[arXiv:2004.09440]

Direct CP violation and the $\Delta I = 1/2$ rule in K $\rightarrow \pi \pi$ decay from the Standard Model

Christopher Kelly (RBC & UKQCD collaborations)

Friday September 11th 2020, Anomalies2020, Hyderabad, India (Online)

The RBC & UKQCD collaborations

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Peter Boyle (Edinburgh) Taku Izubuchi Yong-Chull Jang Chulwoo Jung Christopher Kelly Meifeng Lin Aaron Meyer Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni

<u>UC Boulder</u>

Oliver Witzel

<u>CERN</u>

Mattia Bruno

Columbia University

Ryan Abbot Norman Christ Duo Guo Bob Mawhinney Bigeng Wang Tianle Wang Yidi Zhao

University of Connecticut

Tom Blum Dan Hoying (BNL) Luchang Jin (RBRC) Cheng Tu Masaaki Tomii

Edinburgh University

Luigi Del Debbio Felix Erben Vera Gülpers Tadeusz Janowski Julia Kettle Michael Marshall Fionn Ó hÓgáin Antonin Portelli Tobias Tsang Andrew Yong Azusa Yamaguchi <u>UAM Madrid</u> Julien Frison

<u>University of Liverpool</u> Nicolas Garron

<u>MIT</u> David Murphy

<u>Peking University</u> Xu Feng

University of Regensburg Christoph Lehner (BNL)

University of Southampton

Nils Asmussen Jonathan Flynn Ryan Hill Andreas Jüttner James Richings Chris Sachrajda

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

Motivation

- Likely explanation for matter/antimatter asymmetry in Universe, baryogenesis, requires violation of CP.
- Amount of CPV in Standard Model appears too low to describe measured M/AM asymmetry: tantalizing hint of new physics.
- Direct CPV first observed in late 90s at CERN (NA31/NA48) and Fermilab (KTeV) in $K^0 \rightarrow \pi\pi$:

$$\eta_{00} = \frac{A(K_{\rm L} \to \pi^0 \pi^0)}{A(K_{\rm S} \to \pi^0 \pi^0)}, \qquad \eta_{+-} = \frac{A(K_{\rm L} \to \pi^+ \pi^-)}{A(K_{\rm S} \to \pi^+ \pi^-)}.$$

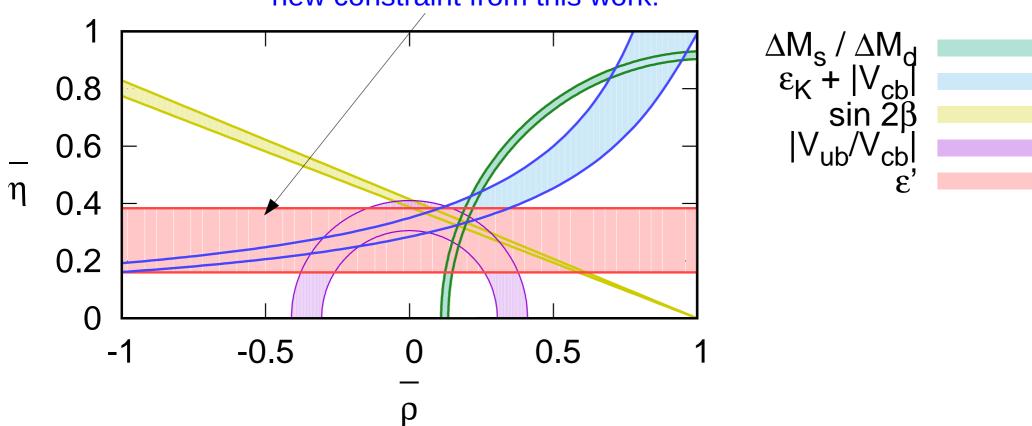
$$\operatorname{Re}(\epsilon'/\epsilon) \approx \frac{1}{6} \left(1 - \left| \frac{\eta_{00}}{\eta_{\pm}} \right|^2 \right) = 16.6(2.3) \times 10^{-4} \quad \text{(experiment)}$$

