Reappraisal of minimally flavoured Z' scenario Avirup Shaw

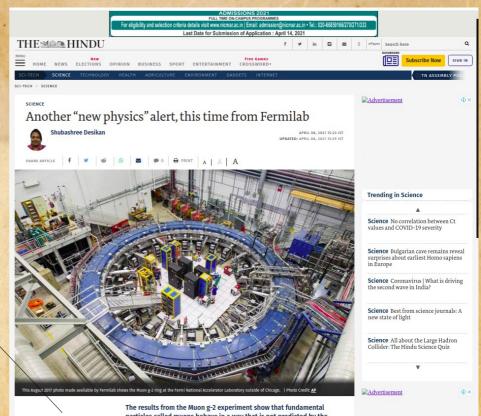
Indian Institute of Technology Kharagpur

In Collaboration with Tirtha Sankar Ray

Anomalies 2021 IIT-Hyderabad

2021 is really promising for New Physics

(07/04/2021)


The first result from the **Muon g-2** experiment at **Fermilab** confirms the result from the experiment performed at Brookhaven National Lab two decades ago. The result shows 4.2 standard deviations from the SM prediction

Phys. Rev. Lett. 126 (2021) 141801

(22/03/2021)

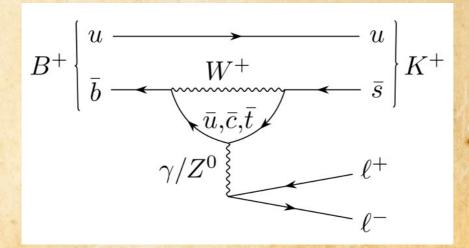
LHCb detector at CERN's Large Hadron Collider presents evidence for the breaking of lepton universality in B-meson decays, with a significance of 3.1 standard deviations

arXiv : 2103.11769

Standard Model of particle physics

Some Other Observables

In this category, there exist some other experimental data e.g., (g - 2)_e, R_K*, etc. which also provide different opportunities to study BSM physics
The data of angular observables (e.g., P₂, P'₅) of the decay mode B⁺ → K^{+*} µ⁺ µ⁻ (Phys.Rev.Lett. 126 (2021) 16) show discrepancy from the SM prediction

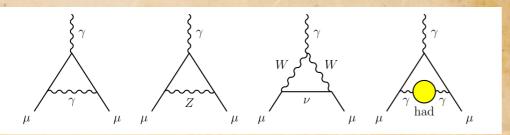

•Overall these experimental results strongly indicate the presence of *New Physics*

$b \rightarrow s \ \ell^+ \ell^-$ flavour physics observables: R_K is one of them

$$R_K = \frac{\text{Br}(B^+ \to K^+ \mu^+ \mu^-)}{\text{Br}(B^+ \to K^+ e^+ e^-)}$$

In SM it's value should be \approx Unity. Recent experimental data is $0.864^{+0.044}_{-0.041}$. This shows the violation of lepton flavour universality

- → At the quark level the decays are governed by $b \rightarrow s \ell^+ \ell^-$ transitions
- In SM it does not arise at tree level but occur at one loop level and hence they are highly suppressed and a good probe for new physics
- → For R_{K} : in general required Wilson Coefficients (WCs) are C_{9} , C_{10} etc


Anomalous magnetic moment of muon

The Dirac equation predicts a muon magnetic moment

$$\vec{M} = g_{\mu} \frac{e}{2m_{\mu}} \vec{S}$$

Quantum loop effects lead to a small calculable deviation from gyromagnetic ratio g_{μ} (= 2), parameterized by the *anomalous magnetic moment*

$$a_{\mu} \equiv \frac{g_{\mu} - 2}{2}$$

SM prediction = $(116591810 \pm 43) \times 10^{-11}$, over the 20 Years it deviates from experimental data by 3.5 σ

