

Annual Report FY 2024-25

www.iith.ac.in

Contents

- 04 Board of Governors
- 05 Deans
- 06 Distinguished Professors
- 07 Director's Message
- 09 Faculty Statistics
- 10 Students Statistics
- 12 Patents, Publications, & **PhDs**
- 13 Research & Development
- 14 Placement & Internship
- 15 Incubation @IITH
 - 15 CfHE
 - 16 FabCI
 - 16 iTIC
 - 18 TiHAN

- 21 Centres/Centres of Excellence
 - 20 DIA-CoE
 - 21 ICMR-DHR-CoE
 - 21 TRIHUB
 - **22 MDI**
 - **22 DIC**
 - **24 KRIA**
 - **25 RDC**
 - **26 CCE**

 - **28 IKS** 28 Other Centres
- 30 Schools
- 31 Technology Research Park & TIP
- 32 Green Office
- **33 KRC**
- 35 Hindi Cell
- 36 Innovation Cell IIC
- 37 National Events

- 40 **Artificial Intelligence**
- 43 **Biomedical Engineering**
- 53 **Biotechnology**
- 59 **Chemical Engineering**
- 70 Chemistry
- 84 **Civil Engineering**
- 95 **Computer Science & Engineering**
- 104 Design
- 108 **Electrical Engineering**

- 123 Entrepreneurship and **Management**
- 128 Liberal Arts
- 135 **Materials Science & Metallurgical Engineering**
- 144 Mathematics
- 149 **Mechanical & Aerospace Engineering**
- **Physics** 161

VIRTUAL DEPARTMENTS

- **188 BUILD**
- 189 Tinkerer's Lab
- 190 EBSB Activities
- 193 NSS Activities
- 195 EML Series
- 196 Elan & nvision
- 197 MILAN
- 198 E-Cell
- JAPAN Career DAY

- 178 Climate Change
- 182 **Engineering Science**
- 184 Heritage Science & **Technology**
- 200 Finance & Consulting Club
- **201 TEDx**
- 202 Sunshine @Student Arena
- 203 SPICMACAY
- **Collaborations**
- 205 Architectural Landmarks
- 208 Non-Teaching Staff

Board of Governors

Chairman

Dr B V R Mohan Reddy

Founder Chairman and

Board Member of

Cyient Limited

Ex-Officio Member
Prof B S Murty
Director
IIT Hyderabad

Member
Prof Vinod Krishan
Senior Professor & Dean
Indian Institute of Astrophysics

Member

Dr Prema Ramachandran

Director

Nutrition Foundation of India

Member
Prof M Lakshmi Kantam
Professor
Institute of Chemical Technology
Mumbai

Member (Central Govt nominee)
Smt Saumya Gupta, (IAS)
Joint Secretary to Gol
Dept. of Higher Education
Ministry of Education

Member (State Govt nominee)

Dr Yogita Rana (IAS)

Member (Representative of
Telangana State Govt.)
Secretary to the Government

Member, Senate Nominee
Prof J Balasubramaniam
Professor
Department of Mathematics
IIT Hyderabad

Member, Senate Nominee
Prof Shashidhar T
Professor
Department of Civil Engineering
IIT Hyderabad

Secretary
Shri V Venkat Rao
Registrar
IIT Hyderabad

Our Deans

Prof Bharat Bhooshan Panigrahi Dean (Academic)

Prof Mahendrakumar Madhavan Dean (Alumni & Corporate Relations)

Prof Tarun Kanti Panda Dean (International Relations)

Prof Suriya S Prakash Dean (Planning)

Prof Prasanth Kumar R Dean (Students)

Prof Prem Pal
Dean (Administration)

Prof Sushmee Badhulika Dean (Faculty)

Prof C Malla Reddy Dean (Innovation, Translation & Startups)

G Narahari Sastry
Dean (Sponsored Research &
Consultancy)

Prof Munwar B Basha Associate Dean (Planning)

Our Distinguished Professors

Prof Abhay Deshpande
Distinguished Professor
Physics and Astronomy
Stony Brook University

Dr Bayya Yegnanarayana INSA Senior Scientist International Institute of Information Technology

Prof James Francis Antaki
Professor
Cornell Engineering

Prof Jun Murai Professor & Dean of Graduate School of Media and Governance Keio University, Japan

Dr M Vidyasagar FRS SERB - National Science Chair India

Dr Mallikarjun Tatipamula Chief Technology Officer Ericsson Silicon Valley

Prof Nemkumar Banthia
Professor
University of British Columbia

Prof Nobuhiro Tsuji Graduate School of Engineering Kyoto University

Dr Omkaram Nalamasu CTO and Senior Vice President Applied Materials

Dr Paresh Kumar Narayan Professor Monash Business School Monash University, Australia

Prof Pramod K Nayar
Senior Professor, UNESCO Chair in
Vulnerability Studies, Department
of English, University of Hyderabad

Prof Seeram Ramakrishna Mechanical Engineering National University of Singapore

Prof Shekhar C Mande
Distinguished Professor
Bioinformatics Centre, Savitribai
Phule Pune University, Pune.

Dr Saraswat V K

Member of NITI Ayog &
Scientific Adviser to Defense
Minister

Dear Friends,

As we present the Annual Report 2024–25, I take immense pride in reflecting on the remarkable strides made by the Indian Institute of Technology Hyderabad (IITH) this year. Our success is driven by the dedication of our faculty, staff, and students, whose collective excellence continues to define IITH. Together, we have nurtured a vibrant culture of innovation, research, and collaboration, achieving significant milestones across academics and outreach. Let us carry this spirit forward as we embark on yet another year of growth and impact.

Achievements@IITH:

IITH has made a remarkable leap in the Overall category of the NIRF 2024 Rankings, climbing to 12th position from last year's 14th while securing 15th rank in Research. The institute has also retained its impressive 8th position in Engineering and 3rd position in Innovation, reaffirming its commitment to excellence and creativity. These achievements reflect IITH's growing impact in education, research, and innovation nationwide. In QS World Ranking-2025(released in 2024), IITH is placed at 681-690.

In placements, IITH saw over 700 offers, including 53 international and 130 Pre-Placement offers. IITH has been granted Institute of National Eminence status (100% tax exemption under Section 80G of the Income-tax Act, 1961 on the donations being received) by the Income Tax Department, Ministry of Finance, Government of India, effective from March 27, 2025. This approval marks a significant milestone for the institute and its philanthropic ecosystem.

Academics@IITH:

IITH is committed to redefining education by providing students with the freedom and flexibility to excel through interdisciplinary learning, innovation, and research. In 2024, new programs were introduced, including an MTech in Lightweighting Engineering and a PhD in Engineering Science. Entrepreneurship is deeply integrated into academics, with new Double Major and Dual Degree options combining engineering and entrepreneurship. Additionally, IITH launched a hands-on MTech in Medical Device Innovation, involving hospital-based projects, and an MTech in Techno-Entrepreneurship through its Department of Entrepreneurship and Management, blending technical expertise with business skills. We are also restructuring the UG curriculum to make at least 30% of the credits experiential and lab-based, so that students graduate with strong practical exposure alongside theoretical knowledge.

Inspired by Hon'ble Prime Minister, Shri Narendra Modi Ji's advocacy of "Vasudhaiva Kutumbam," which means "the world is one family," we have embraced this ancient principle by offering several programs on virtual platforms & with academic and research exchange programs. Through its 27 hybrid classrooms, IITH has, for the first time in the country, tried to break the barriers in learning by launching Open to All Teaching (OAT) through its Centre for Continuing Education (CCE). About 11 courses have been offered in OAT mode in 2024-25, blending traditional in-person teaching with advanced technology, enabling both on-campus and remote students to learn together. These programs aim to upskill and reskill working professionals globally, fostering a seamless exchange of knowledge and ideas among students and faculty.

Innovations & Entrepreneurship @ IITH:

Our innovation ecosystem continues to grow robustly. The BUILD initiative supports student creativity with financial aid and flexible academic options, empowering entrepreneurship as a viable career path. This program, launched in collaboration with Greenko, is actively nurturing student innovators by offering both financial and institutional support. In the current year, the program has supported 39 bold and unique ideas with a total funding of ∼₹19 Lakhs. As of 31st March 2025, a total of 323 startups have been initiated through various incubation centers at IITH. These include 45 startups from TiHAN, 196 from iTIC, 32 from CfHE, and 50 from FabCI, reflecting the depth and diversity of entrepreneurial activity on campus. - IITH maintains a strong research focus, with over 4,500 projects undertaken up to the calendar year 2024, including 555 projects sanctioned in 2024.

The institute has filed more than 460 patents till 2024, with over 210 patents filed in 2024 alone. Reinforcing its commitment to innovation, IITH has launched the ambitious "Patent a Day: Mission 365" initiative for 2025, aiming to achieve 365 patents by the end of the year.

Research@IITH:

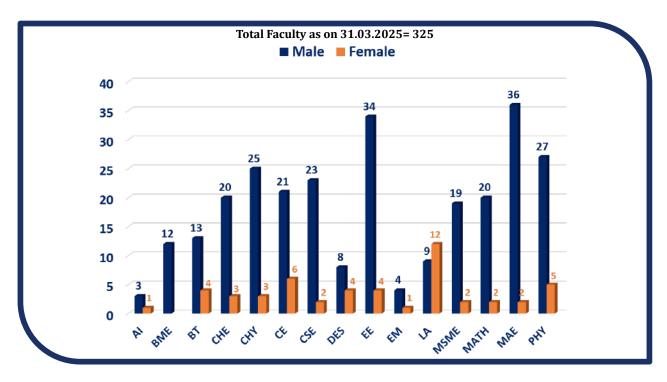
The institute continues to expand its research capabilities with state-of-the-art facilities. The newly inaugurated SATHI Centre – CISCoM is India's first real-time, multi-scale material characterization facility supporting both fundamental and industrial research. Advanced AR/VR labs, developed with InfoVision, facilitate immersive technology studies, while the Hall of Fame and Digital Heritage Lab underscore IITH's commitment to preserving cultural heritage through innovation. The Marvell® Data Acceleration and Offload Research Facility, established with Marvell Technology Inc., pioneers advancements in network, storage, and security technologies. The recent extension of the Technology Research Park further fosters collaboration between academia and industry. Further, in collaboration with Sharp Semiconductor Innovation Corporation and WiSig Networks, IITH successfully conducted field demonstrations of Beyond 5G (B5G) and 6G technologies, strengthening Indo-Japanese technological cooperation.

International and National Collaborations:

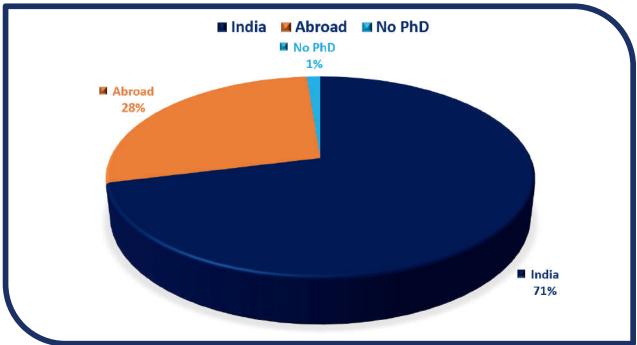
IITH strengthened its global partnerships significantly during 2024–25. The longstanding JICA Friendship Program continues to deepen Indo-Japanese relations, highlighted by hosting the Japan-India Forum and Japan Academic Day. A delegation from Hamamatsu City formalized cooperation through an MoU promoting human resource exchange and economic ties. IITH forged 28 new international collaborations across seven countries, including Japan, the USA, Australia, and several European nations, fostering academic exchange, joint research, and industry collaboration. Noteworthy agreements include the MoU with Monash University (Australia), the Heidelberg-Hyderabad Hub in Advanced Chemical Education (H³ACE) with Heidelberg University and TIFR Hyderabad, and the SIMMECT Joint Research Institute with Swinburne University (Australia), advancing interdisciplinary research in manufacturing, materials, energy, and communication technologies.

IITH has enhanced national partnerships with key organizations to drive innovation and research impact. Collaborations with Energy Efficiency Services Limited (EESL) promote energy efficiency, while the MoU with FabCI and NXP India supports semiconductor startups, strengthening India's electronics ecosystem. The CLEANZ Centre of Excellence, established with Coal India Limited, focuses on clean coal and net-zero solutions through cutting-edge R&D and skill development. The Centre for Geospatial AI and Digital Twins (CGDT) partners with maritime industry leaders to introduce AI-driven innovations. Collaborations with Central Sanskrit University advance research on Sanskrit and Indian Knowledge Systems. TiHAN's partnership with Mitsubishi Electric develops autonomous navigation technologies. The launch of India's first Nikon Centre of Excellence at IITH marks a landmark in imaging research. Additional MoUs with AIIMS Bibinagar, Armed Forces Medical Services, CSIR-Dhanbad, BHEL, Unilever, DRDO, the Department of Telecommunications, and Bank of India further emphasize IITH's commitment to national development through innovation and industry engagement.

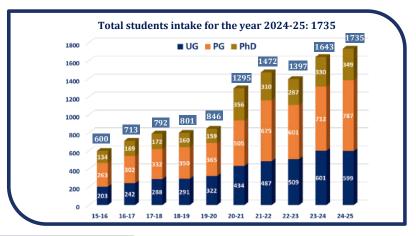
I express my heartfelt gratitude to the Faculty, Staff, students and every one of you for your sincere dedication and hard work. It is through our relentless pursuit of excellence and unwavering commitment to growth that we continue to make strides towards success. The passion and dedication of the IITH community are the driving forces behind these impressive achievements. Our environment fosters innovation, supports continuous improvement, and helps us attain top rankings. We are committed to creating an ecosystem that nurtures our students to become global leaders, contributing to a "Viksit Bharat."

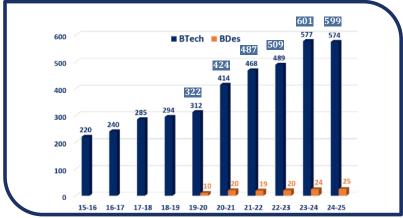

Warm Regards Prof B S Murty, Director

Faculty Statistics

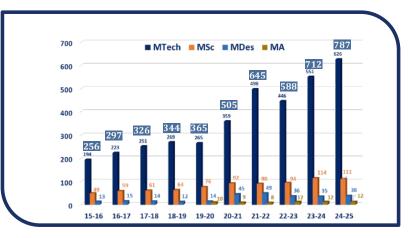

Department-wise

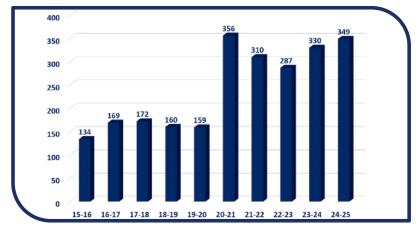
As on 31 March 2025, IITH is having 325 faculty members on-roll. \sim 18% of the total faculty are women.

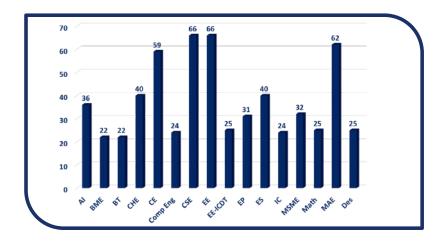



Place of PhD

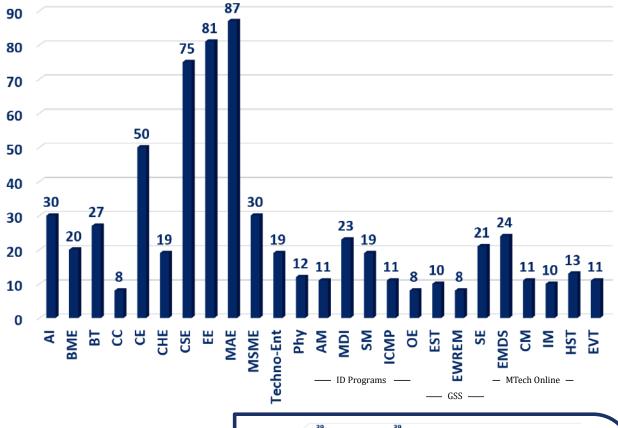
Place of PhD denotes the geographical location (India/ Abroad) of the Institute from where the concerned faculty has obtained PhD.


Student Statistics

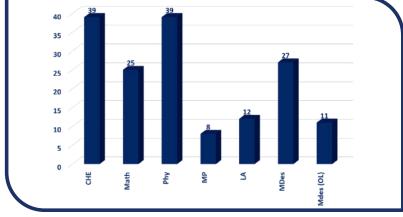



Yearly Intake of UG (BTech & BDes) Students

Yearly Intake of PG (MTech, MSc, MDes, & MA) Students

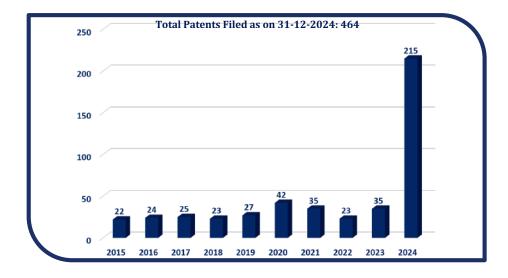


Yearly Intake of PhD Students

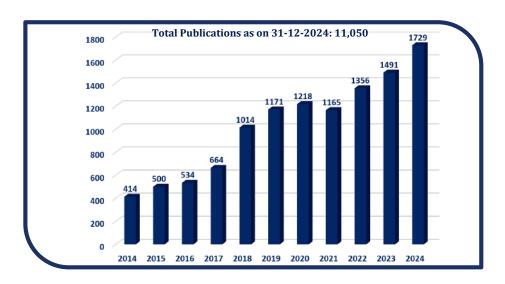


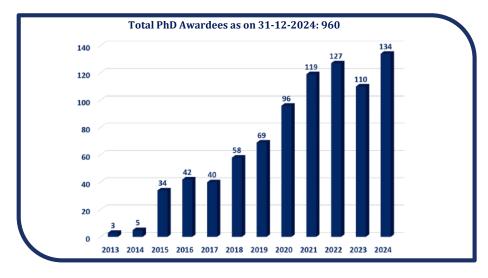
Department-wise intake of Undergraduate Students (BTech+BDes) for the Year 2024-2025 =599

Department-wise intake of MTech, MTech-Interdisciplinary, and MTech-Online students for the 2024-2025 = 626

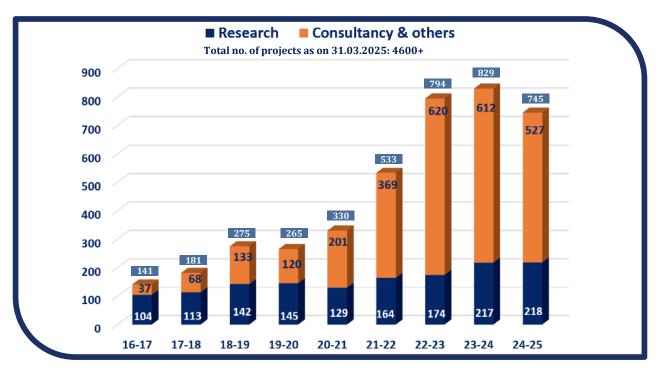


Department-wise intake of MSc, MA, and Mdes for the Year 2024-2025 = 161


Al-Artificial Intelligence, BME-Biomedical Engineering, BT-Biotechnology and Bioinformatics, CHE-Chemical Engineering, CE-Civil Engineering, Comp Eng-Computational Engineering - ID program, CSE-Computer Science & Engineering, EE-Electrical Engineering, EE ICDT-Electrical Engineering (IC Design and Technology), EP-Engineering Physics, ES-Engineering Science, IC-Industrial Chy-Chemistry, MSME-Materials Science & Metallurgical Engineering, Math-Mathematics & Computing, MAE-Mechanical Engineering, Des-Design, Techno Ent-Techno Entrepreneurship, Phy-Physics, AM-Additive Manufacturing, MDI-Medical Device Innovation, SM-Smart Mobility, ICMP-Integrated Circuits & Microsystems Packaging, OE-Ophthalmic Engineering, GSS EST-Greenko School of Sustainability Energy Science and Technology, E-Waste Resource Engineering & Management, Sustainable Engineering, EMDS-Executive MTech in Data Science, CM-Computational Mechanics, IM-Industrial Metallurgy, HST-Heritage Science and Technology, EV Technology


Patents, Publications, & PhD Awardees

Year-wise Distribution of Patents filed


Year-wise Distribution of Publications

Year-wise Distribution of PhD Awarded

Research & Development

Year-wise distribution of Number of Projects

Year-wise distribution of Project Funds (Value in Cr {INR})

Placements & Internships

Webpage: https://ocs.iith.ac.in/

Placements

The campus placement drive at IIT Hyderabad aimed to attract distinguished companies, facilitate employment for graduating students, foster Industry relationships, and gather feedback for process enhancement. Companies had the opportunity to hire from a diverse pool of students from various domains, including engineering, sciences, design, and management.

In Placement Drive 2025 at IIT Hyderabad, which commenced on December 1, 2024, was conducted in both offline and online modes. Despite the challenges such as Market competition, rigid scrutiny in certain industries, the drive yielded noteworthy outcomes in placement offers.

This year's Placements highlight positive trends both in terms of diversity of recruiters as well as quality of profiles offered.

Number of Companies Registered: 358 Total number of Students: 1146 Number of Students Registered for Placement: 943 Total offers Issued: 700 Number of Companies hired: 210 Number of Companies hired: 210 Highest Package: ₹ 66.13 Lakhs Average Package: ₹ 20.26 Lakhs Number of International offers: 53

Higher Education

A good number of students from UG and PG opted for higher education in India and abroad. Mentioned below are the few universities opted by the students for higher education:

- California Institute of Technology
- Carnegie Mellon University
- Columbia University
- Georgetown University
- Georgia Institute of Technology
- · Harvard Business School
- New York University
- Purdue University
- University of Illinois
- University of Pennsylvania
- University of Texas

- ISI
- · IISc Bangalore
- IIT Delhi
- IIT Madras
- IIM Ahmedabad
- IIT Bombay
- Karlsruhe Institute of Technology
- University of Minnesota Twin Cities
- University of Munster
- University of Southern California

Internships

IIT Hyderabad is continuously working towards industry engagement. Semester-long internships for BTech & BDes, interdisciplinary MTech, industry lectures, and industry-defined MTech projects are some of the key initiatives that have been taken in this direction in recent years.

IIT Hyderabad witnessed a significant increase in the no. of National and International internship offers for the AY 2024-25. A total of 403 offers received from 113 companies, out of which 15 offers are from international Companies.

The participating companies are from diversified sectors such as IT, Financial Services, E-Commerce, Manufacturing, Healthcare Services, Automobiles, R&D, etc.

