ANOMALIES 2021 IIT HYDERABAD

LEPTON MASS EFFECT IN EXCLUSIVE SEMILEPTONIC B_c-MESON DECAYS

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabac Based on-DOI: 10.1103/PhysRevD.104.036012

By-Lopamudra Nayak

Guided By- Prof. Purendra Ch. Dash

Siksha 'O'Anusandhan (Deemed To Be University) Bhubaneswar-751030, Odisha

PLAN OF PRESENTATION

- Motivation
- Feynman Diagram
- Model framework
- Meson states and meson normalization
- S- Matrix for semi-leptonic decays of B_c meson
- Formfactors, Helicity amplitude, Partial decay width
- q²-dependence of (i)Formfactors,

(ii)Helicity amplitude,

(iii)Partial helicity rates and partial decay rate

Numerical results and discussion

MOTIVATION

	$\mathcal{R}(D)$	$\mathcal{R}(D^*)$	$\mathcal{R}(J/\psi)$
SM	0.297 ± 0.017	0.252 ± 0.003	0.25 - 0.28
2012 (\mathcal{BABAR})	$0.440 \pm 0.058 \pm 0.042$	$0.332 \pm 0.024 \pm 0.018$	
2013 (\mathcal{BABAR})	$0.440 \pm 0.058 \pm 0.042$	$0.332 \pm 0.024 \pm 0.018$	
2015 (Belle)	$0.375 \pm 0.064 \pm 0.026$	$0.293 \pm 0.038 \pm 0.015$	
2015 (LHCb)		$0.336 \pm 0.027 \pm 0.030$	
2018 (LHCb)		$0.291 \pm 0.019 \pm 0.026$	
2018 (LHCb)			$0.71 \pm 0.17 \pm 0.18$
2020 (Belle)	$0.307 \pm 0.037 \pm 0.016$	$0.283 \pm 0.018 \pm 0.014$	

$$R(D) = \frac{B(\bar{B} \to D\tau^- \bar{\nu}_{\tau})}{B(\bar{B} \to Dl^- \bar{\nu}_l)} =$$

$$R(D^*) = \frac{B(\bar{B} \to D^* \tau^- \bar{\nu}_{\tau})}{B(\bar{B} \to D^* l^- \bar{\nu}_l)}$$

$$R(J/\psi) = \frac{B(B_c^+ \to J/\psi \tau^+ \nu_{\tau})}{B(B_c^+ \to J/\psi \mu^+ \nu_{\mu})}$$

Violate the Lepton Flavor Universality
 Cancellation of uncertainty present in V_{cb}
 Higgs, leptoquarks and new vector boson

 \overline{c}

MODEL FRAMEWORK

RELATIVISTIC INDEPENDENT QUARK(RIQ) MODEL

In this model a meson is considered as a colour singlet assembly of constituents (quark & anti-quark) that move relativistically inside the meson bound state with an average flavour independent potential in the form :

$$U(r) = \frac{1}{2}(1 + \Upsilon_0)(ar^2 + V_0)$$

Where,

r = the relative distance between quark and antiquark inside meson; a & V_0 = the potential parameters We incorporate this interaction potential in the lagrangian density to obtain in the form :

$$\pounds = \overline{\psi_q} \left[\frac{1}{2} i' \Upsilon^{\mu} \partial_{\mu} - U(r) - m_q \right] \psi_q(r)$$

