Multicomponent dark matter, neutrinos and high scale validity

Rishav Roshan

IIT Guwahati, India

Based on the works:
(i) arXiv :2009.01262,
(ii) JCAP 04 (2020) 013,
(iii) PHYSICAL REVIEW D 100, 055027 (2019)

September 12, 2020

Introduction

A. Here we address two of the most important aspects of present day particle physics and cosmology:

- Dark matter \longrightarrow requires beyond the Standard Model fields [e.g. Scalar / fermion/ boson].
- Neutrino mass \longrightarrow [most popular one: type-I seesaw: requires additional SM singlet RH neutrinos.]
B. These BSM fields: affects the EW vacuum stability at high scale.

$$
\beta_{\lambda}^{\mathrm{SM}}=24 \lambda^{2}+\frac{3}{4} g_{1}^{2} g_{2}^{2}-3 g_{1}^{2} \lambda+\frac{3}{8} g_{1}^{4}-9 g_{2}^{2} \lambda+\frac{9}{8} g_{2}^{4}+12 y_{t}^{2} \lambda-6 y_{t}^{4}
$$

I. an additional scalar can alter the situation towards stability.
II. On the other hand, additional fermion having coupling with the SM Higgs
can make it worse. $\overline{\text {. }}$

Some standard WIMP DM models

Motivation

Lack of precise information of DM quantum numbers

Proposal

Multicomponent DM

Introduction of multicomponent DM:

- Opens up the new DM-DM interaction.

- DM-DM interaction influences the relic, however do not contribute to DD. Hence an evade stringent constraints coming from the direct search experiments.

Relic Density and Direct Detection

Boltzmann Equation:

$$
\begin{aligned}
\frac{d y_{1}}{d x}= & \frac{-1}{x^{2}}\left[\left\langle\sigma v_{11} \rightarrow x x\right\rangle\left(y_{1}^{2}-\left(y_{1}^{E Q}\right)^{2}\right)+\left\langle\sigma v_{11 \rightarrow 22}\right\rangle\left(y_{1}^{2}-\frac{\left(y_{1}^{E Q}\right)^{2}}{\left(y_{2}^{E Q}\right)^{2}} y_{2}^{2}\right) \Theta\left(m_{1}-m_{2}\right)\right. \\
& \left.-\left\langle\sigma v_{22 \rightarrow 11}\right\rangle\left(y_{2}^{2}-\frac{\left(y_{2}^{E Q}\right)^{2}}{\left(y_{1}^{E Q}\right)^{2}} y_{1}^{2}\right) \Theta\left(m_{2}-m_{1}\right)\right], \\
\frac{d y_{2}}{d x}= & \frac{-1}{x^{2}}\left[\left\langle\sigma v_{22 \rightarrow x x}\right\rangle\left(y_{2}^{2}-\left(y_{2}^{E Q}\right)^{2}\right)+\left\langle\sigma v_{22 \rightarrow 11}\right\rangle\left(y_{2}^{2}-\frac{\left(y_{2}^{E Q}\right)^{2}}{\left(y_{1}^{E Q}\right)^{2}} y_{1}^{2}\right) \Theta\left(m_{2}-m_{1}\right)\right. \\
& \left.-\left\langle\sigma v_{11 \rightarrow 22}\right\rangle\left(y_{1}^{2}-\frac{\left(y_{1}^{E Q}\right)^{2}}{\left(y_{2}^{E Q}\right)^{2}} y_{2}^{2}\right) \Theta\left(m_{1}-m_{2}\right)\right] .
\end{aligned}
$$

Here, $y_{i}=0.264 M_{\mathrm{PI}} \sqrt{g_{*}} \mu Y_{i}$ with $Y_{i}=\frac{n_{i}}{s}, x=\frac{\mu}{T}, \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$
Relic density:

$$
\Omega_{i} h^{2}=\frac{854.45 \times 10^{-13}}{\sqrt{g_{*}}} \frac{m_{i}}{\mu} y_{i}\left(\frac{\mu}{m_{i}} x_{\infty}\right), \quad \Omega_{T o t} h^{2}=\Omega_{1} h^{2}+\Omega_{2} h^{2}
$$

