

Relativistic Freeze-in with Scalar Dark Matter in Gauged B-L Model and Electroweak Symmetry Breaking.

Based on work with M.Mitra and P.Bandyopadhyay

[JHEP 05 (2021) 150]

Abhishek Roy

(Institute Of Physics, Bhubaneswar)

Talk Plan

- Introduction
- > U(1)_{B-L} model
- Results based on U(1)_{B-L} model
- Conclusion

Zoo of Dark Matter Candidates

$U(1)_{B-L}$ to explain DM and neutrino mass

Free paramter but choice of its decide whether DM will be FIMP or WIMP

The complete Lagrangian for the model:-

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{DM} + (D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi) - \frac{1}{4}F_{BL\mu\nu}F_{BL}^{\mu\nu} + \frac{i}{2}\bar{N}_{i}\gamma^{\mu}D_{\mu}N_{i} - V(\Phi, S)$$
$$\left(\sum_{i=1}^{3}\lambda_{NS}S\bar{N}_{i}^{c}N_{i} + \sum_{i,j=1}^{3}y'_{N,ij}\bar{L}_{i}\tilde{\Phi}N_{j} + h.c.\right)$$

$$V(\Phi, \mathcal{S}) = \mu_S^2 \mathcal{S}^{\dagger} \mathcal{S} + \mu_h^2 \Phi^{\dagger} \Phi + \lambda_S (\mathcal{S}^{\dagger} \mathcal{S})^2 + \lambda_h (\Phi^{\dagger} \Phi)^2 + \lambda_{Sh} (\Phi^{\dagger} \Phi) (\mathcal{S}^{\dagger} \mathcal{S})$$

 $\mathcal{L}_{DM} = (D^{\mu}\phi_D)^{\dagger}(D_{\mu}\phi_D) - \mu_D^2(\phi_D^{\dagger}\phi_D) - \lambda_D (\phi_D^{\dagger}\phi_D)^2 - \lambda_{Dh} (\phi_D^{\dagger}\phi_D)(\Phi^{\dagger}\Phi) - \lambda_{SD} (\phi_D^{\dagger}\phi_D)(\mathcal{S}^{\dagger}\mathcal{S})$

$$D_{\mu}X = (\partial_{\mu} + i g_{BL} Y_{B-L}(X) Z_{BL\mu})X$$

Gauge coupling B-L charge

Dark Matter(DM) Mass:-

 $q_{DM} \neq \pm 2n$ ($n \in \mathbb{Z}$ and $n \leq 4$)

$$m_{\phi_D}^2 = \mu_D^2 + \frac{\lambda_{Dh}v^2}{2} + \frac{\lambda_{SD}v_{BL}^2}{2}.$$

$$\lambda_{SD}, \lambda_{Dh} \sim 10^{-10} - 10^{-13} \longrightarrow \text{To accommodate } \phi_D \text{ as non-thermal DM}$$

To a good approximation, we identify DM mass is governed by the bare mass term.

Stability of DM:- DM candidate ϕ_D has charge q_{DM} under $U(1)_{B-L}$

 $\blacktriangleright \phi_D$ can be the viable stable DM candidate

Thermal Corrections

- At high temperature, the scalar potential gets modified by the thermal corrections.
- Effect is captured by the thermal mass which amount to the replacements,

$$\begin{array}{c} \mu_s^2 \rightarrow \mu_s^2 + c_s T^2 \ , \ \mu_h^2 \rightarrow \mu_h^2 + c_h T^2 \\ V(\Phi, \mathcal{S}) = \mu_S^2 \mathcal{S}^{\dagger} \mathcal{S} + \mu_h^2 \Phi^{\dagger} \Phi + \lambda_S (\mathcal{S}^{\dagger} \mathcal{S})^2 + \lambda_h (\Phi^{\dagger} \Phi)^2 + \lambda_{Sh} (\Phi^{\dagger} \Phi) (\mathcal{S}^{\dagger} \mathcal{S}) \end{array}$$

where

$$c_h \simeq \frac{3}{16}g^2 + \frac{1}{16}g'^2 + \frac{1}{4}y_t^2 + \frac{1}{2}\lambda_h ,$$

$$c_s = \frac{1}{4}\lambda_s + \frac{1}{6}\lambda_{hs}$$

g, g' are the SM gauge couplings and y_t is top-quark Yukawa coupling.

Possible production modes of ϕ_D

 $2 \rightarrow 4$

9

To study relativistic freeze-in compels us to choose very small q_{DM}

The Boltzmann eqn. for the ϕ_D via gauge interaction is,

$$\frac{dY_{\phi_D}}{dz} = \frac{z^4}{s(m_{\phi_DM})H(m_{\phi_DM})} [\Gamma_{Z_{BL}\to\phi_D^*\phi_D} + \sum_{f=N,t,b} \Gamma_{\bar{f}f\to\phi_D^*\phi_D}].$$

The relic abundance of ϕ_D is given by,

$$\Omega h^2(Z_{BL}) = \frac{m_{\phi_{DM}} s_0 Y_{\phi_D(\infty)}}{\rho_c / h^2}.$$

Parameters chosen are $m_{\phi_{DM}}=1$ GeV, $m_{Z_{BL}}=5.5$ TeV, $m_S=200$ GeV

We choose $q_{DM} \approx 10^{-12}$ represented by the red star in our analysis such production from gauge interaction is negligible.