measure of direct CPV

measure of indirect CPV

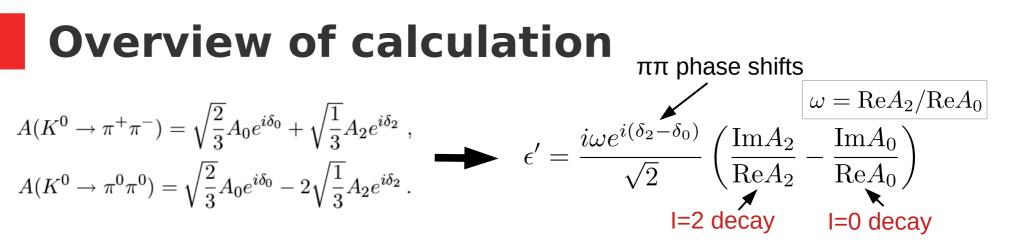
- Small size of ε' makes it particularly sensitive to new direct-CPV introduced by many BSM models.
- Looking for deviations from experiment may help shed light on origin of M/AM asymmetry.

• A Standard Model prediction of ϵ ' also provides a new horizontal band constraint on CKM matrix in ρ - η plane:

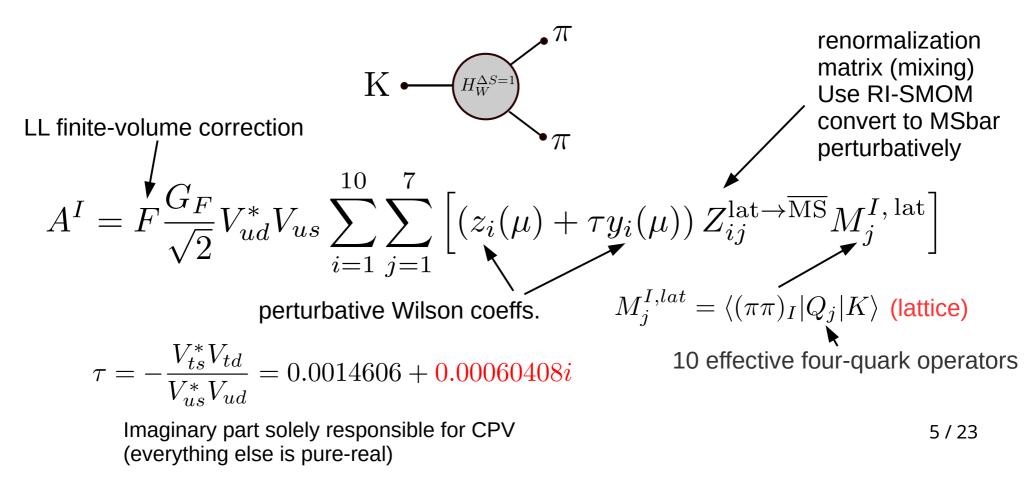


new constraint from this work!

- While underlying weak process occurs at high energies $\sim M_w$ =80 GeV, K $\rightarrow \pi\pi$ decays receive large corrections from low-energy hadronic physics O($\Lambda_{_{QCD}}$)~250 MeV.
- Lattice QCD is the only known *ab initio*, **systematically improvable** technique for studying non-perturbative QCD.



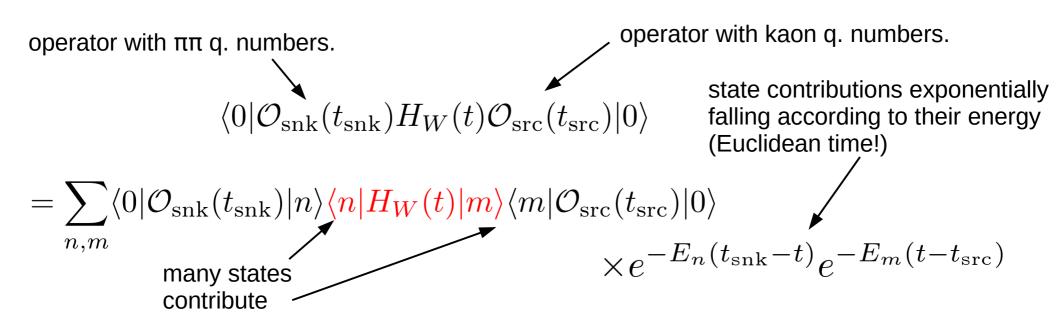
Hadronic energy scale << M_w – use weak effective theory (3 flavors)



