Classification of Jets using Jet Morphology and Deep Learning

#### Amit Chakraborty IISc, Bangalore

Anomalies 2020 Sep 11, 2020

# Motivation

1

- Post-Higgs discovery: Non observation of (statistically) significant excess over SM expectation at LHC ... <u>anomalies</u> at several low/high energy expts!
- > Severe constraint on well-motivated Beyond SM scenarios ...
- Machine Learning (Deep Learning): Outperformed traditional approach ... huge excitement within Particle Physics community!
- Many applications with success: Jet classification, Anomaly detection, Particle detection, Pileups, ...
- Black box" models, famous for their performances, but not so trivial to extract specific physics knowledge(s) ...

# Motivation

Can we achieve Convolutional Neural Network (CNN) level performance with calculable physics observables for Classifying Jets?

We find,

Possible to obtain classification performance (comparable to CNN)
 e.g., Jet Spectrum!

- Two examples:
  - Higgs jet vs QCD jet classification
  - <u>Top jet vs QCD jet classification</u>: Need to include additional inputs from Jet Morphology!

Based on:

AC, Lim and Nojiri, JHEP 07 135 (2019) AC, Lim, Nojiri and Takeuchi, JHEP 07 111 (2020)

#### Jets



#### Calorimeter and Tracker Information clustered together - Jet Radius (R) and jet algorithm (kT, anti-kT, C/A)

Map to the underlying physics!

## Classification of Jets

Goal: To know the jets of SM particles, apply the knowledge to BSM Physics!

#### - <u>General strategy</u>:

- Nature and Multiplicity of constituent particles, ratio of EM to hadronic energy deposits, Vertex information ...
- Distribution of energy deposits inside the Jet ... e.g., widely distributed or, prong-like structured
- **Boosted particles**: As centre-of-mass energy increases at LHC, particles with large transverse momentum, classification become a challenging task!

### **Boosted Jet Classification**



Look inside the "Fatjet", study the energy flow inside ...

Probe BSM particles using Fatjets (Higgs, Top, W/Z jets) ...

## Jets as "Image"

Oliveria et. al., JHEP 07, 069 (2016)



- Calorimeters "Camera", pixels "energy deposits"
- Paradigm shift for visualizing and classifying jets.
- Significant improvement using ML @Experiment: real data combined with MC! (e.g., DPS-2017-013, DP-2018/046 ... many more)



[Translated] Pseudorapidity (n)

6

## Machine Learning

"Giving computers the ability to learn without explicitly programming them" (Arthur Samuel, 1959)



Replace "Car" with "Jet":e.g., Jet  $\rightarrow$  mass, pT, njets, ...  $\rightarrow$  Cuts  $\rightarrow$  Higgs / QCDJet  $\rightarrow$ Image/4-mom $\rightarrow$  Higgs / QCD

- Types: Supervised learning, Unsupervised leaning ...

7

## Neural Network Architecture



 <u>Convolutional NN</u>: (In general) One of the best Classifiers till date!

What are these "Black-box Models" Learning?



## Jet Spectra

<u>Spectral Analysis</u>: Jet  $\rightarrow$  Constituents

(Energy Deposits in Trackers and/or Calorimeters)

$$S_2(R;\Delta R) = \frac{1}{\Delta R} \sum_{\substack{i,j \in \text{jet} \\ R_{ij} \in [R,R+\Delta R)}} p_{T,i} p_{T,j},$$

$$R_{ij} = \sqrt{(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2}$$
  
Resolution parameter :  $\Delta R = 0$ .

- 2-point energy correlation function among the Jet constituents (derivable from a General classifier with jet constituents)

<u>Spectrum</u>: distribution binned in R = [0, 2\*jet radius]

- Jet as a "Graph" with Vertices and Edges!

Similar proposals,

Tkachov Int. J. Mod. Phy A12 (1997), Jankowiak et al JHEP 06 057(2011), Thaler et al JHEP 04 013 (2018)

## Jet Spectra

10



## Jet Spectra

<u>Spectral Analysis</u>: Jet  $\rightarrow$  Constituents

(Energy Deposits in Trackers and/or Calorimeters)



## Jet Spectrum



[courtesy to S.H.Lim]

11

h

## Jet Spectrum



"Hard" center surrounded by soft particles, smoothly falling distribution ...

