the phase space trajectory, the strange attractor, and the behavior in the time
domain of this system which has underwent a transition to a chaotic state.
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Figure 9.26: Phase space trajectory and time domain plots for solution to Lorenz equations,
σ = 10, r = 28, b = 8/3. Initial conditions are x(0) = y(0) = z(0) = 1.
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Problems

1. For the logistics equation: xk+1 = rxk(1 − xk); 0 < xk < 1, 0 < r < 4, write a short program which
determines the value of x as k → ∞. Plot the bifurcation diagram, that is the limiting value of x as
a function of r for 0 < r < 4. If ri is the ith bifurcation point, that is the value at which the number
of fixed points changes, make an estimate of Feigenbaum’s constant,

δ = lim
n→∞

rn−1 − rn
rn − rn+1

.

2. If

x
dx

dt
+ xy

dy

dt
= x− 1,

(x+ y)
dx

dt
+ x

dy

dt
= y + 1,

write the system in autonomous form,

dx

dt
= f(x, y),

dy

dt
= g(x, y).

Plot curves on which f = 0, g = 0 in the x, y phase plane. Also plot in this plane the vector field
defined by the differential equations. With a combination of analysis and numerics, find a path in
phase space from one critical point to another critical point. For this path, also known as heteroclinic
orbit14, plot x(t), y(t) and include the path in the (x, y) phase plane.

3. Show that for all initial conditions the solutions of

dx

dt
= −x+ x2y − y2,

dy

dt
= −x3 + xy − 6z,

dz

dt
= 2y,

tend to x = y = z = 0 as t→ ∞.

4. Draw the bifurcation diagram of

dx

dt
= x3 + x

(
(r − 3)2 − 1

)
,

where r is the bifurcation parameter, indicating stable and unstable branches.

5. A two-dimensional dynamical system expressed in polar form is

dρ

dt
= ρ(ρ− 2)(ρ− 3),

dθ

dt
= 2.

Find the (a) critical point(s), (b) periodic solution(s), and (c) analyze their stability.

14In contrast, a homoclinic orbit starts near a critical point, travels away from the critical point, and then
returns to the same critical point.
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6. Find a critical point of the following system, and show its local and global stability.

dx

dt
= (x− 2)

(
(y − 1)2 − 1

)
,

dy

dt
= (2 − y)

(
(x− 2)2 + 1

)
,

dz

dt
= (4 − z).

7. Find the general solution of dx/dt = A · x where

A =





1 −3 1
2 −1 −2
2 −3 0



 .

8. Find the solution of dx/dt = A · x where

A =





1 0 −1
−1 2 1
1 0 1



 ,

and

x(0) =





0
0
1



 .

9. Find the solution of dx/dt = A · x where

A =





1 −3 2
0 −1 0
0 −1 −2



 ,

and

x(0) =





1
2
1



 .

10. Find the solution of dx/dt = A · x where

A =





1 0 0
0 1 −1
0 1 1



 ,

and

x(0) =





1
1
1



 .

11. Express

dx1

dt
+ x1 +

dx2

dt
+ 3x2 = 0,

dx1

dt
+ 3

dx2

dt
+ x2 = 0,

in the form dx/dt = A · x and solve. Plot the some solution trajectories in x1, x2 phase plane and as
well as the vector field defined by the system of equations.
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12. Classify the critical points of

dx

dt
= x− y − 3,

dy

dt
= y − x2 + 1,

and analyze their stability. Plot the global (x, y) phase plane including critical points and vector
fields.

13. The following equations arise in a natural circulation loop problem

dx

dt
= y − x,

dy

dt
= a− zx,

dz

dt
= xy − b,

where a and b are nonnegative parameters. Find the critical points and analyze their linear stability.
Find numerically the attractors for (i) a = 2, b = 1, (ii) a = 0.95, b = 1, and (iii) a = 0, b = 1.

14. Sketch the steady state bifurcation diagrams of the following equations. Determine and indicate the
linear stability of each branch.

dx

dt
= −

(
1

x
− r

)

(2x− r) ,

dx

dt
= −x

(
(x− 2)2 − (r − 1)

)
.

15. The motion of a freely spinning object in space is given by

dx

dt
= yz,

dy

dt
= −2xz,

dz

dt
= xy,

where x, y, z represent the angular velocities about the three principal axes. Show that x2+y2+z2 is a
constant. Find the critical points and analyze their linear stability. Check by throwing a non-spherical
object (a book?) in the air.

16. A bead moves along a smooth circular wire of radius a which is rotating about a vertical axis with
constant angular speed ω. Taking gravity and centrifugal forces into account, the motion of the bead
is given by

a
d2θ

dt2
= −g sin θ + aω2 cos θ sin θ,

where θ is the angular position of the bead with respect to the downward vertical position. Find the
equilibrium positions and their stability as the parameter µ = aω2/g is varied.