Anatomy of a lattice calculation

- Lattice QCD uses Monte Carlo techniques to sample the discretized (Euclidean) Feynman path integral directly, generating an ensemble of N "gauge configurations".
- Expectation value of some Green's function computed over the ensemble converges to path integral value in large N limit.
- Green's function composed of *operators* created from quark fields that create/destroy states of interest.
- Operators create all states with same quantum numbers, eg $\bar{u}\gamma^5 d$ creates pions and all excited pion-like states.
- Contributions of each state i decay exponentially in time as exp(-E_it) due to Euclidean time.
- Extract contributions of lightest states by fitting large time dependence.
- <u>Challenges:</u>
 - Computationally expensive, requiring months to years of running on the world's fastest supercomputers.
 - Much like experiment, have both statistical and systematic errors.
 - Systematic errors (e.g. from discretization or from fitting) require careful analysis and treatment.

Lattice QCD for $K \rightarrow \pi \pi$



- Extract matrix elements by fitting time dependence in limit of large (t_{snk} -t), (t_{src} -t) at which lower-energy states dominate.
- Series is necessarily truncated for fit: Systematic errors arise if excited state effects not properly taken into account.

I=2 calculation

- A₂ can be measured very precisely using "standard" lattice techniques.
- Most recent result (2015):
 - Computed with large, ~ $(5.5 \text{ fm})^3$ volumes
 - Physical quark masses
 - Two lattice spacings (2.36 GeV and 1.73 GeV) → Continuum limit taken.
- <1% statistical error!
- 10% and 12% total errors on $Re(A_2)$ and $Im(A_2)$ resp.
- Dominant sys. errors due to truncation of PT series in computation of renormalization and Wilson coefficients.

$\Delta I = 1/2$ rule

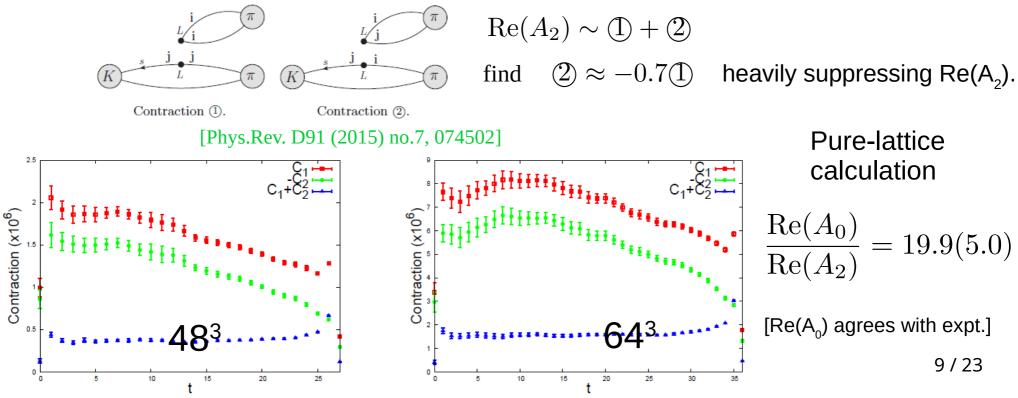
• In experiment kaons ~450x (!) more likely to decay into I=0 pi-pi states than I=2.

$$\frac{\text{Re}A_0}{\text{Re}A_2} = 22.45(6)$$
 (the Δ I=1/2 rule)

- Perturbative running to charm scale accounts for about a factor of 2. Where does the remaining 10x come from? New Physics?
- The answer is low-energy QCD!

