Improving Heavy Dijet Resonance Searches Using Jet Substructure at the LHC

Tousik Samui

Harish-Chandra Research Institute, Allahabad

September 12, 2020

Based on arXiv:1912.03511 [hep-ph] A. K. Nayak, S. K. Rai, TS

Anomalies 2020

Image: A matrix and a matrix

Outline

- Motivation
- Jet and Jet Substructure observables
- Quark vs. Gluon tagging
- Dijet resonance searches
- Results
- Summary

(D) (A) (A) (A)

Motivation

- Resonance search is perhaps the most simple and direct ways to find new particles at a collider.
- LHC is running at 13 TeV. This can produce heavy resonances up to 4-5 TeV.
- Being a hadron collider, heavy strongly interacting particles can be produced at the LHC easily.
- Now, we have better understanding of Jet and its substructure.
- Current dijet resonance search strategies do not use Jet substructure technique.
- Will Jet substructure help us to probe heavy resonances?

Jets at Collider

A **Jet** is a collection of four momenta resulting from Jet Clustering Algorithm.

Jet algorithms: C/A, kt, anti-kt.

Fig: cms.cern

• • • • • • • • • • • • • •

Jet Substructure Observables

Jet substructure (JSS) observables are variables constructed from the constituents of the jet.

Examples:

Particle and track multiplicity inside a jet.

• Les Houches Angularity: LHA =
$$\sum_{i \in J} \frac{p_{T_i}}{p_{T_i}} \sqrt{\frac{\Delta R(i, J)}{R}}$$

• Width:
$$w = \sum_{i \in J} \frac{p_{T_i}}{p_{T_j}} \left(\frac{\Delta R(i, J)}{R} \right).$$

- Two-point energy correlation variables: $e_{\beta} = \sum_{i>j \in J} \frac{P_{T_i} P_{T_j}}{P_{T_j}^2} \left(\frac{\Delta R(i,j)}{R}\right)^{\beta}$.
- p_T^2 weighted jet minor axis (σ_2) with respect to the jet axis in $\eta \phi$ plane.

•
$$p_T D = \frac{\sqrt{\sum_{i \in J} p_{T_i}^2}}{\sum_{i \in J} p_{T_i}}.$$

Tousik Samui, HRI

イロト イヨト イヨト イヨト

quark vs. gluon tagging

- The distributions of jet substructure observables constructed from quark-initiated jets differs from those of gluon-initiated jets.
- This helps us to tag quark and gluon jet to some extent.

CMS dijet resonance searches

Table: 95% C.L. upper limit on $\sigma \times A$ at M = 2 TeV

JHEP 1808 (2018) 130

- (E) (E)

Image: A math a math

8

Signals	Lagrangian	Parameters Values	$\sigma_{\rm total}$ [fb]
gg	$g_s rac{f_s}{\Lambda} d_{abc} \phi^a G^{b \mu u} G^c_{\mu u}$	$rac{f_s}{\Lambda} = 5.8 imes 10^{-2} \ \text{TeV}^{-1}$	493.9
qq	$g_s f_s {G'}^a_\mu ar u \gamma^\mu T_a u$	$f_{s} = 0.09$	122.0
qg	$g_s rac{f_s}{2\Lambda} ar{U}^*[\gamma^\mu,\gamma^ u] T_a u G^a_{\mu u}$	$\frac{f_s}{\Lambda} = 1.5 \times 10^{-2} \ \text{TeV}^{-1}$	219.4

Table: Cross section is calculated at 13 TeV LHC for M = 2 TeV.

・ロト ・回 ト ・ ヨト ・ ヨ

イロト イヨト イヨト イヨ

・ロト ・回ト ・ヨト ・ヨト

Variables and their importance in BDT

 $1.58 \text{ TeV} < m_{jj} < 2.1 \text{ TeV}$

Variables		Variable Importance (in %)]
		gg		
		Jet 1	Jet 2]
ഗ	m _{jj}	7.377])
Event iriable	$\Delta R(j_1, j_2)$	9.161		1
	$ \Delta\eta(j_1,j_2) $	5.338		51.100/
[−] ≈	p _T	5.704	4.871	51.16%
	Energy	5.119	5.090	
	η	4.472	4.030	1]
es	Particle Multiplicity	11.98	9.226	ĥ
SS	p _T D	6.196	4.870	1
ari,	LHA	5.333	4.861	48.84%
	σ_2	3.111	3.259	1]

イロト イヨト イヨト イヨト

BDT Response and ROC

The analysis is done in two stages.

- Analysis with Event variables only 'without JSS'.
- Analysis with Event variables plus JSS observables 'with JSS'.

< <p>O > < <p>O >

Signal Significance and Improvements

RooStats package is used to calculate significance by Profile Likelihood method.

 $\frac{\text{Significance Improvement}}{\text{significance with JSS}}$

 $\lambda =$ relative systematic uncertainty.

Signal Significance and Improvements

Discrimination among different types of resonances

$$\langle S^2
angle = rac{1}{2} \int dx rac{(p(x)-q(x))^2}{p(x)+q(x)}$$

	$\langle S^2 \rangle$	$\langle S^2 \rangle$	Percentage
	(w/o JSS)	(with JSS)	Improvement
gg vs. qq	23.77%	58.04%	244.17%
gg vs. qg	5.71%	17.79%	311.56%
qg vs. qq	11.41%	32.19%	282.12%

Summary and Outlook

- Jet substructure technique is a useful way to get more information from collider events.
- Study of jet substructure can help improving significance of heavy dijet resonance searches.
- Jet substructure observables can potentially be used to discriminate between different types of resonances.
- Although the analysis is done at 13 TeV, the same technique can also be effectively applied to proposed future high energy machines.

Thank you

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))