## Flavour from the $\mathcal{Z}_2 \times \mathcal{Z}_5$ symmetry

### Gauhar Abbas

### Indian Institute of Technology (BHU), Varanasi

Anomalies 2021, IIT Hyderabad

Based on Int.J.Mod.Phys.A 36 (2021) 2150090

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Introduction

The  $\mathcal{Z}_2 \times \mathcal{Z}_5$  symmetry

Neutrino masses and oscillations

Bounds on the flavour scale

Summary



# Flavour problem

Why are fermions are hierarchical among and within three families with charged lepton masses being of the same order as down-type quark masses?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- What is the origin of quark-mixing?
- Why is quark mixing hierarchical?
- What is the origin of neutrino masses?
- Why are neutrino masses so small?
- What is the origin of leptonic mixing?
- Why is quark mixing is so different from leptonic mixing?

# The Froggart-Nielson mechanism Solution

- An abelian flavour symmetry U(1)<sub>F</sub> is added to the SM in such a way that only top quark acquires its mass through renormalized operator. Froggatt and Nielson1978
- Thus masses of fermions are recovered through higher order effective operators having the following structure :

$$\mathcal{O} = \mathbf{y}(\frac{\mathbf{S}}{\mathbf{\Lambda}})^{(\theta_i + \theta_j)} \bar{\psi}_i \varphi \psi_j,$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where *y* is the coupling constant, and *S* is the flavon field.

# The Froggart-Nielson mechanism

- The new physics scale A can be anywhere between the weak and the Planck scale.
- The crucial question is how low this scale could be given the present bounds on flavour-changing and CP-violating processes.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

This interesting question depends on the underlying unknown dynamics, for instance whether abelian flavour symmetry U(1)<sub>F</sub> is local or global.



- We show the minimal realization of the Froggatt-Nielson mechanism where one does not need to impose a continuous U(1)<sub>F</sub> symmetry. Int.J.Mod.Phys.A 36 (2021) 2150090, arXiv:1807.05683
- For achieving this goal, we employ a complex singlet scalar field χ which behaves under the SM symmetry as,

 $\chi$  : (1, 1, 0),

and impose  $\mathcal{Z}_2 \times \mathcal{Z}_5$  on the SM.

The masses of the three fermionic families appear in terms of the expansion parameter (χ)/Λ where Λ is the scale of new physics which renormalizes our model.

| Fields                             | $\mathcal{Z}_2$ | $\mathcal{Z}_5$ |
|------------------------------------|-----------------|-----------------|
| $u_R, c_R, t_R$                    | +               | $\omega^2$      |
| $d_R, s_R, b_R, e_R, \mu_R, 	au_R$ | -               | ω               |
| $ u_{e_R}$                         | -               | $\omega^3$      |
| $ u_{\mu_R}$                       | -               | $\omega^2$      |
| $ u_{	au_R}$                       | +               | 1               |
| $\psi_L^1$                         | +               | $\omega$        |
| $\psi_L^2$                         | +               | $\omega^4$      |
| $\psi_L^3$                         | +               | $\omega^2$      |
| $\chi$                             | -               | $\omega$        |
| $\varphi$                          | +               | 1               |

Table: The charges of left and right-handed fermions of three families of the SM,right-handed neutrinos, Higgs, and singlet scalar fields under  $Z_2$  and  $Z_5$  symmetries where  $\omega$  is the fifth root of unity.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

#### The mass Lagrangian for fermions reads,

$$\begin{aligned} \mathcal{L}_{mass} &= \sum_{n=0}^{2} \left(\frac{\chi}{\Lambda}\right)^{2n} \sum_{i,j=3,2,1} y_{ij}^{u} \bar{\psi}_{L_{i}}^{q} \tilde{\varphi} \psi_{R_{j}}^{u} + \sum_{n=0}^{2} \left(\frac{\chi}{\Lambda}\right)^{2n+1} \sum_{i,j=3,2,1} y_{ij}^{d} \bar{\psi}_{L_{i}}^{q} \varphi \psi_{R_{j}}^{d} \\ &+ \sum_{n=0}^{2} \left(\frac{\chi}{\Lambda}\right)^{2n+1} \sum_{i,j=3,2,1} y_{ij}^{\ell} \bar{\psi}_{L_{i}}^{\ell} \varphi \psi_{R_{j}}^{\ell} + \text{H.c..} \end{aligned}$$

where  $\psi_R^u, \psi_R^d, \psi_R^\ell$  are right-handed up, down type singlet quarks and singlet leptons,  $\psi_L^q, \psi_L^\ell$  are quark and leptonic doublets, *i* and *j* are family indices,  $\tilde{\varphi} = -i\sigma_2\varphi^*$  conjugate Higgs field and  $\sigma_2$  is second Pauli matrix. We expand the Lagrangian such that it is invariant under  $Z_2$  and  $Z_5$  symmetries