[courtesy to S.H.Lim]

## Jet Trimming ...

Krohn, Thaler and Wang, JHEP 02, 084 (2010)



Cuts the long tail ... Removes "soft" components, keeps the interesting parts!

### Our Network

We define a quantity,

$$S_{2,\text{soft}}(R;\Delta R) = S_2(R;\Delta R) - S_{2,\text{trim}}(R;\Delta R)$$
  

$$S_{2,\text{trim}}(R;\Delta R) = p_{T,\mathbf{J}}^2 \cdot \mathcal{O}[1],$$
  

$$S_{2,\text{soft}}(R;\Delta R) = p_{T,\mathbf{J}}^2 \cdot \left(\mathcal{O}[f_{\text{trim}}] + \mathcal{O}[f_{\text{trim}}^2]\right)$$
  
We keep the  
"soft part"!!



Train the network using S2 spectra and compare with CNN classification!

## Higgs jet vs QCD jet

AC, Lim and Nojiri, JHEP 07 135 (2019)

- Performance comparable to CNN (Also, similar to D2)
- No Information loss, Smaller no of Inputs: CNN (~20 \* 20), DNN (2 \* 20)











Top jet has More activity Away from the Centre!

How about the Jet Spectrum?

#### Top Jet

Trimmed (3 prong) Top jet must have 4 peaks in the S2 spectrum!

Parton  
level 
$$S_{2,\text{trim}}(R) = (p_{T,b}^2 + p_{T,q}^2 + p_{T,\bar{q}}^2) \,\delta(R) + 2p_{T,b}p_{T,\bar{q}}\delta(R - R_{b\bar{q}}) + 2p_{T,q}p_{T,\bar{q}}\delta(R - R_{q\bar{q}})$$



AC, Lim, Nojiri and Takeuchi, JHEP 07 111 (2020)

### QCD Jet

#### Trimmed jet spectrum peaks at smaller values of R!



Depending on the transverse momentum, Top jet spectrum may also sho

Top jet spectrum may also show 1/2 peaks!

#### Overlapping subjets



- Additional correlations may help!
- Like Trimmed-Soft components, how about calculating correlations at the <u>subjet level</u>?

#### Correlation with the Leading $p_{T}$ subjet

- the leading  $p_T$  subjet,  $\mathbf{J}_1$ , denoted by 1,
- the compliment set of  $\mathbf{J}_1$ ,  $\mathbf{J} \setminus \mathbf{J}_1$ , denoted by c,

$$\begin{split} S_{2,11}(R) &= p_{T,i_1}^2 \delta(R), \\ 2 \, S_{2,1c}(R) &= 2 p_{T,i_1} p_{T,i_2} \delta(R - R_{i_1 i_2}) + 2 p_{T,i_1} p_{T,i_3} \delta(R - R_{i_1 i_3}), \\ S_{2,cc}(R) &= (p_{T,i_2}^2 + p_{T,i_3}^2) \delta(R) + 2 p_{T,i_2} p_{T,i_3} \delta(R - R_{i_2 i_3}), \end{split}$$



Two prong Structure, Overlap effect Amplified!!

20

### The revised Architecture —\_\_\_ (Top vs QCD)

21



## Top Jet



- A Gap observed!

- CNN is doing better in Background rejection!
- Expected?
  S2 is just 2-point correlations, CNN has more complex pixel Correlations ...

Complete info is missing in S2 Spectra!

AC, Lim, Nojiri and Takeuchi, JHEP 07 111 (2020)

#### Soft Activity

- QCD jets (Quark/gluon jets): More soft activity all around the Jet Image

- Higgs Jet:

Color singlet object, activity mostly centered around the b-jets ...

- Top jet:

Colored object, more activity than the Higgs, will have large angle soft radiations too ...

Can we quantify these effects to see the discrimination power of these soft activities?

#### Distribution of pixels



- More pixel hits for Gluon jets!
- Similar to Quark/Gluon discrimination (# of charged tracks)
- But, an IRC unsafe quantity! (sensitive to soft/ Colinear splittings!)

#### - NOT used directly, maybe important for classification!

- What about a "geometric description" of the pixel hits?

