Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

ANOMALIES 2020

International Conference (online) IIT Hyderabad, Kandi, Telengana - 502285

Anomalies in rare b decays - a review Martino Borsato

on behalf of the LHCb collaboration

Universität Heidelberg

martino.borsato@cern.ch

Outline

- Rare B decays to search for NP
 - Effective approach
 - Energy scale
- $b \rightarrow s\mu\mu$ at LHCb
 - $b \to s\mu\mu$ and $B_s \to \mu^+\mu^-$ branching ratios
 - $B^0 \to K^* \mu^+ \mu^-$ angular analysis
- Lepton Universality tests
 - Electrons vs muons at LHCb
 - Experimental results (R_K, R_{K^*}, R_{pK})
- Prospects
 - $B^0 \to K^*e^+e^-$ angular analysis
 - With Run 2 data on tape
 - With upcoming upgrade

$b \rightarrow s\ell\ell$ transitions

- $b \rightarrow s\ell^+\ell^-$ is a golden channel
 - Flavour-changing $b \rightarrow s$ neutral current
 - Forbidden at tree-level in SM \rightarrow BR of $10^{-6} 10^{-10}$
 - New physics contribution can be same order as SM

Energy scale

Effective-Hamiltonian approach
$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \frac{\mathrm{e}^2}{16\pi^2} V_{tb} V_{ts}^* \sum_i C_i O_i + \mathrm{h.c.}$$
 Operator encoding
$$C_i = C_i^{\mathrm{SM}} + C_i^{\mathrm{NP}}$$
 Lorentz structure

- $b \rightarrow s\ell\ell$ is loop and CKM suppressed in the SM
- New physics may share these features or not → different energy reach

$$\Lambda_{\rm NP} \times \sqrt{|\mathcal{C}_{9,10}^{\rm NP}|} \sim \begin{cases} \frac{4\pi\sqrt{2}M_W}{ge\sqrt{|V_{tb}V_{ts}^*|}} = 36\,{\rm TeV} & (\text{generic tree level}), \\ \frac{\sqrt{2}M_W}{e\sqrt{|V_{tb}V_{ts}^*|}} = 2\,{\rm TeV} & (\text{weak loop}), \\ \sqrt{2}M_W/e = 400\,{\rm GeV} & (\text{MFV, weak loop}). \end{cases}$$

 \rightarrow more on the interpretation of $b \rightarrow s\ell\ell$ in Aritra Biswas talk

$b \rightarrow s\ell\ell$ transitions

courtesy of D.Straub

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \frac{e^2}{16\pi^2} V_{tb} V_{ts}^* \sum_i C_i O_i + \text{h.c.}$$

- Relevant dimension-6 operators:
 - Four-quark operators (entering through hadronic effects)
 - Dipole operators $C_7^{(\prime)}$ (constrained by radiative decays)
 - Semi-leptonic operators $C_9(')$, $C_{10}(')$ \rightarrow main interest for NP searches

Decay	$C_7^{(\prime)}$	$C_9^{(\prime)}$	$C_{10}^{(\prime)}$	$C_{S,P}^{(\prime)}$
$B o X_{s} \gamma$	X			
$ extstyle B o extstyle K^*\gamma$	X			
$B o X_{s}\ell^{+}\ell^{-}$	X	X	X	
$B o K^{(*)}\ell^+\ell^-$	X	X	X	
$B_s ightarrow \mu^+ \mu^-$			Χ	X

q² spectrum

The LHCb experiment

The LHCb experiment

Int.J.Mod.Phys. A 30, 1530022 (2015)

LHC pp collisions at 7-13 TeV

- Huge $pp \rightarrow b\bar{b}X$ cross-section of order mb
- Large background $\sigma(\text{inelastic}) \simeq 200\sigma(b\bar{b})$

LHCb optimised to select b-hadrons

- In the forward region of *pp* collisions
 - \blacktriangleright Where most of $b\bar{b}$ are produced
- Low- p_T triggers with calo and muon-ch.
 - ▶ Running at lower luminosity w.r.t. ATLAS/CMS
- Identify displaced *b*-hadron vertex
 - Leveraging large boost in forward region
- Precise momenta with spectrometer
 - ▶ Separate partially reconstructed *b*-hadron decays

