Status and Outlook of Lattice Calculations for the Muon (g-2) Anomaly

Christoph Lehner (Regensburg \& BNL)

November 12, 2021 - Anomalies 2021

Contributions from known particles: The Standard Model

$$
a_{\mu}(\mathrm{SM})=a_{\mu}(\text { QED })+a_{\mu}(\text { Weak })+a_{\mu}(\text { Hadronic })
$$

Numbers from Theory Initiative Whitepaper
Uncertainty dominated by hadronic contributions

Status of hadronic light-by-light contribution

Ab-initio lattice QCD+QED

Data-driven

Systematically improvable methods are maturing; uncertainty to a_{μ} controlled at 0.15 ppm ; cross-checks detailed in Theory Initiative whitepaper

Status and impact of hadronic vacuum polarization contribution

Ab-initio lattice QCD (+QED) calculations are maturing

Difficult problem: scales from $2 m_{\pi}$ to several GeV enter; cross-checks needed at high precision

Hybrid window method restricts scales that enter from lattice/dispersive data

Dispersive, $e^{+} e^{-} \rightarrow$ hadrons (20+ years of experiments)

Now first published lattice result with sub-percent precision available (BMW20), cross-checks are crucial to establish or refute high-precision lattice methodology (same situation as for HLbL)

Summary of HVP status:

- Decades of $e^{+} e^{-}$dispersive results suggest a strong tension (4.2 σ)
- A single lattice result (BMW20) suggests only minimal tension (1.5 σ)

How can we move forward in our understanding? Main topic of this talk.

Two main questions:

- Consistency of BMW20 lattice result with previously know lattice results
- Consistency of lattice results with R-ratio

Consistency of BMW20 lattice result with previously know lattice results

Diagrams

(a) V

(b) S

(d) T_{d}

(e) D1

(f) $\mathrm{D} 1_{d}$

(g) D2
(h) $\mathrm{D} 2_{d}$

(i) F

(j) D3

(a) M

(b) R

(c) R_{d}

(d) O

Overview of individual contributions

Diagrams - Isospin limit

FIG. 1. Quark-connected (left) and quark-disconnected (right) diagram for the calculation of $a_{\mu}^{\mathrm{HVP}}{ }^{\mathrm{LO}}$. We do not draw gluons but consider each diagram to represent all orders in QCD.

Up, down; isospin symmetric limit; $m_{\pi}=m_{\pi}^{0}$

$a_{\mu, \text { ud, conn, isospin }} \times 10^{10}$

Diagrams - QED corrections

For diagram F we enforce exchange of gluons between the quark loops as otherwise a cut through a single photon line would be possible. This single-photon contribution is counted as part of the HVP NLO and not included for the HVP LO.

Attention needed

Diagrams - Strong isospin breaking

For the HVP R is negligible since $\Delta m_{u} \approx-\Delta m_{d}$ and O is $\mathrm{SU}(3)$ and $1 / N_{c}$ suppressed.

Lehner, Meyer 2020: NLO PQChPT: FV effects in connected and disconnected cancel but are each significant $O\left(4 \times 10^{-10}\right)$; PQChPT expects cancellation between connected and disconnected contribution $a_{\mu}^{\text {SIB, conn. }}=-a_{\mu}^{\text {SIB, disc. }}=6.9 \times 10^{-10}$

Attention on light-quark isospin-symmetric contribution and QED disconnected contribution

Lattice QCD - Time-Moment Representation

Starting from the vector current $J_{\mu}(x)=i \sum_{f} Q_{f} \bar{\Psi}_{f}(x) \gamma_{\mu} \Psi_{f}(x)$ we may write

$$
a_{\mu}^{\mathrm{HVP} \mathrm{LO}}=\sum_{t=0}^{\infty} w_{t} C(t)
$$

with

$$
C(t)=\frac{1}{3} \sum_{\vec{x}} \sum_{j=0,1,2}\left\langle J_{j}(\vec{x}, t) J_{j}(0)\right\rangle
$$

and w_{t} capturing the photon and muon part of the HVP diagrams (Bernecker-Meyer 2011).

The correlator $C(t)$ is computed in lattice QCD+QED at physical pion mass with non-degenerate up and down quark masses including up, down, strange, and charm quark contributions. The missing bottom quark contributions are computed in pQCD.