Incubation Centres

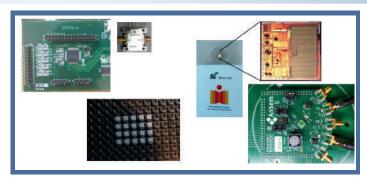
CfHE - Centre for Healthcare Entrepreneurship

Webpage: https://cfhe.iith.ac.in/

Foundation for CfHE is a Section 8 company established at IIT Hyderabad with Section 12 A, 80G, and CSR Registrations. CfHE is also a recognised Technology Business Incubator (TBI) approved by DST and a BIONEST through BIRAC, DBT, Government of India. CfHE strives to bring affordable solutions that meet the healthcare needs of the country. CfHE achieves this through incubating companies engaged in innovative medical devices, medical services, and other healthcare needs. These companies are incubated after a world-class one-year healthcare entrepreneurship education program, in which fellows undergo a structured bio-design thinking process, identify unmet clinical needs through clinical immersion at leading hospital partners in Hyderabad, innovate solutions, and prototype them along with strong mentoring in setting up business, as well as regulatory practices.

Achievements:

- M/s Aerobiosys Innovations Pvt Ltd won the Medicall Healthcare Innovation award 2024 in the AI driven Healthcare category at Medicall Expo, held at Chennai in July 2024.
- M/s Healthora Innovations Pvt Ltd was selected for Cohort 2 of the Cornell Maha 60 program, sponsored by the Department of Industries, Government of Maharashtra
- M/s Healthora Innovations Pvt Ltd secured second place at the WISE Tech Pitchathon Mumbai Edition 2025.
- M/s Healthora Innovations Pvt Ltd completed the StrongHer Acceleration Program by Arise Ventures in collaboration with the U.S. Consulate in Mumbai.
- M/s Vyuhaa MedData Pvt Ltd received the prestigious Invest Karnataka VentuRise Award 2025 for Electronics System
 Design
- M/s Avinya NeuroTech Pvt Ltd was awarded the First Prize at the Startup Challenge during the prestigious IEEE APSCON IEEE Applied Sensing Conference 2025, held at IIT Hyderabad from 20th to 22nd January 2025.
- M/s ORALVIS Healthcare Pvt Ltd received the prestigious IKP Future Stars Award, at IKMC 2024, held from October 26 to 28, 2024, at Hyderabad International Convention Centre
- M/s Beable Health Care Pvt Ltd was selected for the prestigious Attvaran Accelerator program by GDI Hub, in collaboration with IIT Delhi, IIT Madras, and UCL
- M/s Beable Health Care Pvt Ltd was selected for the Cohort 6 for the Velocity Revenue stage incubation program at NSRCEL, IIM Bangalore.
- M/s Aerobiosys Innovations Pvt Ltd is part of the Global Leap Accelerator program organized by Venture centre
- M/s Aerobiosys Innovations Pvt Ltd was selected to be a part of the Leaders in Innovation Fellowship organized by Royal Academy of Engineering, London UK.
- M/s Medblue Innovations Pvt Ltd was selected for prestigious programs such as Stanford Seed Spark, Royal Academy of Engineering LIF (UK), and Startup Maharathi 2025 (Health & Bio Category).
- M/s Nemocare Wellness Pvt Ltd was the winner of 5G Hackathon hosted by Department of Telecommunications (DoT) and TCOE India
- M/s Nemocare Wellness Pvt Ltd felicitated as one of the Rising Stars Startups under the NGIS Scheme at the STPI Software Technology Parks of India SANGAM event
- M/s Nemocare Wellness Pvt Ltd CoFounder Manoj Sanker to be a part of the Leaders in Innovation Fellowships (LIF)
 Global 2025 cohort, Royal Academy of Engineering
- M/s Eranki Labs Pvt Ltd becomes India's First Focused Ultrasound (FUS)/High-Intensity Focused Ultrasound (HIFU)
 device manufacturer



FabCI - Fabless Chip Design Incubator

Webpage: https://fabci.iith.ac.in/

The Fabless Chip Design Incubator (FabCI) is a flagship program being executed with the support of the Ministry of Electronics and Information Technology (MEITY) and focuses on creating an ecosystem wherein these primary activities get executed for any startup in the area of chip design. The primary motivation for this unique incubator program is to provide a one-stop solution for start-ups focusing on the area of chip design. We want to help incubate multiple "Make-in- India' chip design companies. We aspire to build an ecosystem wherein the incubates are not only provided with the relevant infrastructure hardware and software but also are handheld through the path of success with the help of mentors who are pioneers in this field. The grand vision is to leverage the design expertise that exists in India to create Indian IP and to make a mark in chip design internationally.

FabCI is a unique incubation centre envisioned and implemented by the IITH with the able support of the Ministry of Electronics and Information Technology (MEITY). The goal of this centre is to act as a one-stop solution for incubates intending to work in the area of chip design. Starting a company in the Integrated Circuit design field is an enormous task as the hardware-software and relevant infrastructure for the same requires a huge amount of capital investment.

Also, developing a business model in this highly competitive domain is a non-trivial task. Mentorship by experts in both technical and business domains would hasten the process of transition from a startup to a revenue-generating company. Since its inception in 2018, FabCI has supported around 50 start ups. Several of its start ups have successfully prototyped their ideas and are in the marketing stage.

i-TIC - Technology Incubation Centre

Webpage: https://itic.iith.ac.in/

The year 2024-25 marked a significant leap forward for iTIC, building on the strong foundation laid over the years. With structured programs, a skilled and dedicated team, world-class facilities, and a robust policy framework, this year was characterized by a strong emphasis on collaboration, outreach, and tangible outcomes. iTIC forged impactful new partnerships across the ecosystem and significantly expanded its visibility and engagement within the innovation landscape. Having matured from a well-established incubator, iTIC has now positioned itself as a driving force in deep-tech entrepreneurship and startup support

Events and Outreach Impact:

Vishwakarma Awards 2024

Organized by Maker Bhavan Foundation in collaboration with iTIC Incubator at IITH, was a national innovation challenge focused on Green Technology, Smart Mobility, and Water & Sanitation. The competition saw 528 team applications from 276 engineering colleges across India, with 18 top teams selected for a residential bootcamp at IIT Hyderabad.

During the bootcamp, students received expert mentorship, attended technical sessions, and built working prototypes. The finale featured distinguished guests from academia, industry, and the startup ecosystem, who evaluated the projects and guided the teams.

The program promoted hands-on innovation and interdisciplinary collaboration, providing finalists with funding, mentorship, and opportunities for incubation—strengthening IIT Hyderabad's role in advancing engineering for sustainable impact.

MeitY Grand Challenge 2024

Organized by iTIC Incubator at IIT Hyderabad in collaboration with SINE IIT Bombay and supported by MeitY Startup Hub, focused on driving innovation in Digital Twin & Simulation, Low/No Code Platforms, and Generative AI. Within 24 days, the challenge attracted over 240 applications from startups and innovators nationwide.

To boost participation, seven roadshows were held across key cities, engaging grassroots entrepreneurs and spreading awareness. Ten top teams were shortlisted to pitch at the Grand Finale held on July 15, 2024, at IIT Hyderabad, attended by 300+ participants. A jury of experts selected one winner and two runner-ups, with travel and stay sponsored for all finalists.

The challenge showcased high-impact solutions and reinforced the power of targeted outreach and collaboration in accelerating deep-tech innovation in India.

Innovation Day 2024

Held on July 15th at IIT Hyderabad, Innovation Day 2024 celebrated creativity, technology, and entrepreneurship, drawing over 2,000 participants from academia, industry, and the startup ecosystem.

The event featured panel discussions on startup support systems, an exhibition of 30+ innovative startups, and the Grand Finale of the MeitY Grand Challenge, where top IoT-based solutions were pitched and awarded. Keynote talks from industry leaders and extensive networking opportunities added to the value of the event.

A notable highlight was the focus on accessibility—ensuring inclusivity for participants with disabilities, including the deaf and hard of hearing. Innovation Day 2024 stood out as a dynamic and inclusive celebration of India's innovation potential.

VCCircle The Pitch - Hyderabad Edition

Organized in partnership with iTIC IIT Hyderabad, The Pitch brought together over 45 investors and 40 shortlisted startups from a pool of 200+ applications. Focused on early-stage fundraising, the event featured closed-door pitching sessions tailored to investor interests, enabling meaningful interactions and potential deal-making. Startups received pre-event training on pitch decks and fundraising strategy from iTIC mentors.

With strong investor engagement and curated startup-investor matchmaking, the event reinforced Hyderabad's growing startup ecosystem and iTIC's role in supporting innovation and scale-ready ventures.

Knowledge Sharing Sessions - India-Kenya-JICA Collaboration

Held virtually from February 19–21, 2025, this initiative was a joint effort by IIT Hyderabad, JICA, and Kenyan universities to promote entrepreneurship and innovation in higher education. The sessions engaged 21 academic professionals from Kenya, offering deep insights into India's startup ecosystem and the role of academia in fostering innovation.

Four experts from IIT Hyderabad shared experiences from successful initiatives like TiHAN and CfHE, covering topics such as entrepreneurial mindset, innovation infrastructure, and sector-specific incubation.

The program strengthened academic ties between India and Kenya and equipped participants with practical strategies to nurture university-based startup ecosystems.

India-Kenya Innovation Nexus (IKIN) 2024

Held from October 13–15, 2024, at IIT Hyderabad, the India-Kenya Innovation Nexus (IKIN) brought together key stakeholders from both countries to foster cross-border collaboration in innovation, entrepreneurship, and technology transfer. Co-organized by iTIC Incubator and Kenya National Innovation Agency (KeNIA), the event featured strategic partnership signings, expert sessions, and startup showcases.

Delegates included government officials, academic leaders, and startups from both nations. Highlights included formalizing the iTIC–KeNIA partnership, knowledge-sharing talks on incubation and commercialization, and interactions with deep-tech startups like Qoptars and LogiXair. Concluding with a shared commitment to long-term collaboration, IKIN 2024 laid a strong foundation for bilateral innovation-driven growth and future joint initiatives.

Innovation Day 2024

VCCircle The Pitch – Hyderabad Edition

India-Kenya Innovation Nexus (IKIN) 2024

3 Success Startups:

Extrive Innovations Private Limited

Founded by Abhishek Pratap, Ningombam Prem Singh, Ronak Oinam, and Yashaswi Matla, Extrive Innovations has developed Kanglei Backex—a lightweight, affordable passive back exosuit designed to reduce lower back fatigue, correct posture, and prevent injuries in manual laborers. By combining comfort with advanced technology, the team is making workplace safety more accessible across industries.

Brela Innovations Private Limited

Shreya Nair and Mohammad Zahid Khan, co-founders of Brela Innovations, are focused on improving women's healthcare by building ergonomic solutions for at-home breast health monitoring. Their innovation encourages more women to stay informed about their breast health, supporting the early detection of breast-related issues.

Bloom - Advancing Spatial Computing

Led by Subhajeet Mukherjee, Bloom is transforming the AR industry with the Bloom Mobile Device, an open-source, lightweight, and power-efficient AR headset. Unlike proprietary AR/VR systems from major corporations, Bloom's modular and cost-effective design ensures both flexibility and scalability in spatial computing.

Conclusion:

Throughout the year, iTIC Incubator actively engaged in a range of strategic initiatives that strengthened its role as a catalyst for innovation and entrepreneurship. These included deep-tech showcases at national forums, interactive sessions with industry leaders, international knowledge-sharing workshops, and hands-on training programs for students. The initiatives focused on advancing self-reliant technologies, fostering global academic collaborations, and expanding innovation capacity among aspiring entrepreneurs. These engagements not only amplified iTIC's outreach but also reinforced its commitment to building a robust, inclusive, and future-ready startup ecosystem.

TiHAN

DST NM-ICPS Technology Innovation Hub on Autonomous Navigation

Webpage: https://tihan.iith.ac.in/

Major Activities at TiHAN during FY 2024-25

TiHAN IIT Hyderabad at Consumer Electronics Show CES 2025

As part of its global outreach initiatives, TiHAN IIT Hyderabad, under the NMICPS DST mission, participated in CES 2025, held from January 7–10 at the Las Vegas Convention Center, USA. Exhibiting in the West Hall – Vehicle Technology & Advanced Mobility, TiHAN showcased its cutting-edge autonomous navigation technologies alongside global automotive leaders. The team also took part in a panel discussion, sharing key insights into their advancements in autonomous systems. During the event, multiple MoUs were signed, and consortium membership brochures were distributed to strengthen international collaborations and industry engagement.

TiHAN R&D Activities

TiHAN's Personalized Aerial Vehicle (* Palyanka)

Palyanka is an advanced aerial mobility platform designed specifically for passengercarrying applications. It features autonomous navigation capabilities, utilizing Map and GNSS-based systems for precise real-time route planning and location tracking. The PAV integrates multi-radio communication (WiFi, 4G, 5G, and traditional Radio), ensuring uninterrupted connectivity across diverse environments. PAV has ability to identify and navigate to safe landing zones using GPS integration and visual markers, including marker-based landing aids such as H-pads, to ensure accurate and controlled landings even in constrained urban or emergency environments.

TiHAN's High-Altitude Cargo Drone (*Chakravyuh)

TiHAN has developed a High-Altitude Cargo Drones, Chakravyuh, designed to carry payloads ranging from 100 to 150 kg. Engineered for elevated terrains and harsh environments, it features a single-propeller failure management system for enhanced in-flight safety. The drone offers a tested endurance of 30–40 minutes and a cruising speed of 3–4 m/s (approx. 10 km/h), making it ideal for logistics, disaster relief, and mountain transport operations.

Payload Dropping System on KALA Drone

Developed an advanced precise payload dropping system integrated into their drones, which utilizes target identification through a high-resolution camera for accurate payload delivery. The custom-made payload dropping mechanism allows for seamless integration of various payloads and ensures precise dropping at target locations. KALA drone was demonstrated at the Army base in Udhampur on February 8th, 2025, showcasing its capabilities in efficient and accurate payload deployment for military and other operational needs. High Speed Autonomous Vehicle Testing.

High Speed Autonomous Vehicle Testing

TiHAN successfully deployed in-house developed Drive-by-Wire (DBW) & Autonomous Navigation Stack at High Speed in the Commercial Electric Vehicles (such as Mahindra eVERITO and TATA Nexon). TiHAN in-house developed DBW system showcased its ability to maintain precise control and stability at higher speeds tested up to 70 km/hr for longer duration. The successful testing of Mahindra eVERITO at 70 kmph using TiHAN in-house developed DBW system in the extended TiHAN testbed paves the way for real-world deployment of high-speed autonomous vehicles.

Connected Vehicles C-V2X Technology

C-V2X (Cellular Vehicle-to-Everything) technology enables seamless communication between vehicles, infrastructure, pedestrians, and the environment, significantly improving road safety and traffic efficiency.

Connected Vehicles C-V2X Technology

TiHAN has developed multiple C-V2X solutions tailored to Indian road conditions, including intersection collision and lane change warning systems (V2V), blind-spot and curved road alerts, and weather-based warnings (V2I). A key innovation is the development of a hybrid Roadside Unit (RSU), which integrates traffic control and communication functions. This hybrid RSU connects with edge cloud infrastructure to enable intelligent traffic management—such as prioritizing emergency vehicles by dynamically altering traffic signals based on real-time data

ToT - Transfer of Technology

TiHAN IIT Hyderabad successfully signed Technology Transfer Agreements with two leading companies—Zero-Sum ITS and L&T Technology Services (LTTS)—marking a significant step towards commercialization and real-world deployment of indigenous autonomous navigation solutions.

Consortium for Rural Technology Development

Consortium is formed by TiHAN IIT Hyderabad, ISEED IRMA Foundation and the World Cooperation Economic Forum to promote digital agriculture technologies for rural development. The collaboration focuses on enhancing food security and farmer income through innovation, mechanization, and inclusive digital solutions.

Human Resource & Skill Development

Summary of Human Resources Supported by TiHAN for Advancing the Autonomous Navigation Ecosystem in India:

- Graduate Fellowships (Interns): 87
- Postgraduate Fellowships (M.Tech): 21
- Doctoral Fellowships (Ph.D.): 19
- Chair Professorships: 02
- Postdoctoral Researchers: 08
- TiHAN has successfully trained 4000+ participants through 37 workshops.

Startups:

TiHAN is funding 21 startups under different schemes such as EiR, startups , Seed support Systems, and incubation programs.

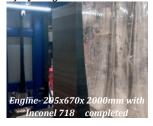
TiHAN Achievements:

- The SAFARI Data Collection Vehicle journeyed from IIT Hyderabad to Jammu, capturing real-world driving data across diverse road conditions and environmental scenarios.
- Achieved over 15,000 kilometres of fully autonomous shuttle operations within the IIT Hyderabad campus, showcasing reliable and safe deployment in a controlled environment.
- Successfully conducted a trial run of TiHAN's Autonomous Vehicle at the Andhra Pradesh Secretariat, demonstrating real-world applicability in governance and administrative settings.
- Filed 24 patents in FY 2024 2025
- Recognized as an ISO-certified organization, reinforcing TiHAN's dedication to excellence, safety, and structured operational practices.

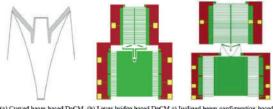
Testbed for Autonomous Navigation (Aerial/Terrestrial)

A first-of-its-kind state-of-the-art **Testbed for Autonomous Navigation** (Aerial/Terrestrial) is being developed at TiHAN IIT Hyderabad. The Facilities include Proving Grounds, Test tracks, Mechanical integration facilities like Hangers, Ground control stations, Anti-drone detection systems, State of the art Simulation tools (SIL, MIL, HIL, VIL), Test tracks/circuits, Road Infra – Smart Poles, Intersections, Environment Emulators like Rainfall Simulators, V2X Communications, Drone Runways & Landing area, Control Test centers.

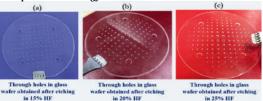
Centres/Centres of Excellence


DIA-CoE

DIA-CoE, IITH (DRDO Industry Academia Centre of Excellence) is operational from 01-04-2023 on the 3rd Floor, TRP building. 11 legacy projects are under progress from 2021. Sanction of 18 New Projects to the tune of 66 Cr under Additive Manufacturing, Seeker & Homing Technologies, Nano-Ornithopter technologies, and Ultra High Temperature Materials are obtained. Funds are received, and works are in progress. One project under Advanced Imaging and Image Processing (AIIP), and two projects under Space Systems for the Defense vertical, is in the process of sanction. Regular interactions and technology review meetings were held to identify new research areas for the remaining Verticals. Among legacy projects, 8 projects were successfully completed. The remaining two projects are nearing closure. One project - Development of ASIC is under progress and will continue one more year. 24 Papers were published, and 2 patents were filed.


Major Achievements of Legacy Projects:

1) Large Scramjet engine of size – 205 x 670 x 2000mm with Inconel 718 printed successfully using LAAM machine.



3) New Designs for MEMS Gyroscope and Accelerometers are completed successfully and fabrication is being under taken at RCI.

(a) Curved beam-based DaCM, (b) Lever-bridge based DaCM c) Inclined beam configuration-based MEMS accelerometer for ± 30g range

2) The Project "Through holes in glass wafer" is completed successfully, and process technology has been handed over to RCI. TOT is in progress.

4) Oxidation studies of high entropy alloys AMCC61 763 series and γ-TiAl variants completed satisfactorily and Data Sheets for future use are being prepared..

a) Focused ion beam b) close up of the Omni-probe nanomanipulator c) TEM Imag

List of On-going projects under IITH

Project Titles	Name of the PI	PDC	Lab
Laser cladding of functionally graded ceramic coatings for high temperature and wear applications	Dr Muvvala Gopinath	21-Jun-25	DRDL
Direct Metal Laser Sintering of C103 Refractor Alloy.	Dr Vishwanath Chintapenta	13-Jul-25	DRDL
Design, analysis, verification, and performance evaluation of Analog to digital interface single-channel ASIC for high performance closed-loop capacitive gyroscope for inertial navigation applications.	Dr Ch. Gajendranath Chowdary	21-Jun-25	RCI
Electron Beam Powder-bed fusion of nickel-base superalloys CM247LC and BZL12Y	Prof Janki Ram	01-May-29	GTRE
3D Printing of Copper Conical Shape Charge Liners and lattice structures: Feasibility, Consistency and Production Scaling	Dr Syed Nizamuddin Khaderi	01-May-27	TBRL
Optimization of Electron Beam AM process of Ti-6Al-4V to minimize the anisotropy in, high temperature mechanical properties, creep, fatigue and fatigue crack growth and demonstrate printing of real-time component with optimized process parameters $\frac{1}{2}$	Dr Rajesh Korla	01-May-27	DMRL
Simulation capabilities for Additive Manufacturing processes	Dr Muvvala Gopinath	25-Mar-27	DRDL
AI/ML-based Seeker Processing with High-Performance Computing	Prof Satya Peri	19-Dec-27	DLRL
ML/DL aided Passive Seeker Direction Finding	Prof Amit Acharyya	12-Feb-28	DLRL
Compressive Sensing based Wide Open Sub-Nyquist Frequency Estimation	Dr Abhishek Kumar	12-Jan-28	DLRL
Design and Fabrication of Lightweight Metamaterial Structures for Flapping Wing Systems	Dr Prakhar Gupta	12-Jan-27	DYSL-SM
Stiffness Tailoring via curvilinear fiber reinforcements of flapping wings for enhanced modal performance in ornithopters	Dr Sai Sidarth	15-Jul-27	DYSL-SM
Development of a platform that would aid a nano-ornithopter to learn to fly	Dr Vishnu R Unni	19-Jan-27	DYSL-SM
Development of an unsteady wind tunnel for simulating flight-relevant flow conditions for a micro or nano UAV	Dr Vishnu R Unni	12-Jan-27	DYSL- AT
Modelling and establishment of various process parameters for PCS fibers and modelling of PCS-SiC conversion process	Prof Harish Dixit	19-Jan-28	DMSRDE

Six more projects under progress at institutes other than IITH

ICMR-DHR-CoE

The Indian Institute of Technology Hyderabad (IIT Hyderabad) has partnered with the ICMR-DHR Centre of Excellence (CoE) to foster MedTech innovations. This CoE is a collaborative initiative between the Indian Council of Medical Research (ICMR) and the Department of Health Research (DHR). The primary objective of these centres is to develop products and technologies aligned with the needs of the National Health Mission, Ayushman Bharat, and various public health programs run by the government, with the aim of their potential implementation, as reported by IANS.

