

# Gagan Mohanty





### What science will it do?

- □ Precision CKM metrology  $\rightarrow$  Standard Model (SM) candle
- $\square New CP violating phase? \rightarrow CP violation in B and D decays$
- ❑ Any imprint of new physics in FCNC transitions? → radiative and electroweak penguin decays
- How about charged Higgs boson? → study tree-level
   B decay to the τν or D<sup>(\*)</sup>τν final state
- New physics in tau sector
  search for lepton flavor violating (LFV) tau decays
- ❑ Can we probe dark matter from bottom? → hidden portal, axiflavons etc.



We Compare the sequestions with almost two orders of magnitude larger dataset than Belle+BABAR

# Why 🔀 when LHCb is rocking?

| Observables                                                                    | Expected the. accu- | Expected         | Facility (2025)            | Relle II physics book                           |
|--------------------------------------------------------------------------------|---------------------|------------------|----------------------------|-------------------------------------------------|
|                                                                                | racy                | exp. uncertainty |                            | <sup>13</sup> Defie if physics book             |
| UT angles & sides                                                              |                     |                  |                            | arViv:1808 10567                                |
| $\phi_1$ [°]                                                                   | ***                 | 0.4              | Belle II                   |                                                 |
| $\phi_2$ [°]                                                                   | **                  | 1.0              | Belle II                   | (10.1093/ptep/ptz106)                           |
| $\phi_3$ [°]                                                                   | ***                 | 1.0              | LHCb/Belle II              | $\square T                                   $  |
| $ V_{cb} $ incl.                                                               | ***                 | 1%               | Belle II                   | Left table lists observables                    |
| $ V_{cb} $ excl.                                                               | ***                 | 1.5%             | Belle II                   |                                                 |
| $ V_{ub} $ incl.                                                               | **                  | 3%               | Belle II<br>Delle II/I HCh | where Belle II has an edge                      |
| Vub excl.                                                                      |                     | 270              | Delle II/LIICD             | over I UCh and vice verse                       |
| $S(B) \neq K^{0}$                                                              | ***                 | 0.09             | Bollo II                   | Over LITCU and vice versa                       |
| $S(D \to \phi K)$                                                              | ***                 | 0.02             | Delle II<br>Delle II       |                                                 |
| $S(D \rightarrow \eta K)$<br>$A(D \rightarrow V^0 \pi^0)[10^{-2}]$             | ***                 | 0.01             | Delle II<br>Delle II       |                                                 |
| $\mathcal{A}(B \to K^+\pi^-)[10^{-1}]$                                         | ***                 | 4                | Dene II                    | $\square$ Great for final states with v         |
| $\frac{\mathcal{A}(B \to K^+\pi^-) [10^{-5}]}{(\text{Sami }) \text{lantania}}$ |                     | 0.20             | LHCD/Belle II              |                                                 |
| (Semi-)leptonic                                                                | sk sk               | 907              | D-U- H                     | $\pi^0$ and $\nu(s) \Rightarrow$ thanks to the  |
| $B(B \rightarrow \tau \nu) [10^{-6}]$                                          | **                  | 3%               | Belle II<br>Delle II       |                                                 |
| $B(B \rightarrow \mu\nu) [10^{-1}]$                                            | ***                 | 7%               | Belle II<br>Delle II       | clean e <sup>+</sup> e <sup>-</sup> environment |
| $R(B \to DTV)$<br>$P(B \to D^*TV)$                                             | ***                 | 3%<br>9%         | Belle II /I HCb            |                                                 |
| $\frac{R(D \to D + V)}{\text{Padiativo } k \text{ EW Parquine}}$               |                     | 270              | Belle II/LIIOD             | Good K <sup>e</sup> detection coverage          |
| $\mathcal{B}(R \rightarrow X \propto)$                                         | **                  | 1%               | Bollo II                   |                                                 |
| $A = r(B \rightarrow X \propto) [10^{-2}]$                                     | ***                 | 470              | Bollo II                   | Similar performance for the                     |
| $S(B \rightarrow K^0 \pi^0 \gamma)$ [10]                                       | ***                 | 0.005            | Bollo II                   | -1                                              |
| $S(B \rightarrow \alpha \gamma)$                                               | **                  | 0.03             | Belle II                   | electron and muon channels                      |
| $\mathcal{B}(B \rightarrow \rho \gamma)$ [10 <sup>-6</sup> ]                   | **                  | 0.3              | Belle II                   | → low on orgy colligions                        |
| $\mathcal{B}(B \rightarrow K^* \nu \overline{\nu}) [10^{-6}]$                  | ***                 | 15%              | Bollo II                   | $\rightarrow$ low-energy consisting             |
| $B(B \to K^*\ell\ell)$                                                         | ***                 | 0.03             | Belle II/LHCb              | Inclusive analysis nossible                     |
| Charm                                                                          |                     | 0.00             | Belle H/ HIED              |                                                 |
| $\mathcal{B}(D_* \to \mu\nu)$                                                  | ***                 | 0.9%             | Belle II                   | $\Rightarrow$ control on kinematics             |
| $\mathcal{B}(D_s \to \tau \nu)$                                                | ***                 | 2%               | Belle II                   |                                                 |
| $A_{CP}(D^0 \to K_S^0 \pi^0) \ [10^{-2}]$                                      | **                  | 0.03             | Belle II                   | Advantageous to search for                      |
| $ q/p (D^0 \rightarrow K_S^0 \pi^+ \pi^-)$                                     | ***                 | 0.03             | Belle II                   |                                                 |
| $A_{CP}(D^+ \to \pi^+ \pi^0) \ [10^{-2}]$                                      | **                  | 0.17             | Belle II                   | LFV tau decays                                  |
| Tau                                                                            |                     |                  |                            | · · · · · · · · · · · · · · · · · · ·           |
| $\tau \rightarrow \mu \gamma \ [10^{-10}]$                                     | ***                 | < 50             | Belle II                   |                                                 |
| $\tau \rightarrow e\gamma \ [10^{-10}]$                                        | ***                 | < 100            | Belle II                   |                                                 |
| $\tau \rightarrow \mu \mu \mu $ [10 <sup>-10</sup> ]                           | ***                 | < 3              | Belle II/LHCb              | 4                                               |