The LHCb experiment

Excellent performance in LHC Run 1 and 2

- About $10^{12} b\bar{b}$ in the acceptance
- Recorded world-largest sample of $b \rightarrow s\mu\mu$ decays

Anomalies in $b \rightarrow s\mu\mu$

Branching ratio measurements

 dB/dq^2 in exclusive $b\rightarrow s\mu\mu$ seems to undershoot SM predictions

- Theory uncertainties ~20-30% (hadronic form factors)
- Pattern is coherent, but predictions uncertainties are correlated
- Inclusive $B \to X_s \mu \mu$ measurement very hard at LHCb

$B_{(s)} \rightarrow \mu^+ \mu^-$

• Purely leptonic $B_{(s)} \to \mu^+ \mu^-$ decay

+ box diagram with neutrinos

- Same diagrams as $b \rightarrow s\mu\mu$ (rotated)
- Much smaller BR because of helicity suppression
- More precise predictions because of $\mu\mu$ final state
- Theoretically clean probe of C_{10} Wilson coefficient
 - ▶ Will be a key player to understand the anomalies in the near future

$B_{(s)} \rightarrow \mu^+ \mu^-$ LHC combination

LHCb-CONF-2020-002

• Latest BR predictions have precision at 4-5% level:

$$\mathscr{B}\left(B_s^0 \to \mu^+ \mu^-\right) = (3.66 \pm 0.14) \times 10^{-9}$$

$$\mathscr{B}(B^0 \to \mu^+ \mu^-) = (1.03 \pm 0.05) \times 10^{-10}$$

Beneke et al JHEP 10 (2019) 232

• ATLAS+CMS+LHCb combination:

$$\mathscr{B}\left(B_s^0 \to \mu^+ \mu^-\right) = \left(2.69^{+0.37}_{-0.35}\right) \times 10^{-9}$$

 $\mathscr{B}(B^0 \to \mu^+ \mu^-) < 1.9 \times 10^{-10} \text{ at } 95\% \text{ CL}$

2.1σ deviation compatible with other anomalies

$B^0 \to K^* \mu^+ \mu^-$ angular analysis

PRL 125(2020)01 1802

- $B^0 \to K^*(K^+\pi^-)\mu^+\mu^-$ gives 4-particle final state with rich structure
- Angular analysis in fine bins of q^2 performed with 6/fb (~4600 signal candidates)
- Kinematics defined by 3 angles
 - Complicated description

$$\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^4(\Gamma + \bar{\Gamma})}{dq^2 d\cos\theta_K d\cos\theta_L d\phi} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_K + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_L + S_3 \sin^2\theta_K \sin^2\theta_L \cos 2\phi + S_5 \sin 2\theta_K \sin\theta_L \cos\phi + S_7 \sin 2\theta_K \sin\theta_L \sin\phi + S_9 \sin^2\theta_K \sin^2\theta_L \sin 2\phi \right]$$

$$+ F_{L} \cos^{2} \theta_{K}$$

$$- F_{L} \cos^{2} \theta_{K} \cos 2\theta_{L}$$

$$+ S_{4} \sin 2\theta_{K} \sin 2\theta_{L} \cos \phi$$

$$+ \frac{3}{4} A_{FB} \sin^{2} \theta_{K} \cos \theta_{L}$$

$$+ S_{8} \sin 2\theta_{K} \sin 2\theta_{L} \sin \phi$$

$B^0 \to K^* \mu^+ \mu^-$ angular analysis

PRL 125(2020)01 1802

15

- $_{\odot}$ Measure 8 angular observables in 8 q^2 bins
- Deviations at 1-2 sigma level observed in some observables
 - → is it simply look-elsewhere effect?

$B^0 \to K^* \mu^+ \mu^-$ angular analysis

PRL 125(2020)01 1802

- Global fit of Wilson coefficients seems to indicate a pattern
- $_{\odot}$ Deviations are best explained by a shift in C_9
 - They agree between Run 1 and 2016 data
 - Different observables give a coherent picture

Community has critical look on $c\bar{c}$ loop mimicking NP effect in C₉

Ciuchini et al NPPP 285-286 (2017) 45-49

Lepton universality tests

LU test in $b \rightarrow s\ell\ell$: μ vs e

- Can use $b \rightarrow s\ell\ell$ to test for LU-violating effects of New Physics
- Rare $b \rightarrow s\ell\ell$ with $\ell = \tau$ are not observed yet
- Can compare BR with $\ell=\mu$ and e: $\mathcal{R}_{K^{(*)}}=\frac{\mathcal{B}(B\to K^{(*)}\mu\mu)}{\mathcal{B}(B\to K^{(*)}ee)}$
 - LU QCD uncertainties completely cancels in the ratio
 - Largest uncertainty remaining is 1% due to QED corrections (taken into account with PHOTOS, but with approximations)