Ongoing Projects:

- Compact and portable low-cost microscope for digital Cytology applications
- Image-guided Boiling Histotripsy Device for Treating Neuroblastoma
- Customized 3D-printed PCL-silk scaffolds for implants

Companies Supported:

- M/s Heamac Health Pvt Ltd -nLite360 Intelligent Phototherapy device that provides customized treatment to Dynamic Jaundice conditions
- M/s Beable Health Pvt Ltd-Game based Upper Limb Rehabilitation Device for Neuroplasticity
- M/s Kvayat Medical Pvt Ltd-DiaPatch with ActiFlush Technology: The world's first smart flushable Diaper
- M/s Nemocare Pvt Ltd-Nemocare Raksha: A diagnostic and Monitoring tool for neonates All have been selected by ICMR for HTA (Health Technology Assessment)

TRIHUB - Transportation Research and Innovation Hub

Webpage: https://trihub.iith.ac.in/

To address the pressing issues of highway infrastructure in India, the Indian Institute of Technology Hyderabad established a Centre of Excellence on 'Transportation Research and Innovation Hub (TRIHUB) with the support of the National Highways Authority of India (NHAI). This initiative is at the forefront of pioneering research aimed at creating innovative, cost-effective solutions for highway construction. Among the cutting-edge technologies being explored are geosynthetics, recycled materials, and fibre-reinforced concrete. Each proposal is designed to improve the structural integrity, longevity, and promote sustainable practices within a circular economy framework.

The research team at TRIHUB has developed a 'State-of-the-Report (SoAR) on Bituminous Interlayer grids/composites' as part of the H4 committee of the Indian Roads Congress (IRC). The research team is also working with various committees of IRC in developing new design guidelines, e.g., 'Strengthen bridges using CFRP composites', 'New Design guidelines for Strengthening the Steel Bridge Components using Composites', amendments to IRC SP 42 and 59, etc. Recently, Shri. Alok Deepankar, Member (Tech.), NHAI, has reviewed the progress of TRIHUB (See, Fig. 1)

TRIHUB has recently procured a vehicle-mounted falling weight deflector to monitor the condition of an existing flexible pavement (See Fig. 2).

Medical Device Innovations

IIT Hyderabad, along with the Center for Healthcare Entrepreneurship (CfHE) and Asian Institute of Gastroenterology (AIG) Hyderabad, is introducing a course specifically considering the need for innovative medical devices for patients and the need for Indian industry orientation to medical devices. The Program, MTech in Medical Device Innovation (MDI), is intended for candidates, who passionately feel for finding innovative solutions for the problems faced by the current health industry. The enrolled students will be trained to find problem statements in the health industry; discuss the solutions among engineers, doctors and designers, and come up with a solution to fulfill the degree requirements.

The Program: This is a multifaceted experience that ranges from grassroots innovation to product development, business planning, and entrepreneurship. The program will be instructed in a structured and design-oriented manner with the help of experienced faculty, staff, industry experts, serial entrepreneurs, and the academic community.

Duration: 2 years with 50 credits

As part of their project credits, the teams made from the students would undergo a complete design life cycle comprising of:

- Clinical immersions to identify problems,
- Validate the needs.
- · Brainstorm on ways to address the needs
- Build technology prototypes
- Build business and IP management
- Deliver working proof of concept prototypes of their ideas

Project Titles:

- Automatic segmentation and 3D Printing of Patient Specific Craniomaxillofacial Bio-degradable Implants using deep learning techniques
- Therapeutic Compression Device for Lymphatic Filariasis(Elephantiasis).
- Intraoral imaging with advanced image processing for accurate and early detection of dental caries
- Development of a Cold Plasma-Based Device for Effective Disinfection of Dentinal Tubules in Endodontic Treatment
- Early osteoporosis detection in pre-menopausal females

DIC- Design Innovation Centre

Webpage: https://dic.iith.ac.in/

HUB: DIC IIT Hyderabad - Nodal of all DICs Principal Investigator: Prof Deepak John Mathew

Spokes: IIIT Sri City, IIIT Hyderabad, IIITDM Kancheepuram

Overview:

IIT Hyderabad serves as the Nodal Centre for the DIC under the Ministry of Education, overseeing 20 Hubs and 60 Spokes. The Centre emphasizes hands-on learning, sustainability, and practical innovation.

Key Progress 2024-25:

- Courses conducted: 275Students enrolled: 4.688
- Patents filed: 6
- Innovative products initiated: 889
- Start-ups supported: 25
- Workshops organized: 214, training 2,564 students

Fields of Expertise, Major Domains and Ongoing Projects

VR/AR and Digital **Autonomous Air Design for Education Product Design** Heritage Preservation **Mobility Design** Virtual museum experience Integrating Technologies Design and Development of Solar vegetable for improving STEM representing cultural heritage Autonomous Urban Air Solar Cooker Ekaant-Education of Gonds of Telangana Mobility Designing virtual reality VR and AR for documentation Development of full scale Office pods Bioaided contentfor school of the Monuments of prototype and Study of user **Bricks** education Telangana experience Hydroponics and Educational game design Design intervention VR basedperception study Solar panels for Teacher training workshop for safeguarding Interior Design of parking areas workshops the dhokra crafts of Ojhas of Autonomous Urban Air Adilabad Mobility

DIC Annual Meet 2024 at IIT Hyderabad

Highlights of Key Projects:

Educational Game Design: The project explores educational game design for reducing cognitive load, culminating in a card game that helps players identify influences behind political campaigning. The project merges research and practice, using interactive play to foster critical thinking about media and persuasion, done inspiration from the growing global political tensions and works towards improving critical analysis.

Urban Air Mobility: Design and Development of Urban Air Mobility (UAM) for Indian Passengers.

Patent Title: Advanced Air Mobility(AAM)

Inventor Name: Indian Institute of Technology Hyderabad,

Dr. Deepak John Mathew, Ketan Chaturmutha

Category: SD_Designs
Application Nos: 443767-001

Tangible and Intangible heritage of Telangana:

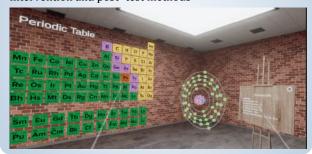
- Digital Documentation of the Cultural festivals and Traditional Crafts of the Gond Tribe
- Virtual museum walkthrough representing the Gond culture
- Design Intervention workshop with the Ojha Artisans

Ekant Pods: A standalone, soundproof unit equipped with high-quality acoustic features, ventilation, and smart connectivity.

Designed for one person, offering a tranquil and comfortable workspace.

Seamless integration into smart office environments and public spaces, featuring a sleek design.

Cinematic Virtual Reality: Table for Two-Design and Development of Parallel Interactive Narratives in Cinematic Virtual Reality.



Preserving Ramappa Temple and Perini Natyam: Preserve and promote Perini Natyam, an ancient dance of Telangana, by creating an engaging Mixed Reality (MR) experience that brings Ramappa Temple sculptures to life and the Reality Capture of Nava Brahma Temple. An immersive journey from sculpture to living performance—preserving heritage in motion.

Virtual environment of Interactive chemistry:

Virtual environment of Interactive chemistry lab was created as part of the project. The study found the benefit of the VR-aided learning system. Followed by Pre-test, intervention and post- test methods

(क्रिया)

Centre for Research and Innovation in AI

Webpage: https://ai.iith.ac.in/research/ai-research-centre.html

The Department of Artificial Intelligence (AI) at IIT Hyderabad, established in 2019, was India's first initiative of its kind (at least among the IITs) and likely the third globally, following the Massachusetts Institute of Technology and Carnegie Mellon University. Historically, AI has been studied within departments such as computer science or electrical engineering. However, the creation of a dedicated AI department at IIT Hyderabad allows for the integration of knowledge from multiple disciplines.

By drawing on these diverse perspectives, the department offers a unified academic program. IIT Hyderabad's Bachelor of Technology in Artificial Intelligence has influenced the development of similar programs nationwide, and the department has provided guidance to other institutions in designing their AI curricula.

According to Professor Vineeth N. Balasubramanian, from the Department of Computer Science and Engineering and affiliated with the AI Department, the presence of the AI Department enables students from other disciplines to pursue a minor in AI alongside their major. This is crucial, as AI's relevance spans a broad range of domains—from structural engineering to drug discovery.

The department currently enrols over 250 students, with an almost equal distribution between undergraduate and postgraduate programs. It boasts a faculty of 30 members, including five core faculty members and affiliated faculty from computer science, electrical engineering, mathematics, and mechanical engineering. Additionally, the department offers a PhD program, enabling candidates with foundational knowledge in various fields and strong mathematical backgrounds to engage in advanced AI research.

The department's research covers a wide array of fields, including foundational AI algorithms, computer vision, natural language processing (NLP), speech understanding, social media analysis, robotics, signal processing, high-dimensional data analysis, distributed AI, AI compilers, and embedded AI. Research also explores interdisciplinary applications, such as AI and the Internet of Things (IoT), AI and blockchains, AI and wireless networks, and AI in design. The department runs projects funded by prominent government agencies (DST, SERB, MEITY, DRDO) and industry leaders (Google, Microsoft, Adobe, Honeywell, Sony, Qualcomm, Accenture). Faculty members have worked on AI-driven solutions in areas like sustainable development, healthcare, smart transport, security, agriculture, disaster management, fraud analytics, ecommerce, astronomy, and aerospace.

Supported by Honeywell and the Japan International Cooperation Agency (JICA), the department hosts a state-of-the-art Centre for Research and Innovation in AI (क्रिया). The computing capability of the department consists of 25+ high end GPU servers, including NVIDIA DGX-1 and DGX-2 servers. These resources support a wide range of AI research projects. Also in partnership with NVIDIA, it established India's first NVIDIA AI Technology Centre (NVAITC) in July 2020, significantly enhancing AI research with high-performance computing resources.

Recently, in collaboration with Intel, the department launched the Intel AI PC Experience Center, one of only two such centers in India (the other is at IISc Bangalore), allowing students to experiment with AI without requiring high-end GPU servers, thus making AI accessible to a broader group of learners.

The department encourages interdisciplinary collaboration on large-scale projects. A notable example is the AISWARYAM initiative for sustainable city management, led by Professor Vineeth N. Balasubramanian, which involved contributions from more than 20 faculty members across the institute. The faculty members and students of the AI department contribute and collaborate very closely with the Technology Innovation Hub in Autonomous Navigation (TiHAN), another large scale project led by Prof. Rajalakshmi from the Electrical Engineering department and also affiliated with the AI department. Additionally, faculty members such as Professors Maunendra and Mohan Raghavan are involved in the BharatGen project, which leverages generative AI technology to enhance public service delivery and citizen engagement on a national level. The other notable collaborative projects include SANKALP (healthcare) and M2SMART (air pollution). The department remains focused on impactful research, with students and faculty regularly publishing in leading AI and machine learning conferences and journals such as ICML, ACL, CVPR, AIJ, JMLR, WACV, NeurIPS, AAAI, IJCAI, AAMAS, ECAI, ICLR, and various IEEE Transactions.

RDC - Rural Development Centre

Webpage: https://rdc.iith.ac.in./

Rural Development Center (RDC) at IIT Hyderabad, has carried out multiple rural development activities in the areas of Education and Environmental aspects. RDC has been proactive during the academic year 2024-25. RDC has a student body Prayas.

Major Events:

- **TEACHING ACTIVITIES** RDC is actively involved in teaching activities in 7 ZPHS from Kandi Mandal of Sangareddy district. Where the IITH fraternity, including students (ug, pg, and PhD), faculty, and staff teach Science, Mathematics, and English subjects. We have carried out the teaching program starting from September 2024 to January 2025.
- **SRUSTI** A science fair event organized on the occasion of National Science Day. A total number of applications received is 120 from all over Telangana state, out of which only 33 applications have been shortlisted and invited for participation. The event focused on science and innovation from the 8th, 9th, and 10th class students.
- **DEEKSHA** RDC_IITH has adopted 6 zphs schools from Kandi Mandal, and is being actively engaged in various educational activities. As part of this, we have organised the Deeksha event to focus more on the motivational and career development. We have shortlisted the students based on merit.
- **PRERNA** one of the major and prominent events conducted by the RDC_Prayas. As mentioned earlier, where RDC is conducting teaching activities in 7 ZPHS schools, it is very important that the parents from rural backgrounds need to be motivated at the same time, along with the students, we have invited the top bureaucrats and scientists from different backgrounds who have excelled in their lives, starting their schooling from ZPHS schools.
- **ORPHANAGE VISIT** Prayas and RDC are actively involved in engaging with the various orphan organisations, as part of this, we have conducted several activities to motivate the children in the orphan homes.
- **CAMPUS TOUR** RDC and Prayas are active in organising IITH campus tours. We have hosted around 22 schools covering 2500 students in the 2024-25 academic year. We have hosted students from Telangana, Andhra Pradesh, Karnataka, and Maharashtra. We do it very holistically, covering the major achievements of IITH, career guidance for the students, lab visits, and promoting science and technology.
- **DISTRIBUTION OF COMPUTERS** RDC, in collaboration with Aksharadaan, has donated 3 computer desktops to different government schools.
- PARTNERSHIP WITH AKSHARADAAN RDC, in collaboration with Aksharadaan, has been reaching out to government school students across the Telangana state to support them in the subjects of Mathematics and Science through online mode.
- MoU with UnitedWay RDC is collaborating with working on the environment in Kandi mandal

CCE - Center for Continued Education

Webpage: https://cce.iith.ac.in/

Overview: The Centre for Continuing Education (CCE) aims to conduct various outreach programs for students, academicians, and working professionals across the world. The young and energetic faculty of IIT Hyderabad provides learning opportunities for the professional growth of interested participants. With a rapid rise in E-learning programs, CCE @ IIT Hyderabad is keeping abreast with the online programs that can facilitate the learning of working professionals by meeting their work schedules.

Scope and functions:

- To conduct all academic outreach activities like Conferences, Workshops, Certificate Courses, Symposia, Short-term courses, Training programs, and other similar activities of the Institute.
- To organize faculty development programs for the faculty of various technical institutes in the country.
- To conduct certificate courses in collaboration with industry and academia to provide specialized expertise/skill development in diverse fields

Programs and Facilities

- Open To all Teaching (OAT)
- NPTEL (National Programme on Technology Enhanced Learning)
- International/ National Conferences
- Workshops, Symposia and Training Programs
- Short-term and long-term Certificate Programs

Convention Centre Facilities:

- Auditoriums
- Seminar Rooms
- Conference Rooms
- VIP Lounges

Programs List: 2023-2024

Open To all Teaching (OAT):

- Sustainable Chemical Metallurgy
- Advanced Fluorescence Microscopy and Image Processing
- Concepts and Hands-On Observational Astrophysics
- Foundations of Techno-Entrepreneurship
- Kinetics of Metallurgical Processes
- · Psychopathology and mental health
- Electrochemical Energy Conversion
- Role of Microstructures in Materials Selection
- Carbon Capture Utilization and Storage
- Bayesian Data Analysis
- Clean Steel Making: Theory, Practice and Modeling

Certificate Programs:

- A Four-Week Masterclass in Impact Evaluation
- Light Gauge Cold-Formed Steel Design Fundamentals & Advancements
- Strategic AI for Professionals
- Advance Machine Learning Engineering in Python
- Foundation on AI Analytics for Undergraduate and Postgraduate Students
- SCIENT SPARK Startup Launchpad
- Online Workshop: Image Processing and Data Analysis using ImageJ
- Next-Gen Computer Architecture 10 to 12 Week Program

NPTEL Courses:

- Stability aspects of structural steel design: Concepts and applications.
- Advanced Fluorescence microscopy and image processing.
- Diffusion in Solids
- Introduction to Graphic Design

Symposiums:

- MAE-Industry Connect Program
- ISRAPS Discussion Meeting on Spectroscopy across Energy Domains: From Fundamentals to Applications
- Advanced Functional Analysis and its Applications
- Vulnerable Bodies in Literature and Culture
- Deep Tech Symposium
- Prime Minister's Research Fellowship (PMRF) Annual Symposium

Conferences

- Computations of High-Speed, Turbulent and Complex Flows (CHTC)
- Meeting of APEX Advisory Committee of NCSTC
- Geo Practices 2024 and Terzaghi Oration
- International Conference on Interconnections between Particle Physics and Cosmology
- International Conference on Circadian Rhythms in Health and Diseases: Discovery to Function (CRHD)
- International Conference on Processing of Advanced Materials and Fabrication of Products (PAMFP)
- · Comp Flu International Conference on Complex Fluids and Soft Matter
- International Conference on Distributed Computing and Networking (ICDCN)
- IEEE Applied Sensing Conference (APSCON)
- Horizons in Structural and Computational Biology (HSCB)
- International Conference on Laser & Other Deposition Techniques (iCLOD25)

CIP - Center for Interdisciplinary Program

Webpage: https://cip.iith.ac.in/

Highlights

CompFlu-2024 highlights the successful hosting of the conference by Dr. Harish N Dixit and the IIT Hyderabad team in collaboration with the Indian Society of Rheology from 16-18 December 2024. The meeting maintained its tradition since 2002 as a premier platform for India's thriving soft matter research community, attracting over 500 participants—including many regular international attendees—and fostering significant collaboration and knowledge exchange.

Conference Overview

CompFlu-2024, themed 'Soft Matter & Beyond', included research talks, poster sessions, flash talks, table talks, an art in science exhibition, and networking opportunities. The event also featured a pre-conference workshop on 14-15 December 2024, further enriching the scientific exchange.

Technical Sessions

The conference addressed a diverse array of topics:

- Polymers & composites
- · Biological soft matter
- · Colloids, emulsions & foams
- Active & responsive soft matter
- Interfacial phenomena
- · Rheology & constitutive modeling
- Membranes & thin films
- · Granular flow
- · Glasses & amorphous materials
- Sustainability in soft materials

The conference saw robust academic and industry engagement, consolidating its role as a pivotal event for students, researchers, and professionals across disciplines in science and engineering. The high attendance and recurring presence of international experts underscored CompFlu's sustained appeal and reputation. CompFlu-2024 also recognized outstanding scientific contributions through poster and flash talk awards, further motivating excellence in research and presentation. Various innovative research projects were showcased, reflecting the diversity and cutting-edge nature of Indian soft matter science.

Awards & Recognition of ID Students:

- Lakshmi Raja (MSc Medical Physics) was awarded Future Research Talent Award 2024 by the Australian National University
- Meet Gor (PhD Scholar) secured 1st position in the "3-minute talk" competition during the Research Scholar Day (Khoj'24) at IIT Hyderabad (1 March 2024)
- Neha Mishra (PhD Scholar) selected for JST-YOUNG RESEARCHER PROGRAM INDIA at NIMS JAPAN
- Vishnu K (MTech Additive Manufacturing) was awarded with Best Oral Presentation Award at International Conference on Laser and Other Deposition Techniques (iCOLD25)
- Manav Patel (MTech-ICMP) was awarded the Best Poster Award in Co-Packaged Optics at ISPEC 2025, held in Gandhinagar.
- Kalyani E (PhD Scholar) has presented poster at HYMA conference held at France

Excellence in Research Awards at 17th Foundation Day - IITH

- Zainul Abedin Khan, ID PhD student
- Kalyani E, ID PhD student

Appreciation in Research Awards at 17th Foundation Day - IITH

- Smera Sohan, MSc Medical Physics Student
- Durishetty Nachiketha, Additive Manufacturing student
- Jyothika Meenakshi Kambhampati, Medical Device Innovation student
- Bhatt Khyati Pushpakant, Ophthalmic Engineering student
- Rishabh Chaturvedi, Smart Mobility student
- Anant V Nalawade Additive Manufacturing student
- Shashank Ravindra Raut, Integrated Sensor Systems student
- Shivam Upadhyay, Medical Device Innovation student
- Salwa Iftekhar, Ophthalmic Engineering student
- · Sivani Bohidar, Polymer Biosystems student
- Nagireddy Priyanka, Smart Mobility student

Indian Knowledge Systems

The Indian Knowledge Systems (IKS) Cell of IITH has been established to nurture an awareness of the traditional Indian Knowledge Systems (shaastras) in the IITH community. The prime focus of IKS@IITH is in discovering the knowledge in the traditional Indian Systems and disseminating them. The IKS@IITH operates within the purview of the Heritage Science and Technology (HST) Department of IITH.

Non-Formal Sanskrit Education (NFSE) Sanskrit Courses:

In collaboration with Central Sanskrit University, IITH offers Certificate and Diploma Courses in Sanskrit Language. These courses are offered in offline mode with the CSU instructors stationed at IITH. The CSU instructor for these courses is Shri Dr. Avijit Ghosh. The CSU courses are run together by the Dept. of Heritage Science and Technology (HST) and the IKS Cell.

Samskrita Bharati (SB) Sanskrit Courses:

In collaboration with Samskrita Bharati, IITH offers five 1-credit senate approved Sanskrit courses to students of IITH. These courses are designed so that the basic student becomes an expert reader of texts in Sanskrit. Undergraduate and Graduate students take these courses to satisfy their LA/CA credit requirements. Until date around 400+ IITH students have benefited from these courses.

The SB courses are run together by the Dept. of Heritage Science and Technology (HST) and the IKS Cell. These courses are offered in online mode by instructors delegated by Samskrita Bharati, Telangana. The instructors for these courses are Acharya Shri Turlapati Sivaramakrishna, Shri Acharya Paka Gopalakrishna and Acharya Dr. Sarita Ancha.

Center for Cryptography and Cybersecurity

The Center for Cryptography and Cybersecurity aims to be a premier hub for cryptography and cybersecurity research in India. The center conducts research in cutting-edge technologies as well as engages in the training of students and professionals in these areas.

To know more, visit: https://ccs.iith.ac.in/
Email ID: myp@cse.iith.ac.in

Center for Geo-spatial AI and Digital Twins

Estd through an MoU between AMS, NEER, INTERACTIVES & IITH, to faster a close partnership that focuses on Geospatial AI & Digital Twins, cultivating a collaborative environment for project initiatives in Geo AI, drones AI, perimeter security AI, BIM AI & Digital Twins applied to defense, industry, environmental safety, climate change, wildlife

To know more, visit: http://cgdtind.org/ Email ID: shivaji@des.iith.ac.in

Center of Design Excellence (CoDE)

The Center of Design Excellence (CoDE) at IIT Hyderabad represents a strategic collaboration between academia and the Telangana MSME industry, aimed at enhancing industrial capabilities through innovative design solutions.

To know more, Visit: https://code.design.iith.ac.in/

Email ID: code@des.iith.ac.in

(cGodavari)

The Centre for Godavari River Basin Management Studies (cGodavari) is a multidisciplinary, Multidepartment initiative to help restore and maintain the ecological health of the entire Godavari River Basin. The initiative is funded by the National River Conservation Directorate (NRCD), Ministry of Jal Shakti.

CLEANZ

The Centre of Clean Coal Energy & Net Zero (CLEANZ) is a CoE committed to promoting the development of high-impact coal-based technologies by integrating advanced scientific approaches with real-world applications. The centre aims to create scalable solutions for clean coal utilisation, CO₂ management, and the circular economy.