## Geometry of pixel hits

- $N_0$  : # of active pixels in the Jet
- $dN_n$ : # of pixels surrounding the pixels used in  $N_{n-1}$
- $N_n$ : sum of # of pixels  $N_0$ , ....,  $dN_n$



$$N_0 = 3$$
$$N_1 = 9 * N_0$$
$$N_1/N_0 = 9$$

 $N_0 = 3$  $N_1 = 3 * N_0 + 6$  $N_1/N_0 = 5$ 

Minkowski Sequence:

[Hermann Minkowski et al Mathematische Annalen 57 (1903), 447-495].

A sequence of numbers describing the spatial distribution of pixels!

More connected (isolated) the pixels, Smaller (larger) the ratio!

A notion of the geometrical size of the objects!

# Minkowski Seq for Jet Image



- Lower orders are important, higher terms may not show much difference ...

- We include first two terms, namely  $N_0$  and  $N_1$ , as input to Neural Network!

#### The revised Architecture (Top vs QCD)



27

#### Comparable performance to CNN



- The Gap is closed now!!

Wider functional space
 Coverage by CNN ...
 Morphology helps to
 Probe these phase spaces ...

- Training is more controled (seed variation) than CNN!

AC, Lim, Nojiri and Takeuchi, JHEP 07 111 (2020)

#### Calibration



- To model CNN, need to estimate S2, N<sub>0</sub> and N<sub>1</sub> distributions properly!
- We compare distributions from two different PSMC (e.g., Pythia vs Herwig) Good <u>agreement</u> for "Trimmed" components of S2, but S2 (soft), N<sub>0</sub> and N<sub>1</sub> are <u>highly sensitive</u> to PS algorithm, as expected!

- Reweighting performed, Soft distributions (partially) improved, more work needed!

(For q/g case, see Larkoski et al JHEP (2013, 2014), Bhattacherjee et al JHEP (2015) + more)

## Summary & Outlook

- Jet Spectrum: Higgs and Top tagger based on 2-point energy correlations among the Jet constituents and the geometry of the Soft radiations
- With smaller set of inputs and better controlled training, we obtain classification performance comparable to the CNN
- IRC unsafe plays some significant role, less controlled in Theory, need to tune with experimental data!
- Time to make use of "<u>Interpretable</u>" Deep Learning frameworks to devise new proposals testable at ongoing/future colliders! Improve & extend traditional taggers for better sensitivity!
- ◆ Jet Clustering algorithms need to be revisited and improved, if possible! [Ref: AC, Dasmahapatra et. al. 2008.02499, Nachman et. al. 2008.06064]

Thank you!

# Back ups

## Convolutional Neural Network (CNN)



- Large number of free parameters (Hyperparameters) to be optimized
- Computationally very expensive!



## Higgs jet vs QCD jet

**ROC Curve** : Signal efficiency Vs Background rejection rates



## SoftDrop Effect





- The impact on the top jet classification performance due to the change of groomer is small!



## Training uncertainty



- Variation wrt to Seeds
- CNN has more complexity, so predictions vary widely!
- RN seems more robust under the variation of seeds ...

## Training uncertainty



- Variation wrt to Seeds
- CNN has more complexity, so predictions vary widely!
- RN seems more robust under the variation of seeds ...

## Herwig samples



Herwig

 $N_0$  distribution helps to close the (small) Gap!

## Re-weighting



Wider N<sub>0</sub> distribution in PY8, gluons are more radiating ...

Re-weighting



Better control in ratio  $N_1/N_0$  distribution ...

# Re-weighting



- The disagreement between PY8 and HW7 remains after the reweighting!

- The difference is large enough to achieve perfect agreement simply by reweighting!