Lattice QCD - Example of correlation function $C(t)$ (RBC/UKQCD18)

Large discretization errors at short distance, large finite-volume errors and statistical errors at large distance

Window method (introduced in RBC/UKQCD 2018)
We therefore also consider a window method. Following Meyer-Bernecker 2011 and smearing over t to define the continuum limit we write

$$
a_{\mu}=a_{\mu}^{\mathrm{SD}}+a_{\mu}^{\mathrm{W}}+a_{\mu}^{\mathrm{LD}}
$$

with

$$
\begin{aligned}
a_{\mu}^{\mathrm{SD}} & =\sum_{t} C(t) w_{t}\left[1-\Theta\left(t, t_{0}, \Delta\right)\right], \\
a_{\mu}^{\mathrm{W}} & =\sum_{t} C(t) w_{t}\left[\Theta\left(t, t_{0}, \Delta\right)-\Theta\left(t, t_{1}, \Delta\right)\right] \\
a_{\mu}^{\mathrm{LD}} & =\sum_{t} C(t) w_{t} \Theta\left(t, t_{1}, \Delta\right), \\
\Theta\left(t, t^{\prime}, \Delta\right) & =\left[1+\tanh \left[\left(t-t^{\prime}\right) / \Delta\right]\right] / 2
\end{aligned}
$$

All contributions are well-defined individually and can be computed from lattice or R-ratio via $C(t)=\frac{1}{12 \pi^{2}} \int_{0}^{\infty} d(\sqrt{s}) R(s) s e^{-\sqrt{s t}}$ with $R(s)=\frac{3 s}{4 \pi \alpha^{2}} \sigma\left(s, e^{+} e^{-} \rightarrow \mathrm{had}\right)$.
a_{μ}^{W} has small statistical and systematic errors on lattice!

Use these windows as a lattice internal cross-check

Plot from recent theory initiative workshop (https://indico.cern.ch/event/956699/)

Status of consistency of lattice results
Significant difference between published high-precision LQCD results (BMW20 and RBC/UKQCD18) for window with $t_{0}=0.4 \mathrm{fm}$ and $t_{1}=1.0 \mathrm{fm}:$

$$
\begin{align*}
a_{\mathrm{W}}^{\mathrm{BMW} 20} & =207.3(1.4) \times 10^{-10}, \tag{1}\\
a_{\mathrm{W}}^{\mathrm{RBC} / \mathrm{UKQCD} 18} & =202.9(1.4)(0.4) \times 10^{-10} \tag{2}
\end{align*}
$$

and therefore there is a 2.2σ tension

$$
\begin{equation*}
a_{\mathrm{W}}^{\mathrm{BMW} 20}-a_{\mathrm{W}}^{\mathrm{RBC} / \mathrm{UKQCD} 18}=4.4(2.0) \times 10^{-10} \tag{3}
\end{equation*}
$$

Scaled to the total a_{μ}^{HVP} this corresponds to 15×10^{-10} uncertainty on the lattice HVP compared to current 5.5×10^{-10} uncertainty of BMW20.

Urgently need new results for this and other windows. Update by RBC/UKQCD 2018 is in preparation. Hopefully available within two months. More groups to join. Important: different regulators!

Continuum extrapolation - What lattice spacing is fine enough?

Logarithmic corrections to a^{n} behavior: Husung, Marquard, Sommer Eur.Phys.J.C 80 (2020) 3, 200
BMW 20 - light quark window

3.7σ tension between BMW20 and R-ratio for Window! Discuss in second part of talk.

Red line for comparison with next slide

Continuum extrapolation - What lattice spacing is fine enough?

RBC 18 charm quark full a_{μ}

Finest lattice spacing in this extrapolation is green; approximately corresponds to red line in previous plots

Restricting to fixed lattice spacing range can lead to different discretization errors for different UV regulators; systematically independent calculations very desirable!