To know more, visit: https://cleanz.coe.iith.ac.in/#contact

Email ID: office@cleanz.coe.iith.ac.in

DBT-SAHAJ

The DBT-SAHAJ facility for single-molecule and super-resolution imaging provides access to cutting-edge single-molecule imaging technologies for life science/biomedical research. Technologies available: 1) Single-molecule tracking in live cells, 2) Single-Molecule Localization Microscopy (STORM/PALM), 3) Single-Molecule FRET, 4) Single-molecule FISH, 5) 5D imaging of live and fixed cells, 6) Image processing and visualization.

To know more, visit: www.singlemolecules.iith.ac.in.

Email ID: gunjanmehta@bt.iith.ac.in

IITH-Nikon CoE

The Nikon Centre of Excellence for Optical Microscopy at IITH provides super-resolution confocal, TIRF, widefield fluorescence and stereo fluorescence microscopes to support high quality imaging across various fields of research.

To know more, Visit: https://coenikon.iith.ac.in/

Email ID: shourya@msme.iith.ac.in

NVAITC

The NVIDIA AI Technology Centre (NVAITC) at IITH is a joint initiative to accelerate AI research and its commercialization. It was established to facilitate research on AI algorithms and develop AI-based solutions for various sectors, including agriculture, smart cities, and language understanding.

Email ID: head@ai.iith.ac.in

SIMMECT

IITH in collaboration with Swinburne University of Technology (Swinburne), Australia have established SIMMECT—the "Swinburne-IITH Manufacturing, Materials, Energy, and Communication Technologies Joint Research Institute". This centre aims to strengthen the research collaboration between IITH and Swinburne, fostering cutting-edge advancements with significant industry and societal impact.

Takshashila

The Takshashila- Centre for Heritage Science & Technology, located within the Department of Heritage Science & Technology (HST) at IIT Hyderabad, focuses on applying science and technology to conserve and develop India's tangible and intangible heritage assets. This includes monuments, archaeological sites, traditional knowledge systems, cuisines, art, and languages.

Email ID: mohanr@bme.iith.ac.in

AMRIT

AMRIT (Advanced Manufacturing Research Innovation and Training) is a joint initiative launched in 2025 by the IITH and Deakin University, Australia, to advance next-generation manufacturing technologies. This collaboration focuses on additive manufacturing, smart materials, lightweight composites, automation systems, and Industry 4.0 technologies to foster innovation, workforce development, and startup incubation in India.

SU IITH

SU IITH is established between Shimane University, Japan and IITH. This centre aims to cultivate the next generation of human resources with an entrepreneurial mindset, strengthening the Japan-India science and Technology partnership and preparing students, researchers and academics to lead industries and contribute to society in both nations

WIN

IITH in collaboration with the Wadhwani Foundation, has established a Centre of Excellence, Wadhwani Innovation Network, to drive innovation and research in key frontier areas. The Foundation is supporting the initiative in the areas of Advanced Computing and Artificial Intelligence; Biotechnology and Bioengineering; HealthTech; SpaceTech; Quantum Technologies; Critical Minerals and Mining

NBV-SIC

Suzuki Innovation Centre & Next Bharat Ventures at IITH are dedicated to advancing the Next Billion in India by supporting impact entrepreneurs committed to making a substantial difference. Empowering the community of great entrepreneurs creating greater impact, for the next billion.

To know more, visit: https://nextbharat.ventures/

Email ID: sic@nextbharat.ventures

SATHI-CISCOM
Centre for In-Situ and Correlative Microscopy is a consortium of 18 partner institutes supported through the DST-SATHI program. This centre would be the first in the nation to enable real-time characterisation across multiple length scales for fundamental and industrial R&D purposes. This centre is headed by Dr. Sairam Malladi.

To know more, visit: https://sathi.iith.ac.in Email ID: sathi.ciscom@admin.iith.ac.in

STC²M²P

Sustainable Technologies Centre for Critical Minerals and Metals Processing (STC M P)- CoE under National Critical Mineral Mission by Ministry of Mines, GoI. This CoE focuses on recovering critical minerals from e-waste, industrial residues, ash sources, and primary ores (Ni, Co, V, Ti). The CoE aims to drive innovation, reduce import dependency, and promote sustainable practices, strengthening India's mineral independence.

Email ID: <u>narasimha@che.iith.ac.in</u>

PU IITH

Jointly established Center of Excellence in Semiconductors (CES) with Purdue University, US. Purdue University has announced a partnership with India that includes the creation of the Purdue Centre for Education and Engagemen Centre of Excellence in Semiconductors.

CQC

The Center for Quantum Communications (CQC) is a Center of Excellence at IIT Hyderabad focusing on Secure Quantum Communications. The Center hosts a branch of the Quantum Communications Technical Hub of the National Quantum Mission. Researchers in the CQC work on design, development of Quantum Key Distribution (QKD) systems, design and analysis of secure quantum network protocols, and QKD systems based on Photonic Integrated Circuits.

VIGRAHA

VIGRAHA (Virtual, Intelligent, Ground-breaking Research in AR/VR & High-tech Applications for Indian Army) CoE has established in collaboration with with the Army Training Command, Shimla, represented by the Simulator Development Division (SDD), Secunderabad This collaboration aims to spearhead cutting-edge research and development for the Indian Armed Forces.

Email ID: shivaji@des.iith.ac.in

Schools

BVR SCIENT

Dr BVR Mohan Reddy School of Innovation and Entrepreneurship is a unique Institute established in collaboration with IIT Hyderabad with a collective goal to instill an entrepreneurial mindset amongst youngsters and create a thriving innovation ecosystem to transform the entrepreneurial landscape across the country.

Key Objectives:

- · Capability building for potential entrepreneurs
- Entrepreneurial Ecosystem Enhancement and
- Capacity building for entrepreneurial mindset.

For more details, visit: bvrscient.iith.ac.in

Greenko School of Sustainability

Greenko Group and IITH are collaborating to establish the Greenko School of Sustainability at the Indian Institute of Technology Hyderabad. The School of Sustainability is designed to shape a world that harmonizes with nature and empowers future generations toward a more sustainable tomorrow. The objectives of the school are to conduct research and development, and education programs. The Greenko School Sustainability is structured as a cross-disciplinary centre that manages seamless participation and knowledge flow from all existing departments and centres of IITH.

Core research areas of the School:

TRP - Technology Research Park

Webpage: https://trp.iith.ac.in/

Technology Research Park (TRP), aims to provide infrastructure and facilities for industry partners to co-locate Research and Development (R&D) centers at the IITH campus. Funded by the Ministry of Education, Govt. of India (erstwhile Ministry of Human Resource Development) to the tune of Rs. 75 Crores towards capital expenses, this 1.5 Lakhs sq. ft. (Square Feet) building features state-of-the-art facilities on par with global standards. During the Financial Year 2024 -25, an additional space of 8,000 sq. ft. was inaugurated on 19th March 2025 specifically designed to host R&D labs of specific requirements. This addition has increased the total space available in TRP to 67,000 sq. ft. approximately

As on 31st March 2025, a total of 23 entities are currently occupying 33,430 sq. ft. in total. Out of these 23, 18 are private companies and 5 are Centres of Excellence in various verticals.

During the Financial Year 2024 – 25, IITH Technology Research Park has provided space to 4 different private companies that are engaged in different verticals namely, Drone Technology, Fintech & Artificial Intelligence and 1 Centre of Excellence working on Godavari River Water Study. Companies hosted in IITH TRP have set up their R&D labs and are working in areas ranging from Software Drone Technology Biomed / Biotech Artificial Intelligence Satellite Related Technologies Fabless Chip Designing RF VLSI Critical Minerals, Fintech & Pharmaceutical-related research activities.

TIP - Technology Incubation Park

The TIP building, with a total built-up area of 14313 sqm, consisting of 11 blocks with a G+5 structure, is ready to support the incubation activity at IITH. The motto of IIT Hyderabad is Inventing and Innovating in Technology for Humanity (IITH). The Incubation ecosystem of IITH aims at nurturing ideas and innovations into viable technological and business ventures. The establishment of TIP is a major step forward in strengthening the incubation ecosystem of IITH. IITH has incubated more than 320+ startups that generated more than Rs. 1500+ crores of revenues and created 1100+ jobs.

The Green Office at IIT Hyderabad is committed to promoting greenery while keeping the local ecology as a priority to help biodiversity prosper in the campus. Some of the important initiatives and achievements in 2024–2025 included plantation of over 45000 trees in total including the high-density Miyawaki plantation in collaboration with the CSR donors, and the monthly plantation drives, and special plantation drives throughout the year, and launch of a unique Community Garden initiative with 135 community plots (\sim 35 sq. yards each) for the urban farming on campus.

More than 5000 trees were planted through monthly plantation drives, along with landscaping efforts involving 5000 shrubs and 2000 ground covers. In our special plantation drives, the annual monsoon plantation on May 29 coincided with SPIC MACAY 2025, hosted by IITH, where 2000 native trees were planted by volunteers from across the country. The exercise was ecologically planned to help harbor the bird and butterfly diversity on campus. Another important event during the monsoon plantation was the Global Young Conference hosted at IITH, where participants and dignitaries planted 1000 trees at the inauguration of the conference. We were also graced by the Vice President's visit, where, following the national slogan Ek Ped Maa Ke Naam, a tree plantation was done by the Honourable Vice President at the campus, along with 200 native trees.

We participated in Bird Count 2025, a global event, and released a coffee table book showcasing the birds of IITH on the foundation day, curated by FIC Green Office's Dr Rashmi Singh. The exercise was guided by urban ecology expert Ajay Gonji and WWF scientist Raja Sekhar. The lead horticulturist, Vamshi, and his team were awarded the prestigious CII Van Mahotsav Award on 8th March 2025, the Van Mahotsav Award for their efforts and plantation of over 40,000 trees at IITH.

Our CSR Collaboration plantations included:

- ICICI Foundation: Completed Miyawaki plantation of 34,800 plants in 3.48 acres.
- United Way Hyderabad & Genpact: Completed Miyawaki plantation of 4,500 plants.
- SBI & Canara Bank: Donated 1,300 plants for plantation inside IITH Campus Development & Plantation Drives

Sustainability & Beautification Initiatives:

- Developed low-cost nursery shade nets using scrap materials for propagation.
- Conducted sessions with Krishi Vigyan Kendra scientists on organic farming practices
- Created a lotus and water lily pond at Faculty Towers from unused space.
- Planted flowering and seasonal plants across campus to enhance aesthetics and engaging students in innovative design contest ideas.

Waste Management and Pest Control Initiatives

At IITH, waste management and pest control are integral to promoting a clean, healthy, and sustainable campus environment. Our efforts focus on reducing waste, promoting recycling, and generating renewable energy while ensuring responsible pest control. Daily garbage collection is handled by Hand in Hand Management, where waste is carefully segregated, with reusable materials sent for recycling and inert waste incinerated at 1000°C, with the resulting ash repurposed as soil fertilizer. Organic waste is processed through composting and vermi-composting to produce nutrient-rich fertilizers used across campus gardens. Additionally, food waste from the mess is converted into renewable biogas to fuel campus kitchens, reducing reliance on conventional fuels.

This year, a new Resource Recovery Park was inaugurated by Director IITH, which will enhance waste segregation and processing. Pest control activities, including repellent spraying and safe snake and beehive removal, continue to maintain a safe environment. The Bicycle Department actively promotes sustainable transportation inside the campus and provided bicycles to over 878 students in year 2024–2025. To further inspire students, the "Cycle for Good Health" scheme offers reimbursements for bicycle purchases, promoting eco-friendly transport, personal fitness, and overall environmental wellbeing.

IITH Library has been functioning since 2008. The library presently holds more than 33,600+ Books, including gratis. Eresources collections include 5,000+ Full-text Resources, Bibliographic Databases, 1,83,000+ e-books, Academic Tools, and Online Newspapers & Magazines. The IITH library is fully automated with the integrated library software package using Koha and the RFID security automation system. IITH Library has been renamed as IITH Knowledge Resource Centre (KRC), relocated to the new building, and restarted its functioning on 27 March 2024.

Total built-up area and Floors:

9325.61 Sq. mt. / 100380.03 Sq. ft.; Ground + 3 floors

The Knowledge Resource Centre (KRC) is a ground plus three-storey structure. It was modelled as a library with a large digital collection, multimedia rooms and digital archives. Complex roof construction consisting of a central square surrounded by four hyperbolic paraboloid shell roofs. It has fair-faced exposed concrete parabolic arches of various heights and widths at multiple locations.

KRC is equipped with all new facilities such as:

Koha LMS, RFID, Self-Issue Return Kiosk, Digital Wall and displays, AV Rooms, Recording Studio, Group Discussion Rooms with displays, Research Commons Computer Lab, Learning Commons Lab, Conference & Meeting Rooms, Printing, Digitisation, Scholar Zone, Reading Areas, Study Carrels, Formal and Informal seating spaces and many more services to its patrons.

Following is the summary of the infrastructure, facilities, services and state-of-the-art technology available at KRC to support Teaching-Learning and Research (TLR) activities.

Library Collections

TOTAL COLLECTION AS ON MAR 31, 2025

Type of Collection	Additions in 2024-25	Total collection
Books	4115	36406
Children Books	850	1127
Hindi Books	76	113
Theses & Dissertations	2024 - 615, 2025 - 79	694
E-Resources	3	23
E-Books	73029	3,45,780

Library Initiatives

$On line\ Catalogue\ (OPAC):\ https://catalogue.krc.iith.ac.in/$

The library catalogue of IITH allows users to search and browse a wide collection of books, journals, and academic resources online. Users can suggest new acquisitions, access library services, and submit feedback, supporting the research and learning needs of the campus community. This centralized platform streamlines resource discovery and library management for IITH. The catalogue is a core component of the Knowledge Resource Centre's efforts to support research, learning, and teaching within IITH, making information discovery and resource management convenient and user-oriented.

Institutional Repository (RAIITH): https://raiith.krc.iith.ac.in/

The institutional repository of IIT Hyderabad, RAIITH, serves as an open-access platform archiving the scholarly output of the institute's faculty, students, and staff. It enables users to search and access research articles, theses, conference papers, and more, promoting research visibility and long-term digital preservation. The repository boosts global access to IITH's research and supports academic and industry collaborations and enhances the research visibility of IITH's scholarly publications across the globe.

IRINS Faculty Profile: https://iith.irins.org/

The IITH IRINS portal provides detailed profiles of IITH's faculty and researchers, aggregating their publications, projects, and academic achievements. It integrates data from major scholarly databases like ORCID and Scopus, making research outputs easily discoverable.IRINS integrates with databases such as Scopus and Google Scholar to fetch h-index and citation counts automatically for each faculty member. The platform supports collaboration, enhances research visibility, and simplifies tracking academic accomplishments for the institute.

Research Output by IITH fraternity: Publications:

Total Publications: 11,965+

Total citations: 2,20,811+ H-index: 145 Source: Scopus

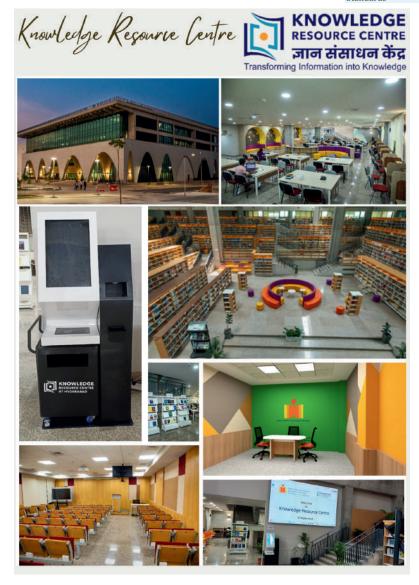
Books / Edited Books:

50+ Books:

Teaching-Learning and Research Support

The IITH Library supports teaching, learning, and research by providing access to a rich collection of books, e-Books, journals, and digital resources. It offers remote access to e-resources, study spaces, group discussion rooms, and facilitates document delivery and interlibrary loans. Users can suggest new acquisitions, and the library provides printing and scanning services, ensuring a comprehensive academic environment for research and learning needs.

KRC provides robust, user-focused support for teaching, learning, and research. With comprehensive resource access, responsive acquisition policies, advanced research tools, and dedicated physical and virtual spaces, it ensures the academic success of its community.


Library Outreach Activities

LIBRARY ORIENTATION, TRAININGS, WORKSHOPS & EVENTS

User Awareness Workshop on Scite.ai - A smart citation database, 05-03-2025 Author Workshop on How to get published by IOP Publishing, 11-11-2024

Library Infrastructure

Facilities	Services	Infrastructure	Collections	Research Support	Library Initiatives
Reading Areas	Circulation Library Membership New Arrivals Alerts OPAC - Book Catalogue Document Delivery Services User Orientation Programs Library Statistics for Reports Online Access to e-Resources Open Access e-Resources Off-Campus Access Book Suggestion/Procurement Online Booking of facilities	RFID Security Gate Self Check-in / Check-Out Reading Areas Centralized AC Wi-Fi Access Book Stack areas Printing/Scan/Copy material CCTV Ramp Access for Specially-Abled Users	Print Books / E-Books	Similarity Check/Plagiarism Tools Access – Turnitin, Grammarly, Overleaf, etc. Reference Managers Scientific Tools Citation Styles Article Request	• Koha LMS - OPAC • RAIITH (Institutional Repository) • IRINS Faculty Profile • Research Support • Pragyaan collections • Exit/Entry Statistics
			Database Standards		

Hindi Cell

In pursuance of the Official Language Policy of the Government of India, the Hindi Cell of the Indian Institute of Technology Hyderabad is promoting the progressive use of Hindi in the Institute. Every possible effort is made by the Hindi cell to follow the rules and regulations related to official language Hindi in the institute. Quarterly Progress Report and Annual Evaluation Report related to the progress of Official Language Hindi in our Institute is sent by the Hindi Cell to the Ministry of Education, Department of Official Language, Government of India & Town Official Language Implementation Committee(TOLIC). The highlights of Hindi Cell's official language activities are as follows:

Ongoing Activities of the Cell

Hindi Cell translates the Institute's Annual Report, Annual Audit Report and various other documents like Notifications, orders, standard drafts, press releases etc., which are covered under Section 3(3) of the Official Languages Act, 1963. In addition, various other letters and correspondence, RTI-replies etc., are either translated or prepared in Hindi. The Hindi Cell also tries to ensure the effective implementation of the "Official Language" policy of the Government of India in the Institute. Hindi Cell ensures use of bilingual display boards and various name boards, notice boards, rubber stamps, letter heads, bilingual file covers and also helps in compliance thereof. It also ensures bilingual preparation of degree certificates, PhD thesis titles etc. to be awarded by the Institute during the convocation.

Hindi Language Training

Hindi Cell emphasizes the need to impart Hindi training to all those employees of the Institute who do not have working knowledge of Hindi. The Hindi Cell nominates all such employees and gets them trained by getting them admitted in training programs like Prabodh, Praveen and Pragya through the Hindi Teaching Scheme under the Central Hindi Training Institute.

Hindi Workshops:

In order to solve the difficulties and problems faced by the employees in the use of official language in their day-to-day official work, the Hindi cell organizes Hindi workshops for the employees of the Institute in every quarter and eminent official language scholars are invited. The details of Hindi workshops organized are as shown

		Invited Guest Faculty		
_	28-06-2024	Dr. Shivanand Kalekar, Asst. Director, HTS, Secunderabad	Official Language Implementation & Official Correspondence	Topics
Date	30-09-2024	Shri. Kamaluddin, Asst Director, HTS, Secunderabad.	Hindi Official Terminology	ics of the
	19-12-2024	Shri. Santosh Kumar, Assistant Director(Technical), HTS,	Hindi Computer Skills & Hindi Typing	workshop
•	18-03-2025	Dr. Ravi Chandra Rao, Asst. Director, HTS, Secunderabad	Official Correspondence	dor

Hindi Pakhwada Celebrations:

Hindi Cell organized "Hindi Pakhwada Celebrations" from 14 to 30th September, 2024, in the Institute. Hindi cell organized many competitions for the faculty, staff, and students, like essay writing, Dumb charades, official terminology competition, Singing, self-written Poetry recitation, General Knowledge Competition, Dictation, and Elocution competition. Shri. Shailesh Machra, Indian Forest Service Officer, Madhya Pradesh, was the chief guest on the occasion of the closing ceremony of Hindi Pakhwada celebrations on 17-10-2024. Certificates and mementos were awarded to all the winners of the various competitions organized during the Hindi Pakhwada celebrations. A cultural program is also organized on this occasion. In the end, the vote of thanks was given by Dr. Saurabh Kumar Singh, Faculty In-charge, Hindi Cell & Member Secretary, OLIC and after the national anthem, the Hindi Pakhwada celebrations were successfully concluded.

COMMITTEES

Official Language Implementation Committee

According to the guidelines of the Department of Official Language and on the recommendations of the Hindi Cell, the Official Language Implementation Committee(OLIC) was constituted on 06-09-2021. The Director of the institute is the Chairman of this committee and the Registrar is the Vice-Chairman. All section heads are members of the committee. Faculty in charge of Hindi cell is the member secretary of the committee. The purpose of this committee is to promote the implementation of the official language policies of the Government of India and to review the progressive use of Hindi in the institute.

TOWN OFFICIAL LANGUAGE IMPLEMENTATION COMMITTEE (TOLIC)

Indian Institute of Technology Hyderabad has taken membership of the Town Official Language Implementation Committee (TOLIC)-4 from the financial year 2024 onwards, which is currently headed by the General Manager Office, South Central Railway, Secunderabad. Town Official Language Implementation Committee, being an official committee constituted by the Department of Official Language, Ministry of Home Affairs, monitor and reviews the quarterly and annual reports regarding official language implementation and other activities etc. of all the member offices comes under its jurisdiction.

In the function organized by the Town Official Language Implementation Committee (TOLIC) on 14th November, 2024 in the auditorium of Rail Nilayam, South Central Railway, Secunderabad, our institute was awarded third prize for better implementation of official language and our institute's Pravaat magazine was awarded the second prize in the best Emagazine category

PUBLICATION

In order to promote Hindi language activities in the institute, Hindi Cell started publishing Hindi quarterly e-magazine "Pravat". During the financial year 2024-25, four issues of Pravat Hindi quarterly e-magazine were published – in April, July and October 2024 and January 2025.