Direct detection: The effective SI-DD cross sections:

$$
\sigma_{i, e f f}^{S I}=\frac{\Omega_{i}}{\Omega_{T o t}} \sigma_{i}^{S I}
$$

Our Goal

The questions on can ask is, can multicomponent DM

- Provide a solution for a scalar singlet model which is allowed by DD in the sub- TeV range?
- Provide a DM candidate in the $m_{W}-500 \mathrm{GeV}$ range for a Inert Higgs doublet (IHD) DM scenario?
- Provide a DM candidate below 1.8 TeV for a scalar triplet $(Y=0)$ DM scenario?
- Provide a DM candidate in the region apart from the resonance regions in a gauged $U(1)_{B-L}$ scenario?

Some possibilities of a multicomponent DM framework:

- 2 Scalar singlet [JCAP 04 (2017)043]
- Scalar singlet + Inert doublet [JHEP 03 (2020) 090]
- Scalar singlet + Scalar Triplet [arXiv:2009.01262]
- Two inert doublets [Phys.Rev.D 100 (2019) 5, 055027]
- Inert doublet in a gauged $U(1)_{B-L}$ model [JCAP 04 (2020) 013]

Our Proposal

Consider a multicomponent scenario with a focus on sub- TeV range of scalar singlet DM and a below 1.8 TeV range of scalar triplet DM $(Y=0)$.

Proposal : a hybrid with scalar singlet + scalar triplet!

DM: Scalar singlet and neutral component of the scalar triplet . [DM-DM conversion would be important]

Stability of the Higgs vacuum: Higgs portal couplings of scalar singlet and scalar triplet \rightarrow can make the EW vacuum stable.

The Model (arXiv: 2009.01262), [ADB,RR,AS]

Extension of the SM by: $Z_{2} \times Z_{2}^{\prime}$

Particle	$S U(2)$	$U(1)_{Y}$	Z_{2}	Z_{2}^{\prime}
H	2	$\frac{1}{2}$	+	+
T	3	0	-	+
S	1	0	+	-

$$
\begin{aligned}
V_{H} & =-\mu_{H}^{2} H^{\dagger} H+\lambda_{H}\left(H^{\dagger} H\right)^{2} \\
V_{T} & =\frac{M_{T}^{2}}{2} \operatorname{tr}\left[T^{2}\right]+\frac{\lambda_{T}}{4!}\left(\operatorname{tr}\left[T^{2}\right]\right)^{2}, \\
V_{S} & =\frac{M_{S}^{2}}{2} S^{2}+\frac{\lambda_{S}}{4!} S^{4} \\
V_{\text {int }} & =\frac{\lambda_{H T}}{2}\left(H^{\dagger} H\right) \operatorname{tr}\left[T^{2}\right]+\frac{\lambda_{H S}}{2}\left(H^{\dagger} H\right) S^{2}+\frac{\kappa}{4} \operatorname{tr}\left[T^{2}\right] S^{2}
\end{aligned}
$$

The scalar fields are then parametrised as

$$
H=\binom{w^{+}}{\frac{1}{\sqrt{2}}(v+h+i z)}, \quad T=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} T^{0} & -T^{+} \\
-T^{-} & -\frac{1}{\sqrt{2}} T^{0}
\end{array}\right), \quad S .
$$

After the EWSB, the masses of the scalar particles are given as

$$
\begin{aligned}
m_{h}^{2} & =2 \lambda_{H} v^{2} \\
m_{T^{0}, T^{ \pm}}^{2} & =M_{T}^{2}+\frac{\lambda_{H T}}{2} v^{2} \\
m_{S}^{2} & =M_{S}^{2}+\frac{\lambda_{H S}}{2} v^{2} .
\end{aligned}
$$

A small mass difference of $\mathbf{1 6 6} \mathbf{~ M e V}$ between the charged and the neutral scalars can be generated at 1-loop

$$
\Delta m=\left(m_{T^{ \pm}}-m_{T^{0}}\right)_{1-\text { loop }}=\frac{\alpha m_{T^{0}}}{4 \pi}\left[f\left(\frac{M_{W}}{m_{T^{0}}}\right)-c_{W}^{2} f\left(\frac{M_{Z}}{m_{T^{0}}}\right)\right] .
$$

This makes the T^{0} a viable DM candidate.

