Recent results on hadronic B and B_s^0 decays at Belle

Abdul Basith K Tata Institute of Fundamental Research, Mumbai (On behalf of Belle collaboration)

Anomalies 2020 11-13 September 2020 IIT Hyderabad, India

Abdul Basith Recent results on hadronic B and B_s^0 decays at Belle

Outline of the talk

- Experimental overview
- Search for $B^0_s
 ightarrow \eta' \eta$ decay
- Search for B^0 decays to invisible final states $(+\gamma)$

KEKB and belle detector

- Asymmetric e^+e^- collider at the High Energy Accelerator Research Organization(KEK), Japan
- 8 GeV e^- collides to 3.5 GeV e^+ at $\Upsilon(4S)$ resonance

- ullet Integrated luminosity of $\sim 1~{
 m ab}^{-1}$
- The main goal was to search for *CP* violation in *B* meson decays

Search for $B^0_s \to \eta^\prime \eta$ decay

Motivation

- Charmless hadronic decay $B^0_s \to \eta' \eta$ proceeds via $b \to u$ and $b \to s$ transitions

• Sensitive to physics beyond the Standard Model (SM)

• Once branching fractions for decays $B_{d,s} \rightarrow \eta \eta$, $\eta' \eta$, $\eta' \eta'$ are measured, it would be possible to extract *CP* violating parameters (PRD, 93 114002)

• $B^0_s
ightarrow \eta' \eta$ has not been observed yet

• The expected branching fraction spans a wide range: $(2 - 4) \times 10^{-5}$ (PRD 74 014003, PRD 76 074018, PRD 91 014011)

• The analysis is performed using 121.4 fb^{-1} (6.5 million $B_s^0 \bar{B_s^0}$ pairs) of data collected by belle at $\Upsilon(5S)$ resonance.

• $\Upsilon(5S)$ could decay (20%) into pairs of $B_s^{*0}\overline{B_s^{*0}}$, $B_s^0\overline{B_s^{*0}}$ (+*c.c.*) and $B_s^0\overline{B_s^{0}}$. The excited B_s^{*0} transitions to B_s^0 by emitting a photon.

• We reconstruct
$$B_s^0 \rightarrow \eta' \eta$$
;
 $\eta' \rightarrow \pi^+ \pi^- \eta$; $\eta \rightarrow \gamma \gamma$

• Two kinematic variables to identify signal:

$$M_{
m bc} = \sqrt{E_{
m beam}^2 - p_{B_s}^2}$$

$$\Delta E = E_{B_s} - E_{\rm beam}$$

Signal selection requirements

Particle	Criteria
	$E \ge 50 \text{ MeV} \text{ (barrel)}$
Ŷ	$E \ge 100 \text{ MeV} \text{ (endcap)}$
	$E9/E25 \ge 0.75$
	$dr \le 0.3$ cm
	$ dz \le 4 \text{ cm}$
π^{\pm}	$p_T \ge 100 \text{ MeV/c}$
	$KID \le 0.6$
	$EID \le 0.85 \text{ MeV/c}$
n	$0.515~{\rm GeV/c^2} \leq M(\gamma\gamma) \leq 0.580~{\rm GeV/c^2}$
"	$ \cos \theta_{hel} < 0.97$
η'	$0.92 \text{ GeV/c}^2 \le M(\pi^+\pi^-\eta) \le 0.98 \text{ GeV/c}^2$
B	$M_{bc} \ge 5.3 \text{ GeV/c}^2$
D_{S}	$-0.4 \text{ GeV} \le \Delta E \le 0.3 \text{ GeV}$

Abdul Basith

Background rejection

- Background events:
- ightarrow Hadronic continuum: coming from light quark pairs, $e^+e^ightarrow~qar{q}$

 \rightarrow Peaking background: Coming from background events with a real η' (included in 3D fit)

• A likelihood ratio (\mathcal{LR}) derived from Modified FW moments is used to suppress the continuum background.