IIC - Institution's Innovation Council

Webpage: https://innovationcouncil.iith.ac.in/

Vision: Fostering innovation-driven entrepreneurship at IITH to empower an Aatmanirbhar Bharat

Mission and Mandate:

- Identification of the best ideas and providing them with a 'womb' to incubate, eventually to transform into a Startup or entrepreneurial endeavor.
- Soliciting an entrepreneur through the application of knowledge and expertise, academic as well as industrial.
- Empowering an idea with all the important ingredients and resources aiding its conversion into a successful product or service.
- Helping entrepreneurs to grow holistically with business acumen.
- Bring socio-economic change in the country by finding innovative solutions to local problems.
- Meet periodically to formalise the discussion and keep action points for activities in the coming quarter, and regularly update them.

IIC Activity Statistics
at IITH
for
FY 2024-2025

iTIC, 11TH bosted the International SPARC Workshop on Translational Bio-Nano Medical Systems

ITS Office along with IIC organized "Start Up & Innovation Ecosystem" at IITH on the occasion of "National Startup Day"

Workshop on "Empowering Startups in the 5th Industrial Revolution: Opportunities, Challenges, and the Digital Mindse

artups in the 5th Industrial Workshop on "Disruptions in Entrepreneurship" by nges, and the Digital Mindset" Mr Indraneel Ganguli, Global Head: Brand and communications at Sutherland

Tinkerer's Lab & IIC conducted a workshop on Problem Solving, Troubleshooting in AIML and Deep Learning in IITH byMr Aayush Adlakha

National Events

The Department of Sports, IIT Hyderabad, celebrated the 10th International Yoga Day IDY 2024, with the theme, "Yoga for Self & Society

IIT Hyderabad proudly celebrated the 78th Independence Day, immersed in the colors of the tricolor, and reaffirmed its commitment to honouring our roots with the spirit of Independent India

IITH commemorated the Vigilance Awareness Week by administering the Integrity Pledge ceremony and various vigilance-themed competitions. The week saw enthusiastic participation from faculty, staff, and students, who attended on a large scale and gained valuable insights into vigilance

IIT Hyderabad celebrated the 76th Republic Day with patriotic fervor and unity, featuring the hoisting of the national flag and inspiring addresses that reflected the spirit of the Constitution.

IIT Hyderabad actively participated in the Swachhata Hi Seva campaign by adopting the "Ek Ped Maa Ke Naam" initiative, encouraging the plantation of trees in honor of mothers—symbolizing love, care, and a collective commitment to nurturing both nature and our communities.

IIT Hyderabad proudly celebrated Samvidhan Diwas (Constitution Day) on 26th November 2024, commemorating 75 years of the adoption of the Indian Constitution

IIT Hyderabad has celebrated Jan Jatiya Gaurav Diwas on campus till 26th November 2024 with multiple events

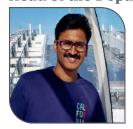
The NSS and IIC at IIT
Hyderabad proudly
organized the
"National Youth Day
celebration"
featuring
Mrs Uma Harathi,
a distinguished IAS officer
from the Telangana Cadre
and the District
Administrator

Inventing & Innovating in Technology for Humanity

DEPARTMENTS

Department of Artificial Intelligence

Welcome to the Department of Artificial Intelligence at IIT Hyderabad, the first dedicated AI department in India, established in 2019. We offer a comprehensive range of academic programs, including BTech, MTech (2-year and 3-year), and PhD, with a curriculum rooted in programming, mathematical foundations, and cutting-edge AI applications. Our students explore diverse domains such as autonomous systems, healthcare technologies, natural language processing, computer vision, and more.


At IIT Hyderabad, we prioritize real-world learning through immersive industry experiences. Our BTech students benefit from 6-month, semester-long internships, while both BTech and MTech students can engage in summer internships or joint MTech positions with our industry partners. These hands-on opportunities equip students with practical expertise and essential professional skills, ensuring they are well-prepared to tackle complex, real-world challenges.

We invite you to explore collaboration opportunities with our department, whether through our placement drives, internships, or industry partnerships. Together, we can foster innovation, drive growth, and shape the future of artificial intelligence.

We look forward to building meaningful partnerships and advancing AI research and development with you.

For more information, please visit: https://ai.iith.ac.in/

Faculty Head of the Department

Ganesh Ghalme
PhD: IISc Bangalore
Profile page:
https://iith.ac.in/ai/ganeshghalme/

Assistant Professor

Karthik P N PhD - IISc Bangalore Profile page: https://www.iith.ac.in/ai/pnkarthik/

Konda Reddy Mopuri PhD: IISc Bangalore Profile page: https://www.iith.ac.in/ai/krmopuri/

Rekha Raja
PhD: IIT Kanpur
Profile page:
https://www.iith.ac.in/ai/rekha.raja/

Affiliated Faculty

Abhinav Kumar PhD - IIT Delhi Profile page: https://iith.ac.in/ee/abhinavkumar/

Aditya T Siripuram
PhD - Stanford University
Profile page:
https://iith.ac.in/ee/staditya/

Amit Acharyya
PhD - University of Southampton, UK
Profile page:
https://iith.ac.in/ee/amit_acharyya/

Balasubramaniam Jayaram
PhD - Sri Satyasai Institute of
Higher Learning
Profile page:
https://iith.ac.in/math/jbala/

C Krishna Mohan PhD - IIT Madras Profile page: https://iith.ac.in/cse/ckm/

Ketan P Detroja
PhD - IIT Bombay
Profile page:
https://iith.ac.in/ee/ketan/

Kishalay Mitra PhD - IIT Bombay Profile page: https://iith.ac.in/che/kishalay/

Lakshmi Prasad Natarajan
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/ee/lakshminatarajan/

M V Panduranga Rao
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/cse/mvp/

Manish Singh
PhD - University of Michigan, Ann
Arbor
Profile page:
http://www.iith.ac.in/~msingh/

Maunendra Sankar Desarkar
PhD: IIT Kharagpur
(Associate Professor-Computer Science &
Engineering)
Profile page:
https://www.iith.ac.in/cse/maunendra/

Mohan Raghavan
PhD: IISc Bangalore
Profile page:
https://www.iith.ac.in/~mohanr/

Prasanth Kumar R
PhD - IIT Kharagpur
Profile page:
https://iith.ac.in/mae/rpkumar/

Rajalakshmi P PhD - IIT Madras Profile page: https://iith.ac.in/ee/raji/

Sathya Peri
PhD - University of Texas at Dallas
Profile page:
https://iith.ac.in/cse/sathya_p/

Shantanu Desai
PhD - Boston University, USA
Profile page:
https://iith.ac.in/phy/shantanud/

Soumya Jana PhD - UIUC, USA Profile page: https://iith.ac.in/ee/jana/

Sri Rama Murty Kodukula
PhD - IIT Madras
Profile page:
https://iith.ac.in/ee/ksrm/

Srijith P K
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/cse/srijith/

Subrahmanya Sastry Challa
PhD - IIT Kanpur
Profile page:
https://iith.ac.in/math/csastry/

Sumohana S Channappayya
PhD - The University of Texas
at Austin, USA
Profile page:
https://iith.ac.in/ee/sumohana/

Surya kumar S
PhD - IIT Bombay
Profile page:
https://iith.ac.in/mae/ssurya/

Vineeth N Balasubramanian
PhD - Arizona State University, USA
Profile page:
https://iith.ac.in/cse/vineethnb/

Adjunct Faculty

Dr Easwar Subramanian Senior Scientist, Data and Decision Sciences Group, TCS Innovation Labs, India.

Profile page: https://www-sop.inria.fr/members/Easwara.Subramanian/

Dr V L Raju Chinthalapati
Reader (Financial Technologies),
Department of Computing, Goldsmiths,
University of London
Profile page:
https://www.gold.ac.uk/computing/
people/chinthalapati-raju/

Publications:

- Ghalme G, et al. (2024). A Discrete and Bounded Locally Envy-Free Cake Cutting Protocol on Trees. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 14413 LNCS (pp. 310–328). https://doi.org/10.1007/978-3-031-48974-7_18
- Gupta S, Ghalme G, et al. (2024a). Capacitated Online Clustering Algorithm. In Frontiers in Artificial Intelligence and Applications (Vol. 392, pp. 1880– 1887). https://doi.org/10.3233/FAIA240701
- Gupta S, Ghalme G, et al. (2024b). Online Algorithm for Clustering with Capacity Constraints. In ACM International Conference Proceeding Series (pp. 572– 573). https://doi.org/10.1145/3632410.3632475
- Pokhriyal S, Ghalme G, et al. (2024). Simultaneously Achieving Group Exposure Fairness and Within-Group Meritocracy in Stochastic Bandits. In Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS (Vols. 2024-May, pp. 15761584).https://www.scopus.com/inward/record.u rieid=2s2.085196395810&partnerID=40&md5=4877d ce54d88f784b9e7220e2bfcdde0
- 5. Chen Z, Karthik P N, et al. (2024). FIXED-BUDGET DIFFERENTIALLY PRIVATE BEST ARM IDENTIFICATION. In 12th International Conference on Learning Representations, ICLR 2024. https://www.scopus.com/inward/record.uri?eid=2-s2.085200549523&partnerID=40&md5=0325210c08471745c17b09da75cad3e3
- Chen Z, Karthik P N, et al. (2024). Federated Best Arm Identification with Heterogeneous Clients. In IEEE Transactions on Information Theory (Vol. 70, Issue 6,

Dr Gaurav Sinha
Principal Researcher, Microsoft
Research India, Bangalore,
Karnataka, India
Profile page:
https://sinhagaurav.github.io/

pp.4258-4279).

https://doi.org/10.1109/TIT.2023.3338027

- 7. Karthik P N, et al. (2024). Optimal Best Arm Identification with Fixed Confidence in Restless Bandits. In IEEE Transactions on Information Theory (Vol. 70, Issue 10, pp. 7349–7384). https://doi.org/10.1109/TIT.2024.3419924
- Karthik P N, et al. (2024). Best Arm Identification with Arm Erasures. In IEEE International Symposium on Information Theory—Proceedings (pp. 2293–2298). https://doi.org/10.1109/ISIT57864.2024.10619688
 Adhikari S, Mopuri K R, et al. (2024). Lost in Context:
- 9. The Influence of Context on Feature Attribution Methods for Object Recognition. In ACM International Conference Proceeding Series. https://doi.org/10.1145/3702250.3702254

Funded Research Projects:

- 1. Karthik P N; Best Arm Identification with Arm Erasures; 1.29 L. [ITS/2024/002328].
- Ganesh Sambhaji Ghalme; AI-PC experience development center P.O.No (PO#3500268440); 38.00 L. [S350].

Awards & Recognitions:

 Dr Nagarajan Ganapathy, Department of Biomedical Engineering, and Dr Ganesh Sambhaji Ghalme, Department of Artificial Intelligence, have received a Bill & Melinda Gate Foundation Grant.

Department of Biomedical Engineering

Over the past year, the Department of Biomedical Engineering has achieved remarkable progress in advancing medical technologies and developing next-generation therapeutic solutions. Our research and innovation efforts have led to several pioneering projects that address critical healthcare challenges and improve patient outcomes.

One of our most significant accomplishments is the progressing toward clinical trial of a biomimetic hydrogel for treating blinding corneal diseases. This advanced biomimetic hydrogel, developed using decellularized extracellular matrix (ECM)-based biomaterial and human limbal stem cells, closely mimics the natural cornea's structure and function. The approach aims to overcome major limitations of conventional corneal transplantation, such as donor shortages and graft rejection, offering new hope for patients suffering from blinding corneal diseases.

In parallel, the department has developed an autologous platelet-rich plasma (PRP)-loaded personalized wound care patch designed for effective and affordable burn wound management at the patient's bedside. This innovation leverages the body's own regenerative potential, enabling rapid wound healing while minimizing the risk of infection and reducing treatment costs.

Our researchers have also introduced a bioinspired gold-coated phage nanosystem for antimicrobial and anticancer theranostics. By combining the specificity of bacteriophages with the functional advantages of gold nanoparticles, this hybrid system enhances stability, enables targeted therapy, and facilitates precise imaging—offering a promising approach to combat antibiotic-resistant infections and improve localized cancer treatments.

In the field of human–machine interaction, we are exploring the estimation of human affective responses to vibrotactile stimulation. This study investigates how different vibration patterns influence perception and emotion, paving the way for improved sensory feedback in rehabilitation devices, assistive technologies, and immersive virtual environments.

Addressing metabolic diseases, our team has designed a macroencapsulation device for immune isolation in diabetes treatment. This biocompatible device protects insulin-producing cells from immune attack, potentially reducing dependence on immunosuppressive therapy and improving the success of pancreatic islet transplantation.

Finally, we are advancing miniaturized diagnostics through the design and development of chip-scale microdevices for bioanalytical applications. These lab-on-a-chip platforms integrate complex biological assays into compact, efficient systems that promise faster, more accurate, and cost-effective diagnostic testing in both clinical and research settings. Collectively, these innovations underscore the department's commitment to translational biomedical research, bridging

Collectively, these innovations underscore the department's commitment to translational biomedical research, bridging engineering and life sciences to develop technologies that redefine diagnostics, therapeutics, and patient care.

For more information, please visit: https://bme.iith.ac.in/

Faculty

Head of the Department

Falguni Pati
Associate Professor
PhD - IIT Kharagpur
Profile page:
https://iith.ac.in/bme/falguni/

Professor

Jyotsnendu Giri PhD - IIT Bombay Profile page: https://iith.ac.in/bme/jgiri/

Renu John
PhD - IIT Delhi
Profile page:
https://iith.ac.in/bme/renujoh/

Subha Narayan Rath
PhD - NUS, Singapore
Profile page:
https://iith.ac.in/bme/subharath/

Associate Professor

Aravind Kumar Rengan
PhD - IIT Bombay
Profile page:
https://iith.ac.in/bme/aravind/

Harikrishnan Narayanan Unni PhD - NTU, Singapore Profile page: https://iith.ac.in/bme/harikrishnan/

Mohan Raghavan PhD - IISc Bangalore Profile page: https://iith.ac.in/bme/mohanr/

Jaladhar Neelavalli PhD - Wayne State University, Michigan Profile page: https://www.iith.ac.in/bme/drjaladhar.n/

Assistant Professor

Avinash Eranki
PhD - Utrecht University
Profile page:
https://iith.ac.in/bme/aeranki/

Kousik Sarathy Sridharan
PhD - Aarhus University
Profile page:
https://iith.ac.in/bme/kousiksarathy/

Mohammed Suhail Rizvi
PhD - IIT Kanpur
Profile page:
https://iith.ac.in/bme/suhailr/

Nagarajan Ganapathy
PhD - IIT Madras
Profile page:
https://iith.ac.in/bme/gnagarajan/

Adjunct Faculty

Dr Mohanan P V
Sree Chitra Tirunal Institute for
Medical Sciences and Technology,
Trivandrum
Profile page:
https://www.sctimst.ac.in/People/mohanpy

Dr Ramesh Venkatesan
Senior Director, MR ACAI and MR
Engineering Site Leader, GE Hohn F
Welch Technology Center, GE
Healthcare, Karnataka
Profile page:
https://duk.ac.in/personnel/drramesh-venkatesan/

Dr D Ravi Varma Consultant Interventional and Neuroradiologist, Citi Neuro Centre, Hyderabad

Prof D Sakthi Kumar
Toyo University, Japan
Profile page:
https://www.drsakthikumar.com/
aboutmywork.php#

Dr Sikandar Shaik
MBBS, DMRD DNB
Consultant PET-CT and Radiology
Yashoda Hospitals
Profile page:

https://bme.iith.ac.in/assets/docs/ sikandar.pdf

Prof Soni Savai Pullamsetti
Justus Liebig University Giessen,
Germany
Profile page:
https://www.spullamsettilab.com/soni-bio.php

Patents:

Filed:

- Aravind Kumar Rengan; A Formulation Comprising Iohexol Functionalized Dopamine Compound and a Method of Preparation Thereof; 202441102596.
- Aravind Kumar Rengan; Fluorescent Enhanced Silver Triflate Nanoclusters Using Silver Triflate Precursor; 202441101142.
- 3. Falguni Pati; Systems and Methods for Generation of Patient-Specific Craniomaxillofacial Implants; 202441064413.
- Kousik Sarathy Sridharan; A Multimodal Interaction System for Virtual Assessment and A Method Thereof; 202441095905.
- Jyotsnendu Giri; Gelatin Nanofibrous Noninvasive Microsphere, Scaffold and A Method of Preparing the Same Thereof; 202441055104.
- Mohan Raghavan; A Multimodal Interaction System for Virtual Assessment and A Method Thereof; 202441095905.

Published:

- Aravind Kumar Rengan; A Fluid Collection Device for Collecting Fluids; 202341005050.
- Aravind Kumar Rengan; Bioinspired Gold-Coated Phase Nanosomes and a Process of Preparation Thereof; 202341013944.
- Aravind Kumar Rengan; A Flavin Analogue for Lysosome Tracking and Photodynamic Therapy; 202441000773.
- 4. Aravind Kumar Rengan; A Pharmaceutical Composition and a Method of Preparation Thereof; 202441036487.
- Aravind Kumar Rengan; A Wound Dressing for Preventing Biofilm formation on a Wound; 202441036378.
- Aravind Kumar Rengan; A Wound Dressing for Preventing Biofilm formation on a Wound; 202441036378.
- Aravind Kumar Rengan; Chitosan-Conjugated Carboxymethyl Inulin Modified Gold Nanoclusters Incorporating IR-820 and DNA-Conjugated pfhs for Biomedical Application and Preparation Thereof; 202441035158.
- 8 Aravind Kumar Rengan; Liposomal Nanoparticles Encapsulting Boldine and Ir- 775 for Therapy Against Metastatic Triple-Negative Breast Cancer and Preparation Thereof; 202441034692.
- Aravind Kumar Rengan; Phage Nanosomes for Nir Dye Delivery and a Method of Preparation Thereof; 202441036196.
- Aravind Kumar Rengan; A Phage-Modified Casein Nanocarrier Conjugated with Glutathione and Method of Preparation Thereof; 202441080547.
- 11. Aravind Kumar Rengan; A Phage-Modified Chitosan Nanocarrier and Method of Preparation Thereof; 202441075680.
- Aravind Kumar Rengan; Composition for Delivery of Therapeutic Complex Within Golgi Apparatus and Method of Producing the Same; 202441084476.
- 13. Aravind Kumar Rengan; Liposome of Saussurea Obvallata and Its Process of Preparation; 202441086405.
- 14. Aravind Kumar Rengan; A Liposome Comprising

- Bronzaphyrin and Method of Preparation Thereof; 202441086634.
- 15. Aravind Kumar Rengan; A Nanoparticle Formulation and Preparation Thereof; 202441081750.
- 16. Aravind Kumar Rengan; A Functionalized Complex Nanoparticle Composition and a Method of Preparation Thereof; 202441086474.
- 17. Aravind Kumar Rengan; A Pharmaceutical Composition and a Method of Preparation Thereof; 202441085921.
- 18. Aravind Kumar Rengan; Supramolecular Hyogels and Method of Preparation Thereof; 202441086354.
- 19. Aravind Kumar Rengan; A Nanoliposomal Formulation and a Method of Preparation Thereof; 202441086472."
- 20. Aravind Kumar Rengan; A Liposomal Formulation and Preparation Thereof; 202441085475.
- Aravind Kumar Rengan; A Nanoparticle Composition Having Anti-Cancer Activity and A Method of Preparation Thereof; 202441082537."
- 22. Aravind Kumar Rengan; Rhenium(I) Metallocycle and Method of Preparation Thereof; 202441086380.
- 23. Aravind Kumar Rengan; Gallic Acid and Ir-775 Loaded Liposome Nanoparticles for Phototherapy of Cancer and Preparation Thereof; 202441084440.
- 24. Aravind Kumar Rengan; Co(Ii) Thione-Based Catalyst and Method of Preparation Thereof; 202441079009.
- 25. Aravind Kumar Rengan; A Nanoliposome Formulation to Enhance the Efficacy of Doxorubicin in Prostate Cancer; 202441090417.
- Aravind Kumar Rengan; Solvent-Based Synthesis of Gold Nanostructures for Enhanced Anticancer Efficacy; 202441091408.
- 27. Falguni Pati; Chipless Millifluidics Device for Spheroid Generation; 202441086475.
- 28. Falguni Pati; An In-Vitro Glomerular Filtration Barrier (GFB) Membrane and A Method of Preparation Thereof; 202441071348.
- 29. Falguni Pati; A Method for 3D Bioprinting a Corneal Tissue Construct and the Construct Thereof; 202441034917.
- Falguni Pati; Chitosan-Conjugated Carboxymethyl Inulin Modified Gold Nanoclusters Incorporating IR-820 and DNA-Conjugated pfhs for Biomedical Application and Preparation Thereof; 202441035158.
- 31. Falguni Pati; A Method for Producing Hyogel Encapsulated Spheroids and A Modified Microfluidic T-Junction Tubing Apparatus; 202441086027.
- 32. Falguni Pati; A Hybrid Hyogel and A Method of Preparation Thereof; 202441091664.
- 33. Falguni Pati; Method and Apparatus for Cell Culture Treatment; 202441088059.
- 34. Falguni Pati; A Nozzle for a 3D Bioprinter and Method to Fabricate a Microfiber Aligned Scaffold; 202441017064.
- Jyotsnendu Giri; Nanostructure-Hybrid Lipid Capsule System for Delivery/Co-Delivery of Nucleic-Acid and Active-Pharmaceutical Ingredient and Its Fabrication Method; 202241054829.
- 36. Jyotsnendu Giri; Polypropylene Sulphide Coating On Magnetic Nanoparticles as a Novel Platform for Excellent Biocompatible Timuli Responsive Smart Magnetic Nanocarrier for Cancer Therapeutics; 202341003976.

- Jyotsnendu Giri; A System and Method for Fabricating 37. Dual Ph/Temperature Responsive Nanostructure Hybrid-Lipid Capsule for Theragnostic Application; 202341015865.
- 38. Jyotsnendu Giri; A Cyclic Anhydride-Modified Proteins Composition and A Process for Hyogel Preparation for the Same; 202341040152.
- Kousik Sarathy Sridharan; Method and System for Continuous Estimation and Feedback of Arousal and Valence States; 202441036947.
- Mohan Raghavan; Method and System for Continuous Estimation and Feedback of Arousal and Valence States; 202441036947.
- 41. Nagarajan Ganapathy; An Artificial Intelligence (AI) Driven Non-Contact Stress Detection System; 202441036963.
- Nagarajan Ganapathy; System and Method for Non-Invasive, Non-Contact, and Real-Time Vital Sign Monitoring; 202441037262.
- 43. Nagarajan Ganapathy; An Image Processing System and Method to Classify Eye Condition; 202441038983.
- 44. Nagarajan Ganapathy; Apparatus for Real-Time Wireless Transmission of Vital Parameters and Method of Manufacturing the Same; 202441085856.
- 45. Nagarajan Ganapathy; System and Method for Assessment of Ground Glass Opacity in A Computed Tomography Image; 202441084895.
- 46. Nagarajan Ganapathy; A Non-Invasive Device for Real-Time Screening and Assessment of Keratoconus; 202441097171.
- 47. Subha Narayan Rath; A System and Method for Detection of Molecules; 202441085374.
- 48. Subha Narayan Rath; A Versatile Microfluidic Platform and Its Application Thereof; 202341037655.