Aubin et al. 2021 preliminary

Consistency of lattice result with R-ratio

$R(s)=\frac{3 s}{4 \pi \alpha^{2}} \sigma\left(s, e^{+} e^{-} \rightarrow \mathrm{had}\right), \quad C(t)=\frac{1}{12 \pi^{2}} \int_{0}^{\infty} d(\sqrt{s}) R(s) s e^{-\sqrt{s} t}$

Tensions in input data, however, already taken into account in WP20 merger of KNT19 and DHMZ19:

What does tension in windows mean for R-ratio?

If there is a shift in R-ratio, it crucially depends on which energy to understand what the impact on $\Delta \alpha$ and EW precision physics is.

Express Euclidean Windows in time-like region:

$$
\begin{equation*}
a_{\mu}=\int_{0}^{\infty} d s R(s) K(s) \tag{4}
\end{equation*}
$$

and window

$$
\begin{equation*}
a_{\mu}^{\mathrm{W}}=\int_{0}^{\infty} d s R(s) K(s) P(s) \tag{5}
\end{equation*}
$$

Study of windows for different t_{0} and t_{1} can give some energy resolution!

Study of windows for different t_{0} and t_{1} can give some energy resolution!

Study of windows for different t_{0} and t_{1} can give some energy resolution!

Below black line, we can use Lellouche-Lüscher-Meyer formalism to get $R(s)$ from lattice directly! Programs for this by Mainz and RBC/UKQCD.

First results for more windows already available - Lehner \& Meyer 2020

Here: $t_{0}=t, t_{1}=t+0.1 \mathrm{fm}$
No results for QED, SIB, and charm contribution yet available.

First results for more windows already available - Lehner \& Meyer 2020

t_{0} / fm	t_{1} / fm	Δ / fm	$a_{\mu}^{\text {ud,conn.,isospin }} 10^{10}$	$a_{\mu}^{\text {s,conn.,isospin }} 10^{10}$
Total			$657(26)(12)$	$52.83(22)(65)$
0.0	0.1	0.15	$3.60(00)(59)$	$0.81(00)(12)$
0.1	0.2	0.15	$8.649(03)(73)$	$1.666(01)(12)$
0.2	0.3	0.15	$14.27(01)(82)$	$2.57(00)(16)$
0.3	0.4	0.15	$18.67(02)(35)$	$3.448(05)(65)$
0.4	0.5	0.15	$24.617(35)(63)$	$4.170(07)(20)$
0.5	0.6	0.15	$29.47(06)(29)$	$4.666(10)(59)$
0.6	0.7	0.15	$33.85(10)(37)$	$4.866(13)(74)$
0.7	0.8	0.15	$37.71(14)(15)$	$4.799(16)(39)$
0.8	0.9	0.15	$39.55(20)(21)$	$4.505(17)(44)$
0.9	1.0	0.15	$40.77(27)(31)$	$4.058(19)(65)$
1.0	1.1	0.15	$40.86(44)(41)$	$3.527(19)(76)$
1.1	1.2	0.15	$39.81(54)(42)$	$2.973(19)(75)$
1.2	1.3	0.15	$38.10(65)(51)$	$2.441(18)(77)$
1.3	1.4	0.15	$35.54(77)(53)$	$1.955(17)(67)$
1.4	1.5	0.15	$32.70(88)(56)$	$1.534(15)(60)$
1.5	1.6	0.15	$29.50(100)(58)$	$1.181(13)(52)$
1.6	1.7	0.15	$25.51(81)(66)$	$0.894(12)(44)$
1.7	1.8	0.15	$22.20(85)(66)$	$0.667(10)(37)$
1.8	1.9	0.15	$19.18(86)(67)$	$0.491(08)(30)$
1.9	2.0	0.15	$16.59(89)(75)$	$0.357(07)(24)$

0.0	0.2	0.15	$12.25(00)(52)$	$2.48(00)(11)$
0.2	0.4	0.15	$32.95(03)(48)$	$6.02(01)(10)$
0.4	0.6	0.15	$54.08(10)(29)$	$8.837(18)(74)$
0.6	0.8	0.15	$71.55(24)(38)$	$9.666(29)(91)$
0.8	1.0	0.15	$80.33(47)(44)$	$8.56(04)(10)$
0.3	1.0	0.15	$224.6(0.8)(1.1)$	$30.51(08)(25)$
0.3	1.3	0.15	$343.1(2.6)(2.0)$	$39.45(13)(35)$
0.3	1.6	0.15	$441.0(5.1)(3.4)$	$44.12(17)(49)$
0.4	1.0	0.15	$205.97(79)(90)$	$27.06(08)(21)$
0.4	1.3	0.15	$324.6(2.6)(1.9)$	$36.01(13)(36)$
0.4	1.6	0.15	$422.4(5.1)(3.5)$	$40.68(17)(51)$
0.4	1.0	0.05	$216.5(0.8)(6.2)$	$27.9(0.1)(1.1)$
0.4	1.0	0.1	$209.80(77)(79)$	$27.70(08)(21)$
0.4	1.0	0.2	$202.10(82)(91)$	$26.24(08)(21)$