 Bordone, Isidori, Pattori EPJC(2016)76:440
- Previous tests at B-factories not very sensitive
- LHCb has much better sensitivity, but electrons challenging
 - Selection, bremsstrahlung, resolution, modelling

e^+e^- at LHCb: Selection

• Electrons at LHCb:

- Being light, they are produced in a plethora of decay channels
- **Trigger** on large e^{\pm}/h^{\pm} energy deposit on calorimeters
- **Electron ID** relies on calorimeter for suppression of π mis-ID
- Large **combinatorial background**: machine-learning based classification using kinematics info and isolation
- Muons trigger and ID is easier
 - Selection more efficient by factor ~3

$$\frac{N\left(B^{+} \to K^{+}\mu^{+}\mu^{-}\right)}{N(B^{+} \to K^{+}e^{+}e^{-})} \simeq 3$$

Phys. Rev. Lett. 122 (2019) 191801

Hardware trigger at LHCb:

- $p_{\rm T}(\mu^{\pm}) > 1.5 1.8 \text{ GeV}$
- $E_{\rm T}(e^{\pm}) > 2.5 3.0 {\rm GeV}$

Electron ID at LHCb

e^+e^- at LHCb: Bremsstrahlung

- Boosted B from LHC collision
 - Most electrons emit hard
 bremsstrahlung photon
 - If emitted **before the magnet it**affects the momentum measurement
- Brem-recovery algorithm searches for compatible deposits in the calorimeter
 LHCb, JHEP 08 (2017) 055
 - Recovery efficiency is limited (but well reproduced in simulation)
 - **ECAL resolution** is worse than spectrometer (1-2% vs 0.5%)

Int.J.Mod.Phys. A 30, 1530022 (2015)

e^+e^- at LHCb: Resolution

Phys. Rev. Lett. 122 (2019) 191801

- Background with missing pion due to mass resolution
- Combinatorial background is larger (many electrons)
- Signal mass shape controlled with $J/\psi \rightarrow e^+e^-$ channel

e⁺e⁻ at LHCb: Modelling

Phys. Rev. Lett. 122 (2019) 191801

• Use double ratio:

$$\mathcal{R}_{K} = \frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to K^{+} J/\psi (\mu^{+} \mu^{-}))} \frac{\mathcal{B}(B^{+} \to K^{+} J/\psi (e^{+} e^{-}))}{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})} = \frac{N_{K^{+} \mu^{+} \mu^{-}}}{N_{K^{+} J/\psi (\mu^{+} \mu^{-})}} \frac{N_{K^{+} J/\psi (e^{+} e^{-})}}{N_{K^{+} e^{+} e^{-}}} \frac{\epsilon_{K^{+} J/\psi (\mu^{+} \mu^{-})}}{\epsilon_{K^{+} J/\psi (e^{+} e^{-})}} = \frac{N_{K^{+} \mu^{+} \mu^{-}}}{N_{K^{+} J/\psi (\mu^{+} \mu^{-})}} \frac{\epsilon_{K^{+} e^{+} e^{-}}}{\epsilon_{K^{+} J/\psi (e^{+} e^{-})}} = \frac{N_{K^{+} \mu^{+} \mu^{-}}}{N_{K^{+} J/\psi (\mu^{+} \mu^{-})}} \frac{\epsilon_{K^{+} e^{+} e^{-}}}{\epsilon_{K^{+} J/\psi (e^{+} e^{-})}} = \frac{N_{K^{+} \mu^{+} \mu^{-}}}{N_{K^{+} J/\psi (\mu^{+} \mu^{-})}} \frac{\mathcal{B}(B^{+} \to K^{+} J/\psi (e^{+} e^{-}))}{\epsilon_{K^{+} J/\psi (\mu^{+} \mu^{-})}} = \frac{N_{K^{+} \mu^{+} \mu^{-}}}{N_{K^{+} J/\psi (\mu^{+} \mu^{-})}} \frac{\mathcal{B}(B^{+} \to K^{+} J/\psi (e^{+} e^{-}))}{\epsilon_{K^{+} J/\psi (\mu^{+} \mu^{-})}} = \frac{N_{K^{+} \mu^{+} \mu^{-}}}{N_{K^{+} J/\psi (\mu^{+} \mu^{-})}} \frac{\mathcal{B}(B^{+} \to K^{+} J/\psi (e^{+} e^{-}))}{\epsilon_{K^{+} J/\psi (\mu^{+} \mu^{-})}} = \frac{N_{K^{+} \mu^{+} \mu^{-}}}{N_{K^{+} J/\psi (\mu^{+} \mu^{-})}} \frac{\mathcal{B}(B^{+} \to K^{+} J/\psi (e^{+} e^{-}))}{\epsilon_{K^{+} J/\psi (e^{+} e^{-})}} = \frac{N_{K^{+} \mu^{+} \mu^{-}}}{N_{K^{+} J/\psi (\mu^{+} \mu^{-})}} \frac{\mathcal{B}(B^{+} \to K^{+} J/\psi (e^{+} e^{-}))}{\epsilon_{K^{+} J/\psi (e^{+} e^{-})}} = \frac{N_{K^{+} \mu^{+} \mu^{-}}}{N_{K^{+} J/\psi (e^{+} e^{-})}} \frac{\mathcal{B}(B^{+} \to K^{+} J/\psi (e^{+} e^{-}))}{\epsilon_{K^{+} J/\psi (e^{+} e^{-})}} = \frac{N_{K^{+} \mu^{+} \mu^{-}}}{N_{K^{+} J/\psi (e^{+} e^{-})}} \frac{\mathcal{B}(B^{+} \to K^{+} J/\psi (e^{+} e^{-}))}{\epsilon_{K^{+} J/\psi (e^{+} e^{-})}} = \frac{N_{K^{+} \mu^{+} \mu^{-}}}{N_{K^{+} J/\psi (e^{+} e^{-})}} \frac{\mathcal{B}(B^{+} \to K^{+} J/\psi (e^{+} e^{-})}{\epsilon_{K^{+} J/\psi (e^{+} e^{-})}} = \frac{N_{K^{+} \mu^{+} \mu^{-}}}{N_{K^{+} J/\psi (e^{+} e^{-})}} \frac{\mathcal{B}(B^{+} \to K^{+} J/\psi (e^{+} e^{-})}{\epsilon_{K^{+} J/\psi (e^{+} e^{-})}} = \frac{N_{K^{+} \mu^{+} \mu^{-}}}{N_{K^{+} J/\psi (e^{+} e^{-})}} \frac{\mathcal{B}(B^{+} \to K^{+} J/\psi (e^{+} e^{-})}{\epsilon_{K^{+} J/\psi (e^{+} e^{-})}} \frac{\mathcal{B}(B^{+} \to K^{+} J/\psi (e^{+} e^{-})}{\epsilon_{K^{+} J/\psi (e^{+} e^{-})}} \frac{\mathcal{B}(B^{+} \to K^{+} J/\psi (e^{+} e^{-})}{\epsilon_{K^{+} J/\psi (e^{+} e^{-})}} \frac{\mathcal{B}(B^{+} \to K^{+} J/\psi (e^{+} e^{-})}{\epsilon_{K^{+} J/\psi (e^{+} e^{-})}} \frac{\mathcal{B}(B^{+} \to K^{+} J/\psi (e^{+}$$

$$r_{J/\psi} = \frac{B\left(B^{+} \to J/\psi \left(\to \mu^{+}\mu^{-}\right)K^{+}\right)}{B\left(B^{+} \to J/\psi \left(\to e^{+}e^{-}\right)K^{+}\right)} = 1.014 \pm 0.035$$