DM Phenomenology and vacuum stability

DM-DM conversion ($m_{S}>m_{T}$):

$$
\beta_{\lambda_{H}}=\beta_{\lambda_{H}}^{S M}+\frac{3}{2} \lambda_{H T}^{2}+\frac{1}{2} \lambda_{H S}^{2}
$$

The next question we ask is

Can multicomponent provide DM in the mass range $m_{W}-500$ GeV of IHD?

$$
\text { Yes }{ }^{1}!!
$$

Proposal : a hybrid with 2 IHDs!

DM: Lightest neutral component of both the IHDs .
[DM-DM conversion would be important]
Neutrino mass: Together with the RHNs, ν - masses can be generated at 1-loop.

[^0]
Model (Phys.Rev.D 100 (2019) 5, 055027), [DB,RR,AS]

Extension of the SM: $S U(2)_{L} \times U(1)_{Y} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}^{\prime}$

Field	$S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$	\mathbb{Z}_{2}	$\mathbb{Z}_{2}{ }^{\prime}$
η_{1}	$\left(1,2, \frac{1}{2}\right)$	-	+
η_{2}	$\left(1,2, \frac{1}{2}\right)$	+	-
N_{1}	$(1,1,0)$	-	+
N_{2}	$(1,1,0)$	+	-

Lagrangian
$-\mathcal{L}^{\text {new }}=Y_{\alpha 1} \bar{L}_{\alpha} \tilde{\eta}_{1} N_{1}+Y_{\alpha 2} \bar{L}_{\alpha} \tilde{\eta}_{2} N_{2}+\frac{1}{2} M_{1} \bar{N}_{1}^{c} N_{1}+\frac{1}{2} M_{2} \bar{N}_{2}^{c} N_{2}+$ h.c,

Scalar potential

$$
\begin{aligned}
V_{\mathrm{int}}= & \lambda_{3}\left(H^{\dagger} H\right)\left(\eta_{1}^{\dagger} \eta_{1}\right)+\lambda_{4}\left(H^{\dagger} \eta_{1}\right)\left(\eta_{1}^{\dagger} H\right)+\frac{\lambda_{5}}{2}\left[\left(H^{\dagger} \eta_{1}\right)^{2}+\left(\eta_{1}^{\dagger} H\right)^{2}\right] \\
& +\tilde{\lambda}_{3}\left(H^{\dagger} H\right)\left(\eta_{2}^{\dagger} \eta_{2}\right)+\tilde{\lambda}_{4}\left(H^{\dagger} \eta_{2}\right)\left(\eta_{2}^{\dagger} H\right)+\frac{\tilde{\lambda}_{5}}{2}\left[\left(H^{\dagger} \eta_{2}\right)^{2}+\left(\eta_{2}^{\dagger} H\right)^{2}\right] \\
& +\lambda_{3}^{\prime}\left(\eta_{1}^{\dagger} \eta_{1}\right)\left(\eta_{2}^{\dagger} \eta_{2}\right)+\lambda_{4}^{\prime}\left(\eta_{1}^{\dagger} \eta_{2}\right)\left(\eta_{2}^{\dagger} \eta_{1}\right)+\frac{\lambda_{5}^{\prime}}{2}\left[\left(\eta_{1}^{\dagger} \eta_{2}\right)^{2}+\left(\eta_{2}^{\dagger} \eta_{1}\right)^{2}\right] .
\end{aligned}
$$

$Y_{\alpha i} \bar{L}_{\alpha} \tilde{\eta}_{i} N_{i}: \nu$-mass generation at 1-loop

$$
\left(m^{\nu}\right)_{\alpha \beta}=\sum_{i=1,2} Y_{\alpha i} Y_{\beta i} \frac{M_{i}}{32 \pi^{2}}\left[\frac{m_{H_{i}}^{2}}{m_{H_{i}}^{2}-M_{i}^{2}} \ln \frac{m_{H_{i}}^{2}}{M_{i}^{2}}-\frac{m_{A_{i}}^{2}}{m_{A_{i}}^{2}-M_{i}^{2}} \ln \frac{m_{A_{i}}^{2}}{M_{i}^{2}}\right],
$$

