(Muon g-2): Status and future outlook – Lee Roberts, Boston University

Precision in Particle Physics: Fermilab a_µ goal: 140 ppb

The Fermilab Site showing the Muon Campus

/112e

285-

We use the old p-bar debuncher ring (" our Delivery Ring") as a 2 km pion decay line.

he Delivery

111

Muon g-2 Collaboration ~200 Collaborators

In preparing this talk I have borrowed from a number of colleagues: David Flay, David Hertzog and especially from James Mott.

Outline

- Introduction
- Overview of the experimental approach
- Details of the magnetic field measurement
- Details of the muon spin rotation measurement
- Summary and outlook

a_{μ} : Radiative Corrections, known and unknown

• Both Standard Model, and perhaps BSM particles can contribute

The tension with the SM has been noticed for some time.

B. Lee Roberts-10-November-2021-Anomalies2021

The results that I will talk about were published in 4 papers on April 7th ... day of result release

B. Lee Roberts-10-November-2021-Anomalies2021

Magnetic Dipole Moments

- Magnetic Dipole in a *B* field: Torque : $\tau = \vec{\mu} \times \vec{B}$
- Energy : $H = -\vec{\mu} \cdot \vec{B}$
 - μ_{s} for a particle with spin:

$$\vec{\mu}_s = g_s \frac{q}{2m} \vec{s} \ g_s = 2(1+a)$$

Larmor precession

Magnetic Dipole Moments

- Magnetic Dipole in a *B* field: Torque : $\tau = \vec{\mu} \times \vec{B}$ Energy : $H = -\vec{\mu} \cdot \vec{B}$
 - μ_{s} for a particle with spin:

$$\vec{\mu}_s = g_s \frac{q}{2m} \vec{s} \ g_s = 2(1+a)$$

Larmor precession

The next big step

UNIVERS

 $i(\partial_{\mu} - ieA_{\mu}(x))\gamma^{\mu}\psi(x) = m\psi(x)$

The very first radiative correction in quantum electrodynamics (QED). **It's mass independent!**

B. Lee Roberts-10-November-2021-Anomalies2021

Dirac Eqn.

$$i\hbar \frac{\partial \psi}{\partial t} = \left\{ \vec{\alpha} \cdot \left(c\frac{\hbar}{i} \nabla - e\vec{A} \right) + \beta c^2 m + eA_0 \right\} \psi$$

$$\langle \ell(p') | J_{\mu}(0) | \ell(p) \rangle = \bar{u}(p') \left\{ \gamma_{\mu} F_1(q^2) \underbrace{i}_{2m_{\ell}} \sigma_{\mu\nu} q^{\nu} F_2(q^2) \right\} \langle \gamma_5 \sigma_{\mu\nu} q^{\nu} F_3(q^2) \right\} u(p)$$
Dirac : $F_1(0) = 1$

$$F_2(0) = a_{\ell}$$
 the magnetic anomaly Chiral changing, flavor conserving interaction.
$$F_3(0) = d_{\ell}$$
 the electric dipole moment
$$f f$$
 and thus QP

At Fermilab we measured a_{μ} to 0.46 ppm. The new world average is 0.35 ppm (the original BNL goal).

At BNL: $|d_{\mu}| < 1.8 \times 10^{-19} \ e \,\mathrm{cm}$

Measuring Lepton Magnetic **Dipole Moments** $\sigma^{a_{\mu}}_{\mathrm{BNL}} = 540 \,\mathrm{ppb}$ $\sigma^{a_{\mu}}_{\mathrm{FNAL}} = 140 \,\mathrm{ppb}$ $\vec{\mu} = g\left(\frac{q}{2m}\right)\vec{s}$

I.I. Rabi

How do we measure the muon frequency? Parity violation!

• We need polarized muons: neutrinos are only left-handed

At rest: 100% polarization. In beam: very forward and very backward μ are polarized

 $\mu^+ \to e^+ \nu_e \bar{\nu}_\mu$

At rest: highest energy e^+ are along μ spin.

Spin Motion in a Magnetic Field Larmor : $\vec{\omega}_L = g\left(\frac{q}{2m}\right)\vec{B}$

Particle: $q = \pm |e|$ moving in a magnetic field: momentum turns with ω_{c} , spin turns with ω_{s}

$$\omega_C = -\frac{qB}{m\gamma}; \quad \omega_S = -g\frac{q}{2m}B - (1-\gamma)\frac{qB}{\gamma m}$$

Spin turns relative to the momentum with ω_a

$$\omega_a = \omega_S - \omega_C = -\left(\frac{g-2}{2}\right)\frac{q}{m}B = -\underline{a_\mu}\frac{q}{m}B$$

If g = 2, the spin will follow the momentum

We use a Uniform dipole magnetic field. Provide vertical focusing with electrostatic quadrupoles \rightarrow Weak Focusing Betatron, but is a <u>Penning Trap</u> configuration.