Granted:

- Aravind Kumar Rengan; Detection Kit for Diagnosis of Cervical Cancer by Quantification of Visual Inspection of Acetic Acid; 201841016604.
- Aravind Kumar Rengan; Thermosensitive Hydrogel for Cancer Therapeutics and Methods of Preparation Thereof; US 17/325,290.
- Aravind Kumar Rengan; Modified PEG-400 (MPEG-AA Complex) and Uses Thereof; 202141003895.
- 4. Aravind Kumar Rengan; A Method for Producing Lipid-Based Nanocochleates Loaded with Hydrophobic Metformin; 202341073856.
- 5. Aravind Kumar Rengan; A Liposomal Composition Comprising a Near Infra-Red Triimide Dye and Method of Preparation Thereof; 202441036139.
- Aravind Kumar Rengan; A Nanoparticle Composition and a Method of Preparation Thereof; 202441035306.
- 7. Aravind Kumar Rengan; Facial-Rheniumtricarbonyl (FAC-Re(Co)3) Dinuclear Metallocyclic Complexes and a Method of Synthesis Thereof; 202441035290.
- Aravind Kumar Rengan; Rhenium (I)-Based Supramolecular Coordination Complexes and Method of Preparation Thereof; 202441032141.
- Aravind Kumar Rengan; Hybrid Cell Membrane Nanosome and a Method of Preparing the Same; 202441036003.
- 10. Aravind Kumar Rengan; Barium Nanocomposites for Bioimaging and Chemo-Photothermal Therapy and Process for Preparation Thereof; 202441033822.
- 11. Falguni Pati; Decellularised Corneal Matrix Based Hydrogel, Bioink formulation and Methods Thereof; 201841009835.
- 12. Falguni Pati; Polycaprolactone-Bioactive Glass Composite Scaffolds and 3D Printable Filaments, Applications and Preparation Methods Thereof; 201841041833.
- 13. Jyotsnendu Giri; A Device for Fabricating Micro and Nano Fibres and Particles; 201741017782.
- 14. Subha Narayan Rath; Polycaprolactone-Bioactive Glass

Composite Scaffolds and 3D Printable Filaments, Applications and Preparation Methods Thereof; 201841041833.

Book chapters:

- Putta C L, Eswar K, & Rengan A K. (2024). Clinical trials and in vivo toxicity of fluorescent carbon nanoparticles. In Fluorescent Carbon Nanoparticles: Fundamentals and Applications. https://doi.org/10.1016/B978-0-443-13591-0.00011-5.
- Ghosh P K, Rengan A K, et al. (2024). Advances in theranostic nanocarriers for cancer immunotherapy. In Theranostics Nanomaterials in Drug Delivery. https://doi.org/10.1016/B978-0-443-22044-9.00019X.
- 3. Karmakar R, Dixit M, Rengan A K, & Pati F. (2024). Nanostructures using 3D printing. In Advances in Nanostructures: Processing and Methodology to Grow Nanostructures. https://doi.org/10.1016/B978-0-443-13819-5.00010-0.
- Chowdary P, Rengan A K, et al. (2024). Vascularization of organoids in microfluidic chips. In Human Organs-ona-Chip Technology. https://doi.org/10.1016/B978-0-443-13782-2.00016-4.
- Maddila J R, Rengan A K, et al. (2024). Theranostic polymeric micelles mediated drug delivery. In Theranostics Nanomaterials in Drug Delivery. https://doi.org/10.1016/B978-0-443-22044-9.000048.
- Mukherjee S, Rengan A K, et al. (2024). Biocompatibility, biodistribution, cytotoxicity, biological and medical challenges, environmental and health impact of fluorescent carbon nanoparticles. In Fluorescent Carbon Nanoparticles: Fundamentals and App.
- Murugappan S, Rengan A K, et al. (2024). Drug-delivery, Antimicrobial, Anticancerous Applications of Green Synthesised Nanomaterials. In Green Synthesis of Nanomaterials: Biological and Environmental Applications. https://www.scopus.com/inward/record.
 Rajalakshmi P S, Rengan A K, et al. (2024).
- Rajalakshmi P S, Rengan A K, et al. (2024). Nanomedicine for Cancer Therapy: Current Status and Challenges. In Nanobiotechnology: Applications of Nanomaterials in Biotechnology, Medicine and Healthcare.
 - https://doi.org/10.1201/97810033055839.
- Rao M J, Murugaiyan K, & Rengan A K. (2024). Thermoresponsive Micro and Nano Drug Delivery Systems. In Smart Micro-and Nanomaterials for Drug Delivery. https://doi.org/10.1201/9781003468424-11.
- Sankaranarayanan S A, Rengan A K, et.al. (2024).
 Polyethylene glycol: Structure, properties, and biomedical applications. In Synthetic Polymers in Drug and Biotherapeutics Delivery. https://doi.org/10.1016/B978-0-323-95233-0.000091.
- 11. Vijay A, Nechikat G, & John R. (2024). Microfluidic platforms: Applications and challenges. In Human Organs-on-a-Chip Technology. https://doi.org/10.1016/B978-0-443-13782-2.000280.
- Karmakar R, Pati F, et al. (2024). Nanostructures using 3D printing. In Advances in Nanostructures: Processing and Methodology to Grow Nanostructures. https://doi.org/10.1016/B978-0-443-13819-5.000100.
- Pande S, Giri J, et al. (2024). Nanotechnology-Based Advances in Stem Cell Research: Exploring Interactions and Applications. In Nanobiotechnology: Applications of Nanomaterials in Biotechnology, Medicine and Healthcare. https://doi.org/10.1201/97810033.

Publications:

- Agrawal H G, Rengan A K, et al. (2024). Tuning the Flavin Core via Donor Appendage for Selective Subcellular Bioimaging and PDT Application. In Chemistry—A European Journal (Vol. 30, Issue 46). https://doi.org/10.1002/chem.202401483
- 2. Ali M S, Rengan A K, et al.(2024). Multifunctional Nanosystem for Dual Anti-Inflammatory and Antibacterial Photodynamic Therapy in Infectious Diabetic Wounds. In ACS Infectious Diseases (Vol. 10, Issue 8, pp. 2978–2990). https://doi.org/10.1021/acsinfecdis.4c00306
- Ali M S, Patnam S, & Rengan A K. (2024). Dual mode Photothermal/Photodynamic transduction studies using Multifunctional nanosystem for Biomedical Applications. In INDISCON 2024—5th IEEE India Council International Subsections Conference: Science, Technology and Society. https://doi.org/10.1109/INDISCON62179.2024.10744
- Ali M S, Rengan A K, et al. (2024). Accelerating Diabetic Wound Healing by Modulating the Inflammatory Environment Using Quercetin–Rosemary Oil Lipid Nanoemulsions with Artificial Intelligence-Based Wound Closure Analysis. In Advanced Therapeutics (Vol. 7, Issue 3). https://doi.org/10.1002/adtp.202300345
- Appidi T, Rengan A K, et al. (2024). A lipo-polymeric hybrid nanosystem with metal enhanced fluorescence for targeted imaging of metastatic breast cancer. In Nanotheranostics (Vol. 8, Issue 2, pp. 239–246). https://doi.org/10.7150/ntno.92410
- Beniwal N, Rengan A K, et al. (2024). Recent Trends in Bio-nanomaterials and Non-invasive Combinatorial Approaches of Photothermal Therapy against Cancer. In Nanotheranostics (Vol. 8, Issue 2, pp. 219–238). https://doi.org/10.7150/ntno.91356
- Beniwal N, Rengan A K, et al. (2024). Analysis of Carrier-Dependent Fluorescence of Curcumin. In INDISCON 2024—5th IEEE India Council International Subsections Conference: Science, Technology and Society. https://doi.org/10.1109/INDISCON62179.2024.10744
 - https://doi.org/10.1109/INDISCON62179.2024.10744 401
- 8. Buddhiraju H S, Dehariya D & Rengan A K. (2024).
 Antioxidants and Photosensitizer Co-loaded Nanoparticles Boost Photodynamic Therapy in Triple Negative Breast Cancer. In INDISCON 2024—5th IEEE India Council International Subsections Conference: Science, Technology and Society.
 https://doi.org/10.1109/INDISCON62179.2024.10744
- Buddhiraju H S, Maddilla J R & Rengan A K. (2024). Ultrasound Triggered release of Curcumin for the breast cancer therapy. In SAUS 2024—IEEE South Asian Ultrasonics Symposium, Proceedings. https://doi.org/10.1109/SAUS61785.2024.10563797
- Buddhiraju H S, Rengan A K, et al. (2024). Advances in Peptide-Decorated Targeted Drug Delivery: Exploring Therapeutic Potential and Nanocarrier Strategies. In ACS Applied Bio Materials (Vol. 7, Issue 8, pp. 4879– 4893). https://doi.org/10.1021/acsabm.3c00711
- 11. Chowdary P, Rengan A K, et al. (2024). Vascularization of organoids in microfluidic chips. In Human Organs-on-a-Chip Technology. https://doi.org/10.1016/B978-0-443-13782-2.00016-4
- Dave R, Rengan A K, et al. (2024). Amyloid-like Aggregation Propensities of Metabolites- Homogentisic Acid, N-Acetyl Aspartic Acid and Isovaleric Acid. In ChemBioChem (Vol. 25, Issue 23). https://doi.org/10.1002/cbic.202400109
- 13. Dehariya D, Rengan A K, et al. (2024). Hexagon Gold Nanoring-Mediated Combined Phototherapy for the

- Treatment of B16 Melanoma Cell Line. In ACS Applied Nano Materials (Vol. 7, Issue 10, pp. 12194–12204). https://doi.org/10.1021/acsanm.4c02256
- Dehariya D, Rengan A K, et al. (2024). Ultrasound Triggered Sonodynamic Therapy for the Treatment of B16 Melanoma. In SAUS 2024—IEEE South Asian Ultrasonics Symposium, Proceedings. https://doi.org/10.1109/SAUS61785.2024.10563718
- Eswar K, Rengan A K, et al. (2024). Omeprazole-Loaded Copper Nanoparticles for Mitochondrial Damage Mediated Synergistic Anticancer Activity against Melanoma Cells. In ACS Applied Bio Materials (Vol. 7, Issue 7, pp. 4795–4803). https://doi.org/10.1021/acsabm.4c00635
- 16. Ghosh P K, Rengan A K, et al. (2024). Telomerase: A nexus between cancer nanotherapy and circadian rhythm. In Biomaterials Science (Vol. 12, Issue 9, pp. 2259–2281). https://doi.org/10.1039/d4bm00024b
- 17. Ghosh P K, Rengan A K, et al. (2024). Advances in theranostic nanocarriers for cancer immunotherapy. In Theranostics Nanomaterials in Drug Delivery. https://doi.org/10.1016/B978-0-443-22044-9.00019-x
- 18. Jaiswal A, Rengan A K, et al. (2024). Amyloid Mimicking Assemblies Formed by Glutamine, Glutamic Acid, and Aspartic Acid. In ACS Chemical Neuroscience (Vol. 15, Issue 11, pp. 2253–2264). https://doi.org/10.1021/acschemneuro.4c00082
- Karmakar R, Dixit M, Rengan A K & Pati F. (2024).
 Nanostructures using 3D printing. In Advances in Nanostructures: Processing and Methodology to Grow Nanostructures. https://doi.org/10.1016/B978-0-443-13819-5.00010-0
- Khatun S, Rengan A K, et al. (2024). 7-Amino-6H-anthra[9,1-cd] Isothiazol-6-one-Casein Nanosystem for Live Cell Staining and Augmenting Therapeutic Effectiveness in Triple Negative Breast Cancer. In ACS Applied Nano Materials (Vol. 7, Issue 7, pp. 8022–8034). https://doi.org/10.1021/acsanm.4c00594
- 21. Khatun S, Rengan A K, et al. (2024). Glutathione—IR 797 coupled Casein Nano-Trojan for augmenting the therapeutic efficacy of camptothecin in highly invasive triple negative breast cancer. In Biomaterials Advances (Vol. 159). https://doi.org/10.1016/j.bioadv.2024.213802
- Khatun S, Rengan A K, et al. (2024). Harnessing Nature's
 22. Fury: Hyptis Suaveolens-IR775 Encapsulated
 Biodegradable Liposome for Combinatorial
 Photothermal Therapy of Lung Cancer. In 2024 IEEE
 19th International Conference on Nano/Micro
 Engineered and Molecular Systems, NEMS 2024.
 https://doi.org/10.1109/NEMS60219.2024.10639872
- 23. Khatun S, Rengan A K, et al. (2024). Synthesis of Ultrasound Sensitive Bovine Serum Albumin Nanosystem for On Demand Release of Camptothecin in Triple Negative Breast Cancer Cell lines. In SAUS 2024—IEEE South Asian Ultrasonics Symposium, Proceedings. https://doi.org/10.1109/SAUS61785.2024.10563711
- 24. Maddila J R, Rengan A K, et al. (2024). Theranostic polymeric micelles mediated drug delivery. In Theranostics Nanomaterials in Drug Delivery. https://doi.org/10.1016/B978-0-443-22044-9.000048
- 25. Mandal S, Rengan A K, et al. (2024). Discrete copper(i) chalcogenones with metal-metal interaction. In New Journal of Chemistry (Vol. 48, Issue 28, pp. 12501–12509). https://doi.org/10.1039/d4nj01758g
- 26. Mukherjee S, Rengan A K, et al. (2024). Biocompatibility, biodistribution, cytotoxicity, biological and medical challenges, environmental and health impact of fluorescent carbon nanoparticles. In Fluorescent Carbon Nanoparticles: Fundamentals and Applications. https://doi.org/10.1016/B978-0-443-13591-0.00009-7

- Mukherjee S, Rengan A K, et al. (2024). Advancements in Green Nanoparticle Technology: Focusing on the Treatment of Clinical Phytopathogens. In Biomolecules (Vol. 14, Issue 9). https://doi.org/10.3390/biom14091082
- 28. Murugappan S, Rengan A K, et al. (2024). Drug-delivery, Antimicrobial, Anticancerous Applications of Green Synthesized Nanomaterials. In Green Synthesis of Nanomaterials: Biological and Environmental Applications. https://www.scopus.com/inward/record.urieid=2s2.085192600868&partnerID=40&md5=be89b5a2d50ace77ba8c442e5b4d55ec
- Pal C, Rengan A K, et al. (2024). The Impact of Effective Medical Record Keeping in Shaping Clinical Site Perceptions. In IFMBE Proceedings (Vol. 110, pp. 434– 442). https://doi.org/10.1007/978-3-031-62520-6 48
- 30. Patnam S, Rengan A K, et al. (2024). Differential Expression of SRY-Related HMG-Box Transcription Factor 2, Oligodendrocyte Lineage Transcription Factor 2, and Zinc Finger E-Box Binding Homeobox 1 in Serum-Derived Extracellular Vesicles: Implications for Mithramycin Sensitivity and Targeted Therapy in High-Grade Glioma. In ACS Pharmacology and Translational Science (Vol. 7, Issue 1, pp. 137–149). https://doi.org/10.1021/acsptsci.3c00198
- Patra P, Ghosh Rengan A K, et al. (2024). Dual Effect of Ultrasound and NIR Irradiation on the Cytotoxic Ability of Metal-Phenolic Nanoparticles against Melanoma. In 2024 IEEE 9th International Conference for Convergence in Technology, I2CT 2024. https://doi.org/10.1109/I2CT61223.2024.10543317
- 32. Patra P, Rengan A K, et al. (2024). Cancer cell membrane cloaked fluorescent liposomes loaded with metal-phenolic complex nanoparticles for combinatorial therapy against breast cancer. In Applied Materials Today (Vol. 38). https://doi.org/10.1016/j.apmt.2024.102211
- Pebam M, Rengan A K, et al. (2024). Self-assembled IR dye/mitoxantrone loaded Porphysomes nanosystem for enhanced combinatorial chemo-photothermal cancer therapy. In Colloids and Surfaces B: Biointerfaces (Vol. 241). https://doi.org/10.1016/j.colsurfb.2024.113985
 Pogu S V, Rengan A K, et al. (2024). Barium Sulfate
- 34. Nanocomposites for Bioimaging and Chemophotothermal Therapy of Physiologically Aggravated Lung Adenocarcinoma Cells. In ACS Applied Bio Materials (Vol. 7, Issue 9, pp. 6213–6228). https://doi.org/10.1021/acsabm.4c00796
- Putta C L, Eswar K & Rengan A K. (2024). Clinical trials and In vivo toxicity of fluorescent carbon nanoparticles. In Fluorescent Carbon Nanoparticles: Fundamentals and Applications. https://doi.org/10.1016/B978-0-443-13591-0.00011-5
- Rajalakshmi P S, Rengan A K, et al. (2024).
 Nanomedicine for Cancer Therapy: Current Status and Challenges. In Nanobiotechnology: Applications of Nanomaterials in Biotechnology, Medicine and Healthcare.https://doi.org/10.1201/9781003305583-9
- 37. Rao K T, Rengan A K, et al. (2024). Development and Characterization of Biocompatible Cellulose Acetate Substrate for Flexible Electrochemical Biosensors. In IEEE Journal on Flexible Electronics (Vol. 3, Issue 7, pp.
- 312319).https://doi.org/10.1109/JFLEX.2024.3435809
 Rao M J, Murugaiyan K & Rengan A K. (2024).
 Thermoresponsive Micro and Nano Drug Delivery Systems. In Smart Micro-and Nanomaterials for Drug Delivery. https://doi.org/10.1201/9781003468424-11
- 39. Ravichandran G & Rengan A K. (2024). Transpiration of neurological phenomena in cancer: Long-term depression (LTD) abrogates cancer stem cell memory and sensitizes it to metabolic therapy. In MedComm—Oncology (Vol. 3, Issue 2). https://doi.org/10.1002/mog2.71

- 40. Roy A, Rengan A K, et al. (2024). Copper-assisted anticancer activity of hydroxycinnamic acid terpyridine conjugates on triple-negative breast cancer. In Dalton Transactions (Vol. 53, Issue 46, pp. 18640–18652). https://doi.org/10.1039/d4dt02516d
- 41. Sagar S, Rengan A K, et al. (2024). Magnesium-Catalyzed Dye-Embedded Polylactide Nanoparticles for the Effective Killing of Highly Metastatic B16F10 Melanoma Cells. In ACS Omega (Vol. 9, Issue 13, pp. 14860–14866). https://doi.org/10.1021/acsomega.3c07898
 42. Saha S, Rengan A K, et al. (2024). Polyurethane
- 42. Saha S, Rengan A K, et al. (2024). Polyurethane Nanoparticles as Versatile Tools in Nanomedicine: A Review. In ACS Applied Nano Materials (Vol. 7, Issue 6, pp. 5729–5744). https://doi.org/10.1021/acsanm.3c06071
- 43. Sankaranarayanan S A, Rengan A K, et al. (2024). Understanding the Role of NIR Laser Power and Wavelength in Tuning the Photothermal Transduction Efficiency of Gold Nanosystems in Biomedical Applications. In Indian Journal of Pure and Applied Physics (Vol. 62, Issue 2, pp. 87–92). https://doi.org/10.56042/ijpap.v62i2.7420
- 44. Sankaranarayanan S A, Rengan A K, et al. (2024). In situ thermosensitive H2O2/NO self-sufficient hydrogel for photothermal ferroptosis of triple-negative breast cancer. In Nanoscale. https://doi.org/10.1039/d4nr02907k
- 45. Sankaranarayanan S A, Rengan A K, et al. (2024). Polyethylene glycol: Structure, properties, and biomedical applications. In Synthetic Polymers in Drug and Biotherapeutics Delivery. https://doi.org/10.1016/B978-0-323-95233-0.000091
- 46. Sankaranarayanan S A, Rengan A K, et al. (2024). Tailoring Phage Nanosomes for Enhanced Theranostic Properties of Near Infrared Dyes. In Langmuir (Vol. 40, Issue 32, pp. 16743–16756). https://doi.org/10.1021/acs.langmuir.4c01010
- 47. Sharma K, Rengan A K, et al. (2024). A comprehensive review of 3D cancer models for drug screening and translational research. In Cancer Innovation (Vol. 3, Issue 1). https://doi.org/10.1002/cai2.102
- 48. Shinde V R, Rengan A K, et al. (2024). Sodium copper chlorophyllin-loaded chitosan nanoparticle-based photodynamic therapy for B16 melanoma cancer cells. In Chemical Biology and Drug Design (Vol. 104, Issue 2). https://doi.org/10.1111/cbdd.14594
- Shinde V R, Rengan A K, et al. (2024). Lipid-Coated Iohexol-Carbon Dots for Sonodynamic Therapy of 4T1 Cancer Cells. In SAUS 2024—IEEE South Asian Ultrasonics Symposium, Proceedings. https://doi.org/10.1109/SAUS61785.2024.10563292
- 50. Shinde V R, Rengan A K, et al. (2024). Melanin-Ce6-loaded polydopamine nanoparticles-based enhanced phototherapy for B16 melanoma cancer cells. In Nanotechnology (Vol. 35, Issue 29). https://doi.org/10.1088/1361-6528/ad3c4a
- 51. Srivastava A, Joshi M & Rengan A K. (2024). Feeding the future: The role of nanotechnology in tailored nutrition. In Nucleus (India). https://doi.org/10.1007/s13237-024-00496-0
- 52. Srivastava R, Rengan A K, et al. (2024). Bioinspired Photoresponsive Algosomes as a Nanocarrier for Combating Cancer and Bacterial Infections. In ACS Applied Nano Materials. https://doi.org/10.1021/acsanm.4c05104
- 53. Thanekar A M, Rengan A K, et al.(2024). Tuning Cancer Therapeutics Effectiveness Through Ultrasound Mediated Melanin-Chlorin e6-Polydopamine Nanoparticles. In SAUS 2024—IEEE South Asian Ultrasonics Symposium, Proceedings. https://doi.org/10.1109/SAUS61785.2024.10563918
- 54. Yadav D N, Rengan A K, et al. (2024). Gold-Coated Phage Nanosomes For Ultrasound Mediated Breast Cancer Therapeutics. In SAUS 2024—IEEE South Asian