More results expected by other collaborations soon!

What can we expect from LQCD in the coming years?

- More published results with high precision with different regulators for the standard window $t_{0}=0.4 \mathrm{fm}, t_{1}=1.0 \mathrm{fm}$, $\Delta=0.15 \mathrm{fm}$. This will clarify the 2.2σ tension between BMW20 and RBC/UKQCD18 for this quantity.
- More results for different windows, which will give energy resolution to locate possible remaining tension with R-ratio in time-like energy. After this: any impact on $\Delta \alpha$ and EW precision physics?
- More results of complete high-precision HVP results from major lattice collaborations. RBC/UKQCD18 aims for end of this year.

Outlook

- Expect more lattice HVP calculations at few per-mille level precision which allows for proper scrutiny at high precision; For total a_{μ} as well as windows!
- Data-driven dispersive results will improve with expected experimental results from Belle II, BESIII, CMD-3, and SND
- MUonE at CERN will provide complementary measurements for the HVP
- Theory Initiative will publish updated SM predictions as experiment and theory improves; provides platform for cross-checks and establishing new methodology

Thank You!

Papers that directly enter the WP20 SM prediction

- T. Blum et al. Phys. Rev. Lett. 124, no.13, 132002 (2020)
- A. Keshavarzi, D. Nomura and T. Teubner, Phys. Rev. D 101, no.1, 014029 (2020)
- G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub and P. Stoffer, JHEP 03, 101 (2020)
- J. Bijnens, N. Hermansson-Truedsson and A. Rodríguez-Sánchez, Phys. Lett. B 798, 134994 (2019)
- M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Eur. Phys. J. C 80, no.3, 241 (2020) [erratum: Eur. Phys. J. C 80, no.5, 410 (2020)]
- M. Hoferichter, B. L. Hoid and B. Kubis, JHEP 08, 137 (2019)
- A. Gérardin, H. B. Meyer and A. Nyffeler, Phys. Rev. D 100, no.3, 034520 (2019)
- T. Aoyama, T. Kinoshita and M. Nio, Atoms 7, no.1, 28 (2019)
- G. Colangelo, M. Hoferichter and P. Stoffer, JHEP 02, 006 (2019)
- M. Hoferichter, B. L. Hoid, B. Kubis, S. Leupold and S. P. Schneider, JHEP 10, 141 (2018)
- A. Keshavarzi, D. Nomura and T. Teubner, Phys. Rev. D 97, no.11, 114025 (2018)
- M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Eur. Phys. J. C 77, no.12, 827 (2017)
- G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, JHEP 04, 161 (2017)
- P. Masjuan and P. Sanchez-Puertas, Phys. Rev. D 95, no.5, 054026 (2017)
- G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera and P. Stoffer, Phys. Lett. B 735, 90-91 (2014)
- A. Kurz, T. Liu, P. Marquard and M. Steinhauser, Phys. Lett. B 734, 144-147 (2014)
- C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, Phys. Rev. D 88, 053005 (2013)
- T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Phys. Rev. Lett. 109, 111808 (2012)
- K. Melnikov and A. Vainshtein, Phys. Rev. D 70, 113006 (2004)
- A. Czarnecki, W. J. Marciano and A. Vainshtein, Phys. Rev. D 67, 073006 (2003) [erratum: Phys. Rev. D 73, 119901 (2006)]
Results in plots that have appeared after the WP deadline
- E. H. Chao, R. J. Hudspith, A. Gérardin, J. R. Green, H. B. Meyer and K. Ottnad, [arXiv:2104.02632 [hep-lat]].
- Borsanyi, S., Fodor, Z., Guenther, J.N. et al. Leading hadronic contribution to the muon magnetic moment from lattice QCD. Nature (2021)
- C. Lehner and A. S. Meyer, Phys. Rev. D 101, 074515 (2020)