17. Find a Lyapunov function of the form V = ax2 + by2 to investigate the global stability of the critical
point x = y = 0 of the system of equations

dx

dt
= −2x3 + 3xy2,

dy

dt
= −x2y − y3.
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18. Let

A =





1 1 2
0 1 1
0 0 1



 .

Solve the equation
dx

dt
= A · x.

Determine the critical points and their stability.

19. Draw the bifurcation diagram of

dx

dt
= (x2 − 2)2 − 2(x2 + 1)(r − 1) + (r − 1)2,

where r is the bifurcation parameter, indicating the stability of each branch.

20. Show that for all initial conditions the solutions of

dx

dt
= −x+ x2y − y2,

dy

dt
= −x3 + xy − 6z,

dz

dt
= 2y,

tend to x = y = z = 0 as t→ ∞.

21. Draw the bifurcation diagram of

dx

dt
= x3 + x

(
(r − 2)3 − 1

)
,

where r is the bifurcation parameter, indicating stable and unstable branches.

22. Solve the system of equations dx/dt = A · x where

A =







−3 0 2 0
0 −2 0 0
0 0 1 1
0 0 0 0






.

23. Find a Lyapunov function for the system

dx

dt
= −x− 2y2,

dy

dt
= xy − y3.

24. Analyze the local stability of the origin in the following system

dx

dt
= −2x+ y + 3z + 8y3,

dy

dt
= −6y − 5z + 2z3,

dz

dt
= z + x2 + y3.
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25. Show that the origin is linearly stable

dx

dt
= (x − by)(x2 + y2 − 1),

dy

dt
= (ax+ y)(x2 + y2 − 1),

where a, b > 0. Show also that the origin is stable to large perturbations, as long as they satisfy
x2 + y2 < 1.

26. Draw the bifurcation diagram and analyze the stability of

dx

dt
= −x(x3 − r − 1) − 1

10
,

where r is the bifurcation parameter.

27. Find the dynamical system corresponding to the Hamiltonian H(x, y) = x2 +2xy+ y2 and then solve
it.

28. Show that solutions of the system of differential equations

dx

dt
= −x+ y3 − z3,

dy

dt
= = −y + z3 − x3,

dz

dt
= −z + x3 − y3,

eventually approach the origin for all initial conditions.

29. Find and plot all critical points (x, y) of

dx

dt
= (r − 1)x− 3xy2 − x3,

dy

dt
= (r − 1)y − 3x2y − y3.

as functions of r. Determine the stability of (x, y) = (0, 0), and of one post-bifurcation branch.

30. Write in matrix form and solve

dx

dt
= y + z,

dy

dt
= z + x,

dz

dt
= x+ y.

31. Find the critical point (or points) of the Van der Pol equation

d2x

dt2
− a(1 − x2)

dx

dt
+ x = 0, a > 0,

and determine its (or their) stability to small perturbations. For a = 1, plot the dx/dt, x phase plane
including critical points and vector fields.
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32. Consider a straight line between x = 0 and x = l. Remove the middle half (i.e. the portion between
x = l/4 and x = 3l/4). Repeat the process on the two pieces that are left. Find the dimension of
what is left after an infinite number of iterations.

33. Classify the critical points of

dx

dt
= x+ y − 2,

dy

dt
= 2y − x2 + 1,

and analyze their stability.

34. Determine if the origin is stable if dx/dt = A · x, where

A =





3 −3 0
0 −5 −2
−6 0 −3



 .

35. Find a Lyapunov function of the form V = ax2 + by2 to investigate the global stability of the critical
point x = y = 0 of the system of equations

dx

dt
= −2x3 + 3xy2,

dy

dt
= −x2y − y3.

36. Draw a bifurcation diagram for the differential equation

dx

dt
= (x− 3)(x2 − r),

where r is the bifurcation parameter. Analyze linear stability and indicate stable and unstable
branches.

37. Solve the following system of differential equations using generalized eigenvectors

dx

dt
= −5x+ 2y + z,

dy

dt
= −5y + 3z,

dz

dt
= −5z.

38. Analyze the linear stability of the critical point of

dx

dt
= 2y + y2,

dy

dt
= −r + 2x2.

39. Show that the solutions of

dx

dt
= y − x3

dy

dt
= −x− y3

tend to (0,0) as t→ ∞.
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40. Sketch the bifurcation diagram showing the stable and unstable steady states of

dx

dt
= rx(1 − x) − x,

where r is the bifurcation parameter.

41. Show in parameter space the different possible behaviors of

dx

dt
= a+ x2y − 2bx− x,

dy

dt
= bx− x2y,

where a, b > 0.

42. Show that the Hénon-Heiles system

d2x

dt2
= −x− 2xy,

d2y

dt2
= −y + y2 − x2,

is Hamiltonian. Find the Hamiltonian of the system, and determine the stability of the critical point
at the origin.