With $Y=U_{\text {PMNS }} \sqrt{m_{\nu}^{\text {diag }}} R^{\dagger} \sqrt{\Lambda^{-1}} \quad$ [CI parameterization ${ }^{2}$] where

$$
m_{\nu}^{\text {diag }}=\operatorname{dia}\left(m_{\nu_{1}}, m_{\nu_{2}}, m_{\nu_{3}}\right), R=\left(\begin{array}{ccc}
0 & \cos z & \sin z \\
0 & -\sin z & \cos z
\end{array}\right) \text { and } R^{\mathrm{T}}=1 .
$$

${ }^{2}$ Nucl.Phys. B618 (2001) 171-204

DM Phenomenology

DM-DM conversion ($m_{H_{2}}>m_{H_{1}}, \lambda_{3}^{\prime}, \lambda_{4}^{\prime}, \lambda_{5}^{\prime}=\lambda_{12}$ and without $Y_{\alpha i}$)

DM-DM conversion (with $Y_{\alpha i}$ and $M_{i}-m_{H_{i}}=10 \mathrm{GeV}$)

And finally,

Can multicomponent provide DM candidate in a gauged $U(1)_{\mathrm{B}-\mathrm{L}}$ scenario apart from the region near resonances ?

Yes, but one needs to pay a price!!

Proposal : a hybrid with Gauged $\mathrm{U}(1)_{\mathrm{B}-\mathrm{L}}+\mathrm{IHD}$!

DM: Lightest neutral component of the IHD and the lightest RHN .
[DM-DM conversion would be important]
Neutrino mass:RHNs together with the IHD, $\nu-$ masses can be generated at 1-loop.
High scale validity: The fate of EW vacuum will now depend on the choice of DM conversion coupling.

Model (JCAP 04 (2020) 013), [SB,NC,RR,AS]

- Extension of the SM by
- Gauged $U(1)_{B-L}$
- Two discrete symmetries: $\mathbb{Z}_{2} \times \mathbb{Z}_{2}^{\prime}$
- Charges of the particle under different symmetry groups

Field	$S U(2)_{L} \times U(1)_{Y}$	$U(1)_{B-L}$	\mathbb{Z}_{2}	$\mathbb{Z}_{2}{ }^{\prime}$
ϕ_{2}	$\left(2, \frac{1}{2}\right)$	0	-	-
N_{1}	$(1,0)$	-1	-	+
N_{2}, N_{3}	$(1,0)$	-1	-	-
S	$(1,0)$	2	+	+

$$
\begin{aligned}
\mathcal{L}_{\text {new }}= & i \bar{N} \not D N+\left|D_{\mu} \phi_{1}\right|^{2}+\left|D_{\mu} S\right|^{2}+\frac{1}{4}\left(Z_{B L}\right)_{\mu \nu}\left(Z_{B L}\right)^{\mu \nu} \\
& -\zeta_{i \alpha} \bar{L}_{L i} \tilde{\phi}_{2} N_{\alpha}-y_{\alpha \beta} \overline{N_{\alpha}^{c} N_{\beta}^{c} S-y_{11} \overline{N_{1}^{c}} N_{1}^{c} S-V\left(\phi_{1}, S\right)}
\end{aligned}
$$

where $D_{\mu}=\partial_{\mu}-i g \frac{\tau}{2} W_{\mu}-i \frac{g^{\prime}}{2} B_{\mu}-i g_{B L} Q\left(Z_{B L}\right)_{\mu}$

$$
\begin{aligned}
V\left(\phi_{1}, \phi_{2}, S\right)= & -\mu_{1}^{2} \phi_{1}^{\dagger} \phi_{1}+\mu_{2}^{2} \phi_{2}^{\dagger} \phi_{2}-\mu_{S}^{2}|S|^{2} \\
& +\lambda_{1}\left(\phi_{1}^{\dagger} \phi_{1}\right)^{2}+\frac{\lambda_{2}}{2}\left(\phi_{2}^{\dagger} \phi_{2}\right)^{2}+\lambda_{3}\left(\phi_{1}^{\dagger} \phi_{1}\right)\left(\phi_{2}^{\dagger} \phi_{2}\right) \\
& +\lambda_{4}\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{2}^{\dagger} \phi_{1}\right)+\frac{\lambda_{5}}{2}\left[\left(\phi_{1}^{\dagger} \phi_{2}\right)^{2}+\left(\phi_{2}^{\dagger} \phi_{1}\right)^{2}\right] \\
& +\lambda_{6}\left(\phi_{1}^{\dagger} \phi_{1}\right)|S|^{2}+\lambda_{7}\left(\phi_{2}^{\dagger} \phi_{2}\right)|S|^{2}+\lambda_{8}|S|^{4}
\end{aligned}
$$