Backup

The anomalous magnetic moment of the muon in the Standard Model

T. Aoyama ${ }^{1,2,3}$, N. Asmussen ${ }^{4}$, M. Benayoun ${ }^{5}$, J. Bijnens ${ }^{6}$, T. Blum ${ }^{7,8}$, M. Bruno ${ }^{9}$, I. Caprini ${ }^{10}$, C. M. Carloni Calame ${ }^{11}$, M. Cè ${ }^{9,12,13}$, G. Colangelo ${ }^{\dagger 14}$, F. Curciarello ${ }^{15,16}$, H. Czyż ${ }^{17}$, I. Danilkin ${ }^{12}$, M. Davier ${ }^{\dagger 18}$, C. T. H. Davies ${ }^{19}$, M. Della Morte ${ }^{20}$, S. I. Eidelman ${ }^{\dagger 21,22}$, A. X. El-Khadra ${ }^{\dagger 23,24}$, A. Gérardin ${ }^{25}$, D. Giusti ${ }^{26,27}$, M. Golterman ${ }^{28}$, Steven Gottlieb ${ }^{29}$, V. Gülpers ${ }^{30}$, F. Hagelstein ${ }^{14}$, M. Hayakawa ${ }^{31,2}$, G. Herdoíza ${ }^{32}$, D. W. Hertzog ${ }^{33}$, A. Hoecker ${ }^{34}$, M. Hoferichter ${ }^{\dagger 14,35}$, B.-L. Hoid ${ }^{36}$, R. J. Hudspith ${ }^{12,13}$, F. Ignatov ${ }^{21}$, T. Izubuchi ${ }^{37,8}$, F. Jegerlehner ${ }^{38}$, L. Jin ${ }^{7,8}$, A. Keshavarzi ${ }^{39}$, T. Kinoshita ${ }^{40,41}$, B. Kubis ${ }^{36}$, A. Kupich ${ }^{21}$, A. Kupść ${ }^{42,43}$, L. Laub ${ }^{14}$, C. Lehner ${ }^{\dagger 26,37}$, L. Lellouch ${ }^{25}$, I. Logashenko ${ }^{21}$, B. Malaescu ${ }^{5}$, K. Maltman ${ }^{44,45}$, M. K. Marinković ${ }^{46,47}$, P. Masjuan ${ }^{48,49}$, A. S. Meyer ${ }^{37}$, H. B. Meyer ${ }^{12,13}$, T. Mibe ${ }^{\dagger 1}$, K. Miura ${ }^{12,13,3}$, S. E. Müller ${ }^{50}$, M. Nio ${ }^{2,51}$, D. Nomura ${ }^{52,53}$, A. Nyffeler ${ }^{\dagger 12}$, V. Pascalutsa ${ }^{12}$, M. Passera ${ }^{54}$, E. Perez del Rio ${ }^{55}$, S. Peris ${ }^{48,49}$, A. Portelli ${ }^{30}$, M. Procura ${ }^{56}$, C. F. Redmer ${ }^{12}$, B. L. Robert ${ }^{\dagger 57}$, P. Sánchez-Puertas ${ }^{49}$, S. Serednyakov ${ }^{21}$, B. Shwartz ${ }^{21}$, S. Simula ${ }^{27}$, D. Stöckinger ${ }^{58}$, H. Stöckinger-Kim ${ }^{58}$, P. Stoffer ${ }^{59}$, T. Teubner ${ }^{\dagger 60}$, R. Van de Water ${ }^{24}$, M. Vanderhaeghen ${ }^{12,13}$, G. Venanzoni ${ }^{61}$, G. von Hippel ${ }^{12}$, H. Wittig ${ }^{12,13}$, Z. Zhang ${ }^{18}$,
M. N. Achasov ${ }^{21}$, A. Bashir ${ }^{62}$, N. Cardoso ${ }^{47}$, B. Chakraborty ${ }^{63}$, E.-H. Chao ${ }^{12}$, J. Charles ${ }^{25}$, A. Crivellin ${ }^{64,65}$, O. Deineka ${ }^{12}$, A. Denig ${ }^{12,13}$, C. DeTar ${ }^{66}$, C. A. Dominguez ${ }^{67}$, A. E. Dorokhov ${ }^{68}$, V. P. Druzhinin ${ }^{21}$, G. Eichmann ${ }^{69,47}$, M. Fael 70, C. S. Fischer ${ }^{71}$, E. Gámiz ${ }^{72}$, Z. Gelzer ${ }^{23}$, J. R. Green ${ }^{9}$, S. Guellati-Khelifa ${ }^{73}$, D. Hatton ${ }^{19}$, N. Hermansson-Truedsson ${ }^{14}$, S. Holz ${ }^{36}$, B. Hörz ${ }^{74}$, M. Knecht ${ }^{25}$, J. Koponen ${ }^{1}$, A. S. Kronfeld ${ }^{24}$, J. Laiho ${ }^{75}$, S. Leupold ${ }^{42}$, P. B. Mackenzie ${ }^{24}$, W. J. Marciano ${ }^{37}$, C. McNeile ${ }^{76}$, D. Mohler ${ }^{12,13}$, J. Monnard ${ }^{14}$, E. T. Neil ${ }^{77}$, A. V. Nesterenko ${ }^{68}$, K. Ottnad ${ }^{12}$, V. Pauk ${ }^{12}$, A. E. Radzhabov ${ }^{78}$, E. de Rafae ${ }^{25}$, K. Raya ${ }^{79}$, A. Risch ${ }^{12}$, A. Rodríguez-Sánchez ${ }^{6}$, P. Roig ${ }^{80}$, T. San José ${ }^{12,13}$, E. P. Solodov ${ }^{21}$, R. Sugar ${ }^{81}$, K. Yu. Todyshev ${ }^{21}$, A. Vainshtein ${ }^{82}$, A. Vaquero Avilés-Casco ${ }^{66}$, E. Weil ${ }^{71}$, J. Wilhelm ${ }^{12}$, R. Williams ${ }^{71}$, A. S. Zhevlakov ${ }^{78}$