The Dirac Equation:

$$(\alpha . p + \beta m_q + U(r))\psi_q(r) = E \psi_q(r)$$

Where, $\alpha = \frac{\gamma_i}{\gamma_0}$ and $\beta = \gamma_0$

Solving the Dirac equations we get positive and negative energy solutions known as quark and antiquark orbitals respectively in the general form:

$$\begin{split} \psi_{nlj}^{+}(\vec{r}) &= \begin{pmatrix} \frac{ig_{nlj}(r)}{r} \\ (\vec{\sigma}, \hat{r}) \frac{f_{nlj}(r)}{r} \end{pmatrix} \varphi_{ljm_j}(\hat{r}) \\ \psi_{nlj}^{-}(\vec{r}) &= \begin{pmatrix} i\vec{\sigma}, \frac{\hat{r}f_{nj}(r)}{r} \\ g_{nlj}(r)/r \end{pmatrix} (-1)^{j+m_j-l} \varphi_{ljm_j}(\hat{r}) \\ \end{split}$$
Where , $g_{nlj}(r) &= N_q \left(\frac{r}{r_{nl}}\right)^{l+1} e^{-r^2/2r_{nl}^2} L_{n-1}^{l+1/2} \left(\frac{r^2}{r_{nl}^2}\right) \\ \end{aligned}$
and $f_{nlj}(r) &= -N_q \frac{1}{r_{nl}\lambda_{nl}} \left(\frac{r}{r_{nl}}\right)^{l+2} e^{-r^2/2r_{nl}^2} \left[L_{n-2}^{l+3/2} \left(\frac{r^2}{r_{nl}^2}\right) + L_{n-1}^{l+3/2} \left(\frac{r^2}{r_{nl}^2}\right) \right]$

MOMENTUM PROBABILITY AMPLITUDE

For n=1 and l=0 (ground state)

•
$$G_b(\overrightarrow{p_b}) = \frac{i\pi N_b}{2\alpha_b\lambda_b} \sqrt{\frac{(E_{p_b} + m_b)}{E_{p_b}}} (E_{p_b} + E_b) exp\left(-\frac{\overrightarrow{p}^2}{4\alpha_b}\right)$$

•
$$\widetilde{G}_{c}(\overrightarrow{p_{c}}) = \frac{i\pi N_{c}}{2\alpha_{c}\lambda_{c}}\sqrt{\frac{(E_{p_{c}}+m_{c})}{E_{p_{c}}}}\left(E_{p_{c}}+E_{c}\right)exp\left(-\frac{\overrightarrow{p}^{2}}{4\alpha_{c}}\right)$$

Using the momentum probability amplitudes for quarks and antiquarks we write the momentum profile function for meson as :

$$\mathcal{G}_{B_c}(\vec{p}_b, \vec{p}_{\bar{c}}) = \sqrt{G_b(\vec{p}_b)\tilde{G}_{\bar{c}}(\vec{p}_{\bar{c}})}$$

MESON STATES AND MESON NORMALIZATION

The meson state at definite momentum reflect the momentum distribution among constituent quark and antiquark $|B_{c}(\vec{P}, S_{B_{c}})\rangle = \hat{A}_{Bc}(\vec{P}, S_{B_{c}}) |(\vec{p}_{b}, \lambda_{b}); (\vec{p}_{c}, \lambda_{c})\rangle$ Where $|(\vec{p}_{b}, \lambda_{b}); (\vec{p}_{c}, \lambda_{c})\rangle = \hat{b}_{b}^{\dagger}(\vec{p}_{b}, \lambda_{b})\tilde{b}^{\dagger}(\vec{p}_{c}, \lambda_{c})|0\rangle$ $\hat{A}_{Bc}(\vec{P}, S_{B}) = \frac{\sqrt{3}}{\sqrt{N_{B_{c}}(\vec{P})}} \sum_{\delta_{b}, \delta_{\bar{c}}} \zeta_{b, \bar{c}}^{B_{c}}(\lambda_{b}, \lambda_{\bar{c}}) \int d^{3}\vec{p}_{b} d^{3}\vec{p}_{\bar{c}} \delta^{(3)}(\vec{p}_{b} + \vec{p}_{\bar{c}} - \vec{P}) \mathcal{G}_{B_{c}}(\vec{p}_{b}, \vec{p}_{\bar{c}})$