After EWSB, $\left\langle\phi_{1}\right\rangle=v,\langle S\rangle=v_{B L},\left\langle\phi_{2}\right\rangle=0$ and ϕ_{h} mixes with ϕ_{s}

$$
\binom{\phi_{h}}{\phi_{s}}=\left(\begin{array}{cc}
c_{\theta} & s_{\theta} \\
-s_{\theta} & c_{\theta}
\end{array}\right)\binom{h}{s}
$$

Neutrino mass: $\zeta_{i \alpha} \bar{L}_{L i} \tilde{\phi}_{2} N_{\alpha}$, with $\alpha=2,3$

DM Phenomenology and High scale validity

DM-DM conversion :

$\beta_{\lambda_{7}}=6 \lambda_{2} \lambda_{7}+4 \lambda_{3} \lambda_{6}+2 \lambda_{4} \lambda_{6}+4 \lambda_{7}^{2}+8 \lambda_{7} \lambda_{8}+4 \lambda_{7} \operatorname{Tr}\left[y^{\dagger} y\right]_{\square} 24 \lambda_{7} g_{B L}^{2}$,

Conclusions

- Multicomponent DM models can evade ever tightening bound on the direct detection (DD) rates while enlarging relic density allowed parameter space.
- The proposed scenarios opens up an attractive possibility of DM-DM conversion, a phenomenon that goes on to become the main theme of these studies.
- Conversion processes can lead to the desired relic density for:
- Scalar singlet plus scalar triplet scenario in the sub-TeV mass regime.
- IHD DM scenario in the mass range $m_{W}-500 \mathrm{GeV}$.
- Gauged $U(1)_{\mathrm{B}-\mathrm{L}}$ model apart from the near resonance regions.
- The multicomponent scenarios discussed above can generate neutrino mass and at the same time can also modify the fate of EW vacuum.
- Multicomponent DM studies can also open up an interesting collider prospects (lighter DM masses are allowed).

Backup Slides

IHD parameters

$$
\begin{aligned}
m_{H_{1}}^{2} & =\mu_{1}^{2}+\frac{1}{2}\left(\lambda_{3}+\lambda_{4}+\lambda_{5}\right) v^{2} \\
m_{A_{1}}^{2} & =\mu_{1}^{2}+\frac{1}{2}\left(\lambda_{3}+\lambda_{4}-\lambda_{5}\right) v^{2} \\
m_{\eta_{1}^{+}}^{2} & =\mu_{1}^{2}+\frac{1}{2} \lambda_{3} v^{2} \\
m_{H_{2}}^{2} & =\mu_{2}^{2}+\frac{1}{2}\left(\tilde{\lambda_{3}}+\tilde{\lambda}_{4}+\tilde{\lambda_{5}}\right) v^{2} \\
m_{A_{2}}^{2} & =\mu_{2}^{2}+\frac{1}{2}\left(\tilde{\lambda_{3}}+\tilde{\lambda_{4}}-\tilde{\lambda}_{5}\right) v^{2} \\
m_{\eta_{2}^{+}}^{2} & =\mu_{2}^{2}+\frac{1}{2} \tilde{\lambda}_{3} v^{2}
\end{aligned}
$$

Annihilation channels

Figure: Annihilation channels

(a)

(b)

(c)

Figure: (Co)annihilation channels in presence of singlet neutral fermions

BP	$m_{H_{1}}[\mathrm{GeV}]$	$m_{\mathrm{H}_{2}}[\mathrm{GeV}]$	$\Omega_{1} h^{2}$	$\Omega_{2} h^{2}$
Without Yukawa interactions	250	492	0.026	0.095
With Yukawa interactions	250	380	0.033	0.085