Can also test that R_K measured at the ψ(2S) is 1
 → checked with 1.3% precision

RKresult

Phys. Rev. Lett. 122 (2019) 191801

- Measured with 2011-2016 dataset (5/fb at \sqrt{s} =7, 8 and 13 TeV)
- Measured central q² region [1-6] GeV²
- Yield of ~766 $B^+ \to K^+ e^+ e^-$ events (vs ~1943 in $B^+ \to K^+ \mu^+ \mu^-$) driving the total uncertainty:
 - 7% statistical error vs 2% systematic
- R_K is found to be lower than 1 by ~15%
 - Still compatible with the SM at 2.5σ level

$$R_K = 0.846^{+0.060}_{-0.054}^{+0.016}_{-0.014}$$

R_K* result

LHCb, JHEP 08 (2017) 055

$$R_{K^{*0}} = \begin{cases} 0.66 \, {}^{+\ 0.11}_{-\ 0.07} \, (\mathrm{stat}) \pm 0.03 \, (\mathrm{syst}) & \text{for } 0.045 < q^2 < 1.1 \, \, \mathrm{GeV^2\!/}c^4 \\ 0.69 \, {}^{+\ 0.11}_{-\ 0.07} \, (\mathrm{stat}) \pm 0.05 \, (\mathrm{syst}) & \text{for } 1.1 \ \ < q^2 < 6.0 \, \, \mathrm{GeV^2\!/}c^4 \end{cases}$$

- Similar deviation was observed in R_{K^*} using Run 1 data
- Precision of ~17% in both bins, statistically dominated
- Upcoming Run 1 + Run 2 update expected to reduce uncertainty by factor ~2

LU test in baryons

LHCb, JHEP 05 (2020) 040

- New test of LU in $\Lambda_b \to pK^-\ell^+\ell^-$
 - Using Run 1 + 2016 dataset (4.7/fb)
- Similar physics as R_K and
 - Different final state and selection
 - Different backgrounds and systematic uncertainties
- Crosscheck using $\Lambda_b \to pK^-J/\psi$
- Measured phase space region:
 - $m(pK^{-}) > 2.6 \text{ GeV}$
 - $0.1 < q^2 < 6.0 \text{ GeV}^2$

$$R_{pK}|_{0.1 < q^2 < 6 \text{ GeV}^2/c^4} = 0.86^{+0.14}_{-0.11} \pm 0.05$$

Aebischer et al, Eur. Phys. J. C (2020) 80:252

A coherent pattern?

• LU deviations (theoretically clean) are consistent with $b \rightarrow s \mu \mu$ BR and angular analyses if NP only in μ

Coeff.	Best fit	1σ	2σ	Pull
$C_9^{bs\mu\mu}$	-0.97	[-1.12, -0.81]	[-1.27, -0.65]	5.9σ
$C_9^{\prime bs\mu\mu}$	+0.14	[-0.03, +0.32]	[-0.20, +0.51]	0.8σ
$C_{10}^{bs\mu\mu}$	+0.75	[+0.62, +0.89]	[+0.48, +1.03]	5.7σ
$C_{10}^{\prime bs\mu\mu}$	-0.24	[-0.36, -0.12]	[-0.49, +0.00]	2.0σ
$C_9^{bs\mu\mu} = C_{10}^{bs\mu\mu}$	+0.20	[+0.06, +0.36]	[-0.09, +0.52]	1.4σ
$C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$	-0.53	[-0.61, -0.45]	[-0.69, -0.37]	6.6σ
C_9^{bsee}	+0.93	[+0.66, +1.17]	[+0.40, +1.42]	3.5σ
$C_9^{\prime bsee}$	+0.39	[+0.05, +0.65]	[-0.27, +0.95]	1.2σ
C_{10}^{bsee}	-0.83	[-1.05, -0.60]	[-1.28, -0.37]	3.6σ
$C_{10}^{\prime bsee}$	-0.27	[-0.57, -0.02]	[-0.84, +0.26]	1.1σ
$C_9^{bsee} = C_{10}^{bsee}$	-1.49	[-1.79, -1.18]	[-2.05, -0.79]	3.2σ
$C_9^{bsee} = -C_{10}^{bsee}$	+0.47	[+0.33, +0.59]	[+0.20, +0.73]	3.5σ
$\left(C_S^{bs\mu\mu} = -C_P^{bs\mu\mu}\right) \times \text{GeV}$	-0.006	[-0.009, -0.003]	[-0.014, -0.001]	2.8σ
$\left(C_S^{\prime bs\mu\mu} = C_P^{\prime bs\mu\mu}\right) \times \text{GeV}$	-0.006	[-0.009, -0.003]	[-0.014, -0.001]	2.8σ

A coherent pattern?