43. Solve dx/dt = A · x where

A =

(
2 1
0 2

)

,

using the exponential matrix.

44. Sketch the steady state bifurcation diagrams of

dx

dt
= (x− r)(x + r)((x − 3)2 + (r − 1)2 − 1),

where r is the bifurcation parameter. Determine the linear stability of each branch; indicate the stable
and unstable ones differently on the diagram.

45. Classify the critical point of
d2x

dt2
+ (r − r0)x = 0.

46. Show that x = 0 is a stable critical point of the differential equation

dx

dt
= −

∑

n=0

Nanx
2n+1

where an ≥ 0, n = 0, 1, · · · , N .

47. Find the stability of the critical points of the Duffing equation

d2x

dt2
= a

dx

dt
− bx+ x3 = 0,

for positive and negative values of a and b. Sketch the flow lines.
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48. Find a Lyapunov function to investigate the critical point x = y = 0 of the system of equations

dx

dt
= −2x3 + 3xy2,

dy

dt
= −x2y − y3.

49. The populations x and y of two competing animal species are governed by

dx

dt
= x− 2xy,

dy

dt
= −y + xy.

What are the steady-state populations? Is the situation stable?

50. For the Lorenz equations with b = 8/3, r = 28, and initial conditions x(0) = 2, y(0) = 1, z(0) = 3,
numerically integrate the Lorenz equations for two cases, σ = 1, σ = 10. For each case plot the
trajectory in (x, y, z) phase space and plot x(t), y(t), z(t) for t ∈ [0, 50]. Change the initial condition
on x to x(0) = 2.002 and plot the difference in the predictions of x versus time for both values of σ.

51. Use the Poincaré sphere to find all critical points, finite and infinite of the system

dx

dt
= 2x− 2xy,

dy

dt
= 2y − x2 + y2.

Plot families of trajectories in the x, y phase space and the X,Y projection of the Poincaré sphere.

52. For the Lorenz equations with σ = 10, b = 8/3, and initial conditions x(0) = 0, y(0) = 1, z(0) = 0,
numerically integrate the Lorenz equations for three cases, r = 10, r = 24, and r = 28. For each case,
plot the trajectory in (x, y, z) phase space and plot x(t), y(t), z(t) for t ∈ [0, 50]. Change the initial
condition on x to x(0) = 0.002 and plot the difference in the predictions of x versus time for all three
values of r.
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Chapter 10

Appendix

The material in this section is not covered in detail; some is review from undergraduate
classes.

10.1 Taylor series

The Taylor series of y(x) about the point x = xo is

y(x) = y(xo) +
dy

dx

∣
∣
∣
∣
x=xo

(x− xo) +
1

2

d2y

dx2

∣
∣
∣
∣
x=xo

(x− xo)
2 +

1

6

d3y

dx3

∣
∣
∣
∣
x=xo

(x− xo)
3 + . . .

+
1

n!

dny

dxn

∣
∣
∣
∣
x=xo

(x− xo)
n + . . . (10.1)

Example 10.1
For a Taylor series of y(x) about x = 0 if

y(x) =
1

(1 + x)n
. (10.2)

Direct substitution reveals that the answer is

y(x) = 1 − nx+
(−n)(−n− 1)

2!
x2 +

(−n)(−n− 1)(−n− 2)

3!
x3 + . . . (10.3)
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10.2 Trigonometric relations

sin x sin y =
1

2
cos(x− y) − 1

2
cos(x+ y), (10.4)

sin x cos y =
1

2
sin(x+ y) +

1

2
sin(x− y), (10.5)

cosx cos y =
1

2
cos(x− y) +

1

2
cos(x+ y), (10.6)

sin2 x =
1

2
− 1

2
cos 2x, (10.7)

sin x cos x =
1

2
sin 2x, (10.8)

cos2 x =
1

2
+

1

2
cos 2x, (10.9)

sin3 x =
3

4
sin x− 1

4
sin 3x, (10.10)

sin2 x cos x =
1

4
cos x− 1

4
cos 3x, (10.11)

sin x cos2 x =
1

4
sin x+

1

4
sin 3x, (10.12)

cos3 x =
3

4
cos x+

1

4
cos 3x, (10.13)

sin4 x =
3

8
− 1

2
cos 2x+

1

8
cos 4x, (10.14)

sin3 x cos x =
1

4
sin 2x− 1

8
sin 4x, (10.15)

sin2 x cos2 x =
1

8
− 1

8
cos 4x, (10.16)

sin x cos3 x =
1

4
sin 2x+

1

8
sin 4x, (10.17)

cos4 x =
3

8
+

1

2
cos 2x+

1

8
cos 4x, (10.18)

sin5 x =
5

8
sin x− 5

16
sin 3x+

1

16
sin 5x, (10.19)

sin4 x cos x =
1

8
cos x− 3

16
cos 3x+

1

16
cos 5x, (10.20)

sin3 x cos2 x =
1

8
sin x+

1

16
sin 3x− 1

16
sin 5x, (10.21)

sin2 x cos3 x = −1

8
cosx− 1

16
cos 3x− 1

16
cos 5x, (10.22)
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sin x cos4 x =
1

