Self-interacting dark matter from late decays and the H_0 tension

Krzysztof Jodłowski

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research ŚWIERK

10.11.2021

Anomalies 2021

Based on:

A. Hryczuk, KJ, 2006.16139

ACDM problems

- <u>core-cusp</u>: CDM simulations indicate $\rho_{DM} \sim 1/r$ while observations suggest $\rho_{DM} \sim \text{const}$
- <u>too-big to fail</u>: observed Milky Way satellites are less massive than predicted
- <u>diversity</u>: disk galaxies with the same max circular velocity exhibit large scatter in rotation velocities in the interior

ACDM problems

• <u>Hubble tension</u>: H_0 inferred from early Universe (CMB) smaller by ~ 4σ compared to late Universe direct measurements (distance ladder)

- $\sigma_8 \text{ tension:}$ amplitude of density fluctuation inferred from Planck is larger by $\sim 3\sigma$ compared to weak lensing surveys

3

- <u>core-cusp</u>: CDM simulations
 indicate $\rho_{DM} \sim 1/r$ while
 observations suggest
 $\rho_{DM} \sim \text{const}$
- <u>too-big to fail</u>: observed Milky Way satellites are less massive than predicted
- <u>diversity</u>: disk galaxies with the same max circular velocity exhibit large scatter in rotation velocities in the interior

Going beyond CDM

small scale

- warm or <u>self-interacting DM</u> allows one to solve small scale problems
- velocity-dependent SIDM is wellmotivated and seems to fit the data well
- self-interactions due to exchange of light mediator → strong constraints from e.g. Bullet Cluster
- CMB rules out light mediator that is in thermal equilibrium with SM

Going beyond CDM

small scale

- warm or <u>self-interacting DM</u> allows one to solve small scale problems
- velocity-dependent SIDM is wellmotivated and seems to fit the data well
- self-interactions due to exchange of light mediator → strong constraints from e.g. Bullet Cluster
- CMB rules out light mediator that is in thermal equilibrium with SM

large scale

• It is well-known $\stackrel{\text{Chudaykin et al. }1711.06738,}{\text{Bringmann et al. }1803.03644,...}$ that DM transferring energy to radiation due to *late annihilations or decays increases* $H_0 \rightarrow$ Hubble tension solution (?)

Inferring H_0 from CMB

Fig. by M. Millea. See also extensive discussion in Knox, Millea 1908.03663.

Universe with more matter ω_m will have smaller sound horizon r_s while angular size of LSS θ_s will be fixed $\rightarrow H_0$ increases.

Decaying Cold Dark Matter model (DCDM) 1) Fraction f of CDM decays into dark radiation, 2) with decay rate $1/\tau$.

DCDM and Hubble tension

CMB generically disfavours large DCDM contribution which is necessary to go from $H_0 \sim 67$ km/s/Mpc (Λ CDM) to $H_0 \sim 72$ km/s/Mpc for decays taking place before recombination.

Poulin, Lesgourges, Serpico 1606.02073

DCDM and Hubble tension

CMB generically disfavours large DCDM contribution which is oosterior necessary to go from $H_0 \sim 67$ km/s/Mpc (Λ CDM) to $H_0 \sim 72$ km/s/Mpc for decays taking place before recombination. 0.01 f_{dcdm} Loeb et al. <u>1903.06220</u> - very late decays $\tau \gtrsim 13$ Gyr with $f_{DCDM} \sim 0.15$ evade those constraints while leading to *log*10(٤) الم $H_0 \sim 72$ km/s/Mpc. 2.2 0.

Further works Haridasu, Viel 2004.07709 Clark et al. 2006.03678 showed other observables constrain such scenario further shifting best fit to $f_{DCDM} \sim 0.08$ and $H_0 \sim 69$ km/s/Mpc.

SIDM from DCDM

Thermally produced ~1-100 GeV SIDM χ is strongly constrained by CMB (in case of unstable mediator A) or by requiring that $\Omega_{DM}h^2 \sim 0.1$ which excludes light mediator coupled to SM.

SIDM from DCDM

Thermally produced ~1-100 GeV SIDM χ is strongly constrained by CMB (in case of unstable mediator A) or by requiring that $\Omega_{DM}h^2 \sim 0.1$ which excludes light mediator coupled to SM.

Consider WIMP-like particle S which obtains correct relic density due to freeze-out. Assume S is also coupled to Dark Sector particles - χ and A.

SIDM from DCDM

Thermally produced ~1-100 GeV SIDM χ is strongly constrained by CMB (in case of unstable mediator A) or by requiring that $\Omega_{DM}h^2 \sim 0.1$ which excludes light mediator coupled to SM.

Consider WIMP-like particle S which obtains correct relic density due to freeze-out. Assume S is also coupled to Dark Sector particles - χ and A.

$$\begin{array}{rcl} L_{int} \supset \lambda_{HS} S^2 H^{\dagger} H &+ & \epsilon S \bar{\chi} \chi &+ & g A^{\mu} \bar{\chi} \gamma_{\mu} \chi \\ & & \text{freeze-out} & & \text{decay} & & \text{self-interactions} \end{array}$$

S decays

- LO: $\Gamma_{S \to \chi \chi} \propto \epsilon^2$,
- NLO:
 - $\Gamma_{S \to \chi \chi A} \propto \epsilon^2 g^2$,
 - $\Gamma_{S \to AA} \propto \epsilon^2 g^4$.

Amount of injected radiation depends on g, as $BR(S \to AA) \propto g^4$ and $BR(S \to \chi\chi A) \propto g^2$. $\longrightarrow g \sim 0.1$

Lifetime τ_S essentially fixed by $\epsilon \leq 10^{-12}$.

In order not to spoil structure formation:

 $v_{kick} \approx 1 - \frac{2m_{\chi}}{m_S} \lesssim 10^{-3}$

One can view this model as an extension of the usual Higgs portal to weaker couplings - smaller than in freeze-in.

SIDM from DCDM and Hubble tension

We performed cosmological fit using MontePython in regimes of *long* and short τ_S . We used combined datasets from: i) Planck 2018 CMB, ii) BAO data from BOSS survey, iii) local measurements from Hubble Space Telescope and iv) the galaxy cluster counts from Planck catalogue.

SIDM from DCDM and Hubble tension

SIDM from DCDM and Hubble tension

Cosmological impact of SIDM produced from DCDM in different τ_S regimes

Cosmological impact of SIDM produced from DCDM in different τ_S regimes

Conclusions

- Novel SIDM production mechanism based on decays of unstable dark sector state which avoids otherwise stringent constraints.
- The mechanism naturally leads to transferring O(0.05) of the dark matter energy density to radiation. If the decay happens after recombination, it mildly alleviates the H_0 tension.
- We studied realization of the mechanism within Higgs portal DM model and identified large regions of parameter space that lead to interesting astrophysical and cosmological behaviour.

Backup

XENON1T anomaly

We assumed absolutely stable mediator, however *sufficiently long lived mediator will not influence any of the presented results.*

Recent report of unaccounted excess of events in electronic recoils XENON Collaboration 2006.09721 could be due to New Physics, e.g., absorption of light, very-weakly interacting dark photon G. Alonso-Ivarez, et al. 2006.11243.

The best fit from this work can easily be included in our model.