

Signatures of \tilde{R}_2 class of Leptoquarks and right handed neutrinos at the upcoming *ep* colliders

Based on work with S. Mandal, M. Mitra and N. Sinha [Phys. Rev. D 101, 075037 (2020)]

Rojalin Padhan Institute of Physics, Bhubaneswar

Plan of talk

- Introduction to Leptoquark (LQ)
- Motivation for $\tilde{R_2}$ LQ
- Constraints on LQ mass and coupling.
- LHC vs LHeC/FCC-he
- Channel-1: $e^{\pm}p \rightarrow l^{\pm}j$
- Channel-2: $e^{\pm}p \rightarrow jN$

- Leptoquark(LQ): predicted in many BSM scenarios. Ex. unified models, technicolor model and models exhibiting quark and lepton substructures.
- 6 scalar LQ's and 6 vector LQ's. [Buchmuller, Ruckl and Wyler PLB(1987)]
- $SU(3)_C$: triplet; $SU(2)_L$: singlet, doublet, triplet
- Fermion number : F = 3B + L

F = 0 (Genuine LQ); $F = \pm 2$.

Review on LQ: [I. Doršner et al., 2016]

イロン イロン イヨン イヨン 三日

Motivation for $\tilde{R_2}$ LQ

$$ilde{R}_2(3,2,1/6) = (ilde{R}_2^{\frac{2}{3}}, ilde{R}_2^{-\frac{1}{3}})^T; \quad N_R(1,1,0) \Rightarrow \ \mathsf{RH} \ \mathsf{neutrino}$$

$$\begin{aligned} \mathcal{L} &= -Y_{ij} \bar{d}_{R}^{i} e_{L}^{j} \tilde{R}_{2}^{2/3} + (Y U_{\text{PMNS}})_{ij} \bar{d}_{R}^{i} \nu_{L}^{j} \tilde{R}_{2}^{-1/3} + \\ & (V_{\text{CKM}} Z)_{ij} \bar{u}_{L}^{i} N_{R}^{j} \tilde{R}_{2}^{2/3} + Z_{ij} \bar{d}_{L}^{i} N_{R}^{j} \tilde{R}_{2}^{-1/3} + h.c., \end{aligned}$$

[I. Doršner et al. 2014; S. Mandal et al. 2018; M. Mitra et al., 2018]

- Allows matter stability at tree level. Accessible at collider.
- Presence of $N_R \Rightarrow m_{\nu} \sim \frac{y^2 v^2}{M_{N_R}} \rightarrow \text{Seesaw Mechanism } (\frac{LLHH}{M})$ [Weinberg, 1979; Minkowski, 1977; Yanagida, 1979; Mohapatra and Senjanovic, 1980]
- $LQ \rightarrow N_R j \Rightarrow N_R$ production independent of the mixing between light and heavy neutrino $\left(\frac{vy}{M_{N_R}}\right)$.

Constraints on LQ mass and coupling

Atomic Parity Violation

$$\mathcal{L}_{APV}\sim rac{G^{\scriptscriptstyle F}}{\sqrt{2}} C_{1q} ig(ar{e}\gamma^{\mu}\gamma^5 ear{q}\gamma^{\mu}qig)$$

$$| extsf{Y}_{de}| \leq 0.34 \; rac{ extsf{M}_{ extsf{LQ}}}{1 \, extsf{TeV}}$$

$$| extsf{Y}_{ue}| \leq 0.36 \; rac{ extsf{M}_{LQ}}{1 extsf{TeV}}$$

•
$$K_L \rightarrow \mu^- e^+$$

• $K_L \rightarrow \mu^- e^+$
 $|\mathbf{Y}_{s\mu} \mathbf{Y}_{de}^*| \leq 2.1 \times 10^{-5} \left(\frac{M_{LQ}}{1 \text{ TeV}}\right)^2$

 u^{-}

Large couplings allowed for heavy LQ.

Collider bounds on M_{LQ}

- $pp \rightarrow LQ LQ \rightarrow ejej/e\nu jj$
- For 1st generation LQ, $M_{LQ} < 1.4$ TeV ruled out.

[CMS collaboration, A. M. Sirunyan et al., 2019]

• $\beta(LQ \rightarrow e^- i) < 1 \Rightarrow$ relaxed bound

[CMS collaboration, 2019]

 $M_{LQ}[GeV]$ Y_{11} Z_{11} 1.29 687 0.233 860 0.29 1.27 1000 0.34 1.03 1110 0.377 0.84 1204 0.41 0.65

 $\mathcal{L} \supset (Y_{11}\bar{d}_R e_L + Z_{11}\bar{u}_L N_R) LQ$

6/14

ափակափակափո

LHC vs LHeC/FCC-he

LHeC : e (60 GeV) & p (7 TeV), $\sqrt{s} = 1.3$ TeV, $\mathcal{L} = 1 \mathrm{ab}^{-1}$

FCC-he : e (60 GeV) & p (50 TeV), $\sqrt{s} = 3.46$ TeV, $\mathcal{L} = 3ab^{-1}$

• CMS limit translated to $M_{LQ} - Y_{11}$ plane.