In terms of expansion parameter  $\frac{\langle \chi \rangle}{\Lambda} = \frac{f}{\sqrt{2}\Lambda} = \epsilon$ , the up-type quark mass matrix is,  $\mathcal{M}_{\mathcal{U}} = \frac{v}{\sqrt{2}} \begin{pmatrix} y_{11}^{\mu} \epsilon^4 & y_{12}^{\mu} \epsilon^4 & y_{13}^{\mu} \epsilon^4 \\ y_{21}^{\mu} \epsilon^2 & y_{22}^{\mu} \epsilon^2 & y_{23}^{\mu} \epsilon^2 \\ y_{21}^{\mu} & y_{22}^{\mu} & y_{33}^{\mu} \end{pmatrix}, \\ \mathcal{M}_{\mathcal{D}} = \frac{v}{\sqrt{2}} \begin{pmatrix} y_{11}^{\mu} \epsilon^5 & y_{12}^{\mu} \epsilon^5 & y_{13}^{\mu} \epsilon^5 \\ y_{21}^{\mu} \epsilon^3 & y_{22}^{\mu} \epsilon^3 & y_{23}^{\mu} \epsilon^3 \\ y_{31}^{\mu} \epsilon & y_{32}^{\mu} \epsilon & y_{33}^{\mu} \epsilon \end{pmatrix}.$ (1)

The mass matrix of charged leptons can be written as,

$$\mathcal{M}_{\ell} = \frac{v}{\sqrt{2}} \begin{pmatrix} y_{11}^{\ell} \epsilon^5 & y_{12}^{\ell} \epsilon^5 & y_{13}^{\ell} \epsilon^5 \\ y_{21}^{\ell} \epsilon^3 & y_{22}^{\ell} \epsilon^3 & y_{23}^{\ell} \epsilon^3 \\ y_{31}^{\ell} \epsilon & y_{32}^{\ell} \epsilon & y_{33}^{\ell} \epsilon^3 \end{pmatrix}.$$
 (2)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

The masses of quarks at leading order are given by,

$$\begin{split} \{m_t, m_c, m_u\} &\simeq \{|y_{33}^u|, \ \left|y_{22}^u - \frac{y_{23}^u y_{32}^u}{|y_{33}^u|}\right| \epsilon^2, \\ &\left|y_{11}^u - \frac{y_{12}^u y_{21}^u}{|y_{22}^u - y_{23}^u y_{32}^u / y_{33}^u|} - \frac{y_{13}^u |y_{31}^u y_{22}^u - y_{21}^u y_{32}^u| - y_{31}^u y_{12}^u y_{23}^u}{|y_{22}^u - y_{23}^u y_{32}^u / y_{33}^u|}\right| \epsilon^4\} v / \sqrt{2}, \\ \{m_b, m_s, m_d\} &\simeq \{|y_{33}^d|\epsilon, \ \left|y_{22}^d - \frac{y_{23}^d y_{32}^d}{|y_{33}^d|}\right| \epsilon^3, , \\ &\left|y_{11}^d - \frac{y_{12}^d y_{21}^d}{|y_{22}^d - y_{23}^d y_{32}^d / y_{33}^d|} - \frac{y_{13}^d |y_{31}^d y_{22}^d - y_{21}^d y_{32}^d| - y_{31}^d y_{12}^d y_{23}^d}{|y_{22}^d - y_{23}^d y_{32}^d / y_{33}^d|}\right| \epsilon^5\} v / \sqrt{2}, \\ \{m_\tau, m_\mu, m_\theta\} &\simeq \{|y_{33}^l|\epsilon, \ \left|y_{22}^l - \frac{y_{23}^l y_{32}^d}{|y_{33}^l|}\right| \epsilon^3, \\ &\left|y_{11}^l - \frac{y_{12}^l y_{21}^l}{|y_{22}^l - y_{23}^l y_{32}^l / y_{33}^d|} - \frac{y_{13}^l |y_{31}^l y_{22}^l - y_{21}^l y_{32}^l| - y_{31}^l y_{12}^l y_{23}^l}{|y_{22}^l - y_{23}^l y_{32}^l / y_{33}^d|}\right| \epsilon^5\} v / \sqrt{2}, \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The quark mixing angles at leading order are found to be,

$$\begin{aligned} \sin \theta_{12} &\simeq |V_{us}| &\simeq \left| \frac{y_{12}^d}{y_{22}^d} - \frac{y_{12}^u}{y_{22}^u} \right| \epsilon^2, \\ \sin \theta_{23} &\simeq |V_{cb}| \simeq \left| \frac{y_{23}^d}{y_{33}^d} - \frac{y_{23}^u}{y_{33}^d} \right| \epsilon^2, \\ \sin \theta_{13} &\simeq |V_{ub}| &\simeq \left| \frac{y_{13}^d}{y_{33}^d} - \frac{y_{12}^u y_{23}^d}{y_{22}^u y_{33}^d} - \frac{y_{13}^u}{y_{33}^u} \right| \epsilon^4. \end{aligned}$$
(3)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Neutrino masses and oscillations

