Probability and Computing

Assignment Four

Deadline: 3 May 2020

1. Let $M=\left[\begin{array}{lll}0.2 & 0.3 & 0.5 \\ 0.5 & 0.3 & 0.2 \\ 0.1 & 0.1 & 0.8\end{array}\right]$ be the transition probability matrix of a Markov chain. Find the probability distribution vector after 4 time-steps, when the initial distribution is $(1 / 3,1 / 3,1 / 3)$.
2. Find $T_{i, j}$ (expected time from i to j) when $i \leq j$, for the random walk on a path on $\{0,1,2, \ldots, n\}$.
3. Consider a random walk on the Hamming cube with vertex set $[0,1]^{3}$ that begins at $(0,0,0)$. Find the expected number of steps to reach $(1,1,1)$.
4. Find the stationary distribution for a random walk on $G=(V, E)$, where $V=$ $\left\{v_{1}, v_{2}, \ldots, v_{6}\right\}$, and $E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\},\left\{v_{1}, v_{4}\right\},\left\{v_{1}, v_{5}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{5}, v_{6}\right\}\right\}$.
5. A coloring of a graph is an assignment of a color to each of its vertices. A graph is properly k-colorable if thre is a coloring of the vertices with k colors such that no two adjacent vertices have the same color. Let G be a properly 3 -colorable graph.
(a) Show that there exists a coloring of the graph with two colors such that no triangle is monochromatic (i.e. no triangle has all three vertices having the same color).
(b) Describe and analyze a randomized algorithm to find such a 2 -coloring, given a properly 3 -colorable graph G as input. Note that the 3 -coloring itself is not given as input.