イロト イワト イヨト イヨト 三日

Use of polarized e-beam \Rightarrow Factor of 2 enhancement in σ

Channel-1: $e^{\pm}p \rightarrow l^{\pm}j$

- Signal: $e^{\pm}p \rightarrow l^{\pm}j$
- SM BKG: $e^{\pm}p \rightarrow I^{\pm}j, I^{\pm}jj$
- Table: 1 (LHeC)

	$e^- p ightarrow l^- j$		$e^+ p ightarrow l^+ j$	
	σ^{sig} [fb]	σ^{bkg} [fb]	σ^{sig} [fb]	σ^{bkg} [fb]
No cut	4.016	2180	39.23	1440
$c_1: N_j \ge 1 + N_l \ge 1$	3.01	1644	29.85	1079
$c_2:c_1+p_T(l_1)\geq 400$	0.365	13.98	11.77	6.54
$c_3:c_2+p_T(j_1)\geq 400$	0.275	9.51	8.92	4.48
$c_4: c_4 + M_{LQ} - M_{lj} \le 100$	0.25	5.13	8.3	2.534
Significance for $\mathcal{L} = 1$ fb ⁻¹	0.107		2.5	

• Table: 2 (FCC-he)

	$e^- p \rightarrow l^- j$		$e^+p \rightarrow l^+j$	
	σ^{sig} [fb]	σ^{bkg} [fb]	σ^{sig} [fb]	σ^{bkg} [fb]
No cut	395.08	10900	1246.4	9597
$c_1 : N_j \ge 1 + N_l \ge 1$	354.41	9836.93	1119.03	8652.58
$c_2: c_1 + p_T(l_1) \ge 400$	180	839.141	578.13	611.459
$c_3: c_2 + p_T(j_1) \ge 400$	129.97	618.963	417.26	441.812
$c_4: c_3 + M_{LQ} - M_{lj} \le 100$	119.9	141.112	383.59	90.279
Significance for $\mathcal{L} = 1$ fb ⁻¹	7.42		17.6	

• Table-3

Benchmarks	MLQ	M _{Ns}	Y	Z
	1 TeV	100 GeV	(0.34, 0, 0)	(1.03, 0, 0)

- signal selection criteria: High p_T jet and lepton, cut on *l* - *j* invariant mass.
- Significant reduction in $\sigma^{\rm bkg}$.

・ロト ・ 母 ト ・ 声 ・ ・ モ ・ う へ ()・

Results

- At LHeC, with e^- beam \Rightarrow Less sensitive.
- e^+ beam $\Rightarrow M_{LQ}$ upto 1.2 TeV can be acessible with $\mathcal{L} < 100 \text{ fb}^{-1}$.
- At FCC-he, with e^- beam M_{LQ} upto 2.3 TeV can be probed with $\mathcal{L} < 1000 \text{ fb}^{-1}$
- e^+ beam $\Rightarrow M_{LQ}$ upto 3 TeV can be probed with $\mathcal{L} \leq 500 \text{ sfb}^{-1}$ and

Channel-2: $ep \rightarrow jN$

 $\mathcal{L} = -Y_{ij} \bar{d}_R^i e_L^j \tilde{R}_2^{2/3} + (V_{\mathsf{CKM}} Z)_{ij} \bar{u}_L^i N_R^j \tilde{R}_2^{2/3}$

11/14

Comparison of $\tilde{R_2}$ model with seesaw scenario

• Seesaw: $N_1 \rightarrow \ell W / \nu Z / \nu h$, LQ: $N_1 \rightarrow LQ^{\star}(\rightarrow lj) + j$

$ep \rightarrow jN, N \rightarrow ljj$

Different signatures:

- Prompt decay of RHN ⇒ one prompt lepton + multi jet
- Boosted RHN $\Rightarrow j + j_N$ (Fat jet)

 $M_N \ll M_{LQ} \Rightarrow$ collimated decay product.

<ロ> (四) (四) (三) (三) (三)

• Boosted + Displaced RHN $\Rightarrow j + j_N^d$ (Displaced Fat jet)

 $M_N \ll M_{LQ}$ and $\mathrm{c}\tau_\mathrm{N} \geq 1~\mathrm{mm}$

• jet + MET $\Rightarrow c\tau_N >$ detector size

- There are bounds on mass and coupling of *LQ*. Tightest bound is from CMS experiment.
- LHeC and FCC-he provide larger cross section than LHC upto a certain M_{LQ} .
- σ(e[±]p → l[±] j) depend on Yukawa coupling. Results presented here are specific to chosen value of coupling.
- cross section for the channel, $ep \rightarrow jN$ is larger than usual seesaw scenario.
- A single channel, $ep \rightarrow jN, N \rightarrow ljj$ leads to various signatures.

Thank you for your attention!