Imposing Normalisation condition

 $\left\langle B_{c}\left(\overrightarrow{P'}\right) \middle| B_{c}\left(\overrightarrow{P}\right) \right\rangle = \delta^{3}\left(\overrightarrow{P} - \overrightarrow{P'}\right)$ Where $N(\overrightarrow{P}) = \int d\overrightarrow{p_{b}} |G(\overrightarrow{p}_{b}, \overrightarrow{P} - \overrightarrow{p}_{b})|^{2}$

S-Matrix and invariant transition amplitude

 $S_{fi}^{B_c} = \left\langle e^{-}(k_e \delta_e) \bar{\nu}(k_\nu \delta_\nu) m(\vec{K}) \left| \left(\frac{-ig}{2\sqrt{2}} \right) V_{qq'} \left(\frac{-ig}{2\sqrt{2}} \right) \int d^4 x_1 d^4 x_2 \left[\bar{\psi}(x_1) \Gamma_\mu \psi(x_1) \right] D_{\mu\vartheta}(x_2 - x_1) \left(\frac{-ig}{2\sqrt{2}} \right) \left[\bar{\psi}(x_2) \Gamma^\vartheta \psi(x_2) \right] \right| M(\vec{P}) \right\rangle$

Leptonic part : $\left\langle e^{-}(k_{e}\delta_{e})\overline{v}(k_{v}\delta_{v})\middle|\overline{\psi}(x_{2})\Gamma^{\vartheta}\psi(x_{2})\middle|0\right\rangle$ Hadronic part : $\left\langle m\left(\vec{K}\right)\middle|\int d^{4}x_{1}d^{4}x_{2}\left[\overline{\psi}(x_{1})\Gamma_{\mu}\psi(x_{1})\right]\frac{G_{F}}{\sqrt{2}}V_{q'q''}\frac{i}{(2\pi)^{4}}\int d^{4}qe^{-i(x_{2}-x_{1})q}\left|M\left(\vec{P}\right)\right\rangle$ The hadronic amplitudes are covariantly expanded in terms of Lorentz-invariant form factors. For the transition type $(0^- \rightarrow 0^-)$, the expansion is

 $\langle X(k)|V_{\mu}(0)|B(p)\rangle = (p+k)_{\mu}F_{+}(q^{2}) + q_{\mu}F_{-}(q^{2})$

For $(0^- \to 1^-)$ $\langle X(k, \epsilon^*) | V_{\mu}(0) - A_{\mu}(0) | B(p) \rangle = \frac{1}{(M+m)} \epsilon^{\dagger}_{\nu} \Big\{ g_{\mu\nu}(p+k)(p-k)A_0(q^2) + (p+k)_{\mu}(p+k)_{\nu}A_+(q^2) + q^{\mu}(p+k)^{\nu}A_-(q^2) + i\epsilon^{\mu\nu\alpha\beta}(p+k)_{\alpha}q_{\beta}V(q^2) \Big\}$

(FORMFACTORS FOR PSEUDOSCALAR IN FINAL MESON STATE)

$$F_{\pm} = \frac{1}{2M} \left[\sqrt{\frac{4ME_k}{N_M(0)N_m(\vec{k})}} \int d\vec{p}_b \ G_M(\vec{p}_b, -\vec{p}_b) \ G_m(\vec{k} + \vec{p}_b, -\vec{p}_b) \ \boldsymbol{Q}_{\pm} \right]$$

Where,

$$\boldsymbol{Q}_{\pm} = \left\{ \frac{\left(E_{p_{b}} + m_{b}\right)\left(E_{p_{c}} + m_{c} \pm M - E_{k}\right) + |\vec{p}_{b}|^{2}}{\sqrt{4E_{p_{b}}E_{p_{c}}\left(E_{p_{b}} + m_{b}\right)\left(E_{p_{c}} + m_{c}\right)}} \right\}$$