Recent data (world average) of muon g-2 is = $(116592061 \pm 41) \times 10^{-11}$. It deviates by 4.2 σ from SM prediction and the deviation is

$$\Delta a_{\mu} = (251 \pm 59) \times 10^{-11}$$

Effective Z' scenario approach

- We have proposed some effective field theoretical frameworks containing a neutral Z´ boson which has flavour violating couplings with ordinary leptons and quarks
- Type-I: Electron and muon have only the vectorial interaction with the Z´boson

$$\mathcal{L} \in \bar{l}\gamma^{\alpha}(a_{Z'}^l)l \ Z'_{\alpha}$$

• Type-II: Electron and muon have both the vectorial and axial vectorial interaction (but different in strengths) with the **Z**´boson

$$\mathcal{L} \in \bar{l}\gamma^{\alpha}(a_{Z'}^l + \gamma^5 b_{Z'}^l) l \ Z'_{\alpha}$$

• Type-III: Electron has axial vectorial (with strength $b_{z'}^e$) and muon has vectorial interaction (with strength $a_{z'}^\mu$) with Z' boson. Moreover, in order to resolve the $b \to s \ell^+ \ell^-$ anomalies we have introduced a tree level interaction b-s-Z' with coupling strength g_{bs}

$$\mathcal{L} \in \left[g_{bs}(\bar{b}\gamma^{\alpha}P_{L}s) + \bar{\mu}\gamma^{\alpha}a_{Z'}^{\mu}\mu + \bar{e}\gamma^{\alpha}\gamma^{5}b_{Z'}^{e}e\right]Z_{\alpha}'$$

New Physics Contributions

NP contribution to (g-2), is

$$\Delta a_l^{Z'} = \frac{1}{8\pi^2} \left((a_{Z'}^l)^2 F_{a_{Z'}^l}(R_{Z'}) - (b_{Z'}^l)^2 F_{b_{Z'}^l}(R_{Z'})) \right)^{\text{with}}$$

$$R_{Z'} \equiv M_{Z'}^2 / m_l^2$$

and

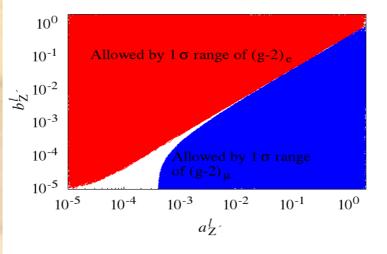
$$F_{a_{Z'}^{l}}(R_{Z'}) = \int_{0}^{1} dx \, \frac{2x(1-x)^{2}}{(1-x)^{2} + R_{Z'}x}$$
$$F_{b_{Z'}^{l}}(R_{Z'}) = \int_{0}^{1} dx \, \frac{2x(1-x)(3+x)}{(1-x)^{2} + R_{Z'}x}$$

New Physics Contributions Effective Hamiltonian for *b* → *sl*+*l*-transition

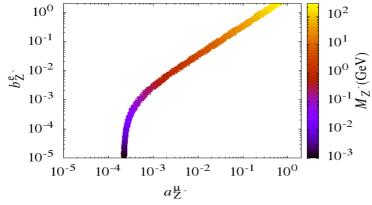
 $\mathcal{H}_{\rm eff}(b \to sl^+l^-) = -\frac{G_{\rm F}}{\sqrt{2}} V_{ts}^* V_{tb} \left[C_{9V}(\mathcal{M})(\bar{s}\gamma^{\alpha}P_Lb)(\bar{l}\gamma_{\alpha}l) + C_{10A}(\mathcal{M})(\bar{s}\gamma^{\alpha}P_Lb)(\bar{l}\gamma_{\alpha}\gamma_5l) \right]$

For $b \rightarrow s \mu^+ \mu^-$ transition, the NP contribution to the WC C_9 is

$$C_9^{\rm NP} = \frac{\sqrt{2\pi}}{G_F \alpha V_{ts}^* V_{tb}} \frac{g_{bs} a_{Z'}^{\mu}}{M_{Z'}^2}$$


For $b \rightarrow s \ e^+e^-$ transition, the NP contribution to the WC C_{10} is $C_{10}^{NP} = \frac{\sqrt{2\pi}}{G_E \alpha V_*^* V_{th}} \frac{g_{bs} b_{Z'}^e}{M_{T}^2}$