- $\frac{\text{Ultrasonics}}{\text{https://doi.org/}10.1109/\text{SAUS}61785.2024.10563786}}.$
- 55. Chowdhury S, Eranki A, et al. (2024). Low-Cost Desktop Printed Sensors for Therapeutic Ultrasound Applications. In IEEE Sensors Journal (Vol. 24, Issue 23, pp. 39719–39726). https://doi.org/10.1109/JSEN.2024.3470223
- 56. Megha R, Eranki A, et al. (2024a). Breast Tumor Heterogeneity Quantification using 3D Ultrasound Texture. In SAUS 2024—IEEE South Asian Ultrasonics Symposium,

 https://doi.org/10.1109/SAUS61785.2024.10563639
- 57. Megha R, Eranki A, et al. (2024b). Quantifying Textural Heterogeneity of Ultrasound Images in Breast Fibroadenomas. In SAUS 2024—IEEE South Asian Ultrasonics Symposium, Proceedings. https://doi.org/10.1109/SAUS61785.2024.10563460
- Panda S S, Eranki A, et al. (2024). Characterizing Ultrasound-based Shearwave Propagation in Collagen Fiber Network. In SAUS 2024—IEEE South Asian Ultrasonics Symposium, Proceedings. https://doi.org/10.1109/SAUS61785.2024.10563612
- 59. Sabale A, Eranki A, et al. (2024). Ultrasound Wave Propagation and Shear Stress through Tissues for Intercostal Focused Ultrasound Therapy. In SAUS 2024 —IEEE South Asian Ultrasonics Symposium, Proceedings. https://doi.org/10.1109/SAUS61785.2024.10563729
- Vidya Gopal, Eranki A, et al. (2024). Early Screening of Cerebrovascular Diseases Through Doppler Ultrasound Analysis of Carotid Arterial Blood Flow. In 2024 International Conference on Signal Processing and Communications, SPCOM 2024. https://doi.org/10.1109/SPCOM60851.2024.10631638
- 61. Bhatnagar D, Pati F, et al. (2024). Enhancing Bone Implants: Magnesium-Doped Hydroxyapatite for Stronger, Bioactive, and Biocompatible Applications. In ACS Applied Bio Materials (Vol. 7, Issue 4, pp. 2272–2282). https://doi.org/10.1021/acsabm.3c01269
- 62. Bodaghi M, Pati F, et al. (2024). 4D printing roadmap. In Smart Materials and Structures (Vol. 33, Issue 11). https://doi.org/10.1088/1361-665X/ad5c22
- Chameettachal S & Pati F. (2024). Preparation of Corneal Tissue Matrix Bioink for 3D Bioprinting. In Methods in molecular biology (Clifton, N.J.) (Vol. 2764, pp. 15–20). https://doi.org/10.1007/978-1-0716-3674-9 2
- 64. Dixit M, Pati F, et al.(2024). Carbon-Based Nanoarchitectonics in Advancing Cardiac Tissue Bioprinting: A Review. In ACS Applied Nano Materials (Vol. 7, Issue 21, pp. 24638–24652). https://doi.org/10.1021/acsanm.4c04441
- 65. Ghosh A, Pati F, et al.(2024). Bioprinting of anisotropic functional corneal stroma using mechanically robust multi-material bioink based on decellularized cornea matrix. In Biomaterials Advances (Vol. 165). https://doi.org/10.1016/j.bioadv.2024.214007
- 66. Karmakar R, Pati F, et al. (2024). Nanostructures using 3D printing. In Advances in Nanostructures: Processing and Methodology to Grow Nanostructures. https://doi.org/10.1016/B978-0-443-13819-5.00010-0
- 67. Kiranmai G, Pati F, et al.(2024). Engineering a Biomimetic Glomerular Filtration Barrier: Coculturing Endothelial Podocytes on Kidney ECM-Bacterial Cellulose Membrane Hybrid. In ACS Applied Materials and Interfaces (Vol. 16, Issue 39, pp. 52008–52022).
- 68. https://doi.org/10.1021/acsami.4c09505
 Kouhi M, Pati F, et al. (2024). Recent advances in additive manufacturing of patient-specific devices for dental and maxillofacial rehabilitation. In Dental Materials (Vol. 40, Issue 4, pp. 700-715). https://doi.org/10.1016/j.dental.2024.02.006
- 69. Pande S, Pati F & Chakraborty P. (2024). Harnessing

- Peptide-Based Hydrogels for Enhanced Cartilage Tissue Engineering. In ACS Applied Bio Materials (Vol. 7, Issue 9, pp. 5885–5905). https://doi.org/10.1021/acsabm.4c00879
- Sahu I, Pati F, et al.(2024). Synergistic Coassembly of Folic Acid-Based Supramolecular Polymer with a Covalent Polymer Toward Fabricating Functional Antibacterial Biomaterials. In ACS Applied Materials and Interfaces (Vol. 16, Issue 26, pp. 34141–34155). https://doi.org/10.1021/acsami.4c06785
- 71. Shukla P, Pati F, et al.(2024). Assessment and process optimization of high throughput biofabrication of immunocompetent breast cancer model for drug screening applications. In Biofabrication (Vol. 16, Issue 3). https://doi.org/10.1088/1758-5090/ad586b
- 72. Shukla P, Bera A K, Yeleswarapu S & Pati F. (2024). High Throughput Bioprinting Using Decellularized Adipose Tissue-Based Hydrogels for 3D Breast Cancer Modeling. In Macromolecular Bioscience (Vol. 24, Issue 8). https://doi.org/10.1002/mabi.202400035
- 73. Vennam S, KN V & Pati F. (2024). 3D printed personalized assistive devices: A material, technique, and medical condition perspective. In Applied Materials Today (Vol. 40). https://doi.org/10.1016/j.apmt.2024.102403
 Singh V, Pati F, et al. (2024). Development of 3D bioprinted corneal stroma equivalent using GMP grade
- decellularized human cornea extracellular matrix hydrogel for prevention of corneal opacity. Investigative Ophthalmology & Visual Science, 65(7), 2798. https://iovs.arvojournals.org/article.aspx?articleid=2797219
- 75. Krishna S H, Unni H N, et al. (2024). Finite element modelling of an anatomically accurate human spinal cord. In Proceedings of the World Congress on Electrical Engineering and Computer Systems and Science. https://doi.org/10.11159/icbes24.110
- 76. Rajeev A V, Unni H N, et al. (2024). Molecular modelling of nanoparticle delivery through normal and cancer cell membranes. In Proceedings of the World Congress on Electrical Engineering and Computer Systems and Science. https://doi.org/10.11159/icbes24.136
- 77. Hasan U, Giri J, et al. (2024). Overcoming multidrug resistance by reversan and exterminating glioblastoma and glioblastoma stem cells by delivering drug-loaded nanostructure hybrid lipid capsules (nHLCs). In Drug Delivery and Translational Research (Vol. 14, Issue 2, pp. 342–359). https://doi.org/10.1007/s13346-023-01401-z
- 78. Mani R, Giri J, et al.(2024). Cord blood platelet rich plasma (PRP) as a potential alternative to autologous PRP for allogenic preparation and regenerative applications. In International Journal of Biological Macromolecules (Vol. 262). https://doi.org/10.1016/j.ijbiomac.2024.129850
- Pande S, Giri J, et al. (2024). Nanotechnology-Based Advances in Stem Cell Research: Exploring Interactions and Applications. In Nanobiotechnology: Applications of Nanomaterials in Biotechnology, Medicine and Healthcare. https://doi.org/10.1201/9781003305583-11
- 80. Singh R, Giri J, et al. (2024). Airbrushed nanofibers with bioactive core and antibacterial shell for wound healing application. In European Journal of Pharmaceutics and Biopharmaceutics (Vol. 195). https://doi.org/10.1016/j.ejpb.2023.12.009
- 81. Ganguly S, Sridharan K S, et al. (2024). Mark3D A semi-automated open-source toolbox for 3D head-surface reconstruction and electrode position registration using a smartphone camera video. In Medical and Biological Engineering and Computing. https://doi.org/10.1007/s11517-024-03228-3
- 82. Krishnan J, Sridharan K S, et al. (2024). Electrical Charge Characterization of Hybrid Neurostimulator

- Probe—In silico Studies and In vitro Verification. In Trends in Biomaterials and Artificial Organs (Vol. 38, Issue 3, pp. 177–182). https://doi.org/10.5281/zenodo.14823077
- 83. Mallampalli K, Sridharan K S, et al. (2024). Studying spinal feedback loops post tendon transfer surgery using the pincer grasp task: A Neuro-Musculoskeletal study using NEUROiD. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. https://doi.org/10.1109/EMBC53108.2024.10782641
- 84. Singh A K, Sridharan K S, et al. (2024). Simulated Clinical Triage of Modified Tardieu Test for Lower Limb Spasticity. In 2024 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2024Proceedings.https://doi.org/10.1109/MeMeA60663.2024.10596866
- 85. Ganguly S, Raghavan M, et al. (2024). Mark3D A semiautomated open-source toolbox for 3D head- surface reconstruction and electrode position registration using a smartphone camera video. In Medical and Biological Engineering and Computing. https://doi.org/10.1007/s11517-024-03228-3
- 86. Krishna S H, Raghavan M, et al. (2024). Finite element modelling of an anatomically accurate human spinal cord. In Proceedings of the World Congress on Electrical Engineering and Computer Systems and Science. https://doi.org/10.11159/icbes24.110
- 87. Mallampalli K, Raghavan M, et al. (2024). Studying spinal feedback loops post tendon transfer surgery using the pincer grasp task: A Neuro-Musculoskeletal study using NEUROiD. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. https://doi.org/10.1109/EMBC53108.2024.10782641
- 88. Singh A K, Raghavan M, et al. (2024). Simulated Clinical Triage of Modified Tardieu Test for Lower Limb Spasticity. In 2024 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2024Proceedings.https://doi.org/10.1109/MeMeA60663.2024.10596866
- 89. Ali M S, Ganapathy N, et al. (2024). Accelerating Diabetic Wound Healing by Modulating the Inflammatory Environment Using Quercetin–Rosemary Oil Lipid Nanoemulsions with Artificial Intelligence-Based Wound Closure Analysis. In Advanced Therapeutics (Vol. 7, Issue 3). https://doi.org/10.1002/adtp.202300345
- Banik S, Ganapathy N, et al.(2024a). Assessment of EEG-PPG Cross Frequency Coherence under Evoked Emotional Arousal. In Current Directions in Biomedical Engineering (Vol. 10, Issue 4, pp. 49–52). https://doi.org/10.1515/cdbme-2024-2012
- 91. Banik S, Ganapathy N, et al.(2024b). Assessment of Emotion Elicitation Using Multimodal Physiological Sensors and Phase Synchronization. In IEEE Sensors Letters (Vol. 8, Issue 8). https://doi.org/10.1109/LSENS.2024.3426562
- 92. Banik S, Ganapathy N, et al.(2024c). Assessment of Valance Emotional State Using EEG-EDA Coupling and Explainable Classifiers. In Studies in Health Technology and Informatics (Vol. 316, pp. 953–957). https://doi.org/10.3233/SHTI240569
- 93. Banik S, Ganapathy N, et al.(2024d). Exploring Central-Peripheral Nervous System Interaction Through Multimodal Biosignals: A Systematic Review. In IEEE Access (Vol. 12, pp. 60347–60368). https://doi.org/10.1109/ACCESS.2024.3394036
- 94. Chatur A, Ganapathy N, et al. (2024). Advanced Classifiers and Feature Reduction for Accurate Insomnia Detection Using Multimodal Dataset. In IEEE Access (Vol. 12, pp. 150664–150678). https://doi.org/10.1109/ACCESS.2024.3456904

- 95. Govarthan P K, Ganapathy N, et al.(2024). Emotion classification using electrocardiogram and machine learning: A study on the effect of windowing techniques. In Expert Systems with Applications (Vol. 254). https://doi.org/10.1016/j.eswa.2024.124371
- 96. Kumar H, Ganapathy N, et al. (2024). Analysis of EEG Fluctuation Patterns Using Nonlinear Phase-Based Functional Connectivity Measures for Emotion Recognition. In Fluctuation and Noise Letters (Vol. 23, Issue 5). https://doi.org/10.1142/S0219477524500512
- 97. Mehta C, Ganapathy N, et al.(2024). Automated Microstress Assessment During Pregnancy Using ECG Sensing and Optimized Deep Networks. In IEEE Sensors Letters (Vol. 8, Issue 9). https://doi.org/10.1109/LSENS.2024.3444810
- 98. Nair R R, Ganapathy N, et al.(2024). Surface electromyography based analysis of muscle fiber type variations in the lower limb muscles of sprinters using gray level transformed Morlet scalogram images and Haralick features. In Biomedical Signal Processing and Control (Vol. 93). https://doi.org/10.1016/j.bspc.2024.106123
- Pavan K & Ganapathy N. (2024a). Assessment of Driver Stress using Multimodal wereable Signals and Self-Attention Networks. In Current Directions in Biomedical Engineering (Vol. 10, Issue 4, pp. 369–372). https://doi.org/10.1515/cdbme-2024-2090
- 100. Pavan K & Ganapathy N. (2024b). Automated Assessment of Driver Distraction Using Multimodal Wearable Data and Squeeze-Excitation Networks. In Studies in Health Technology and Informatics (Vol. 316, pp. 951–952). https://doi.org/10.3233/SHTI240568
- 101. Pavan K, Ganapathy N, et al. (2024). Classifying Driver Distraction with Textile Electrocardiograms. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS.
- https://doi.org/10.1109/EMBC53108.2024.10782613
 102.Pavan K, Ganapathy N, et al.(2024). Assessment of Driver's Stress State Using Smart T-Shirt Textile Electrodes and Multimodal Cross-Attention Networks. In IEEE Sensors Letters (Vol. 8, Issue 10). https://doi.org/10.1109/LSENS.2024.3458931
- 103. Raysad T, Swarubini P & Ganapathy N. (2024). Effect of Different Lighting Conditions on Camera-based Non-Contact Vital Sign Monitoring. In APSCON 2024—2024 IEEE Applied Sensing Conference, Proceedings. https://doi.org/10.1109/APSCON60364.2024.1046569
- 104. Singh H, Ganapathy N, et al. (2024). Multimodal Signal Fusion for Heartbeat Monitoring on eScooters. In Studies in Health Technology and Informatics (Vol. 316, pp. 973–977). https://doi.org/10.3233/SHTI240573
- 105. Singh Roha V, Ganapathy N, et al. (2024). Enhanced Driver Stress Prediction from Multiple Biosignals via CNN Encoder-Decoder Model. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. https://doi.org/10.1109/EMBC53108.2024.10781529
- 106. Sriram Kumar P, Ganapathy N, et al. (2024). Deep Learning-Based Automated Emotion Recognition Using Multimodal Physiological Signals and Time-Frequency Methods. In IEEE Transactions on Instrumentation and Measurement (Vol. 73). https://doi.org/10.1109/TIM.2024.3420349
- 107. Swarubini P J & Ganapathy N. (2024). Radar-Based Elderly Fall Detection Using Smoothed Pseudo Wigner Ville Distribution and XGBoost Learning. In Studies in Health Technology and Informatics (Vol. 316, pp. 518–522). https://doi.org/10.3233/SHTI240463
- 108. Veeranki Y R, Ganapathy N, et al. (2024). Comparison of Electrodermal Activity Signal Decomposition Techniques for Emotion Recognition. In IEEE Access

- 19952-19966). pp. https://doi.org/10.1109/ACCESS.2024.3361832
- lensless holographic microscopy using a physics-aware deep network. In Journal of Biomedical Optics (Vol. 29, Issue 10). https://doi.org/10.1117/1.JB0.29.10.106502
- 110. Singh N, John R, et al. (2024). Electrochemical and Plasmonic Detection of Myocardial Infarction Using Microfluidic Biochip Incorporated with Mesoporous Nanoscaffolds. In ACS Applied Materials and Interfaces (Vol. Issue 32794-32811). 16. 25. pp. https://doi.org/10.1021/acsami.4c01398
- 111. Thapa V, John R, et al. (2024). TIE-GANs: Single-shot quantitative phase imaging using transport of intensity equation with integration of GANs. In Journal of Biomedical Optics (Vol. 29, Issue https://doi.org/10.1117/1.JB0.29.1.016010
- 112. Vidya Gopal, John R, et al. (2024). Early Screening of Cerebrovascular Diseases Through Doppler Ultrasound Analysis of Carotid Arterial Blood Flow. In 2024 International Conference on Signal Processing and Communications, SPCOM https://doi.org/10.1109/SPCOM60851.2024.10631638
- 113. Vijay A, John R, et al. (2024). Label-free detection and characterization of secondary microplastics from tea bags. In Optical Engineering (Vol. 63, Issue 1). https://doi.org/10.1117/1.0E.63.1.013101
- 114. Vijay A, Nechikat G & John R. (2024). Microfluidic platforms: Applications and challenges. In Human Organs-on-a-Chip Technology. https://doi.org/10.1016/B978-0-443-13782-2.000280
- 115. Giri P S & Rath S N. (2024). Macrophage Polarization Dynamics in Biomaterials: Implications for in Vitro Wound Healing. In ACS Applied Bio Materials (Vol. 7, 4, pp. 2413-2422). https://doi.org/10.1021/acsabm.4c00066
- 116. Jadhav S, Rath S N & Roopavath U K. (2024). A Review on Multicellular Spheroids and Organoids for Breast Cancer Diagnosis and Therapy. In Biomedical Materials and Devices. https://doi.org/10.1007/s44174-024- 00225-w
- 117. Kamaraj M, Rath S N, et al. (2024). Biomimetic Mineralization of Mn-Doped Biphasic Calcium Phosphate in the GelMa Hydrogel Acting as a Functional 3D Bioscaffold for Osteo Defect Repair. In ACS Applied Polymer Materials (Vol. 6, Issue 1, pp. 943-955). https://doi.org/10.1021/acsapm.3c02480
- 118. Kumari N, Rath S N, et al. (2024). Dysregulation of calcium homeostasis in cancer and its role in chemoresistance. In Cancer Drug Resistance (Vol. 7). https://doi.org/10.20517/cdr.2023.145
- 119. Mehta, V., Rath, S. N. et.al. (2024). 3D stem-like spheroids-on-a-chip for personalized combinatorial drug testing in oral cancer. In Journal of Nanobiotechnology (Vol. 22. Issue 1). https://doi.org/10.1186/s12951-024-02625-y
- 120. Sukanya V S, Rath S N, et al. (2024). Differential osteospecific invasion of patient-derived cancer cells in a microfluidic co-culture model. In Chemical Engineering (Vol. https://doi.org/10.1016/j.cej.2024.151202
- 121. Glazenburg M M, Rizvi M S, et al. (2024). Perspectives on polarity—Exploring biological asymmetry across scales. In Journal of Cell Science (Vol. 137, Issue 5). https://doi.org/10.1242/jcs.261987
- 122. Panda S S, Rizvi M S, et al. (2024). Characterizing Ultrasound-based Shearwave Propagation in Collagen Fiber Network. In SAUS 2024—IEEE South Asian Symposium, Ultrasonics Proceedings. https://doi.org/10.1109/SAUS61785.2024.10563612
- 123. Sabale A, Rizvi M S, et al. (2024). Ultrasound Wave Propagation and Shear Stress through Tissues for Intercostal Focused Ultrasound Therapy. In SAUS 2024 —IEEE South Asian Ultrasonics Symposium,

- Proceedings.https://doi.org/10.1109/SAUS61785.2024 .10563729
- 109. Galande A S, John R, et al. (2024). High-resolution 124. Singh D, Rizvi M S, et al. (2024). Emergence of planar cell polarity from the interplay of local interactions and eLife (Vol. gradients. In https://doi.org/10.7554/eLife.84053

Funded Research Projects:

- 1. Aravind Kumar Rengan; Development of phage Degradable Nanoclusters for modified Radioimmunotherapy of Triple Negative Breast Cancer; 203.13 L. [S361].
- 2. Avinash Eranki; Development of indigenous robotic ultrasound for synchronous management of tumor motion and Radiation Hyperthermia; 121.24 L. [G729].
- 3. Avinash Eranki; Ultrasound-triggered active drug delivery (uADD) System for Triple Negative Breast Cancer Therapy; 65.26 L. [G698].
- 4. Jyotsnendu Giri; Platelet Rich Plasma (PRP) based allogenic "off-the-shelf" cosmeceutical product for chronic/diabetic wound healing; 50.00 L. [CSR-4].
- 5. Kousik Sarathy Sridharan; MoE IKS minors program -Technology for Yoga; 12.00 L. [NA].
- 6. Nagarajan Ganapathy; MuStPiC: Multimodal Stress Assessment in Fighter Pilots Using Contrastive Learning: A Novel Approach for Real-Time Intervention; 35.00 L. [TDG02].
- 7. Nagarajan Ganapathy; 3D Model Data Generation Solution Using AI-Based Architectural Drawing Technology; 71.28 L. [S363].
- 8. Renu John; ICMR COE in Medical Devices; 1.5 L. [G402].
- Subha Narayan Rath; Autologous islet transplantation in pancreas resection patients with clinical validation: Role of immunoisolation devices for islet survival; 43.00 L. [G797].
- 10. Subha Narayan Rath; Centre on In-Situ Correlative Microscopy CISCoM; 7.9 L. [DST-SATHI].
- 11. Subha Narayan Rath; Chondrogenic differentiation of umbilical cord derived stem cells; 60.00 L. [G298].

Awards & Recognitions:

- 1. Nagarajan Ganapathy, Department of Biomedical Engineering, Ganesh Sambhaji Ghalme, Department of Artificial Intelligence, have received a Bill & Melinda Gate Foundation Grant.
- 2. Athul V Rajeev, PhD Scholar, working under the supervision of Dr Harikrishnan Narayanan Unni, received the Best Paper Award at the International Conference ICBES 2024
- 3. Sriram H K, PhD Scholar, working under the supervision of Dr Harikrishnan Narayanan Unni, received the Best Paper Award at the International Conference ICBES 2024 Ms Monica Gunasingh, PhD Scholar, working under the
- supervision of Dr Neelavalli Jaladhar, received the Best Oral Presentation Award at the 11th Annual Scientific Meeting of the Indian Chapter of the International Society of Magnetic Resonance in Medicine, held at IIT Hyderabad.

Research Highlights

- 1. Clinical trial of biomimetic hydrogel for blinding corneal diseases.
- 2. Autologous Platelet-rich Plasma (PRP) loaded personalized wound care patch at patient bedside for effective and affordable burn wound care
- 3. Bioinspired gold-coated phage nanosystem for anti-microbial and anticancer theranostics.
- 4. Estimation of human affect response to vibrotactile stimulation
- 5. Macroencapsulation device for immune-isolation purposes for diabetes. Design and development of chip-scale microdevices for bioanalytical applications.

