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Cosmological

Direct Detection (DD)Indirect Detection (ID)

Collider

e.g. Cosmic rays,  
gamma rays

e.g. Cosmic Microwave Background,  
Matter Power spectrum, Galactic rotation curves, Lensing, Milky Way satellites

e.g. Fixed target, 
Neutrino experiments

Evidence



The DM story
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We know there is five times more matter in the Universe than visible 
baryonic matter. 

This invisible matter does not interact appreciably with SM and does not 
carry strong (QCD) or electric (QED) charge. 

It may or may not have self-interactions. 

It may or may not be a single fundamental particle. 

A lot of early DM study was motivated by the “WIMP miracle”  
(Right thermal relic density with minimal assumptions: assuming early Universe in equilibrium, solve 
Boltzmann equations in expanding Universe, mass and interaction strength should be EW-scale.) 

After ~35 years of experiments, we have strong DD constraints*, 
reasonable WIMP region (> 1 GeV) will soon hit irreducible neutrino BG making 
it difficult to observe.



The models that we believe are the most likely will inform 
our experimental search design.
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How do we choose a model?


1. Model agnostic (i.e. using EFT)


2. Simplest completions of EFTs


3. Based on all possibilites that give the 
right DM density
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Design “not-so-simple” simplified models informed by DM density calculations. 



What we know about calculating DM density is changing

1. Thermal freeze-out by pair-annihilation

2. Thermal freeze-out by co-annihilation in SUSY

3. Moving away from SUSY: general co-annihilation (free masses + 

couplings)

4. Thermal freeze-out by co-scattering + mediator annihilation

5. Non-thermal Freeze-in

6. Smooth “phase change” between freeze-in → co-scattering → 

co-annihlation with changing coupling
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Translating Early Universe annihilation into LHC prediction
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Collider “DM” searches sometimes rely on non-DM parts 
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Phenomenology of co-annihilation models
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Popular DM models (maybe with co-annihilation)
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Z’ “t-channel” SUSY

Are usually visible in DD + Indirect + Collider! Good for a cross check.
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Phenomenology of the co-scattering model
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Phenomenology of a freeze-in (non-thermal production) model
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Co-scattering and Freeze-in
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DD

ID

Collider

DM has feeble couplings 
with SM 

Needs mediator with SM 

Mediator likely has very 
small decay width and is 
long-lived

Look for long-lived mediators

Co-scattering

  

Freeze-in

(    )



Moral of the story
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Simplified models constructed based on DD are limited 

It is best not to pre-dispose yourself to certain mass/coupling regimes, 
you may miss the real thing. 

New signatures possible with new parameter space.  Cast a wide net. 

Don’t forget the lifetime frontier.

There are some viable models which can ONLY be seen at colliders. 



What is a “good” DM model to focus on for colliders?
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Has a small number of parameters 
Whose LHC signature is not “tangential” (i.e. not Z’ via dijet/dilepton) 
but probes the actual coupling relevant for DM.

Shows the smooth transition from co-scattering to co-annihilation so we can 
explore the full mass/coupling parameter space 

Side benefits



Spectrum for Singlet-Triplet model
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ψC → ψL + W*

ψC → ψH + π+

Decay modes

fixed by mass splitting

depends on θ

W* → 𝓁𝜈 

     → j j

Soft lepton + MET

Soft jets
ψL =  cosθ ψ1 + sinθ ψ2 
ψH = –sinθ ψ1 + cosθ ψ2 

Δm

mC

mL

mH
ψ2

ψ1

Triplet

Singlet



Particle lifetime and what it tells you
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Three ways to get a long-lived particle:

1. Small couplings  

2. Heavy intermediate particle (e.g. most meson decays in SM) 

3. Compressed spectrum (e.g. SU(2) Triplet fermion )

Coupling to W ∝ θ (small coupling); ψC → ψH + π+ is highly compressed. 

ψC  likely to be long-lived. 



What would be the possible Direct Detection signals?
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Proportional to θ2 

First case study: SU(2) triplets
For 0:

Felix Brümmer Well-tempered n-plet DM 15 / 24

Direct detection can only probe up to  θ ~ 0.15 Bharucha et al.1703.00370



What would be the possible LHC signals?
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ψC
ψL

W*

W*

p

p
ψLψC

_

W* W* + MET

1.  (Soft) dijet + MET 

2.  (Soft) dilepton + MET 

3.  (Soft) lepton + 2 (soft) jets + MET  

4. Tracks from long-lived ψC  

5. Displaced (soft) jets + MET 

6. Displaced (soft) leptons + MET



The singlet-triplet model: limits from prompt LHC searches
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Co-scattering in the singlet-triplet model
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Mass difference expected is about 
Δm ~ 0.1 mC. 

Co-annilihiation becomes ineffective 
at about θ ~ 10-5
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W*

Point to take away: for current prompt limit of 220 GeV, Δm ~ 20 GeV, θ ~ 10-5 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Understanding the displaced lepton search
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Behaviour predicted by DM requirements

22



Benchmarks
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Estimating backgrounds 
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Check that d0 and pT are independent

Goal: to estimate background for  
pT > 20 GeV from pT > 40 GeV data

Main source of BG is heavy flavour, i.e. B-
meson decays

We know that exact HF cannot be 
estimated by MC to enough accuracy

Model shape of BG using MC

CMS-PAS-EXO-16-022



Estimating backgrounds 
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using a lepton-enriched  
pp →bb sample 

2. Calculate transfer factors

3. CMS provides 95% UL on 
background in the signal regions.  
Scale this with the transfer factors.



Cut-and-count is not good enough!
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Training a neural network
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signal and 
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NN improves sensitivity many fold!
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Preliminary
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The displaced lepton search is very general

31

Heavy Neutral leptons RPV SUSY or minimal freeze-in
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Summary so far… 
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• The singlet-triplet model is an example of a minimal co-annihilation/co-scattering 
model  

• Co-scattering naturally predicts long-lived particles, which would give a signature 
of displaced leptons. 

• The relic density constraint means a small mass gap between the mediator and 
DM, therefore implying soft displaced leptons 

• The current displaced lepton search is not sensitive to this model 

• We propose a search that can probe lifetimes in the range 1mm -  1m using the 
displaced lepton signature.



A note about triggers
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• LHC generates far too many collisions to store them all.  Also, most of them 
are “boring”.   

• Experiments use “triggers” to select interesting events.  The number of events 
that can be processed fast enough with collision rate is fixed (in Hz). 

• For “soft” events, there are too many events from SM that would look similar. 

• Most searches use something like hard jets / large MET / hard leptons to 
select events. 

• Possible to have mono jet (ISR) trigger, but this will reduce signal ~ 1/100. 

• We need specialised triggers to look for these objects (work ongoing).



LHC running schedule
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