Probability and Computing

Assignment Three

Deadline: 20 March 2020

1. In Morris' algorithm, let C_{n} be the value of the counter after seeing n elements in the stream. Show that $E\left[2^{C_{n}}\right]=n$ and $\operatorname{Var}\left[2^{C_{n}}\right]=n(n-1) / 2$.
2. Consider the Count-Min algorithm. How does the algorithm and the guarantee change, if, instead of inserting elements, each element of the stream is a pair of the form $\left(x_{i}, a\left(x_{i}\right)\right)$, where $a\left(x_{i}\right)$ can be negative, and the goal is to estimate the total frequency of y, defined as the sum of all $a(y)$, the sum being over the occurrences of y in the stream.
3. Let $G=(V, E)$ be an undirected graph. Suppose that every vertex $v \in V$ is independently added to exactly one of three sets: A, B, C. Find the expected number of interpart edges: $E[A, B]+E[B, C]+E[A, C]$, where $E[A, B]=\{\{u, v\}: u \in A, v \in B\}$, and $E[B, C], E[A, C]$ are defined analogously. Also describe an algorithm to find a partition with at least those many inter-part edges.