(FORMFACTORS FOR VECTOR MESON IN FINAL STATE)

$$\begin{split} V &= \frac{(M+m)}{2M} \left[\sqrt{\frac{4ME_k}{N_M(0)N_m(\vec{k})}} \int d\vec{p}_b \ G_M(\vec{p}_b, -\vec{p}_b) \ G_m(\vec{k} + \vec{p}_b, -\vec{p}_b) \left\{ -\sqrt{\frac{(E_{p_b} + m_b)}{4E_{p_b}E_{p_c}(E_{p_c} + m_c)}} \right\} \right] \\ A_0 &= \frac{1}{(M-m)} \left[\sqrt{\frac{4Mm}{N_M(0)N_m(0)}} \int d\vec{p}_b \ G_M(\vec{p}_b, -\vec{p}_b) \ G_m(\vec{p}_b, -\vec{p}_b) \left\{ \frac{3(E_{p_c}^0 + m_c)(E_{p_b} + m_b) - |\vec{p}_b|^2}{3\sqrt{4E_{p_c}^0 E_{p_b}(E_{p_c}^0 + m_c)(E_{p_b} + m_b)}} \right\} \right] \\ A_{\pm} &= \frac{-E_K(M+m)}{2M(M+2E_k)} \left[T \mp \frac{3(M \mp E_k)}{E_k^2 - m^2} \{I - A_0(M - m)\} \right] \end{split}$$

where
$$T = J - \left(\frac{M-m}{E_k}\right) A_0$$

$$J = \frac{1}{\left(E_{p_c} + m_c\right)} \left[\sqrt{\frac{4ME_k}{N_M(0)N_m(\vec{k})}} \int d\vec{p}_b \ G_M(\vec{p}_b, -\vec{p}_b) \ G_m(\vec{k} + \vec{p}_b, -\vec{p}_b) \left\{ -\sqrt{\frac{\left(E_{p_b} + m_b\right)}{4E_{p_b}E_{p_c}\left(E_{p_c} + m_c\right)}} \right\} \right]$$

$$I = \sqrt{\frac{4ME_k}{N_M(0)N_m(\vec{k})}} \int d\vec{p}_b \ G_M(\vec{p}_b, -\vec{p}_b) \ G_m(\vec{p}_b, -\vec{p}_b) \left\{ \frac{3(E_{p_c} + m_c)\left(E_{p_b} + m_b\right) - |\vec{p}_b|^2}{3\sqrt{4E_{p_c}^0 E_{p_b}(E_{p_c}^0 + m_c)\left(E_{p_b} + m_b\right)}} \right\}$$

PARTIAL DECAY WIDTH

$$d\Gamma = \frac{1}{2E_M} \overline{\Sigma} |M_{fi}|^2 d\pi_3$$
where $d\pi_3$ =Phase space factor = $(2\pi)^4 \delta^4 (p - k_1 - k_2 - K) \frac{d^3k}{(2\pi)^3 2E_k} \frac{d^3k_1}{(2\pi)^3 2E_{k_1}} \frac{d^3k_2}{(2\pi)^3 2E_{k_2}}$
Differential decay rates considering angular distribution with the momentum transfer squared q^2

$$\frac{d\Gamma}{dq^2 d(\cos\theta)} = \frac{1}{(2\pi)^3} \sum \frac{G_F^2}{12M_P^2} |V_{bc}|^2 \frac{(q^2 - m_e^2)}{q^2} |\vec{K}| L^{\mu\vartheta} H_{\mu\vartheta}$$

$$L^{\mu\vartheta} H_{\mu\vartheta} = \frac{2}{3} (q^2 - m_e^2) \left[\frac{8}{3} (1 + \cos^2\theta) \hat{H}_U + \frac{3}{4} \sin^2\theta \hat{H}_L - \frac{3}{4} \cos\theta \hat{H}_P + \frac{m_e^2}{2q^2} \left(\frac{3}{4} \sin^2\theta \hat{H}_U + \frac{3}{2} \cos^2\theta \hat{H}_L + 3\cos\theta \hat{H}_{SL} + \frac{1}{2} \hat{H}_S \right) \right]$$
Where $H_U = |H_+|^2 + |H_-|^2$
 $H_P = |H_+|^2 - |H_-|^2$
 $H_P = |H_+|^2 - |H_-|^2$
 $H_S = 3|H_t|^2$
 $H_{SL} = Re(H_0 H_t)$