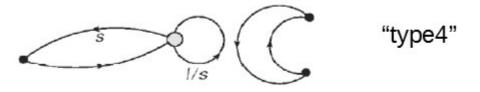
RBC/UKQCD [arXiv:1212.1474, arXiv:1502.00263]

Strong cancellation between the two dominant contractions not predicted by naive factorization:



I=0 Calculation

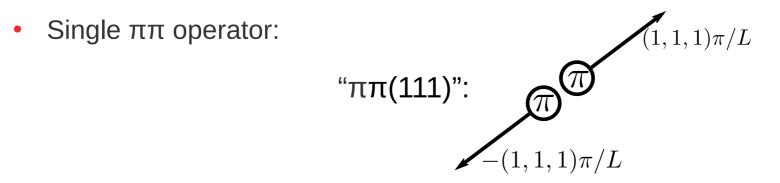
- A_0 is more difficult than A_2 , primarily because I=0 $\pi\pi$ state has vacuum quantum numbers.
- *"Disconnected diagrams"* dominate statistical noise



2015 calculation

[Phys.Rev.Lett. 115 (2015) 21, 212001]

 Physical quark masses on single, coarse lattice (a⁻¹= 1.38 GeV) but with large (4.6 fm)³ physical volume to control FV errors.



21% and 65% stat errors on $Re(A_0)$ and $Im(A_0)$ due to disconn. diagrams and, for $Im(A_0)$ a strong cancellation between Q_4 and Q_6 .

Dominant, 15% systematic error due again to PT truncation errors.

2015 calculation: ε'

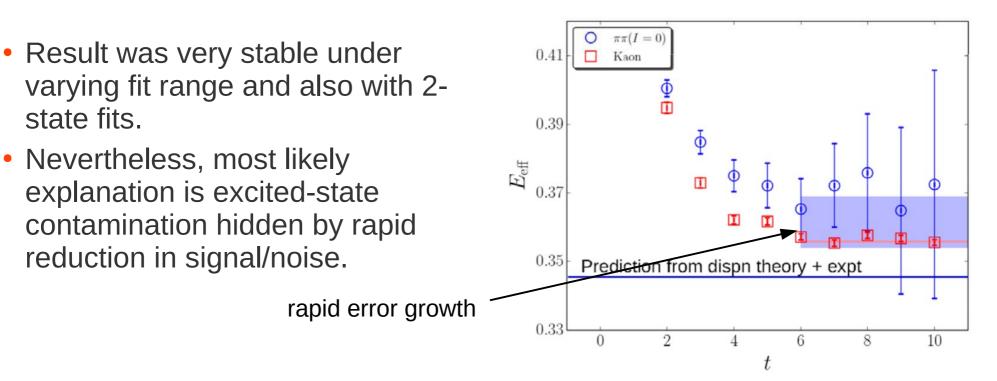
- $Re(A_0)$ and $Re(A_2)$ from expt.
- Lattice values for $Im(A_0)$, $Im(A_2)$ and the phase shifts,

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = \operatorname{Re}\left\{\frac{i\omega e^{i(\delta_{2}-\delta_{0})}}{\sqrt{2}\varepsilon} \begin{bmatrix} \operatorname{Im}A_{2} \\ \operatorname{Re}A_{2} \end{bmatrix} \right\}$$
$$= 1.38(5.15)(4.43) \times 10^{-4}, \quad \text{(our result)}$$
$$16.6(2.3) \times 10^{-4} \qquad \text{(experiment)}$$

- Total error on Re(ϵ'/ϵ) is ~3x the experimental error
- Find reasonable (2.1 σ) consistency with Standard Model
- "This is now a quantity accessible to lattice QCD"!
- Focus since has been to improve statistics and reduce / improve understanding of systematic errors.

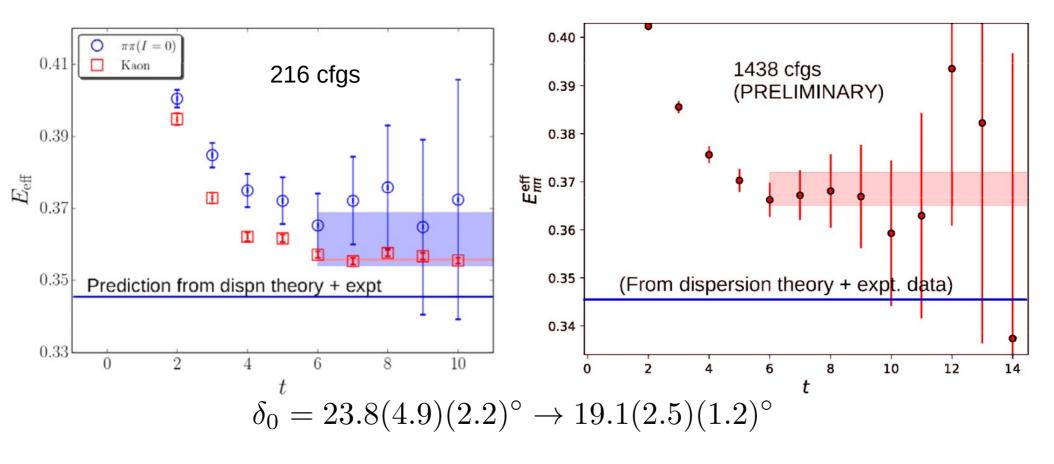
The "ππ puzzle"