8
sin x+

3

16
sin 3x+

1

16
sin 5x, (10.23)

cos5 x =
5

8
cos x+

5

16
cos 3x+

1

16
cos 5x. (10.24)

10.3 Hyperbolic functions

The hyperbolic functions are defined as follows:

sinh θ =
eθ − e−θ

2
, (10.25)

cosh θ =
eθ + e−θ

2
. (10.26)

10.4 Routh-Hurwitz criterion

Here we consider the Routh-Hurwitz1 criterion. The polynomial equation

a0s
n + a1s

n−1 + . . .+ an−1s+ an = 0, (10.27)

has roots with negative real parts if and only if the following conditions are satisfied:

• a1/a0, a2/a0, . . . , an/a0 > 0,

• Di > 0, i = 1, . . . , n.

The Hurwitz determinants Di are defined by

D1 = a1, (10.28)

D2 =

∣
∣
∣
∣

a1 a3

a0 a2

∣
∣
∣
∣
, (10.29)

D3 =

∣
∣
∣
∣
∣
∣

a1 a3 a5

a0 a2 a4

0 a1 a3

∣
∣
∣
∣
∣
∣

, (10.30)

Dn =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a1 a3 a5 . . . a2n−1,
a0 a2 a4 . . . a2n−2,
0 a1 a3 . . . a2n−3,
0 a0 a2 . . . a2n−4,
...

...
...

...
...

0 0 0 . . . an

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (10.31)

with ai = 0, if i > n.

1 Edward John Routh, 1831-1907, Canadian-born English mathematician, and Adolf Hurwitz, 1859-1919,
German mathematician.
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10.5 Infinite series

Definition: A power series is of the form

∞∑

n=0

an(x− a)n. (10.32)

The series converges if |x− a| < R, where R is the radius of convergence.

Definition: A function f(x) is said to be analytic at x = a if f and all its derivatives exist
at this point.

An analytic function can be expanded in a Taylor series:

f(x) = f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2 + · · · (10.33)

where the function and its derivatives on the right side are evaluated at x = a. This is a
power series for f(x). We have used primes to indicate derivatives.

Example 10.2
Expand (1 + x)n about x = 0.

f(x) = (1 + x)n, (10.34)

f(0) = 1, (10.35)

f ′(0) = n, (10.36)

f ′′(0) = n(n− 1), (10.37)

... (10.38)

(1 + x)n = 1 + nx+
1

2
n(n− 1)x2 + · · · (10.39)

A function of two variables f(x, y) can be similarly expanded

f(x, y) = f
∣
∣
∣
a,b

+
∂f

∂x

∣
∣
∣
a,b

(x− a) +
∂f

∂y

∣
∣
∣
a,b

(y − b)

+
1

2

∂2f

∂x2

∣
∣
∣
a,b

(x− a)2 +
∂2f

∂x∂y

∣
∣
∣
a,b

(x− a)(y − b) +

1

2

∂2f

∂y2

∣
∣
∣
a,b

(y − b)2 + · · · (10.40)

if f and all its partial derivatives exist and are evaluated at x = a, y = b.
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10.6 Asymptotic expansions

Definition: Consider two function f(x) and g(x). We write that

f(x) ∼ g(x), if limx→a
f(x)
g(x)

= 1.

f(x) = o(g(x)), if limx→a
f(x)
g(x)

= 0;

f(x) = O(g(x)), if limx→a

∣
∣
∣
f(x)
g(x)

∣
∣
∣ =constant;

10.7 Special functions

10.7.1 Gamma function

The Gamma function may be thought of as an extension to the factorial function. Recall the
factorial function requires an integer argument. The Gamma function admits real arguments;
when the argument of the Gamma function is an integer, one finds it is directly related to
the factorial function. The Gamma function is defined by

Γ(x) =

∫ ∞

0

e−ttx−1 dt. (10.41)

Generally, we are interested in x > 0, but results are available for all x. Some properties are:

1. Γ(1) = 1.

2. Γ(x) = (x− 1)Γ(x− 1), x > 1.

3. Γ(x) = (x− 1)(x− 2) · · · (x− r)Γ(x− r), x > r.

4. Γ(n) = (n− 1)!, where n is a positive integer.

5. Γ(x) ∼
√

2π
x
xxe−x

(
1 + 1

12x
+ 1

288x2 + . . .
)
, (Stirling’s formula).

Bender and Orszag show that Stirling’s2 formula is a divergent series. It is an asymptotic
series, but as more terms are added, the solution can actually get worse. The Gamma
function and its amplitude are plotted in Fig. 10.1.