$$
a_{\mu}^{\mathrm{SM}}=a_{\mu}^{\mathrm{QED}}+a_{\mu}^{\mathrm{Weak}}+a_{\mu}^{\mathrm{HVP}}+a_{\mu}^{\mathrm{HLbL}}=116591810(43) \times 10^{-11}
$$

BNL-E821

μ-e elastic scattering to measure $a_{\mu}^{\text {HVP }}$
LOI June 2019 [P. Banerjeei et al, arXiv:2004.13663, Eur.Phys.J.C 80 (2020)]

- use CERN M2 muon beam (150 GeV)
- Physics beyond colliders program @ CERN
- LOI June 2019
- pilot run in 2021

- full apparatus in 2023-2024

Contribution	$\mathrm{PdRV}(09)[471]$	$\mathrm{N} / \mathrm{JN}(09)[472,573]$	$\mathrm{J}(17)[27]$	Our estimate
$\pi^{0}, \eta, \eta^{\prime}$-poles	$114(13)$	$99(16)$	$95.45(12.40)$	$93.8(4.0)$
π, K-loops/boxes	$-19(19)$	$-19(13)$	$-20(5)$	$-16.4(2)$
S-wave $\pi \pi$ rescattering	$-7(7)$	$-7(2)$	$-5.98(1.20)$	$-8(1)$
subtotal	$88(24)$	$73(21)$	$69.5(13.4)$	$69.4(4.1)$
scalars	-	-	-	$-1(3)$
tensors	-	-	$1.1(1)$	$6(22(5)$
axial vectors	$15(10)$	$21(3)$	$20(4)$	$15(10)$
u, d, s-loops / short-distance	-	-	$2.3(2)$	$3(1)$
c-loop	2.3	$116(39)$	$100.4(28.2)$	$92(19)$
total	$105(26)$			$6(6)$

Dispersive method - Overview

$$
\begin{aligned}
& e^{+} e^{-} \rightarrow \operatorname{hadrons}(\gamma) \\
& J_{\mu}=V_{\mu}^{I=1, l_{3}=0}+V_{\mu}^{I=0, l_{3}=0}
\end{aligned}
$$

$\tau \rightarrow \nu$ hadrons (γ)

$$
J_{\mu}=V_{\mu}^{I=1, l_{3}= \pm 1}-A_{\mu}^{I=1, l_{3}= \pm 1}
$$

Knowledge of isospin-breaking corrections and separation of vector and axial-vector components needed to use τ decay data.