- Essential to understand $\pi\pi$ system:
 - Energy needed to extract ground-state matrix element
 - Energy also needed to compute phase-shift (Luscher)
 - Derivative of phase-shift w.r.t. energy is required for Lellouch-Luscher finitevolume correction (F)
- 2015 calculation phase shift $\delta_0(E_{\pi\pi} \approx m_K) = 23.8(5.0)^\circ$ substantially smaller than prediction obtained by combining dispersion theory with experimental input, 36° .



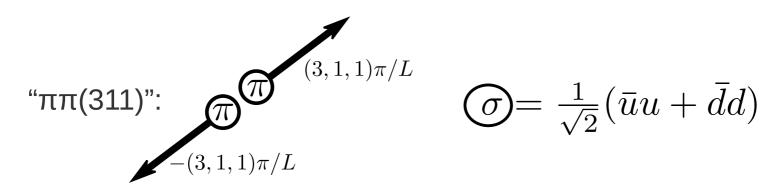
Increased statistics

- To resolve the "pi-pi puzzle" we increased statistics from 216 to 1438 (a 6.6x increase!).
- However this did not resolve the situation:



Resolving the $\pi\pi$ puzzle

• To better resolve the ground-state we have introduced 2 more $\pi\pi$ operators:



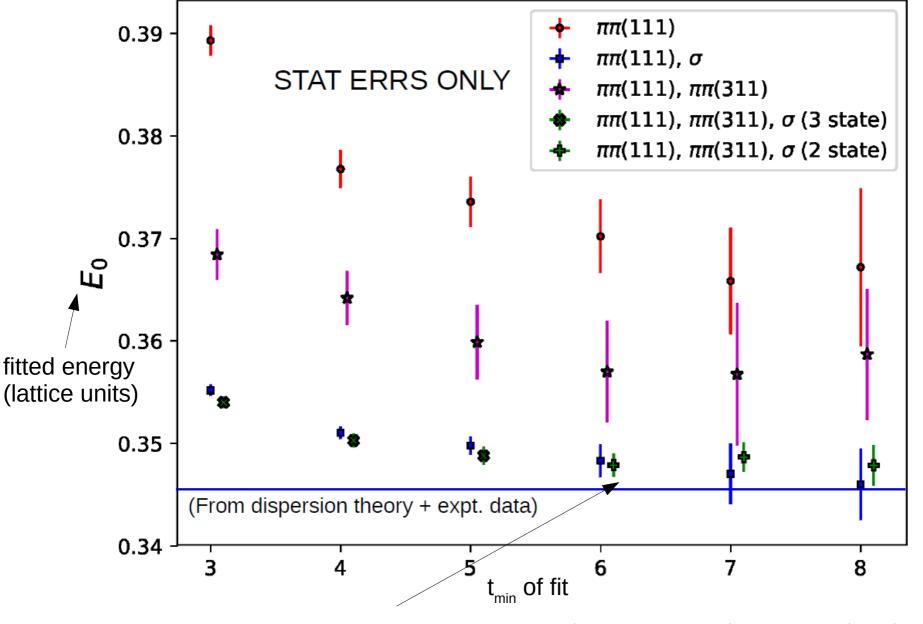
• Obtain parameters by simultaneous fitting to matrix of correlation functions, eg for pipi 2pt Green's function:

$$C_{ij}(t) = \langle 0 | O_i^{\dagger}(t) O_j(0) | 0 \rangle = C + \sum_{\alpha} A_{i,\alpha} A_{j,\alpha} e^{-E_{\alpha}t}$$

round-the-world single pion propagation small compared to errors - drop

- A far more powerful technique than just increasing statistics alone.
- 741 configurations measured with 3 operators.