10.7.2 Beta function

The beta function is defined by

B(p, q) =

∫ 1

0

xp−1(1 − x)q−1 dx. (10.42)

Property:

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
. (10.43)

2James Stirling, 1692-1770, Scottish mathematician and member of a prominent Jacobite family.
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Figure 10.1: Gamma function and amplitude of Gamma function.

10.7.3 Riemann zeta function

This is defined as

ζ(x) =

∞∑

n=1

n−x. (10.44)

The function can be evaluated in closed form for even integer values of x. It can be shown
that ζ(2) = π2/6, ζ(4) = π4/90, ζ(6) = π6/945, . . ., ζ(2n) = (−1)n+1B2n(2π)2n/2/(2n)!,
where B2n is a so-called Bernoulli number, which can be found via a complicated recursion
formula. All negative even integer values of x give ζ(x) = 0. Further limx→∞ ζ(x) = 1. For
large negative values of x, the Riemann zeta function oscillates with increasing amplitude.
Plots of the Riemann zeta function for x ∈ [−1, 3] and the amplitude of the Riemann zeta
function over a broader domain on a logarithmic scale as shown in Fig. 10.2.
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Figure 10.2: Riemann zeta function and amplitude of Riemann zeta function.
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10.7.4 Error functions

The error function is defined by

erf (x) =
2√
π

∫ x

0

e−ξ
2

dξ, (10.45)

and the complementary error function by

erfc (x) = 1 − erf x. (10.46)

The error function and the error function complement are plotted in Fig. 10.3.
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Figure 10.3: Error function and error function complement.

The imaginary error function is defined by

erfi (z) = −i erf (iz), (10.47)

where z ∈ C1. For real arguments, x ∈ R1, it can be shown that erfi (x) = −i erf (ix) ∈ R1.
The imaginary error function is plotted in Fig. 10.4 for a real argument, x ∈ R1.
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Figure 10.4: Imaginary error function, erfi (x), for real argument, x ∈ R1.
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10.7.5 Fresnel integrals

The Fresnel3 integrals are defined by

C(x) =

∫ x

0

cos
πt2

2
dt, (10.48)

S(x) =

∫ x

0

sin
πt2

2
dt. (10.49)

The Fresnel cosine and sine integrals are plotted in Fig. 10.5.
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Figure 10.5: Fresnel cosine, C(x), and sine, S(x), integrals.

10.7.6 Sine-, cosine-, and exponential-integral functions

The sine-integral function is defined by

Si(x) =

∫ x

0

sin ξ

ξ
dξ, (10.50)

and the cosine-integral function by

Ci(x) = −
∫ ∞

x

cos ξ

ξ
dξ. (10.51)

The sine integral function is real valued for x ∈ (−∞,∞). The cosine integral function is
real valued for x ∈ [0,∞). We also have limx→0+ Ci(x) → −∞. The cosine integral takes on
a value of zero at discrete positive real values, and has an amplitude which slowly decays as
x→ ∞. The sine integral and cosine integral functions are plotted in Fig. 10.6.

The exponential-integral function is defined by

Ei(x) = −−
∫ ∞

−x

e−ξ

ξ
dξ = −

∫ x

−∞

eξ

ξ
dξ. (10.52)

The exponential integral function is plotted in Fig. 10.7. Note we must use the Cauchy
principal value of the integral if x > 0.

3Augustin-Jean Fresnel, 1788-1827, French physicist noted for work in optics.
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Figure 10.6: Sine integral function, Si(x), and cosine integral function Ci(x).
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Figure 10.7: Exponential integral function, Ei(x).

10.7.7 Elliptic integrals

The Legendre elliptic integral of the first kind is

F (y, k) =

∫ y

0

dη
√

(1 − η2)(1 − k2η2)
. (10.53)

Another common way of writing the elliptic integral is to take η = sin φ, so that

F (φ, k) =

∫ φ

0

dφ
√

(1 − k2 sin2 φ)
. (10.54)

The Legendre elliptic integral of the second kind is

E(y, k) =

∫ y

0

(1 − k2η2)
√

(1 − η2)
dη, (10.55)

which, on again using η = sinφ, becomes

E(φ, k) =

∫ φ

0

√

1 − k2 sin2 φ dφ. (10.56)
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The Legendre elliptic integral of the third kind is

Π(y, n, k) =

∫ φ

0

dφ

(1 + n sin2 φ)
√

(1 − k2 sin2 φ)
, (10.57)

which is equivalent to

Π(φ, n, k) =

∫ φ

0

√

1 − k2 sin2 φ dφ. (10.58)

For φ = π/2, we have the complete elliptic integrals:

F
(π

2
, k
)

=

∫ π/2

0

dφ
√

(1 − k2 sin2 φ)
, (10.59)

E
(π

2
, k
)