#### Nature's hint or teasing?



Should be able to either confirm or refute many of the flavor anomalies, especially the IITH favorite one  $R_{K^{(*)}}$ 



Targets to deliver e<sup>+</sup>e<sup>-</sup> collisions at a peak luminosity of 8 × 10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup>,
 40 times that of KEKB

- ♦ Increase beam currents twice
- ♦ Reduce beam size by 20 times



#### How far have we gone?



- Reached  $\beta_y^* = 0.8$  mm by end of last run in July
- Aim at squeezing  $\beta_y^*$  down to 0.6 mm in coming Autumn run
- Final design luminosity requires  $\beta_y^*$  to jump to 0.3 mm

Phase 1 (2016): single beam background study
 Phase 2 (2018): beam commissioning (establish nano-beam scheme, reach the KEKB luminosity, and measure beam backgrounds) as well as for doing some physics with partial vertex detector

Phase 3 (2019 – ...): physics run with complete vertex detector



Currents achieved: 880 (940) mA for e<sup>+</sup> (e<sup>-</sup>) beam → need 3 (4)× scale up



# **Two detector highlights**

<u>Barrel PID</u> (imaging TOP): JP, US, SI and IT Example of Cherenkov-photon paths for 2 GeV pion and kaon traversing in a TOP quartz bar





#### VXD (6 layer Si for vertexing & inner tracking) 🖙 even useful for particle ID



# worked during Covid-19



 SuperKEKB/Belle II continued to operate even under pandemic while ensuring a minimum risk of infection

□ Minimize p-2-p contact and avoid 3C

Closed space Closed places Close-contact setting

- Remote control room and expert shifts
- Travel restrictions (~40 Belle II colleagues onsite)
- Liberal online meetings

□ Proper hygiene (face mask, alcohol disinfection, ventilation, ...)

#### **Early rediscovery at phase-2**



#### We also found *B* mesons...



12

#### **Going from phase-2 to phase-3**



#### **Charged kaon-pion separation**

- Provided by the PID system: mainly TOP & ARICH; CDC also helps (SVD will also come online!)
- □ Performance is tested with  $D^{*+} \rightarrow D^0[K^-\pi^+]\pi_s^+$ decays, where the daughter kaons and pions can be identified kinematically



 $D^0$  extrapolated production point beam spot



#### **Electron and muon identification**



# **Measurement of D<sup>0</sup> lifetime**

- □ Use the self-tagging decay channel  $D^{*+} \rightarrow D^0[K^-\pi^+]\pi_s^+$
- Fit the full decay chain imposing D<sup>0</sup> mass constraint and D\* production to measured beam spot region
- Constitutes a powerful test for the vertex fitting performance