The tree level Majorana Lagrangian can be written with help of table 1,

$$\mathcal{L}_{M} = M \bar{\nu^{c}}_{e_{R}} \nu_{\mu_{R}} + M \bar{\nu^{c}}_{\mu_{R}} \nu_{e_{R}} + M \bar{\nu^{c}}_{\tau_{R}} \nu_{\tau_{R}},$$

where M is the Majorana mass scale. The neutrino Dirac mass matrix is given by,

$$\mathcal{M}_{\mathcal{D}} = \frac{v}{\sqrt{2}} \begin{pmatrix} y_{11}^{\nu} \epsilon^{3} & y_{12}^{\nu} \epsilon & y_{13}^{\nu} \epsilon^{4} \\ y_{21}^{\nu} \epsilon & y_{22}^{\nu} \epsilon^{3} & y_{23}^{\nu} \epsilon^{4} \\ y_{31}^{\nu} \epsilon & y_{32}^{\nu} \epsilon^{5} & y_{33}^{\nu} \epsilon^{2}. \end{pmatrix}$$
(4)

The neutrino mass matrix after including the Majorana mass terms becomes,

$$\mathcal{M} = \begin{pmatrix} 0 & \mathcal{M}_{\mathcal{D}} \\ \mathcal{M}_{\mathcal{D}}^{\mathsf{T}} & \mathcal{M}_{\mathsf{R}} \end{pmatrix},\tag{5}$$

where the Majorana mass matrix  $\mathcal{M}_R$ 

$$\mathcal{M}_{R} = \begin{pmatrix} C_{11}^{\nu} \epsilon^{4} & M & C_{13}^{\nu} \epsilon^{3} \\ M & C_{22}^{\nu} \epsilon^{4} & C_{23}^{\nu} \epsilon^{3} \\ C_{13}^{\nu} \epsilon^{3} & C_{23}^{\nu} \epsilon^{3} & M, \end{pmatrix}$$
(6)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

# The $\mathcal{Z}_2 \times \mathcal{Z}_5$ symmetry Neutrino masses and oscillations

The masses of neutrinos now can be determined using type-I seesaw mechanism. Assuming  $M_D << M_R$ , the mass matrix of the light neutrinos reads,

$$\mathcal{M} = -\mathcal{M}_{\mathcal{D}}\mathcal{M}_{R}^{-1}\mathcal{M}_{\mathcal{D}}^{T}.$$
(7)

The light neutrino masses can approximately be written as,

$$m_1 \approx y_{11}^{\nu} \epsilon^2 \epsilon', \ m_2 \approx y_{22}^{\nu} \epsilon \epsilon', \ m_3 \approx y_{33}^{\nu} \epsilon \epsilon'.$$

where  $\epsilon' = \frac{v}{\sqrt{2M}}$ . The leptonic mixing angles approximately can be read as,

$$\sin \theta_{12} \simeq \left| \frac{Y_{21}^{\nu}}{Y_{22}^{\nu}} \right| \epsilon^2, \sin \theta_{23} \simeq \left| \frac{Y_{32}^{\nu}}{Y_{33}^{\nu}} \right|, \sin \theta_{13} \simeq \left| \frac{Y_{31}^{\nu}}{Y_{33}^{\nu}} \right| \epsilon^2.$$

All the masses and mixing angles can be recovered for  $\epsilon = 0.1$ ,  $\epsilon' = 1.259 \times 10^{-9}$  and all the couplings in the range of  $0.1 - 2\pi$ .

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

### Bounds on the flavour scale

In the scenario where there is no Higgs-flavon mixing.



Figure: The allowed parameter space by  $\epsilon_K$  and  $\Delta m_K$  for  $\lambda_{\chi} = 2$  in the  $m_a - f$  plane. The red points represent allowed flavon contribution to  $\epsilon_K$ , and the allowed contribution to  $\Delta m_K$  is shown by grey points.

# Summary

- 1. We have presented a novel and original idea based on a minimal  $\mathcal{Z}_2 \times \mathcal{Z}_5$  symmetry which is capable of providing a solution for the flavour problem of the SM.
- 2. The remarkable feature is the emergence of an explanation for the neutrino mixing angles.
- 3. A partial phenomenological study of the flavour bounds are also presented.
- 4. An origin of Z₂ and Z₅ may be traced to Abelian or non-Abelian continous symmetries. For instance, Z₂ and Z₅ may be an artefact of spontaneous breaking of U(1) × U(1) continuous symmetries. This is radically different from the standard mechanism which is based on a continuous U(1) symmetry.