=

∫ π/2

0

√

1 − k2 sin2 φ dφ, (10.60)

Π
(π

2
, n, k

)

=

∫ π/2

0

√

1 − k2 sin2 φ dφ. (10.61)

10.7.8 Hypergeometric functions

A generalized hypergeometric function is defined by

pFq ({a1, . . . , ap} , {b1, . . . , bq} ; x) =
∞∑

k=1

(a1)k(a2)k · · · (ap)k
(b1)k(b2)k · · · (bq)k

xk

k!
, (10.62)

where the rising factorial notation, (s)k, is defined by

(s)k ≡
Γ(s+ k)

Γ(s)
. (10.63)

There are many special hypergeometric functions. If p = 2 and q = 1, we have Gauss’s hy-
pergeometric function 2F1 ({a1, a2} , {b1} ; x). Since there are only three parameters, Gauss’s
hypergeometric function is sometimes denoted as 2F1 (a, b, c, x). An integral representation
of Gauss’s hypergeometric function is

2F1 (a, b, c, x) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1 − t)c−b−1(1 − tx)−a dt. (10.64)

For special values of parameters, hypergeometric functions can reduce to other functions
such as tanh−1.
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10.7.9 Airy functions

The Airy functions Ai (x), and Bi (x) are most compactly defined as the two linearly in-
dependent solutions to the second order differential equation y′′ − xy = 0, yielding y =
C1Ai (x) + C2Bi (x). They can be expressed in a variety of other forms. In terms of the
so-called confluent hypergeometric limit function 0F1, we have

Ai (x) =
1

32/3Γ
(

2
3

)0F1

(

{} ;

{
2

3

}

;
1

9
x3

)

− x

31/3Γ
(

1
3

)0F1

(

{} ;

{
4

3

}

;
1

9
x3

)

, (10.65)

Bi (x) =
1

31/6Γ
(

2
3

)0F1

(

{} ;

{
2

3

}

;
1

9
x3

)

− 31/6x

Γ
(

1
3

)0F1

(

{} ;

{
4

3

}

;
1

9
x3

)

, (10.66)

The Airy functions are plotted in Fig. 10.8. In integral form, the Airy functions are, for
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Figure 10.8: Airy functions Ai (x) and Bi (x).

x ∈ R1,

Ai (x) =
1

π

∫ ∞

0

cos

(
1

3
t3 + xt

)

dt, (10.67)

Bi (x) =
1

π

∫ ∞

0

(

exp

(

−1

3
t3 + xt

)

+ sin

(
1

3
t3 + xt

))

dt. (10.68)

10.7.10 Dirac δ distribution and Heaviside function

Definition: The Dirac4 δ-distribution (or generalized function, or simply function), is defined
by

∫ β

α

f(x)δ(x− a)dx =

{
0 if a 6∈ [α, β],
f(a) if a ∈ [α, β].

(10.69)

4Paul Adrien Maurice Dirac, 1902-1984, English physicist.
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From this it follows that

δ(x− a) = 0 if x 6= a, (10.70)
∫ ∞

−∞
δ(x− a)dx = 1. (10.71)

The δ-distribution may be imagined in a limiting fashion as

δ(x− a) = lim
ǫ→0+

∆ǫ(x− a), (10.72)

where ∆ǫ(x− a) has one of the following forms:

1.

∆ǫ(x− a) =







0 if x < a− ǫ
2
,

1
ǫ

if a− ǫ
2
≤ x ≤ a + ǫ

2
,

0 if x > a+ ǫ
2
,

(10.73)

2.

∆ǫ(x− a) =
ǫ

π((x− a)2 + ǫ2)
, (10.74)

3.

∆ǫ(x− a) =
1√
πǫ
e−(x−a)2/ǫ. (10.75)

The derivative of the function

h(x− a) =







0 if x < a− ǫ
2
,

1
ǫ
(x− a) + 1

2
if a− ǫ

2
≤ x ≤ a + ǫ

2
,

1 if x > a+ ǫ
2
,

(10.76)

is ∆ǫ(x− a) in Eq. (10.73). If we define the Heaviside5 function, H(x− a), as

H(x− a) = lim
ǫ→0+

h(x− a), (10.77)

then
d

dx
H(x− a) = δ(x− a). (10.78)

The generator of the Dirac function ∆ǫ(x − a) and the generator of the Heaviside function
h(x− a) are plotted for a = 0 and ǫ = 1/5 in Fig. 10.9. As ǫ→ 0, ∆ǫ has its width decrease
and its height increase in such a fashion that its area remains constant; simultaneously h
has its slope steepen in the region where it jumps from zero to unity as ǫ → 0.

5Oliver Heaviside, 1850-1925, English mathematician.
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Figure 10.9: Generators of Dirac delta function and Heaviside function, ∆ǫ(x − a) and
h(x− a) plotted for a = 0 and ǫ = 1/5.