Can have both energy-scan and ISR setup.

Experiment	$2 m_{\pi^{ \pm}}-0.36 \mathrm{GeV}$	
	$9.80 \pm 0.40 \pm 0.05 \pm 0.07$	$0.36-1.8 \mathrm{GeV}$
ALEPH	$9.65 \pm 0.42 \pm 0.17 \pm 0.07$	$501.2 \pm 4.5 \pm 2.7 \pm 1.9$
CLEO	$11.31 \pm 0.76 \pm 0.15 \pm 0.07$	$504.5 \pm 5.4 \pm 8.8 \pm 1.9$
OPAL	$9.74 \pm 0.28 \pm 0.15 \pm 0.07$	$515.6 \pm 9.9 \pm 6.9 \pm 1.9$
Belle	$9.82 \pm 0.13 \pm 0.04 \pm 0.07$	$503.9 \pm 1.9 \pm 7.8 \pm 1.9$
Combined		$506.4 \pm 1.9 \pm 2.2 \pm 1.9$

Davier et al. 2013: $a_{\mu}^{\mathrm{had}, \mathrm{LO}}[\pi \pi, \tau]=516.2(3.5) \times 10^{-10}\left(2 m_{\pi}^{ \pm}-1.8 \mathrm{GeV}\right)$
Compare to $e^{+} e^{-}$:
$-a_{\mu}^{\mathrm{had}, \mathrm{LO}}\left[\pi \pi, e^{+} e^{-}\right]=507.1(2.6) \times 10^{-10}\left(\mathrm{DHMZ17}, 2 m_{\pi}^{ \pm}-1.8 \mathrm{GeV}\right)$

- $a_{\mu}^{\mathrm{had}, \mathrm{LO}}\left[\pi \pi, e^{+} e^{-}\right]=503.7(2.0) \times 10^{-10}\left(\mathrm{KNT} 18,2 m_{\pi}^{ \pm}-1.937 \mathrm{GeV}\right)$

Here treatment of isospin-breaking to relate matrix elements of $V_{\mu}^{I=1, l_{3}=1}$ to $V_{\mu}^{I=1, l_{3}=0}$ crucial. Progress towards a first-principles calculation from LQCD+QED (arXiv:1811.00508).

Analysis of the Hadronic Light-by-Light Contributions to the Muon $g-2$

Johan Bijnens, Elisabetta Pallante, Joaquim Prades
We calculate the hadronic light-by-light contributions to the muon $g-2$. We use both $1 / N_{c}$ and chiral counting to organize the calculation. Then we calculate the leading and next-to-leading order in the $1 / N_{c}$ expansion low energy contributions using the Extended Nambu--Jona-Lasinio model as hadronic model. We do that to all orders in the external momenta and quark masses expansion. Although the hadronic light-by-light contributions to muon $g-2$ are not saturated by these low energy contributions we estimate them conservatively. A detailed analysis of the different hadronic light-by-light contributions to muon $g-2$ is done. The dominant contribution is the twice anomalous pseudoscalar exchange diagram. The final result we get is $a_{\mu}^{\text {light-by-light }}=(-9.2 \pm 3.2) \cdot 10^{-10}$. This is between two and three times the expected experimental uncertainty at the forthcoming BNL muon $g-2$ experiment.

Add $a^{-1}=2.77 \mathrm{GeV}$ lattice spacing

- Third lattice spacing for strange data $\left(a^{-1}=2.77 \mathrm{GeV}\right.$ with $m_{\pi}=234 \mathrm{MeV}$ with sea light-quark mass corrected from global fit):

- For light quark need new ensemble at physical pion mass. Data still being generated on Summit in USA and Booster in Germany ($a^{-1}=2.77 \mathrm{GeV}$ with $m_{\pi}=139 \mathrm{MeV}$)