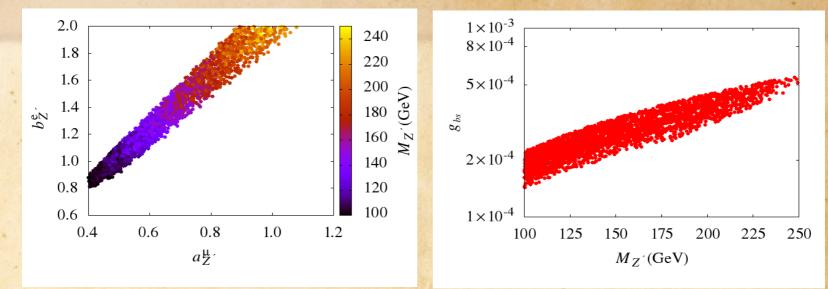
With these WCs and appropriate form factors we evaluate the respective decay widths, and consequently we calculate NP contribution to several observables


Models and Results

Type-I: Can't satisfy $(g-2)_{\mu}$ and $(g-2)_{e}$ with negative value of Δa_{e} simultaneously

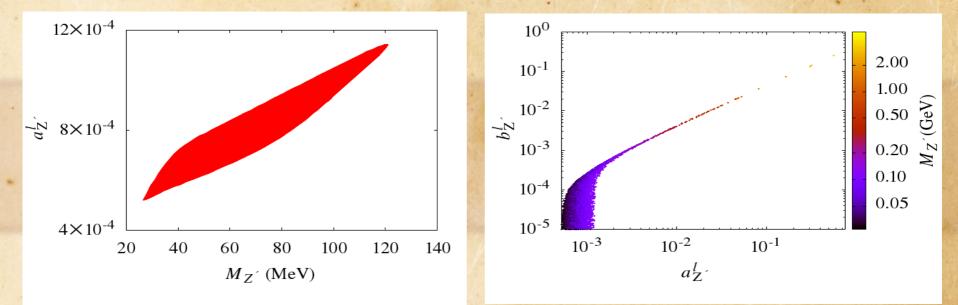
Type-II: Can't satisfy $(g-2)_{\mu}$ and $(g-2)_{e}$ with negative value of Δa_{e} simultaneously with same values of $a^{\mu}{}_{z}$ and $b^{e}{}_{z}$.

Type-III: Can satisfy $(g-2)_{\mu}$ and $(g-2)_{e}$ with negative value of Δa_{e} simultaneously



$b \rightarrow s \ell^+ \ell^-$ anomalies in Type-III scenario

In Type-III scenario we can easily explain $R_{\kappa^{(*)}}$ including angular observables (P_2 and P'_5) of the decay mode $B^+ \rightarrow K^{+*}\mu^+\mu^-$ simultaneously


Due to the presence of tree level coupling *b-s-Z* we consider the constraint from $B_s^0 - \overline{B}_s^0$ oscillation data

Considering all these experimental data we have the allowed parameter space in the following

$(g-2)_e$ with positive value of Δa_e

- The most economic scenario namely Type-III will not work in this case
- → Other two scenarios, Type-I and Type-II can explain the $(g-2)_e$ with positive value of Δa_e and $(g-2)_\mu$ simultaneously

→ In this case, the allowed values of masses of Z´are restricted within a very small value (M²_{z´} << q²)

We can not obtain the required WCs that are mandatory for the $b \rightarrow s \ell^+\ell^$ anomalies

Summary

- We consider minimally flavoured effective field theoretical approach with minimum independent parameters
- Z´has flavour violating interaction with ordinary quarks and leptons
- After imposing all possible constraints, a particular scenario (namely Type-III) can explain (*g*-2)_μ, (*g*-2)_e with negative value of Δ*a*_e, *R*_{K^(*)}, and angular observables (*P*₂ and *P*[′]₅) of the decay mode *B*⁺→*K*^{+*}μ⁺μ⁻ within a restricted region of parameter space

Thank You