Table: In producing the above values, we considered: $\lambda_{L_{1}}=\lambda_{L_{2}}=0.01$ and $\lambda_{12}=0$

Feynman Diagrams: U(1)'B-L

Annihilation and co-annihilation processes for H

Annihilation processes for N_{1}

$N_{1}-H$ conversion proceses

- Correct relic $\Omega_{N_{1}} h^{2} \simeq 0.11$ is only obtained in the vicinity of the resonance dip.
- Annihilation of N_{1} are gauge driven: $\Omega_{N_{1}} h^{2} \propto v_{B L}^{4}$
- Here, $M_{Z_{B L}}=2 g_{B L} v_{B L}=2 \mathrm{TeV}$ for $v_{B L}=20 \mathrm{TeV}$, the resonance dip corresponding to $M_{Z_{B L}}$ is visible.

The masses of the IHD component after the symmetry breaking:

$$
\begin{aligned}
M_{H}^{2} & =\mu_{2}^{2}+\frac{1}{2} \lambda_{L} v^{2}+\frac{1}{2} \lambda_{7} v_{B L}^{2} \\
M_{A}^{2} & =\mu_{2}^{2}+\frac{1}{2} \lambda_{L} v^{2}+\frac{1}{2} \lambda_{7} v_{B L}^{2} \\
M_{H^{+}}^{2} & =\mu_{2}^{2}+\frac{1}{2} \lambda_{3} v^{2}+\frac{1}{2} \lambda_{7} v_{B L}^{2}
\end{aligned}
$$

where $\lambda_{L}=\lambda_{3}+\lambda_{4}+\lambda_{5}$.

Masses of the 3 RHNs will be given as:

$$
M_{N}=\sqrt{2} v_{B L}\left(\begin{array}{ccc}
y_{11} & 0 & 0 \\
0 & y_{22} & y_{23} \\
0 & y_{23} & y_{33}
\end{array}\right) .
$$

We take $y_{23}=0$ for simplicity for the rest of the analysis, in which case M_{N} is diagonal with entries $M_{i}=\sqrt{2} y_{i i} v_{B L}$.

Choice of parameters

- We have the following free parameters in our set-up:
$M_{1}, M_{2}, M_{3}, M_{H}, M_{A}, M_{H^{+}}, M_{s}, \theta, \lambda_{L}, \lambda_{7}, g_{B L}, v_{B L}$
- Dependent parameters in the set-up:

$$
\begin{aligned}
\mu_{2}^{2} & =M_{H}^{2}-\frac{1}{2} \lambda_{L} v^{2}-\frac{1}{2} \lambda_{7} v_{B L}^{2} \\
\lambda_{1} & =\frac{\left(M_{h}^{2} c_{\theta}^{2}+M_{S}^{2} s_{\theta}^{2}\right)}{v^{2}} \\
\lambda_{3} & =\lambda_{L}+\frac{2\left(M_{H^{+}}^{2}-M_{H}^{2}\right)}{v^{2}}, \\
\lambda_{4} & =\frac{M_{H}^{2}+M_{A}^{2}-2 M_{H^{+}}^{2}}{v^{2}} \\
\lambda_{5} & =\frac{\left(M_{H}^{2}-M_{A}^{2}\right)}{v^{2}} \\
\lambda_{6} & =\frac{\left(M_{S}^{2}-M_{h}^{2}\right) s_{\theta} c_{\theta}}{v v_{B L}} \\
\lambda_{8} & =\frac{\left(M_{h}^{2} s_{\theta}^{2}+M_{S}^{2} c_{\theta}^{2}\right)}{2 v_{B L}^{2}} \\
y_{i i} & =\frac{M_{i i}}{\sqrt{2} v_{B L}}
\end{aligned}
$$

Figure: Parameter space in the $\lambda_{7}-M_{H^{+}}$plane allowed by the $\mu_{\gamma \gamma}$ constraint