 $D^0$  extrapolated production point beam spot



**Getting ready for** 

Samples are being made available for time-dependent CP violation study

 $\Delta E$  is the difference between  $E_{\mbox{\scriptsize beam}}$  and  $E_B^*$ 



"Golden channel" for the CKM angle  $\beta \equiv \phi_1$ 





5.3



## **Probing the dark sector**



Look for the vector boson Z' that couples to second and third generation only

Invisible decays to dark-matter particles or neutrinos

Possible explanation for the (g-2) anomaly

First physics publication from Belle II

PRL 124, 141801 (2020)

More to come, e.g.  $e^+e^- \rightarrow \gamma X$  $e^+e^- \rightarrow \gamma ALP (\rightarrow \gamma \gamma)$  $e^+e^- \rightarrow \gamma A'$  (dark photon) Dark Z', Magn. Monopoles

10<sup>2</sup>

10

10<sup>-1</sup>

10<sup>-2</sup>

0

1

Counts



limits on the Z coupling constant at the level of  $5 \times 10^{-2}$  -1 for M(Z<sup>0</sup>)  $\leq 6$  GeV/c<sup>2</sup>

#### **Prospects for data & physics harvesting**



Courtesy: G. De Pietro

#### **Prospects for detector improvements**

#### Short term:

- Replace the conventional with atomiclayer-deposition (ALD) MCP-PMTs for the TOP counters
- Complete installation of PXD layer-2
- DAQ upgrade



#### **Medium term:**

Looking at options for making the detector more resilient against beaminduced background and radiation bursts



Started to think about possibilities for luminosity upgrade; e.g., Belle II VXD open workshop <u>http://indico.cern.ch/event/810687/</u>

#### **Closing words**

- □ Belle II has started to probe new physics beyond the SM at the intensity frontier → complementary to high- $p_T$  programs of ATLAS and CMS
- □ As for LHCb, there is healthy competition and complementarity between the two experiments
- □ Have already accumulated 74 fb<sup>-1</sup> data  $\rightarrow$  Autumn run begins in October
- Detector and machine initial performances have been good; we expect the road ahead to be bit long before achieving our design goal



# **Additional information**

#### **Comparison: KEKB vs. SuperKEKB**

| narawatara           | KEKB            |                        | SuperKEKB |                      | mite    |                                  |
|----------------------|-----------------|------------------------|-----------|----------------------|---------|----------------------------------|
| par ameter s         | LER             | HER                    | LER       | HER                  | UMIIS   |                                  |
| Beam energy          | Eb              | 3.5                    | 8         | 4                    | 7       | GeV                              |
| Half crossing angle  | ¢               | 11                     |           | 41.5                 |         | mrad                             |
| Horizontal emittance | Ex              | 18                     | 24        | <b>3</b> .2          | 4.6     | ทท                               |
| Emittance ratio      | κ               | 0.88                   | 0.66      | 0.37                 | 0.40    | 7.                               |
| Beta functions at IP | <b>β</b> x*/βy* | 1 200/5.9              |           | 32/0.27              | 25/0.30 | mm                               |
| Beam currents        | lb              | 1.64                   | 1.1 9     | 3.60                 | 2.60    | A                                |
| beam-beam parameter  | ξγ              | 0.1 29                 | 0.090     | 0.0881               | 0.0807  |                                  |
| Luminosity           |                 | 2.1 x 10 <sup>34</sup> |           | 8 x 10 <sup>35</sup> |         | cm <sup>-2</sup> s <sup>-1</sup> |

#### **Beam backgrounds**



 e<sup>+</sup>e<sup>-</sup> colliders are clean, however at high L<sub>peak</sub> values beam backgrounds can become a challenge

At the highest luminosities, QED processes e.g.,  $e^+e^- \rightarrow e^+e^-(\gamma)$ and  $e^+e^- \rightarrow e^+e^-e^+e^-$  dominate



Currently, single beam backgrounds are dominant, larger for the e<sup>+</sup> beam

- beam-gas (residual gas in beam-pipe)
- Touschek (intra-bunch scattering)
- injection-induced
- "dust events" (occasional large losses)
- CDC HV trips with large background
- Beam abort protection against spikes due to radiation
- Simulation and collimator studies