Parameters chosen are $m_{\phi_{DM}}=1$ GeV, $m_{Z_{BL}}=5.5$ TeV, $m_S=200$ GeV

$$\frac{\Gamma_{S \to \phi_D^* \phi_D}}{\Gamma_{Z_{BL} \to \phi_D^* \phi_D}} \propto \frac{\lambda_{SD}^2 m_{Z_{BL}}}{4g_{BL}^4 q_{DM}^2 m_S}$$

Different freeze-in scenarios depending on primary production mechanism.

The Boltzmann equation is given by,

$$\begin{split} \frac{dY_{\phi_D}}{dz} &= \frac{z^4}{sH} \Big[(4 - 3\theta(z - z_{EW})) \Gamma_{hh \to \phi_D^{\dagger} \phi_D} + \Gamma_{SS \to \phi_D^{\dagger} \phi_D} + \Gamma_{NN \to \phi_D^{\dagger} \phi_D} + \Gamma_{S \to \phi_D^{\dagger} \phi_D} + \theta(z - z_{EW}) \Big[\Gamma_{h \to \phi_D^{\dagger} \phi_D} + \Gamma_{hS \to \phi_D^{\dagger} \phi_$$

(SM Higgs boson annhilation dominant)

Freeze-in Scenario 1:-

Scenario	Masses in GeV			Couplings					
	m_S	m_N	$m_{\phi_{DM}}$	y_N	λ_{SD}	λ_{Sh}	λ_{NS}	λ_{Dh}	
1	200	300	250	10^{-7}	5.0×10^{-12}	6×10^{-6}	0.053	1.6×10^{-11}	

Freeze-in Scenario 2:-

(BSM Higgs boson annhilation dominant)

Scenario	Masses in GeV			Couplings					
	$\mid m_S \mid$	m_N	$m_{\phi_{DM}}$	y_N	λ_{SD}	λ_{Sh}	λ_{NS}	λ_{Dh}	
2	200	300	150	10^{-7}	3.0×10^{-11}	6×10^{-6}	0.053	7.5×10^{-12}	

Freeze-in Scenario 3:-

(BSM Higgs boson decay dominant)

Scenario	Masses in GeV			Couplings					
	m_S	m_N	$m_{\phi_{DM}}$	y_N	λ_{SD}	λ_{Sh}	λ_{NS}	λ_{Dh}	
3	200	300	80	10^{-7}	1.28×10^{-13}	6×10^{-6}	0.053	1.414×10^{-12}	

Freeze-in Scenario 4:-

(BSM Higgs boson decay dominant)

Scenario	Ma	asses in	n GeV	Couplings					
	m_S	m_N	$m_{\phi_{DM}}$	y_N	λ_{SD}	λ_{Sh}	λ_{NS}	λ_{Dh}	
4	200	300	1	10^{-7}	6.65×10^{-13}	6×10^{-6}	0.053	8.6×10^{-12}	

Freeze-in Scenario 5:-

(SM Higgs boson decay dominant)

Scenario	Masses in GeV			Couplings					
	$\mid m_S$	m_N	$m_{\phi_{DM}}$	y_N	λ_{SD}	λ_{Sh}	λ_{NS}	λ_{Dh}	
5	200	300	1	10^{-7}	3.6×10^{-13}	6×10^{-6}	0.053	1.24×10^{-11}	

$$\frac{\Gamma_{h \to \phi_D^* \phi_D}^{BE}}{\Gamma_{h \to \phi_D^* \phi_D}^{MB}} = \frac{K_1(\frac{m_h}{T}) + 0.5K_1(\frac{2m_h}{T}) + 0.33K_1(\frac{3m_h}{T})..}{K_1(\frac{m_h}{T})}$$

At EWSB, m_{h} = 10 GeV, T_{EW} = 160 GeV

$$\frac{\Gamma_{h \to \phi_D^* \phi_D}^{BE}}{\Gamma_{h \to \phi_D^* \phi_D}^{MB}} = 1.472$$

19

Conclusion

- Gauged $U(1)_{B-1}$ can simultaneously explain **neutrino mixing** and **dark** matter.
- The dark matter could be either **WIMP** or **FIMP** type in this model depending upon the choice of q_{DM} .
- Comparison between the relic density obtained by using BE/FD statistics, with the one obtained by using MB statistics
 - Annihilaton dominated scenarios (1,2) :- \$\mathcal{R} = \frac{\Omega_{BE}h^2}{\Omega_{MB}h^2} \sim 1.42 1.62\$
 Decay dominated scenarios (3,4,5):- \$\mathcal{R} = \frac{\Omega_{BE}h^2}{\Omega_{MB}h^2} < 1.04\$

 - Quantum statistics along thermal correction is necessary to capture enhancement effect in dark matter relic density in freeze-in scenarios