Effect of multiple operators on $\pi\pi$



Result compatible with dispersive value: $\delta_0(479.5 \text{ MeV}) = 32.3(2.1)^{\circ 15/23}$

Effect of multiple operators on $K \rightarrow \pi \pi$

 Convenient to visualize data by taking "optimal" linear combination of the two most important operators that best projects onto ground-state.

$$\mathcal{O}_{\text{opt}} = r_1 \mathcal{O}_{\pi\pi(111)} + r_2 \mathcal{O}_{\sigma} \qquad r_1 = 5.24(18) \times 10^{-7} \quad \text{using } \pi\pi$$

$$r_2 = -2.86(17) \times 10^{-4} \quad \text{fits}$$

strong, clear plateau + improved precision

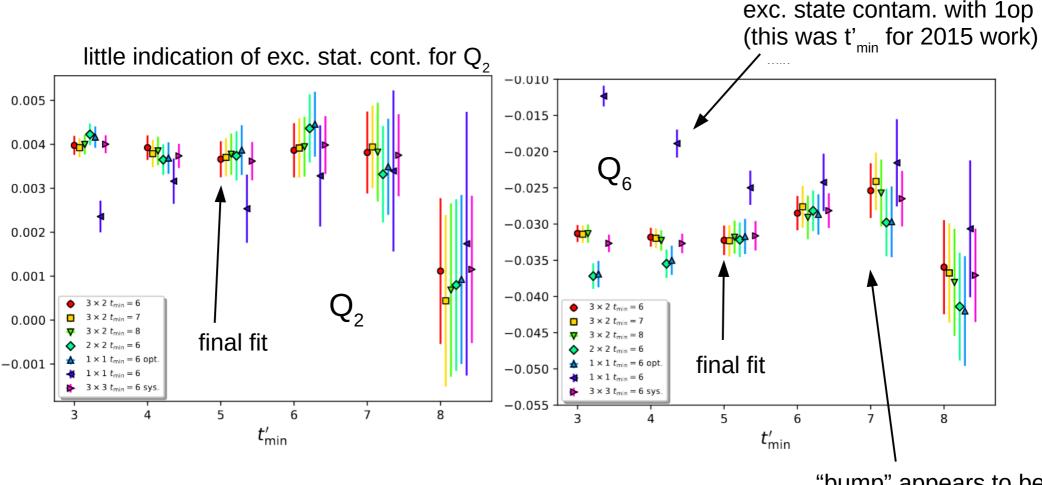
ť

16 / 23

ť

$K \rightarrow \pi \pi$ fit results

• Examine many fit ranges, #states and #operators



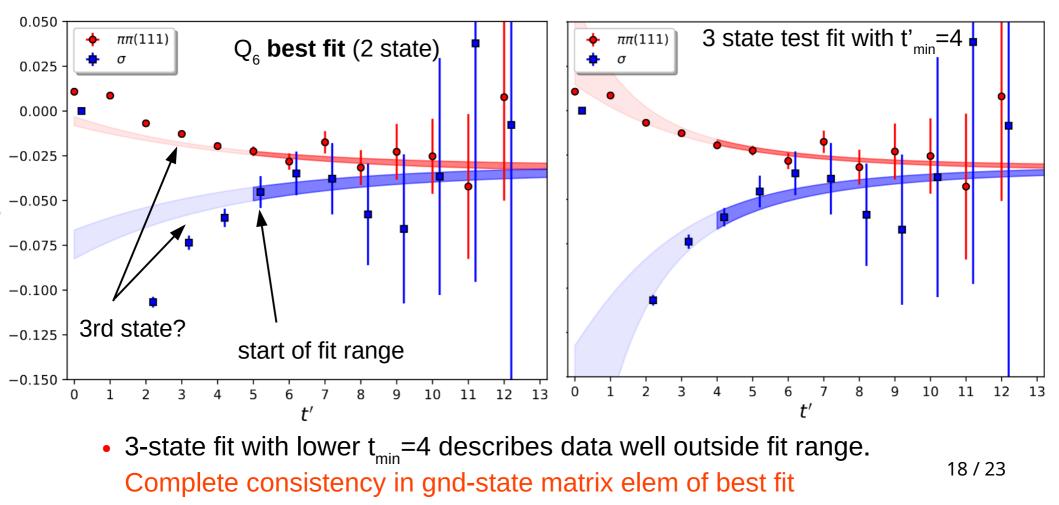
Adopt uniform fit t'_{min}=5 which is stable for all Q_i