Scalar interations:

$$
\begin{align*}
\lambda_{H H h} & =\left(\lambda_{3}+\lambda_{4}+\lambda_{5}\right) v c_{\theta}-\lambda_{7} v_{B L} s_{\theta}, \tag{4a}\\
\lambda_{H H s} & =\left(\lambda_{3}+\lambda_{4}+\lambda_{5}\right) v s_{\theta}+\lambda_{7} v_{B L} c_{\theta}, \tag{4b}\\
\lambda_{A A h} & =\left(\lambda_{3}+\lambda_{4}-\lambda_{5}\right) v c_{\theta}-\lambda_{7} v_{B L} s_{\theta}, \tag{4c}\\
\lambda_{A A s} & =\left(\lambda_{3}+\lambda_{4}-\lambda_{5}\right) v s_{\theta}+\lambda_{7} v_{B L} c_{\theta}, \tag{4d}\\
\lambda_{H^{+} H^{-} h} & =\lambda_{3} v c_{\theta}-\lambda_{7} v_{B L} s_{\theta}, \tag{4e}\\
\lambda_{H^{+} H^{-}-} & =\lambda_{3} v s_{\theta}+\lambda_{7} v_{B L} c_{\theta} . \tag{4f}
\end{align*}
$$

Yukawa interations:

$$
\begin{align*}
y_{h N_{1} N_{1}} & =-\frac{1}{\sqrt{2}} y_{11} s_{\theta}, \tag{5a}\\
y_{s N_{1} N_{1}} & =\frac{1}{\sqrt{2}} y_{11} c_{\theta}, \tag{5b}\\
y_{h f f} & =\frac{M_{f}}{v} c_{\theta}, \tag{5c}\\
y_{s f f} & =\frac{M_{f}}{v} s_{\theta} \text { where } f \text { is a SM fermion. } \tag{5d}
\end{align*}
$$

Gauge interations:

$$
\begin{align*}
g_{h V V} & =\frac{2 M_{V}^{2}}{v} c_{\theta}, \tag{6a}\\
g_{s V V} & =\frac{2 M_{V}^{2}}{v} s_{\theta} \text { where } V=w^{+}, z \tag{6b}\\
g_{h z_{B L} z_{B L}} & =-\frac{2 M_{V}^{2}}{v_{B L}} s_{\theta}, \tag{6c}\\
g_{s z_{B L} z_{B L}} & =\frac{2 M_{V}^{2}}{v_{B L}} c_{\theta} \tag{6d}
\end{align*}
$$

- LHC diphoton signal strength:

- Measured Higgs signal strength at LHC gives constraint on $\sin \theta \leq 0.36^{3}$.
- The presence of H^{+}will alter the decay width of $h \rightarrow \gamma \gamma$ through one loop ${ }^{4}$

$$
\begin{aligned}
& \mathcal{M}_{h \rightarrow \gamma \gamma}= \frac{4}{3} c_{\theta} A_{f}\left(\frac{M_{h}^{2}}{4 M_{t}^{2}}\right)+c_{\theta} A_{V}\left(\frac{M_{h}^{2}}{4 M_{W}^{2}}\right) \\
&+\frac{\lambda_{h H^{+} H^{-} v}^{2 M_{H^{+}}^{2}} A_{S}\left(\frac{M_{h}^{2}}{4 M_{H^{+}}^{2}}\right)}{\Gamma_{h \rightarrow \gamma \gamma}=} \\
& \frac{G_{F} \alpha^{2} M_{h}^{3}}{128 \sqrt{2} \pi^{3}}\left|\mathcal{M}_{h \rightarrow \gamma \gamma}\right|^{2} .
\end{aligned}
$$

where A_{f}, A_{V} and A_{S} are the loop functions. [ref] The latest $\mu_{\gamma \gamma}$ values from 13 TeV LHC read [ref]

$$
\begin{aligned}
\mu_{\gamma \gamma} & =0.99_{-0.14}^{+0.14}(\text { ATLAS }) \\
& =1.18_{-0.14}^{+0.17}(\mathrm{CMS})
\end{aligned}
$$

[^1]${ }^{4}$ Phys.Rev. D85 (2012) 095021

[^0]: ${ }^{1}$ A similar analysis with one singlet and one IHD can be found in JHEP 03 (2020) 090

[^1]: ${ }^{3}$ Eur.Phys.J. C76 (2016) no.5, 268