#### Interpretable Architecture

A general classifier,

$$h_i = \Psi_i[S_{2,A}; \vec{x}_{kin}], \qquad \begin{array}{l} \text{II - input for predictions} \\ A = 1 : \text{``Hard''} \\ A = 2 : \text{``Soft''} \end{array}$$

Using a Functional Taylor Series Expansion around  $S_{2,A}(R) = 0$  gives,

$$h_{i} = w_{i}^{(0)}(\vec{x}_{\rm kin}) + \int dR S_{2,A}(R) \frac{w_{i,A}^{(2)}(R; \vec{x}_{\rm kin})}{2} + \frac{1}{2} \int dR_{1} dR_{2} S_{2,A}(R_{1}) S_{2,B}(R_{2}) \frac{w_{i,AB}^{(4)}(R_{1}, R_{2}; \vec{x}_{\rm kin})}{12} + \cdots$$

Consider the first non-trivial term with S2,

$$h_i = \frac{1}{2} \int dR \, S_{2,A}(R) w_{i,A}^{(2)}(R; \vec{x}_{\rm kin})$$

h = input for prodictions

Read of the "weights" to get the correlation between the Weights and S2

- Interpretability!

In short, 
$$h = \sum_{k} S_{2,\text{trim}}^{k} w_{1}^{k} + \sum_{k} S_{2,\text{soft}}^{k} w_{2}^{k},$$
$$\hat{y}_{i} = \exp[w_{i}^{(\text{out})} h] / \sum_{i} \exp[w_{i}^{(\text{out})} h],$$

## Interpretable Architecture



- An MLP trained on pT and mass of the jet, generates the weights w1 and w2 (MLP has 3 hidden layers with nodes 400, 100 and 40 respectively!)
- "Softmax" classifier combines the "Radiation module" with weights!

- Performance of the classifier depends on the "correlation" of "weights" and "S2 spectra!

#### Minkowski Sequence/Functional

In Mathematics:

A notion of the geometrical size of the objects



#### MLP architecture

The relation networks used in this paper are implemented as follows. The module for analyzing the energy correlation with jet trimming,  $h_{\text{trim}} = \text{MLP}_{\text{trim}}(x_{\text{trim}}, x_{\text{kin}})$ , consists of two hidden layers,

where  $z_i$  is the standardized inputs of  $x_i$ , and FC is a fully-connected layer with a given output size and activation function. Note that we do not apply  $L_2$  regularization for the FCs with linear activation. The module for analyzing the energy correlation of  $\mathbf{J}_1$  and  $\mathbf{J} \setminus \mathbf{J}_1$  is as follows.

$$\begin{aligned} \mathbf{h}_{\mathbf{J}_{1}}^{(1)} &= \mathrm{FC}(\mathbf{z}_{\mathbf{J}_{1}}, \mathbf{z}_{\mathrm{kin}}), & \text{size: 200, activation: ELU} \\ \mathbf{h}_{\mathbf{J}_{1}}^{(2)} &= \mathrm{FC}(\mathbf{h}_{\mathbf{J}_{1}}^{(1)}), & \text{size: 200, activation: ELU} \\ \mathbf{h}_{\mathbf{J}_{1}} &= \mathrm{FC}(\mathbf{h}_{\mathbf{J}_{1}}^{(2)}), & \text{size: 5, activation: linear} \end{aligned}$$
(C.2)

The logits u' for the binary classification is implemented as follows.

For the relation networks with inputs  $x_{\text{geometry}}$ , we replace  $h_{\text{logit}}^{(1)}$  of eq. (C.3) as follows.

$$\boldsymbol{h}_{\text{logit}}^{(1)} = \text{FC}(\boldsymbol{h}_{\text{trim}}, \boldsymbol{h}_{\mathbf{J}_1}, \boldsymbol{z}_{\text{geometry}}), \text{ size: 200, activation: ELU,}$$
 (C.4)

#### **CNN** architecture

The vanilla CNN of this paper consists of six convolutional layers with a filter size  $3 \times 3$ . The standardized image  $z_{\text{image}}$  of  $x_{\text{image}}$  is fed into a chain of convolutional layers as follows.

where CONV is a two-dimensional convolutional layer with a given filter size and activation function, and POOL is a max-pooling layer with a given pool size. The output size consists of three numbers: the first two numbers represent output image width and height, and the third number is the number of filters. We simply put  $h_{\text{CNN}}$  to MLP<sub>logit</sub> by replacing eq. (C.3) to the following.

$$\boldsymbol{h}_{\text{logit}}^{(1)} = \text{FC}(\boldsymbol{h}_{\text{CNN}}, \boldsymbol{z}_{\text{kin}}), \quad \text{size: 200, activation: ELU}$$
(C.6)