Infrared Singularities beyond three loops

Sourav Pal

Collaborators: Neelima Agarwal, Lorenzo Magnea, Anurag Tripathi

Department of Physics, IIT Hyderabad
Anomalies 2021
November 9, 2021

IR singularity

IR singularity

Two types of divergences

- Soft divergences $[k \rightarrow 0]$
- Collinear divergences $[\theta \rightarrow 0$]

Why study infrared singularities

Dimensional regularization $=$ finite! with large logs

- These logs have large values and can disturb the convergence of expansion in α. We need to do resummation.
- Knowing the IR singularities at all orders, resummation is easy.

Factorization of Multileg amplitudes

\times

ref: Mueller (81), Sen (83), Botts Sterman (89), Kidonakis Oderda Sterman (98), Catani (98), Tejeda-Yeomans Sterman (02), Kosower (03), Aybat Dixon Sterman (06), Becher Neubert (09), Gardi Magnea (09)

Soft function

- Diagrammatic exponentiation

$$
S_{n}=\exp \left(\mathcal{W}_{n}\right)
$$

- In multiparton case, the concept of webs generalizes non-trivially.
- A web in the multiparton case is a set of diagrams which differ only by the order of the gluon attachment on each Wilson line.

A

$$
S=1
$$

$S^{8}=1$

$$
S=1
$$

$S=2$
$S=2$

Cwebs

- A Cweb is a set of diagrams, built out of connected gluon correlators attached to Wilson lines, closed under shuffles of gluon attachments to each Wilson line. [Agamal. Magnea, SP, TTipathi 202]]

$$
C \text { [shuffle] } D E=\{C D E, D C E, D E C\}
$$

- If a diagram is $D=F(D) C(D)$ a Cweb \mathcal{W} is expressed as

$$
\mathcal{W}=\sum_{D} F(D) \tilde{C}(D)=\sum_{D, D^{\prime}} F(D) R_{D D^{\prime}} C(D)
$$

- Properties of R
- Idempotence: $R^{2}=R$, eigenvalues 1 or 0 .
- Zero-sum rows. [Gardi et. al. (2010)]
- Conjecture: $\sum_{D} c(D) s(D)=0$. [Gardi et. al. (2011)] $]^{\text {che }}$

Challenges at four loops

- Enumeration of Cwebs at four loops.
- 60 Cwebs at four loops.
- The largest dimension of the mixing matrix for the web is 36×36
- Results available having dimension 16×16 at three loops.

Replica method: In-house Mathematica code .

Enumeration using Cwebs

One loop Cweb

Enumeration using Cwebs

- 2 loop Cweb:
- Add a propagator to 1-loop Cweb.

- Connect a m point correlator to Wilson line and turn them into a $(m+1)$ point correlator

- Connect a m point correlator to a n point correlator, if you have more than one correlator.
- Discard double counted Cwebs.

Results

- $\mathbf{W}_{4}^{(1,0,1)}(1,1,1,3)$

Diagrams	Sequences	S-factors
C_{1}	$\{\{A B C\}\}$	1
C_{2}	$\{\{B A C\}\}$	0
C_{3}	$\{\{B C A\}\}$	1

Results

- $\mathbf{W}_{4}^{(1,0,1)}(1,1,1,3)$

Diagrams	Sequences	S-factors
C_{1}	$\{\{A B C\}\}$	1
C_{2}	$\{\{B A C\}\}$	0
C_{3}	$\{\{B C A\}\}$	1

- Mixing Matrix

$$
R=\left(\begin{array}{ccc}
\frac{1}{2} & 0 & -\frac{1}{2} \\
-\frac{1}{2} & 1 & -\frac{1}{2} \\
-\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right)
$$

Results

- $\mathbf{W}_{4}^{(1,0,1)}(1,1,1,3)$

Diagrams	Sequences	S-factors
C_{1}	$\{\{A B C\}\}$	1
C_{2}	$\{\{B A C\}\}$	0
C_{3}	$\{\{B C A\}\}$	1

- Mixing Matrix

$$
R=\left(\begin{array}{ccc}
\frac{1}{2} & 0 & -\frac{1}{2} \\
-\frac{1}{2} & 1 & -\frac{1}{2} \\
-\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right)
$$

- Exponentiated colour factors

$$
\begin{aligned}
& \tilde{C}_{1}=i f^{a b g} f^{c d g} f^{e b h} \mathrm{~T}_{1}^{a} \top_{2}^{h} \top_{2}^{c} T_{3}^{d} T_{4}^{e} \\
& \tilde{C}_{2}=-i f^{a b g} f^{c d g} f^{c e j} \top_{1}^{a} \top_{2}^{b} T_{2}^{j} T_{3}^{d} \top_{4}^{e}
\end{aligned}
$$

Results: Direct construction

Steps of direct construction:

- Consider a generic matrix.
- Apply row sum rule
- Apply column sum rule
- Apply Trace=Rank for idempotent matrix

Results:

- 2×2 Mixing matrix

$$
R=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1^{2}}{2}
\end{array}\right) .
$$

- 3×3 Mixing matrix

$$
R=\left(\begin{array}{ccc}
\frac{1}{2} & 0 & -\frac{1}{2} \\
-\frac{1}{2} & 1 & -\frac{1}{2} \\
-\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right) .
$$

Results: Direct construction

- $p \times p$ mixing matrix, p is prime

$$
R=\left(\begin{array}{cccccc}
\frac{1}{2} & 0 & 0 & \ldots & 0 & -\frac{1}{2} \\
-\frac{1}{2} & 1 & 0 & \ldots & 0 & -\frac{1}{2} \\
-\frac{1}{2} & 0 & 0 & \ldots & 1 & -\frac{1}{2} \\
-\frac{1}{2} & 0 & 0 & \ldots & 0 & \frac{1}{2}
\end{array}\right)
$$

Conclusions

- Soft function exponentiate in terms of Cwebs.
- We have computed mixing matrices and exponentiated colour factors for 60 Cwebs using our in-house Mathematica code.
- General color structure at four loops

Agarwal, Magnea, SP, Tripathi, 2021

- Direct construction of $2 \times 2,3 \times 3$ and $p \times p$ mixing matrices are complete.
- All the mixing matrices obey row-sum, column sum rule and they are idempotent.

Thank
 You