Then substituting the $L^{\mu\vartheta}H_{\mu\vartheta}$ value and integrating the above equation w.r.to $cos\theta$

$$\frac{d\Gamma}{dq^2} = \frac{d\Gamma_U}{dq^2} + \frac{d\Gamma_L}{dq^2} + \frac{d\tilde{\Gamma}_U}{dq^2} + \frac{d\tilde{\Gamma}_L}{dq^2} + \frac{d\tilde{\Gamma}_L}{dq^2} + \frac{d\tilde{\Gamma}_S}{dq^2}$$
Where $, \frac{d\Gamma_i}{dq^2} = \frac{1}{(2\pi)^3} \sum \frac{G_F^2}{12M_p^2} |V_{bc}|^2 \frac{(q^2 - m_l^2)}{q^2} |\vec{K}| H_i$
and $\frac{d\tilde{\Gamma}_i}{dq^2} = \frac{m_l^2}{2q^2} \frac{d\Gamma_i}{dq^2}$, $i = U, L, P, S$
Integrating over q^2 we get
 $\Gamma = \Gamma_U + \Gamma_L + \tilde{\Gamma}_U + \tilde{\Gamma}_L + \tilde{\Gamma}_S$

For Pseudoscalar Meson In Final state $\Gamma = \Gamma_L + \tilde{\Gamma}_L + \tilde{\Gamma}_S$ **For Vector meson In Final State** $\Gamma = \Gamma_U + \Gamma_L + \tilde{\Gamma}_U + \tilde{\Gamma}_L + \tilde{\Gamma}_S$

INPUT PARAMETERS

For ground state we take the quark masses, corresponding binding energies and potential parameters:

 $(a, V_0) \equiv (0.017166 \text{GeV}^3, -0.1375 \text{GeV})$

 $(m_u, m_b, m_c) \equiv (0.07875, 4.77659, 1.49276)$ GeV

 $(E_u, E_b, E_c) \equiv (0.47125, 4.76633, 1.57951) \text{GeV}$

FIG. 2. The q^2 -dependence of invariant form factors for semileptonic $B_c \rightarrow \eta_c(J/\psi)$ decays.

q²-dependence of Formfactors

FIG. 4. Reduced helicity amplitudes h_i and $\tilde{h}_i(i = t, 0)$ as functions of q^2 for semileptonic $B_c \to \eta_c$ and $B_c \to D$ decays.

FIG. 5. Reduced helicity amplitudes h_i and \tilde{h}_i (i = t, +, -, 0) as functions of q^2 for semileptonic $B_c \to J/\psi$ and $B_c \to D^*$ decays.

q²-dependence of helicity amplitude

FIG. 6. Partial helicity rates $\frac{d\Gamma_i}{dq^2}$ and $\frac{d\tilde{\Gamma}_i}{dq^2}$ as functions of q^2 for semileptonic $B_c \to \eta_c$ and $B_c \to D$ decays.

FIG. 7. Partial helicity rates $\frac{d\Gamma_i}{dq^2}$ and $\frac{d\tilde{\Gamma}_i}{dq^2}$ as functions of q^2 for semileptonic $B_c \to J/\psi$ and $B_c \to D^*$ decays.