Full spin equation with *E* and *B*:

$$\vec{\omega}_{C} = -\frac{q}{m} \begin{bmatrix} \vec{B} & \gamma & \gamma & \vec{\beta} \times \vec{E} \\ \gamma^{2} & \gamma^{2} & -1 & c & Cyclotron Frequency \\ \vec{\omega}_{S} = -\frac{q}{m} \begin{bmatrix} \left(\frac{g}{2} - 1 + \frac{1}{\gamma}\right) \vec{B} - \left(\frac{g}{2} - 1\right) \frac{\gamma}{\gamma + 1} (\vec{\beta} \cdot \vec{B}) \vec{\beta} - \left(\frac{g}{2} - \frac{\gamma}{\gamma + 1}\right) \left(\frac{\vec{\beta} \times \vec{E}}{c}\right) \end{bmatrix}$$

Thomas Equation: L. H. Thomas, Philos. Mag. 3, 1 (1927) note that : $\frac{g}{2} - 1 = a$ J.D. Jackson 3rd edition, p. 564.

B. Lee Roberts-10-November-2021-Anomalies2021

We measure two frequencies: ω_a and ω_p' (B)

with $\gamma_{\text{magic}} = 29.3$, $p_{\text{magic}} = 3.09 \text{ GeV/c}$

B is expressed in terms of the Larmor frequency of a <u>shielded</u> proton, *averaged over the muon distribution*.

Blind Analysis: $\omega_a \omega_p$

- When analyzing data, you must make choices. If you know which way these choices move your answer, you can bias the result.
- How do we remove this bias? E989 blinding scheme
 - The absolute clock frequency is blinded with a \pm 30 ppm offset!
 - We had two independent teams analyzing ω_p
 - We had six independent people analyzing ω_a
 - Initially the separate analyzers are blind to each other.
 - For a reality check, once things are relatively mature, analyzers can relatively unblind to each other to see how it's going.
- Only when everything is complete, do we get the true clock frequency from people outside of the collaboration and "open the box".
- We opened the box on 25 February. Everyone present signed and embargo agreement.
- Nobody leaked the answer!!!!

Experimental Technique

The E821 Muon storage ring magnet at Brookhaven Lab circa 1996. Was moved to Fermilab for E989

The E821 Muon storage ring magnet at Brookhaven Lab circa 1996. Was moved to Fermilab for E989

What do we need to measure?

• The magnetic field over the 9 cm diameter, 44 m long toroid where the muon beam is stored.

The distribution of muons, which must be folded with the magnetic field to determine the average field experienced by the muons.

 $M_{\mu}(\vec{r})$

The muon spin rotation frequency

 ω_a

Magnet Design & Shimming

- 14.2 m diameter "C"-shape magnet with
 1.45 T vertical field
- Shimming campaign from 2015-16 resulted in very uniform field
- 14 ppm RMS across full azimuth & 3 × better than at BNL

• Beam confined to a 9 cm diameter 44 m circumference toroid.

B. Lee Roberts-10-November-2021-Anomalies2021

We map the magnetic *B* field with the NMR Trolley

- We have a field mapping trolley that is pulled by cables around the ring to map the field.
- It is parked in a garage inside of the vacuum chamber while muon spin precession data are being collected.
- During data collection we monitor *B* with 378 "fixed probes" at 72 azimuthal locations

The NMR trolley in a vacuum cha.

Measuring the Field: NMR Trolley

- In-vacuum trolley drives around the ring every ~3 days to 9000 azimuthal locations
- Measure B-field from shielded proton precession frequency ω'_p (comagnetometer)

17 NMR probes Optimal arrangement for multipole analysis **2D field maps** at ~9000 points around ring Typical Azimuthal Average

Variation < 1 ppm

Tracking the Field: Fixed Probes

- Can't keep trolley in the ring while the muons are present
- Instead, monitor field during e^+ data-taking with 378 fixed probes

Use fixed probe data to interpolate field between trolley runs, using a Brownian bridge model¹.

¹Random walk with fixed endpoints.