 LU deviations (theoretically clean) are consistent with $b \rightarrow s\mu\mu$ BR and angular analyses if NP only in μ

Prospects

$B^0 \to K^*e^+e^-$ angular analysis

- Angular analysis at very low q^2
 - Aim is to measure $b \to s\gamma^*$
 - No sensitivity to Lepton Universality
 - Lower background made analysis possible already in Run 1
- New Run 2 analysis showcases the great improvements in the LHCb analyses of $b \rightarrow see$
- Next step is to extend the analysis to higher q^2 values and compare to muons

LHCb-PAPER-2020-020 (in preparation)

$B^0 \to K^*e^+e^-$ angular analysis

LHCb-PAPER-2020-020 (in preparation)

Measurement of $b \rightarrow see$ angular observables at very low q^2 (red point)

Most precise measurement (**red area**) of $b \rightarrow s\gamma$ photon polarisation

Upcoming Run 2 analyses

Prospects for muons

- Updates with full Run 2:
 - $B_{(s)} \to \mu^+ \mu^-$
 - $B^0 \to K^* \mu^+ \mu^-$
 - $B_s \rightarrow \phi \mu^+ \mu^-$
- New analyses:
 - $B^+ \to K^{*+} \mu^+ \mu^-$
 - Search for $B \to K^*\tau^+\tau^-$

Prospects for LU tests

R_X precision	$9 { m fb}^{-1}$
R_K	0.043
$R_{K^{st 0}}$	0.052
R_{ϕ}	0.130
R_{pK}	0.105
R_{π}	0.302

CERN-LHCC-2018-027

• Also several LFV searches $(e^+\mu^-, \mu^+\tau^-)$

31

LHCb upgrade

- Preparing upgrade for LHC Run 3 and 4
 - Higher luminosity → collect 50/fb by the end of Run 4
 - Upgrade to maintain performance and improve trigger capabilities
- Upgraded LHCb detector:
 - More precise vertexing and tracking systems
 - Completely new readout system: throughput of 32 Tbps
 - Full software trigger on 500 modern GPUs

Prospects for LU tests precision

Summary

- Anomalies in the $b \to s\ell\ell$ sector are still interesting
 - Are we seeing a coherent pattern of anomalies?
- More data needed to solve the puzzle
 - Upcoming analyses of Run 2 data (on tape)
 - Upcoming LHCb upgrade (starting data-taking in 2021)
 - Other experiments: Belle II, CMS, ATLAS
- Stay tuned for new results

BACKUP

$B^0 \to K^*e^+e^-$: Angular analysis

LHCb-PAPER-2020-020 (in preparation)

• Folding ϕ angle to simplify the 3D angular expression:

$$\tilde{\phi} \equiv \begin{cases} \phi & \text{if } \phi \ge 0 \\ \phi + \pi & \text{if } \phi < 0 \end{cases}$$

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \, \mathrm{d}\cos\theta_\ell \, \mathrm{d}\cos\theta_K \, \mathrm{d}\tilde{\phi}} = \frac{9}{16\pi} \Big[\frac{3}{4} (1 - F_\mathrm{L}) \sin^2\theta_K + F_\mathrm{L} \cos^2\theta_K \Big]$$

$$B^0 o K^* \gamma$$
 photon polarisation:
 $A_{\mathrm{R(L)}} \equiv |A_{\mathrm{R(L)}}| e^{i\phi_{\mathrm{R(L)}}}, \quad \tan \chi \equiv \left|A_{\mathrm{R}}/A_{\mathrm{L}}\right|$
 $A_{\mathrm{T}}^{(2)} \simeq \sin(2\chi)\cos(\phi_{\mathrm{L}} - \phi_{\mathrm{R}}),$
 $A_{\mathrm{T}}^{\mathrm{Im}} \simeq \sin(2\chi)\sin(\phi_{\mathrm{L}} - \phi_{\mathrm{R}}),$

$$\begin{split} & + \frac{1}{4}(1 - F_{\mathrm{L}})\sin^{2}\theta_{K}\cos2\theta_{\ell} - F_{\mathrm{L}}\cos^{2}\theta_{K}\cos2\theta_{\ell} \\ & + (1 - F_{\mathrm{L}})A_{T}^{Re}\sin^{2}\theta_{K}\cos\theta_{\ell} \\ & + \frac{1}{2}(1 - F_{\mathrm{L}})A_{T}^{(2)}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\cos2\tilde{\phi} \\ & + \frac{1}{2}(1 - F_{\mathrm{L}})A_{T}^{lm}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\sin2\tilde{\phi} \right]. \end{split}$$