- ightarrow Optimized selection, $\mathcal{LR} > 0.95$ ightarrow This rejects 99% of background (with \sim 9% signal loss)
- Final signal efficiency (ϵ) for $B_s \rightarrow \eta' \eta$ is 10%

• Signal yield is extracted using unbinned extended maximum likelihood fit to M_{bc} , ΔE and $M(\eta')$

Signal and background shapes (PDFs) are obtained from MC simulation

• Signal PDFs are calibrated using the control sample, $B^0 \to \eta' K_S$ signal events in the $\Upsilon(4S)$ data

• Obtained number of signal events = 2.7 ± 2.5

Upper limit on $\mathcal{B}(B^0_s \to \eta' \eta)$

• In absence of significant number of signal events, we estimate an upper limit on the branching fraction

• The fitting model is validated using the ensembles of pseudo-experiments and we prepare a 80% confidence belt using Neyman Construction

 \rightarrow 90% confidence level (CL) upper limit on branching fraction:

$$\mathcal{B}(B^0_s o \eta' \eta) < rac{N_{UP}^{90\%}}{2 imes N_{B_s^* B_s^*} imes \epsilon imes \mathcal{B}_{daughters}}$$

- Total systematic uncertainty is estimated to be 19%
- Upper limit on the branching fraction; $|\mathcal{B}(B_s^0 \to \eta' \eta) < 7.1 \times 10^{-5}$

Abdul Basith

Search for *B* decays to invisible final states $(+\gamma)$

Motivation

- Sensitive to beyond the SM physics
- Models with R-parity violation or dark matter contributions predict a branching fraction as high as 10^{-6} to 10^{-7} (prd 65 015001, PRD 82 (034005))
- The SM prediction for $B^0 \rightarrow \nu\nu \ (B^0 \rightarrow \gamma\nu\nu)$ is of order $10^{-25}(10^{-9}) \ (Nucl. Phys. B400 225, Phys. Lett. B 381, 348)$
- A very low background from the SM indicates that a signal of $B^0 \rightarrow \nu \nu (+\gamma)$ in the current B-factory data would indicate new physics.

Exp.	Data (fb^{-1})	$\mathcal{B}(B^0 \rightarrow \text{invisible})$	$\mathcal{B}(B^0 \rightarrow \text{invisible} + \gamma)$	Reference
Belle	424	$< 1.2 \times 10^{-4}$	-	PRD 86, 032002
BaBar	606	$< 2.4 \times 10^{-5}$	$< 1.7 \times 10^{-5}$	PRD 86, 051105

• 711 fb⁻¹ (772 million $B\bar{B}$ pairs) of data collected at $\Upsilon(4S)$ resonance

• One B^0 is fully reconstructed (B_{tag}) . Nothing $(B^0 \to \text{invisible})$ or a photon $(B^0 \to \text{invisible} + \gamma)$ in the remaining part of the event is considered as a signal candidate.

• 1.4 million $B_{\rm tag}$ candidates are reconstructed from hadronic decay channels using an improved algorithm based on a neural network (NN)

- Reconstruction efficiencies of $B_{\rm tag}$ is 0.41% (0.47%) in $B^0 \rightarrow \nu\nu$ ($B^0 \rightarrow \gamma\nu\nu$) simulation
- γ selection : $E_{\gamma} > 0.5 \text{ GeV}$

Background rejection

- 1. $e^+e^-
 ightarrow q ar q$ (non-*B*)
- 2. *B*-decays through $b \rightarrow c$ (charmed-*B*)
- Two separate NN is used :
- ightarrow Fake B_{tag} ($O_{
 m tag}$)
- ightarrow Events with jet-like topology ($O_{
 m shape}$)
- Selection variables:
- $\textbf{E}_{\mathbf{ECL}}$: sum of all the remaining energies of ECL clusters
- $\cos\theta_{T}$: cosine of the angle between the two thrust axes (B_{tag} and the rest of the event) in the CM frame.

 $B^0 \rightarrow invisible$

 $B^0 \rightarrow \text{invisible} + \gamma$

0.