10.8 Total derivative

A function of several variables f(x1, x2, · · · , xn) may be differentiated via the total derivative

df

dt
=

∂f

∂x1

dx1

dt
+
∂f

∂x2

dx2

dt
+ · · ·+ ∂f

∂xn

dxn
dt

. (10.79)

Multiplying through by dt, we get the useful formula

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + · · ·+ ∂f

∂xn
dxn. (10.80)

10.9 Leibniz’s rule

Differentiation of an integral is done using Leibniz’s rule, Eq. (1.293):

y(x) =

∫ b(x)

a(x)

f(x, t)dt, (10.81)

dy(x)

dx
=

d

dx

∫ b(x)

a(x)

f(x, t)dt = f(x, b(x))
db(x)

dx
− f(x, a(x))

da(x)

dx
+

∫ a(x)

b(x)

∂f(x, t)

∂x
dt. (10.82)

10.10 Complex numbers

Here we briefly introduce some basic elements of complex variable theory. Recall that the
imaginary number i is defined such that

i2 = −1, i =
√
−1. (10.83)
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10.10.1 Euler’s formula

We can get a very useful formula Euler’s formula, by considering the following Taylor ex-
pansions of common functions about t = 0:

et = 1 + t+
1

2!
t2 +

1

3!
t3 +

1

4!
t4 +

1

5!
t5 . . . , (10.84)

sin t = 0 + t+ 0
1

2!
t2 − 1

3!
t3 + 0

1

4!
t4 +

1

5!
t5 . . . , (10.85)

cos t = 1 + 0t− 1

2!
t2 + 0

1

3!
t3 +

1

4!
t4 + 0

1

5!
t5 . . . . (10.86)

With these expansions now consider the following combinations: (cos t+ i sin t)|t=θ and
et|t=iθ:

cos θ + i sin θ = 1 + iθ − 1

2!
θ2 − i

1

3!
θ3 +

1

4!
θ4 + i

1

5!
θ5 + . . . , (10.87)

eiθ = 1 + iθ +
1

2!
(iθ)2 +

1

3!
(iθ)3 +

1

4!
(iθ)4 +

1

5!
(iθ)5 + . . . , (10.88)

= 1 + iθ − 1

2!
θ2 − i

1

3!
θ3 +

1

4!
θ4 + i

1

5!
θ5 + . . . (10.89)

As the two series are identical, we have Euler’s formula

eiθ = cos θ + i sin θ. (10.90)

Powers of complex numbers can be easily obtained using de Moivre’s6 formula:

einθ = cos nθ + i sinnθ. (10.91)

10.10.2 Polar and Cartesian representations

Now if we take x and y to be real numbers and define the complex number z to be

z = x+ iy, (10.92)

we can multiply and divide by
√

x2 + y2 to obtain

z =
√

x2 + y2

(

x
√

x2 + y2
+ i

y
√

x2 + y2

)

. (10.93)

Noting the similarities between this and the transformation between Cartesian and polar
coordinates suggests we adopt

r =
√

x2 + y2, cos θ =
x

√

x2 + y2
, sin θ =

y
√

x2 + y2
. (10.94)

6Abraham de Moivre, 1667-1754, French mathematician.
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Figure 10.10: Polar and Cartesian representation of a complex number z.

Thus, we have

z = r (cos θ + i sin θ) , (10.95)

z = reiθ. (10.96)

The polar and Cartesian representation of a complex number z is shown in Fig. 10.10.
Now we can define the complex conjugate z as

z = x− iy, (10.97)

z =
√

x2 + y2

(

x
√

x2 + y2
− i

y
√

x2 + y2

)

, (10.98)

z = r (cos θ − i sin θ) , (10.99)

z = r (cos(−θ) + i sin(−θ)) , (10.100)

z = re−iθ. (10.101)

Note now that

zz = (x+ iy)(x− iy) = x2 + y2 = |z|2, (10.102)

= reiθre−iθ = r2 = |z|2. (10.103)

We also have

sin θ =
eiθ − e−iθ

2i
, (10.104)

cos θ =
eiθ + e−iθ

2
. (10.105)
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10.10.3 Cauchy-Riemann equations

Now it is possible to define complex functions of complex variables W (z). For example take
a complex function to be defined as

W (z) = z2 + z, (10.106)

= (x+ iy)2 + (x+ iy), (10.107)

= x2 + 2xyi− y2 + x+ iy, (10.108)

=
(
x2 + x− y2

)
+ i (2xy + y) . (10.109)

In general, we can say
W (z) = φ(x, y) + iψ(x, y). (10.110)

Here φ and ψ are real functions of real variables.
Now W (z) is defined as analytic at zo if dW/dz exists at zo and is independent of the

direction in which it was calculated. That is, using the definition of the derivative

dW

dz

∣
∣
∣
∣
zo

=
W (zo + ∆z) −W (zo)