$B^0 \to K^*e^+e^-$: Control channel

nel

LHCb-PAPER-2020-020 (in preparation)

- $B^0 \to K^* \gamma$ has much larger BR
 - Same final state as $B^0 \to K^*e^+e^-$ when γ converts to e^+e^- in the material
 - Can be well separated with material veto and cut on $m(e^+e^-) > 10 \text{ MeV}$
- Use $B^0 \to K^* \gamma$ as control for $B^0 \to K^* e^+ e^-$
 - Very similar signal shape and background composition to signal
 - Fit $m(K^+\pi^-e^+e^-)$ distribution to validate signal fit (found 2950 $B^0 \to K^*\gamma$ candidates)
 - Fitted F_L to $\cos \theta_K$ found to be compatible with 0 with sub-percent precision \rightarrow due to real γ , longitudinal polarisation fraction F_L is expected to be zero

$B^0 \to K^*e^+e^-$: Angular fit

LHCb-PAPER-2020-020 (in preparation)

- Fit to B mass and angles
 - In reduced mass region
 - Semilept+combinatorial (SL/C) modelled using $B \to K^* \mu^{\pm} e^{\mp}$ data candidates
 - Other backgrounds from simulation
 - Fit procedure thoroughly tested with pseudoexperiments

38

$B^0 \to K^*e^+e^-$: Results

$$(28 \text{ MeV})^2 < q^2 < 0.257 \text{ GeV}^2$$

LHCb-PAPER-2020-020 (in preparation)

PRELIMINARY

1.0

0.8

0.6

0.4

0.2

 $F_{
m L}$

$$F_{\rm L} = 0.044 \pm 0.026 \pm 0.014$$

$$A_{\rm T}^{\rm Re} = -0.064 \pm 0.077 \pm 0.015$$

$$A_{\rm T}^{(2)} = +0.106 \pm 0.103^{+0.016}_{-0.017}$$

$$A_{\rm T}^{\rm Im} = +0.015 \pm 0.102 \pm 0.012$$

3

 $q^2 \; [{\rm GeV^2}]$ LHCb, PRL 125(2020)011802 LHCb-PAPER-2020-020 (in preparation)

LHCb (4.7/fb) $B^0 \to K^* \mu^+ \mu^-$ LHCb (9.0/fb) $B^0 \to K^* e^+ e^-$

- Main systematics from signal acceptance and angular background modelling
- Statistical error still dominates

- Measurements of $F_{\rm L}$ and $A_{\rm T}^{\rm Re} = \frac{3}{4} A_{\rm FB} (1-F_{\rm L})$ are also interesting in the context of $B^0 \to K^* \mu^+ \mu^-$ angular analysis anomalies (see <u>David's talk</u>)
- The analysis prepares the ground for lepton universality tests in the angles
- $_{\odot}$ $A_{\rm T}^{(2)}$ and $A_{\rm T}^{\rm Im}$ are sensitive to C_7'

LHCb, PRL 125(2020)011802

The first R_{K^*} bin

- Favoured region of q^2 is [1.1-6]
 - Far from photon pole and from J/ψ tail
 - Sensitive to New Physics in C_9 and C_{10}
- Thanks to photon pole the $[4m_{\mu}^2 1.1]$ bin has enough statistics for a measurement
 - Dominated by dipole operator O_7
 - ► C_7 already very constrained by $b \rightarrow s \gamma$
 - Deviation pointing to underestimated systematic?
 - SM LU is broken close to threshold
 - LUV breaks cancellation of form factors

B.Capdevilla et al arXiv:1704.05340

Anomalies in $b \rightarrow s\mu\mu$ (?)

 Community has critical look on cc loop mimicking NP effect in C₉ (vector current)

Ciuchini et al NPPP 285-286 (2017) 45-49

- Possible experimental handles:
 - NP in C9 would give helicity and *q*² independent effect while hadronic effects **could** be helicity and *q*² dependent

W.Altmannshofer et al Eur.Phys.J. C77 (2017) no.6, 377

• Perform full angular analysis of $B \rightarrow K^* \mu \mu$ including cc resonances and measure interference phases

Blake et al., arXiv:1709.03921

Global fit as a function of q^2