The absolute calibration for *B*

 $a_{\mu} \propto \frac{\omega_a}{\Sigma}$ Us Others ω_a a_{μ} ω_a : e⁺ oscillation frequency $\mu_e(H)$ Measured to 10.5 ppb accuracy at T = 34.7°C $\mu'_p(T)$ Metrologia 13, 179 (1977) $\tilde{\omega}'_p(T_r)$: magnetic field from μ_e Bound-state QED (exact) $\mu_e(\overline{H)}$ Rev. Mod. Phys. 88 035009 (2016) precession of protons in H_20 , weighted by muon distribution m_{μ} Known to 22 ppb from muonium hyperfine splitting m_e Phys. Rev. Lett. 82, 711 (1999) Run 1 Result: 462 ppb Measured to 0.28 ppt $rac{g_e}{2}$ Phys. Rev. A 83, 052122 (2011) Final Goal total uncertianty: 140 ppb = 100 ppb (stat) Total < 25 ppb ⊕ 100 ppb (syst)

$\mathcal{O}_{a} \quad \mu^{+} \rightarrow e^{+} + \bar{\nu}_{\mu} + \nu_{e}$

- The <u>highest energy</u> positrons are correlated with muon spin.
- Count *e*+ hitting calos above threshold; or weight the hits by the decay asymmetry *A*(*E*).
- In beam, as the spin rotates forward and backward, the number of e^+ is modulated by $\omega_{\rm a}$ $N(t) = N_0 \cos(\omega_a t + \phi)$

what if $\phi = \phi(t)$?

Real World Experiment: Positrons

- $\mu^+ \to e^+ + \bar{\nu}_e + \bar{\nu}_\mu$
- Experiment measures decay e⁺ which curl inwards since they have lower momentum

Real World Experiment: Detectors

Decay e+ are measured by 24 calorimeters

& 2 trackers

Muon Distribution M_{μ}

- Want the field experienced by muons, so need to know where muons are in the field map
- Measured with two straw trackers inside storage vacuum

Tracker: Top view

• A muon decays to a positron which travels through tracker

- e^+ position is recorded in tracker modules
- Hits are grouped and reconstructed into a track
- Track is extrapolated backwards to beam storage region

Run 1 Data from the Tracker

Top-down view of decay vertices

Extrapolate tracks back to point of tangency to get beam distribution:

Main Systematic Issues

- 3 main systematics for ω_a measurement
- Variety of mitigation strategies
- Well under control total is
 56 ppb

Dedicated laser calibration system

Calorimeter Design

- Array of 54 PbF₂ crystals 2.5 x 2.5 cm² x 14 cm (15X₀)
- Readout by SiPMs to continuous 800 MHz WFDs (1296 channels)

Detector Overview

Calorimeters (x24) – E&t of decay positrons

- 6 × 9 array of 2cm PbF2 crystals

UNIVERSIT

Relative time alignment to 5 ps using a laser system

> 5 ns beam pileup separation

B. Lee Roberts-10-November-2021-Anomalies2021

Data from the Calorimeters and tracker, $p_e > 1.8 \text{ GeV/c}$

Simple fit: residuals

• Simplest form for fit is an exponentially decaying oscillation: $N_0 e^{-t/\tau} (1 + A\cos(\omega_a t + \phi))$

Beam oscillations couple to acceptance & change number of e⁺ detected with time, and exponential isn't perfect.

All of these frequencies in the residual are from well understood beam dynamics and other effects.

B. Lee Roberts-10-November-2021-Anomalies2021

Fit with beam dynamics terms

• Add terms to fit function to deal with complications:

$$\dot{T}(t) = N_0 e^{-t/\tau} \Lambda(t) N_{cbo}(t) N_{2cbo}(t) \left(1 + A_{cbo}(t) \cos(\omega_a t + \phi_{cbo}(t))\right)$$

 $N_0 e^{-t/\tau} (1 + A\cos(\omega_a t + \phi))$

• Muons that are lost from storage ring before they decay:

$$\Lambda(t) = 1 - \kappa_{loss} \int_{t_0}^t L(t') e^{(t'/\tau)} dt'$$

• Beam oscillations that modulate decay rate:

e.g. $N_{cbo}(t) = (1 + A_{cbo-N} \cdot e^{-t/\tau_{cbo}} \cdot \cos(\omega_{cbo}(t) \cdot t + \phi_{cbo-N}))$

Fit with beam dynamics terms: residuals

• Adding terms removes these extra frequencies:

- Important to get it right: ω_a changes by 2.2 ppm if we don't include this effect.
- Good residuals and χ^2 are necessary, but not sufficient condition. Still need to deal with other systematic effects...