Results on $B^0 \rightarrow \text{invisible}$

• The signal yield is extracted by an extended unbinned maximum likelihood fit to $E_{\rm ECL}$ and $\cos\!\theta_{T}$

• PDFs are obtained from MC simulation (non-B component is from off-resonance data)

- $B^{0,\pm}
 ightarrow D^{*,\pm} l
 u$ are used as control sample
- Total systematic uncertainty is estimated to be 7.9%

-				
-	Component	Yields		
-	Signal	$18.8^{+15.3}_{-14.5}$) 14	
	Generic B	$68.1^{+12.2}_{-11.7}$) 12 s 12
_	Non- B	$-3.9^{+19.5}_{-17.5}$		
-			6	
		C	4	
JL	on branchin	g traction;	2	0
R ⁰	\rightarrow invisible'	$< 7.8 \times 10^{-1}$		0 0.2 0.4 0.6 0.8 1 1.2
<u> </u>	/ 111/151010,) < 1.0 × 10	cosθ _T	E _{ECL} (GeV)

Phys. Rev. D 102, 012003 (2020)

Abdul Basith

B(

Results on $B^0 \rightarrow \text{invisible} + \gamma$

 Signal yield is extracted by counting events in the bins of $M_{\rm miss}^2 = (\vec{P}_{\rm heam} - \vec{P}_{B_{\rm trg}} - \vec{P}_{\gamma})^2$ in $E_{\rm ECL}$ signal box ($E_{\rm ECL} < 0.3 \,\,{\rm GeV}$)

 The number of background events in the signal box is estimated from the $E_{\rm ECL}$ data sideband multiplied by a scaling factor obtained from MC

 Observed number of events are all consistent within uncertainties with the expected backgrounds

	$N_{\rm bkg,box}^{\rm data}$	$N_{\rm box}^{\rm data}$
$B^0 \rightarrow \text{invisible} + \gamma$	16.1 ± 6.3	11
bin1	3.2 ± 2.1	2
bin2	1.0 ± 0.8	2
bin3	4.4 ± 2.6	3
bin4	7.1 ± 2.9	4
bin5	6.6 ± 2.9	7

- Total systematic uncertainty is estimated to be 8.4%

• UL on branching fraction: $|\mathcal{B}(B^0 \to \text{invisible} + \gamma) < 1.6 \times 10^{-5}|$

Summary

• We present a preliminary result of the first search for the decay $B_s^0 \to \eta' \eta$ using full data sample collected by Belle at $\Upsilon(5S)$ resonance

- In absence of a statistically significant signal, a 90% CL upper limit is set on its branching fraction at 7.1×10^{-5}

• We report searches for $B^0 \rightarrow \text{invisible}$ and $B^0 \rightarrow \text{invisible} + \gamma$ decays using full Belle data sample collected at $\Upsilon(4S)$ resonance

• We observe no significant signal for either decay and set UL on their branching fractions at 90% confidence level as $\mathcal{B}(B^0 \to \text{invisible}) < 7.8 \times 10^{-5}$ and $\mathcal{B}(B^0 \to \text{invisible} + \gamma) < 1.6 \times 10^{-5}$

• The results on $B^0 \rightarrow \text{invisible } (+\gamma)$ decays are published in Phys. Rev. D 102, 012003 (2020)

Thank you!

TABLE I: Summary of systematic uncertainties in the $B_s^0 \rightarrow \eta' \eta$ analysis.

Source	Uncertainty $(\%)$
Number of $B_s^{(*)0}\overline{B}_s^{(*)0}$ pairs	10.1
Branching fraction of η	0.5
Branching fraction of η'	1.2
MC statistics	0.1
η reconstruction	4.2
Tracking	0.7
\mathcal{LR} selection	15.3

Backup: Systematic uncertainties for $B^0 \rightarrow \text{invisible}$

TABLE II. Summary of systematic uncertainties on fitting yield.

Sources	Systematic uncertainty (Events)
Signal PDF	± 0.6
Generic B PDF	+1.9 -1.8
Non-B PDF	$+6.6 \\ -6.7$
Signal PDF correlation	+0.3 -0.0
Total	+6.8 -7.0