∆z
. (10.111)

Now there are many paths that we can choose to evaluate the derivative. Let us consider
two distinct paths, y = C1 and x = C2. We will get a result which can be shown to be valid
for arbitrary paths. For y = C1, we have ∆z = ∆x, so

dW

dz

∣
∣
∣
∣
zo

=
W (xo + iyo + ∆x) −W (xo + iyo)

∆x
=
∂W

∂x

∣
∣
∣
∣
y

. (10.112)

For x = C2, we have ∆z = i∆y, so

dW

dz

∣
∣
∣
∣
zo

=
W (xo + iyo + i∆y) −W (xo + iyo)

i∆y
=

1

i

∂W

∂y

∣
∣
∣
∣
x

= −i ∂W
∂y

∣
∣
∣
∣
x

. (10.113)

Now for an analytic function, we need

∂W

∂x

∣
∣
∣
∣
y

= −i ∂W
∂y

∣
∣
∣
∣
x

. (10.114)

or, expanding, we need

∂φ

∂x
+ i

∂ψ

∂x
= −i

(
∂φ

∂y
+ i

∂ψ

∂y

)

, (10.115)

=
∂ψ

∂y
− i

∂φ

∂y
. (10.116)

For equality, and thus path independence of the derivative, we require

∂φ

∂x
=
∂ψ

∂y
,

∂φ

∂y
= −∂ψ

∂x
. (10.117)
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These are the well known Cauchy-Riemann equations for analytic functions of complex
variables.

Now most common functions are easily shown to be analytic. For example for the function
W (z) = z2 + z, which can be expressed as W (z) = (x2 + x− y2) + i(2xy + y), we have

φ(x, y) = x2 + x− y2, ψ(x, y) = 2xy + y, (10.118)

∂φ

∂x
= 2x+ 1,

∂ψ

∂x
= 2y, (10.119)

∂φ

∂y
= −2y,

∂ψ

∂y
= 2x+ 1. (10.120)

Note that the Cauchy-Riemann equations are satisfied since ∂φ/∂x = ∂ψ/∂y and ∂φ/∂y =
−∂ψ/∂x. So the derivative is independent of direction, and we can say

dW

dz
=
∂W

∂x

∣
∣
∣
∣
y

= (2x+ 1) + i(2y) = 2(x+ iy) + 1 = 2z + 1. (10.121)

We could get this result by ordinary rules of derivatives for real functions.
For an example of a non-analytic function consider W (z) = z. Thus

W (z) = x− iy. (10.122)

So φ = x and ψ = −y, ∂φ/∂x = 1, ∂φ/∂y = 0, and ∂ψ/∂x = 0, ∂ψ/∂y = −1. Since
∂φ/∂x 6= ∂ψ/∂y, the Cauchy-Riemann equations are not satisfied, and the derivative depends
on direction.

Problems

1. Find the limit as x→ 0 of
4 coshx+ sinh(arctan ln cos 2x) − 4

e−x + arcsinx−
√

1 + x2
.

2. Find dφ/dx in two different ways, where

φ =

∫ x4

x2

x
√
ydy.

3. Determine

(a) 4
√
i,

(b) ii i
√
i.

4. Write three terms of a Taylor series expansion for the function f(x) = exp(tanx) about the point
x = π/4. For what range of x is the series convergent?

5. Find all complex numbers z = x+ iy such that |z + 2i| = |1 + i|.
6. Determine limn→∞ zn for zn = 3

n + ((n+ 1)/(n+ 2))i.
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7. A particle is constrained to a path which is defined by the function s(x, y) = x2 + y − 5 = 0. The
velocity component in the x-direction, dx/dt = 2y. What are the position and velocity components
in the y-direction when x = 4.

8. The error function is defined as erf (x) = 2√
π

∫ x

0 e
−u2

du. Determine its derivative with respect to x.

9. Verify that

lim
n→∞

∫ 2π

π

sinnx

nx
dx = 0.

10. Write a Taylor series expansion for the function f(x, y) = x2 cos y about the point x = 2, y = π.
Include the x2, y2 and xy terms.

11. Show that

φ =

∫ ∞

0

e−t
2

cos 2tx dt,

satisfies the differential equation
dφ

dx
+ 2φx = 0.

12. Evaluate the Dirichlet discontinuous integral

I =
1

π

∫ ∞

−∞

sinax

x
dx,

for a ∈ (−∞,∞). You can use the results of example 3.11, Greenberg.

13. Defining

u(x, y) =
x3 − y3

x2 + y2
,

except at x = y = 0, where u = 0, show that ux(x, y) exists at x = y = 0 but is not continuous there.

14. Using complex numbers show that

(a) cos3 x = 1
4 (cos 3x+ 3 cosx),

(b) sin3 x = 1
4 (3 sinx− sin 3x).
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