Spin Precession (ω_a): Relative Unblinding

- Independent analysers using different techniques get consistent results for ω_a

- Hundreds of pages written on this in a number of Ph.D dissertations. Discussed in our ω_a paper in Phys. Rev. D
- All are consistent within expected variation, which is much smaller than statistical uncertainty.

Real World Complications: Corrections

We need to make six small corrections to get our final result:

- Total correction is 544 ppb (c.f. stat. error of 434 ppb)
- We don't have same precision requirements on these corrections as we do on $\omega_a \& \omega'_p$ but we still evaluate them carefully...
 - C_{pa} will disappear in Run 2-3, δB_q and δB_k will significantly improve.

Clock Blinding for a Blind Analysis

$$\frac{\omega_a}{\langle \omega'_p \times M_\mu \rangle} = \frac{f_{clock} \omega_a^m}{f_{calib} \langle \omega'_p \times M_\mu \rangle^m} \text{ x Corrections}$$

- f_{clock} is the frequency that our clock ticks relative to 40 MHz
 - Precision timepiece, stable at ppt level
- The exact clock frequency was kept secret from all collaborators

Greg Bock & Joe Lykken

Two of FNAL Directorate set frequency to (40 - δ MHz) and check the clock each week

Clock was locked and value was kept secret until analysis completed

Feb 25th 2021: Virtual Unblinding

Unanimous vote from all collaborators to unblind the value!

3 years after taking the data, secret envelopes were opened to reveal the hidden clock frequency and our first result...

st result	Quantity	Correction terms (ppb)	Uncertainty (ppb)
· · ·	ω_a^m (statistical)		434
	ω_a^m (systematic)		56
	C_{e}	489	53
	C_p	180	13
-+	C_{ml}	-11	5
	C_{pa}	-158	75
	$f_{\text{calib}} \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle$		56
	B_k	-27	37
	B_q	-17	92
	$\mu'_{p}(34.7^{\circ})/\mu_{e}$		10
20.5 21.0 21.5	m_{μ}/m_e		22
	$g_e/2$		0
	Total systematic		157
	Total fundamental factors		25
Lee Roberts-10-November-2021-And Halies2021		544	462

45

Outlook

- Run 1 is only 6% of the final data set
- Run 2 and 3: Expect a factor of 2 × improvement in precision -18-months?
- Run 4 is in progress, expect to bring in 13 \times BNL statistics; ½ σ BNL
- Run 5 next year should reach the design statistics of 20 \times BNL, total uncertainty $\downarrow~4$

Summary:

- We have measured a_{μ} to 460 ppb, and this result agrees well with BNL.
- We discovered several subtle new effects that we have corrected for.
- Do any of these change the BNL result?
 - No! None of these new effects are at a level that justifies any change to the previous result.
- There continues to be a tension with the Standard Model value.
- We are analyzing a significantly larger data set and hope to have a new result by summer or fall 2022.
- On the theory side, significant work is ongoing to understand the difference between the BMW lattice QCD result and the dispersive result.

The Weak Focusing Betatron (Beam Dynamics)

Uniform vertical magnetic field with Electric quadrupoles for vertical focusing. 5 field index *n*, where κ is the electric quadrupole gradient $\kappa \equiv \frac{dE_r}{dr}$ $n = \frac{\kappa R_0}{\beta B_0} \simeq 0.135$ (SHM motion in x and y or in arc length s) $x = x_e + A_x \cos(\nu_x \frac{s}{R_0} + \delta_x)$ and $y = A_y \cos(\nu_y \frac{s}{R_0} + \delta_y)$ Horizontal and vertical tune: $\nu_x = \sqrt{1-n}$ and $\nu_y = \sqrt{n}$ Betatron frequencies $f_y = f_C \sqrt{n} \simeq 0.37 f_C$; $f_x = f_C \sqrt{1-n} \simeq 0.929 f_C$ $f_{CBO} = f_C - f_x$ Approximate Frequencies: Quantity | Expression | Frequency | Period $| \leftarrow \lambda_{\mathbf{C}} \rightarrow |$ (Cyclotron) $\rightarrow \lambda_{\beta_{v}} \longrightarrow \$ (radial) 0.23 MHz $\frac{e}{2\pi mc}a_{\mu}B$ **4.37** μs f_a 6.7 MHZ 149 ns f_c $\frac{v}{2\pi R_0}$ $\sqrt{1-n}f_c$ 6.23 MHz 160 ns f_x 2.48 MHz $\sqrt{n}f_c$ 402 ns f_{u} / 6πρ 0.477 MHz 2.10 μs $f_c - f_x$ f_{CBO} 4πρ S 1.74 WHZ **0.574** μs

a detector

 $f_c - 2 f_u$