"bump" appears to be statistical

 Evidence that excited state error was significantly underestimated 17/23 in 2015 work

Excited state contamination

- Primary concern is residual excited-state contamination
- See excellent consistency and strong plateaus among fits for 2+ operators with $t'_{\mbox{\scriptsize min}}{\geq}4$
- Also examine 2 and 3-state fits with 3 ops:



Systematic error budget

- Primary systematic errors of 2015 work:
 - Finite lattice spacing: 12%
 - Wilson coefficients: 12%
 - Renormalization (mostly PT matching): 15%
 - Excited-state: \leq 5% but now known to be significantly underestimated
 - Lellouch-Luscher factor (derivative of $\pi\pi$ phase shift wrt. energy): 11%
- In our new work we have used step-scaling to raise the renormalization scale from $1.53 \rightarrow 4.00 \text{ GeV}$: $15\% \rightarrow 5\%$
- 3 operators have dramatically improved understanding of $\pi\pi$ system: Lellouch-Luscher factor $11\% \rightarrow 1.5\%$
- Detailed analysis shows no evidence of remaining excited-state contamination: Excited state error now negligible!
- Still single lattice spacing: Discretization error unchanged.
- Evidence that Wilson coefficient systematics are driven by using PT for 3-4f matching, not improved by higher μ: Wilson coeff error unchanged.

Isospin breaking + EM effects

- Our simulation does not include effects of isospin breaking or EM effects. Did not attempt to account for in 2015 analysis.
- While these effects are typically small O(1%), heavy suppression of A₂ (ΔI=1/2 rule) means relative effect on A₂ and ε' could be O(20%).
- Current best determination of effect uses NLO χPT and $1/N_{c}$ expansion predicts 23% correction to our result:

Include as separate systematic error.

Final result for ϵ'

Combining our new result for Im(A₀) and our 2015 result for Im(A₂), and again using expt. for the real parts, we find

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = \operatorname{Re}\left\{\frac{i\omega e^{i(\delta_2 - \delta_0)}}{\sqrt{2}\varepsilon} \left[\frac{\operatorname{Im}A_2}{\operatorname{Re}A_2} - \frac{\operatorname{Im}A_0}{\operatorname{Re}A_0}\right]\right\}$$
$$= 0.00217(26)(62)(50)$$
$$\overset{\bullet}{\underset{\text{stat}}} \overset{\bullet}{\underset{\text{sys}}} \overset{\bullet}{\underset{\text{IB} + \text{EM}}}$$

Consistent with experimental result:

$$\operatorname{Re}(\epsilon'/\epsilon)_{\mathrm{expt}} = 0.00166(23)$$

Conclusions

- Completed update on our 2015 lattice determination of A₀ and ε'
 - 3.2x increase in statistics.
 - Improved systematic errors, notably use of multi-operator techniques essentially removes excited-state systematic.
- Reproduce experimental value for $\Delta I = 1/2$ rule, demonstrating that QCD sufficient to solve this decades-old puzzle.
- Result for ε ' consistent with experimental value.
- Total error is \sim 3.6x that of experiment.
- ε' remains a promising avenue to search for new physics, but greater precision is required.

The road ahead

- We intend to perform measurements on two larger lattices with different lattice spacings to perform continuum limit.
- Due to computational expense this will require next-gen supercomputers (Perlmutter, Aurora).
- More readily addressed is reliance on PT to perform 3-4f matching in the Wilson coefficients. Project presently underway to compute these non-perturbatively. [Pos LATTICE2018 (2019) 216]
- Also working on laying the groundwork for the lattice calculation of isospin+EM effects. [EPJ Web Conf. 175 (2018) 13016]