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Introduction & Motivation

I Explore the potential of Graph Neural Networks (GNNs) to
improve the performance of high-dimensional effective field
theory parameter fits.

I Focusing on a SMEFT analysis of pp → tt̄ production,
including top decays, where the linear effective field
deformation is parametrised by thirteen independent Wilson
coefficients.

I The application of GNNs allows us to condense the
multidimensional phase space information available for the
discrimination of BSM effects from the SM expectation by
considering all available final state correlations directly.



Effective interactions for top pair production with
leptonic decays

I Any differential cross section can be written as

dσ = dσSM + Ci
Λ2 dσ(1)

i + CiCj
Λ4 dσ(2)

ij , (1)

where the Ci are the Wilson Coefficients (WCs) and Λ is the
generic scale of new physics (NP).

I We focus on EFT parameter constraints for the top sector, in
particular, we focus on pp → tt̄ production with semi-leptonic
top decays
pp → tt̄ → `bb̄j + MET .
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Figure: Representative diagram for the input graph and the network
architecture.

I Nodes: Final state reconstructed particles.
I Edges: The final states are connected to the ones of the

reconstructed objects from which they are derived.
I Node features: Each node is associated with a feature vector

[pT , η, φ,E ,m,PID],



Graph Neural Network with Edge Convolution
During the message-passing phase a message ~m (l)

ij is calculated
between the two nodes by the following operation,

~m (l)
ij = ~M (l)(~x (l)

i , ~x (l)
j ,~e (l)

ij ) . (2)

Once the messages is calculated in a layer, each node feature is
updated using an aggregation function

~x (l+1)
i = ~A(~x (l)

i , {~m (l)
ij | j ∈ N (i)}) , (3)

where N (i) are the nodes which are connected to ith node and ~A
is the permutation invariant function. The edge convolution
operation is defined with the following message-passing function

~x (l+1)
i = 1

|N (i)|
∑

j∈N (i)
ReLU

(
(~x (l)

j − ~x (l)
i ) + (~x (l)

i )
)
, (4)



GNN-improved Wilson coefficient constraints

I For illustration purposes, we first limit our study to a
three-class classification problem.

I The network output in this example returns the probability of
an event belonging to each of the three classes. An event is
then assigned to the EFT/SM class with the greatest
corresponding probability. We reflect this in our choice of
operators for this section:

O(8)ii33
qu = (q̄iγµT Aqi )(ū3γ

µT Au3) ,
O(3)ii33

qq = (q̄iγµτ
Iqi )(q̄3γ

µτ Iq3) .
(5)



Network performance and Output
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Figure: The probabilities calculated for each event to be a result of each
SMEFT insertion is shown. On the right the Receiver Operator
Characteristic (ROC) curves are shown. We calculate these in a
one-vs-rest scheme for each operator.



Two-dimensional histograms for each contribution
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Figure: Example two-dimensional
histograms for each contribution,
normalised to the cross section
rate.



Optimised χ2 fit.
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Figure: WC constraint contours at the 95% C.L. from χ2 fitting; in black
from the data of the baseline selection of which also passes the network
requirements. The left plot shows the contours from cuts on the NN
scores at the optimal value of these score cuts, with the analysis
performed using pT (b1) distributions. The right plot shows the BSM
score cut as in the left plot, along with the contour from the 2D score
histogram of (with no score cuts) analysis.



ROC for all operators
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Figure: ROC curves for the scenario where multi-class classification is
performed on thirteen SMEFT operators and the SM.



Improvement on the Wilson coefficient
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Figure: Representative relative
improvement (decrease in the 2σ
Wilson coefficient interval) over
the individual (orange) and
profiled (blue) operator
constraints quoted in by imposing
cuts on the ML score. Bounds
were obtained at an integrated
luminosity of 3/ab.



Results: Improved Individual and Profiled bounds on
Wilson coefficient

Figure: Maximum improvements in 2σ bounds via a cut on the ML score.



Summary and Outlook

I We have focused employing on GNNs for EFT limit setting.

I GNNs are particularly motivated approaches for this purpose
as they allow us to directly reflect the graph structure which is
imposed by EFT interactions in the classification and eventual
limit setting.

I We find that large improvements of the sensitivity become
achievable when correlations are not yet fully exploited in the
inclusive base selection.



Thank you