q²-dependence of partial helicity rates

q²-dependence of partial decay rate

NUMERICAL RESULTS AND DISCUSSION

DECAY WIDTH

TABLE I. Helicity rates (in 10^{-15} GeV) of semileptonic B_c -meson decays into charmonium and charm-meson state:											
Decay mode	U	$ ilde{U}$	L	Ĩ	Р	S	\tilde{S}	\widetilde{SL}	Г		
$B_c^- \to \eta_c e^- \nu_e$ $B \to \eta_c \tau^- \nu_e$			4.844	4.432×10^{-7}			15.397×10^{-7}	4.712×10^{-7}	4.844		
$B_c \to \eta_c \iota^- \nu_\tau B_c^- \to J/\psi e^- \nu_e$	18.634	6.052×10^{-7}	16.283	27.813×10^{-7}	8.368	1.188	66.653×10^{-7}	22.856×10^{-7}	34.918		
$\begin{array}{l} B_c^- \to J/\psi \tau^- \nu_\tau \\ B_c^- \to D e^- \nu_e \end{array}$	3.823	0.846	1.922 0.047	0.437 4.611×10^{-10}	1.704	0.614	0.307 1.072×10^{-9}	0.197 4.038×10^{-10}	7.336 0.047		
$B_c^- \rightarrow D\tau^- \nu_{\tau}$ $B_c^- \rightarrow D^* c^- \nu_{\tau}$	0.2420	4×10^{-9}	0.028	0.003	0.160	0.091	0.007	0.0027	0.038		
$B_c \to D^* e^- \nu_e$ $B_c^- \to D^* \tau^- \nu_\tau$	0.2439	4 × 10 × 0.015	0.078	0.0021	0.169	0.081	4.092 × 10 ° 0.151	0.0094	0.322		

BRANCHING FRACTION

TABLE II.	Branching ratios(in%)) of semileptonic	B_c d	lecays into	ground s	state (charmonium a	nd charm	meson state:
-----------	-----------------------	-------------------	---------	-------------	----------	---------	--------------	----------	--------------

Decay mode	This work	[24]	[46]	[23]	[55,56]	[10]	[44]	[49]	[25]	[11,12]	[57]	[58]
$B_c \to \eta_c e \nu$	0.37	0.83	0.81	0.98	0.75	0.97	0.59	0.44	0.95	0.86	0.162	0.45
$B_c \rightarrow \eta_c \tau \nu$	0.16	0.27	0.22	0.27	0.23		0.20	0.14	0.24			
$B_c \rightarrow J/\psi e\nu$	2.68	2.19	2.07	2.30	1.9	2.35	1.20	1.01	1.67	2.33	1.67	1.37
$B_c \rightarrow J/\psi \tau \nu$	0.56	0.61	0.49	0.59	0.48		0.34	0.29	0.40			
$B_c \rightarrow De\nu$	0.0037		0.0035	0.018		0.004	0.004	0.0032	0.0033			
$B_c \rightarrow D \tau \nu$	0.0029		0.0021	0.0094	0.002			0.0022	0.0021			
$B_c \rightarrow D^* e \nu$	0.0251		0.0038	0.034		0.018	0.018	0.011	0.006			
$B_c \to D^* \tau \nu$	0.0230		0.0022	0.019	0.008			0.006	0.0034			

RATIOS OF BRANCHING FRACTION

Ratio of Branching Fractions(R)	This work	[25]	[46]	[49]
$R_{\eta_c} = \frac{\mathcal{B}(B_c \to \eta_c l\nu)}{\mathcal{B}(B_c \to \eta_c \tau\nu)}$	2.312	3.96	3.68	3.2
$R_J/\psi = \frac{\mathcal{B}(B_c \to J/\psi l\nu)}{\mathcal{B}(B_c \to J\psi \tau \nu)}$	4.785	4.18	4.22	3.4
$R_D = \frac{\mathcal{B}(B_c \to D l \nu)}{\mathcal{B}(B_c \to D \tau \nu)}$	1.275	1.57	1.67	1.42
$R_{D^*} = \frac{\mathcal{B}(B_c \to D^* l\nu)}{\mathcal{B}(B_c \to D^* \tau \nu)}$	1.091	1.76	1.72	1.66

Published in Physical Review D 104, 036012 (2021)