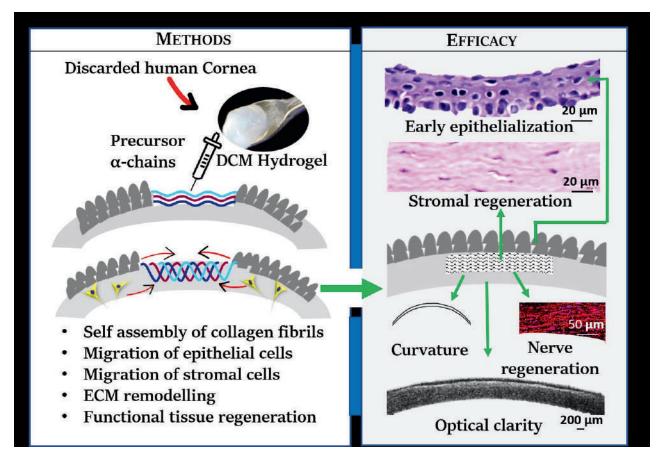


Figure 1. Treatment of blinding corneal diseases with a biomimetic hydrogel

Department of Biotechnology

Since its establishment in 2010, the Department of Biotechnology at IITH has maintained an uncompromising commitment to excellence in both teaching and research. Our journey has been marked by continuous growth in capabilities and the cultivation of exceptional future scientists who aim to drive innovation in biotechnology and bioinformatics. Our DNA-shaped building has modern infrastructure, which currently houses 17 world-class research laboratories alongside dedicated teaching facilities that provide our students with hands-on learning experiences.

We are proud to have 203 students, 17 regular faculty members, one distinguished professor, one affiliated faculty member, and a dedicated team of 5 technical and office staff who constantly work towards enhancing the research and academic environment at the department. Last year, we welcomed Dr Savita Devi as a faculty member. She comes with excellent expertise in immunology and therapeutics.

In the financial year 2024-25, we got approval for approximately 14 crores of research and facility development funding. Notably, the Department of Biotechnology is establishing a national facility for single-molecule and super-resolution imaging under DBT SAHAJ. In the past year, our faculty published more than 50 research articles in reputed journals. The department organised a multitude of events, which included international conferences: "International conference on circadian rhythms in health and disease (CRHD-2024) and "Horizons in Structural and Computational Biology-2025 (HSCB-2025)".

To stay competitive in today's rapidly evolving world, the Department of Biotechnology organised several workshops to empower students from IITH and beyond: "Online Workshop on Image Processing and Data Analysis using Image]," "Al-Assisted Manuscript Writing Workshop," and the highly sought-after "How to Land Your First Biotech Job? Half-Day Online Workshop." To further empower our students, we facilitated participation in the "Sakura Exchange" program hosted by Hokkaido University, Japan, in 2024.

This year, 8 BTech, and 19 MTech students will receive their degrees in the upcoming convocation 2025. A majority of students have graduated with accolades and are either placed or going for higher studies. Committed to community upliftment alongside our growth, we welcomed students from diverse backgrounds across privileged and underprivileged institutions, including Yuvaraja's College (Autonomous), DEO NTR AP, Oakridge International School Hyderabad, and JNV Choppadandi, Karimnagar, Telangana. The department has a vibrant and engaged student-led "Biotech Society" which not only organised excellent seminars for academic enrichment but also enthusiastically organised and participated in celebrating the Foundation Day, Teachers' Day, Freshers' Day, Sports meet, World Health Week, and Farewell to the graduating students. As we enter another year, the department remains committed to excelling beyond boundaries.

For more information, please visit: https://biotech.iith.ac.in/

Faculty Head of the Department

Rajakumara Eerappa Professor PhD - CCMB, Hyderabad Profile page: https://iith.ac.in/bt/eraj/

Professor

Anindya Roy
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/bt/anindya/

Basant Kumar Patel
PhD - Banaras Hindu University
Profile page:
https://iith.ac.in/bt/basantkpatel/

G Narahari Sastry
PhD - University of Hyderabad
Profile page:
https://www.iith.ac.in/bt/gnsastry/

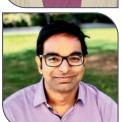
Rathinavelan Thenmalarchelvi
PhD - University of Madras
Profile page:
https://iith.ac.in/bt/tr/

Associate Professor

Anamika Bhargava
PhD - Innsbruck Medical University,
Austria
Profile page:
https://iith.ac.in/bt/abhargava/

Raghavendra Nidhanapati K
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/bt/raghunk/

Assistant Professor


Abhishek Subramanian
PhD - CSIR-National Chemical
Laboratory
Profile page:
https://iith.ac.in/bt/abhisheks/

Althuri Avanthi
PhD - IIT Kharagpur
Profile page:
https://iith.ac.in/bt/a.avanthi/

Ashish Misra
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/bt/ashishmisra/

Gaurav Sharma
PhD - CSIR-Institute of Microbial
Technology (CSIR-IMTECH), Chandigarh,
India
Profile page:
https://iith.ac.in/bt/sharmag/

Gunjan Mehta
PhD - IIT Bombay
Profile page:
https://iith.ac.in/bt/gunjanmehta/

Himanshu Joshi
PhD - IISc Banglore
Profile page:
https://iith.ac.in/bt/hjoshi/

Indranil Malik
PhD - Texas A&M University, College
Station, TX
Profile page:
https://www.iith.ac.in/bt/indranil/

Rahul Kumar
PhD - CSIR Institute of Microbial
Technology, Chandigarh
Profile page:
https://iith.ac.in/bt/rahulk/

Sandipan Ray
PhD - IIT Bombay
Profile page:
https://iith.ac.in/bt/sandipan.ray/

Savita Devi
PhD - University of Hyderabad,
Telangana
Profile page:
https://www.iith.ac.in/bt/savitadevi/

Affiliated Faculty

Neeraj Kumar
Assistant Professor, Liberal Arts. IIT
Hyderabad
Profile Page:
https://iith.ac.in/la/neeraj.kumar/

Adjunct Faculty

Shekhar C Mande
Distinguished Professor,
Bioinformatics Centre, Savitribai
Phule Pune University, Pune.
Profile Page:
https://en.wikipedia.org/wiki/Shekhar.C. Mande

Patents:

Filed:

- Sandipan Ray; Liposomal Nanoparticles Encapsulting Boldine and Ir- 775 for Therapy Against Metastatic Triple-Negative Breast Cancer and Preparation Thereof; 202441034692.
- 2. Himanshu Joshi; Phage Nanosomes for Nir Dye Delivery and a Method of Preparation Thereof; 202441036196.
- Sandipan Ray; Gallic Acid and Ir-775 Loaded Liposome Nanoparticles for Phototherapy of Cancer and Preparation Thereof; 202441084440.
- Rajkumara Eerappa; Anion Polymer Poly (Cytidine Diphosphate Ribose) and Its Method of Preparation; 202441084131.

Granted:

 Anamika Bhargava; A Method for Producing Lipid-Based Nanocochleates Loaded with Hydrophobic Metformin; 202341073856.

Books:

- 2. Sastry G N, M H J, K a, N S. (2024). ARTIFICIAL INTELLIGENCE AND INDUSTRY 5.0.

Book Chapters:

- Meur G, Anindya R, et al. (2024). Biochemistry and immunology of inflammation-mediated responses in the development of diabetes mellitus. In Biochemical Immunology of Diabetes and Associated Complications. https://doi.org/10.1016/B978-0-443-13195-0.0001.
- Kumar A, Kumar R, et al. (2024). Advancement of in silico tools for stem cell research. In Computational Biology for Stem Cell Research. https://doi.org/10.1016/B978-0-443-13222-3.000186.
- Sumona Garg, Bhavya Surendran V S, and Althuri Avanthi. Recent Trends and Applications of Biochar and Nanoparticles from Plant Biomass. In book: Medicinal and Aromatic Plants: Current Research Status, Valueaddition to their Waste, and Agro-industrial Pot.
- 4. Mehra M K, Surendran B, Sruthi B, Althuri A. Scale-Up Strategies for Solid State Fermentation. In book: Biotechnology Engineering, Subtitle: A Practical Approach to Bioprocess Development from Lab to Industrial Scale. Ed.Vinayaka B Shet, Sandesh K, Mubarak.
- 5. Vinith Kumar K, Rishi B, Sruthi B, Sumona Garg, Lohit

- Kumar Srinivas Gujjala, and Althuri Avanthi. Fundamentals of Bioreactors and Accessories. In book: Biotechnology Engineering, Subtitle: A Practical Approach to Bioprocess Development from Lab to Industries.
- Sruthi B, Mohit Kumar Mehra and Althuri Avanthi. Fungal Biomolecules as Nutraceuticals. In book: Bioprospecting of multi-tasking fungi for Therapeutic Applications Volume II. Ed. Dr. Kiran Babu Uppuluri, Dr Rangabhashiyma S. Springer Nature.
- Mohit Kumar Mehra and Althuri Avanthi. Challenges and safety regulations for employing fungi in environmental applications. In book: Bioprospecting of multi-tasking fungi for a sustainable environment. Ed. Kiran Babu Uppuluri, Rangabashiyam Selvasembian.
- 8. Sharma G, Chodvadiya J, & Malik I. (2024). "Deoxy" to be or "Desoxy" not to be—A century-old tale in the history of DNA nomenclature. In Journal of Bacteriology (Vol. 206, Issue 2). Rajkumara Eerappa; Synthesis and Evaluation of Inhibitors Against Phosphodiesterases PDE4A, PDE4D, and PDE10; 202341028076.
- 9. Hazarika S, Konwar A, & Sastry G N. (2024). Application of Membranes in the Petroleum Industry. CRC Press.

Publications:

- Declercq M, Subramanian A, et al. (2024). Single-cell RNA sequencing of cystic fibrosis liver disease explants reveals endothelial complement activation. In Liver International (Vol. 44, Issue 9, pp. 2382–2395). https://doi.org/10.1111/liv.15963.
- Garg S & Avanthi A. (2024). Tuning of chitosan with lignin-derived bioactive properties to develop a ligninreinforced and sustainable food packaging biomaterial. In Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-024-06037-8.
- 3. Meshram V D, Bhargava A, Joshi H, Patel B K, et al. (2024). Computational Insights Into the Mechanism of EGCG's Binding and Inhibition of the TDP-43 Aggregation. In Chemical Biology and Drug Design (Vol. 104, Issue 4). https://doi.org/10.1111/cbdd.14640.
- Chakraborty Anindya R, et al. (2024). Excellent adsorption of toxic Cd (II) ions from water with effective antibacterial activity by novel GO-ZnOcurcumin composite. In Environmental Science and Pollution Research (Vol. 31, Issue 39, pp. 51971– 51990).https://doi.org/10.1007/s11356-024-34685w.
- Khatua R R, Anindya R, et al. (2024). Synthesis and Antibacterial Studies of Phenethylamine Alkaloid Natural Products Along with Their Analogues: Discolin

- A, B, E and Bacillimidazole B. In Synlett (Vol. 35, Issue 16, pp. 1872–1876). https://doi.org/10.1055/a-2256-5509.
- Meur G, Anindya R, et al. (2024). Biochemistry and immunology of inflammation-mediated responses in the development of diabetes mellitus. In Biochemical Immunology of Diabetes and Associated Complications. https://doi.org/10.1016/B978-0-443-13195-0.000107.
- Seenivasan G, Anindya R, et al. (2024). Evaluation of a panel of furochromenones as the activator and inhibitor of tyrosinase. In Chemical Biology and Drug Design (Vol.103,Issue5). https://doi.org/10.1111/cbdd.14539.
- Shaji U P, Anindya R, et al. (2024). Inhibition of human DNA alkylation damage repair enzyme ALKBH2 by HIV protease inhibitor ritonavir. In DNA Repair (Vol. 141). https://doi.org/10.1016/j.dnarep.2024.103732.
- Muley A, Misra A, et al. (2024). Mononuclear copper(ii) complexes with polypyridyl ligands: Synthesis, characterisation, DNA interactions/cleavages and in vitro cytotoxicity towards human cancer cells. In Dalton Transactions (Vol. 53, Issue 28, pp. 11697–11712). https://doi.org/10.1039/d4dt00984c.
- Saini T, Misra A, et al. (2024). AR-V7 expression facilitates accelerated G2/M phase transition in castration-resistant prostate cancer. In Experimental Cell Research (Vol. 438, Issue 1). https://doi.org/10.1016/j.yexcr.2024.114026.
- 12. Bajpai A, Patel B K, et al. (2024). Activation of the yeast MAP kinase, Slt2, protects against TDP-43 and TDP-25 toxicity in the Saccharomyces cerevisiae proteinopathy model. In Biochemical and Biophysical Research Communications (Vol. 741). https://doi.org/10.1016/j.bbrc.2024.151062.
- 13. Baruah S, Sastry G N, et al. (2024). Seismic monitoring of the 2020 Baghjan oil-well blowout incident in Assam, India. In Scientific Reports (Vol. 14, Issue 1). https://doi.org/10.1038/s41598-024-74428-y.
- 14. Priyadarsinee L, Sastry G N, et al (2024). Molecular Property Diagnostic Suite for COVID-19 (MPDSCOVID-19): An open-source disease-specific drug discovery portal. In GigaByte (Vol. 2024, pp. 1–17). https://doi.org/10.46471/gigabyte.114.
- 15. Balasubramanian S, Sharma G, et al. (2024). Acute copper oxide nanoparticles exposure alters zebrafish larval microbiome. In Life Sciences (Vol. 336). https://doi.org/10.1016/j.lfs.2023.122313.
- Magar S, Kolte V, Sharma G, et al. (2024). Exploring pangenomic diversity and CRISPR-Cas evasion potential in jumbo phages: A comparative genomics study. In Microbiology Spectrum (Vol. 12, Issue 10). https://doi.org/10.1128/spectrum.04200-23.
- 17. Sharma G, Chodvadiya, J, & Malik I. (2024). "Deoxy" to be or "Desoxy" not to be—A century-old tale in the history of DNA nomenclature. In Journal of Bacteriology (Vol. 206, Issue 2). https://doi.org/10.1128/jb.00401-23
- Kinger S, Mehta G, et al. (2024). Proteostasis in neurodegenerative diseases. In Advances in Clinical Chemistry (Vol. 121, pp. 270–333). https://doi.org/10.1016/bs.acc.2024.04.002.
- Kumari A, Mehta G, Rajakumara E, et al. (2024). Single-Molecule Tracking dataset for histone H3 (hht1) from live and fixed cells of Schizosaccharomyces pombe. In Scientific Data (Vol. 11, Issue 1). https://doi.org/10.1038/s41597-024-04258-0.

- 20. Oh H, Joshi H, et al. (2024). Dehydrated Biomimetic Membranes with Skin-like Structure and Function. In ACS Applied Materials and Interfaces. https://doi.org/10.1021/acsami.3c19572.
- Rajeev A V, Joshi H, et al. (2024). Molecular modelling of nanoparticle delivery through normal and cancer cell membranes. In Proceedings of the World Congress on Electrical Engineering and Computer Systems and Science. https://doi.org/10.11159/icbes24.136.
- Sankaranarayanan S A, Joshi H, et al. (2024). Tailoring Phage Nanosomes for Enhanced Theranostic Properties of Near-Infrared Dyes. In Langmuir (Vol. 40, Issue 32, pp. 16743–16756). https://doi.org/10.1021/acs.langmuir.4c01010.
- 23. Sharma G, Chodvadiya J, & Malik I. (2024). "Deoxy" to be or "Desoxy" not to be—A century-old tale in the history of DNA nomenclature. In Journal of Bacteriology (Vol. 206, Issue 2). https://doi.org/10.1128/jb.00401-23.
- 24. Tseng Y-J, Malik I, et al. (2024). Ribosomal quality control factors inhibit repeat-associated non-AUG translation from GC-rich repeats. In Nucleic Acids Research (Vol. 52, Issue 10, pp. 5928–5949). https://doi.org/10.1093/nar/gkae137.
- 25. Qiu C, Malik I, et al. (2024). Thiolutin has complex effects in vivo but is a direct inhibitor of RNA polymerase II in vitro. Nucleic Acids Research, 52(5), 2546–2564. https://doi.org/10.1093/nar/gkad1258.
- Kumar A, Kumar R, et al (2024). MyeloDB: a multiomics resource for multiple myeloma. In Functional and Integrative Genomics (Vol. 24, Issue 1). https://doi.org/10.1007/s10142-023-01280-0.
- Kumar A, Kumar R, et al. (2024). Advancement of in 27. silico tools for stem cell research. In Computational Biology for Stem Cell Research. https://doi.org/10.1016/B978-0-443-13222-3.000186.
- 28. Kumar R, Kumar R. et al. (2024). How well does the adaptive feature representation learning approach identify human mRNA N4-acetylcytidine sites? In Molecular Therapy Nucleic Acids (Vol. 35, Issue 3). https://doi.org/10.1016/j.omtn.2024.102300.
- Kundal K, Kumar R, et al. (2024). Comprehensive benchmarking of CNN-based tumour segmentation methods using multimodal MRI data. In Computers in Biology and Medicine (Vol. 178). https://doi.org/10.1016/j.compbiomed.2024.108799.
- 30. Kunjulakshmi R, Kumar R, et al. (2024). AgingBase: A comprehensive database of anti-aging peptides. In Database (Vol. 2024). https://doi.org/10.1093/database/baae016.
- 31. Roy S S, R K Kumar A, Kumar R. Ray S, et al. (2024). AgingBase: A comprehensive database of anti-aging peptides. In Database: The journal of biological databases and curation (Vol. 2024). https://doi.org/10.1093/database/baae016.
- 32. Sengupta A, Singh S K, & Kumar R. (2024). Support Vector Machine-Based Prediction Models for Drug Repurposing and Designing Novel Drugs for Colorectal Cancer. In ACS Omega (Vol. 9, Issue 16, pp. 18584–18592). https://doi.org/10.1021/acsomega.4c01195.
- 33. Srivastava J, Kumar R, et al. (2024). Global microRNA profiling of bone marrow-MSC-derived extracellular vesicles identifies miRNAs associated with hematopoietic dysfunction in aplastic anaemia. In Scientific Reports (Vol. 14, Issue 1). https://doi.org/10.1038/s41598-024-70369-8.
- 34. Vinod Kumar K, Kumar R, et al. (2024). AMLdb: A comprehensive multi-omics platform to identify biomarkers and drug targets for acute myeloid leukaemia. In Briefings in Functional Genomics (Vol. 23, Issue 6, pp. 798–805). https://doi.org/10.1093/bfgp/elae024.

- Sharma R, Narula S, Chaudhary A, Kumar R, Gurm K K, Kaur B, Rana D, Sharma S, Kaur J, Dhillon M S, Chouhan, D K, Saini U C, & Verma I. (2024). TRANSCRIPTOMICS ALTERATIONS IN OSTEOARTHRITIS PROGRESSION: IMPLICATIONS FOR PATHOGENESIS. Osteoarthritis and Cartilage, 32, S271. https://doi.org/10.1016/j.joca.2024.02.390.
- Kakkar K, Gupta V, Bansal R, Kumar R, Kar S S, Kaur P, Sharma S, Patra S, Maitra A, & Verma I. (2024). Vitreous fluid transcriptome: A potential role in the diagnosis of Ocular Tuberculosis. Investigative Ophthalmology & VisualScience,65(7),3170.https://iovs.arvojournals.org /article.aspxarticleid=2798232.
- 37. Bhatnagar A, Ray S. et al. (2024). Integrated bioinformatics and interaction analysis to advance chronotherapies for mental disorders. In Frontiers in Pharmacology (Vol. 15). https://doi.org/10.3389/fphar.2024.1444342.
- https://doi.org/10.3389/fphar.2024.1444342.

 38. Deeksha W & Rajakumara E. (2024). Regulatory apoptotic fragment of PARP1 complements catalytic fragment for PAR and DNA-dependent activity but inhibits DNA-induced catalytic stimulation of PARP2. In DNA Repair (Vol. 133). https://doi.org/10.1016/j.dnarep.2023.103593.
- 39. Dey S, Rajakumara E, et al. (2024). Characterisation of host receptor interaction with envelop protein of Kyasanur forest disease virus and predicting suitable epitopes for vaccine candidate. In Journal of Biomolecular Structure and Dynamics (Vol. 42, Issue 8, pp. 4110–4120). https://doi.org/10.1080/07391102.2023.2218924.
- Dey S, Rajakumara E, et al. (2024). Exploring α, β-unsaturated carbonyl compounds against bacterial efflux pumps via a computational approach. In Journal of Biomolecular Structure and Dynamics (Vol. 42, Issue 16, pp. 8427–8440). https://doi.org/10.1080/07391102.2023.2246568.
- Hanuman Singh D, Deeksha W, & Rajakumara E. (2024). Characterisation of PARP1 binding to c-KIT1 G-quadruplex DNA: Insights into domain-specific interactions. In Biophysical Chemistry (Vol. 315). https://doi.org/10.1016/j.bpc.2024.107330.
- Nitin K & Rajakumara E, (2024). Proxy approach in understanding the bisubstrate activity of strictosidine synthases. In International Journal of Biological Macromolecules (Vol. 262). https://doi.org/10.1016/j.ijbiomac.2024.130091.
- 43. Raj G, Rajakumara E, et al. (2024). Computational and in vitro binding studies of theophylline against phosphodiesterases functioning in sperm in the presence and absence of pentoxifylline. In Biophysical Chemistry(Vol.313). https://doi.org/10.1016/j.bpc.2024.107294.
- 44. Raj G, Rajakumara E, et al. (2024). Computational and in vitro binding studies of the redesigned pentoxifylline analogue against phosphodiesterases function in sperm. In Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2024.2435042.
- 45. Rathod S, Rajakumara E, et al. (2024). High-throughput computational screening for identification of potential hits against bacterial Acriflavine resistance protein B (AcrB) efflux pump. In Journal of Biomolecular

and

Structure

https://doi.org/10.1080/07391102.2024.2302936.

46. Rathod S, Rajakumara E, et al. (2024). Identification of potential biogenic chalcones against antibiotic-resistant efflux pump (AcrB) via computational study. In Journal of Biomolecular Structure and Dynamics (Vol. 42, Issue 10, pp. 5178–5196). https://doi.org/10.1080/07391102.2023.2225099.

- 47. Singh Dagur H, Rajakumara E, et al. (2024). Identifying potent inhibitory phytocompounds from Lagerstroemia speciosa against SARS-Coronavirus-2: Structure-based virtual screening. In Journal of Biomolecular Structure and Dynamics (Vol. 42, Issue 2, pp. 806–818). https://doi.org/10.1080/07391102.2023.2205942.
- 48. Campomizzi C S, Rathinavelan T, et al. (2024). Asparagine-85 Stabilises a Structural Active Site Water Network in CYP121A1 of Mycobacterium tuberculosis. In Biochemistry (Vol. 63, Issue 5, pp. 711–722). https://doi.org/10.1021/acs.biochem.3c00555.
- 49. Datta S, Rathinavelan T, et al. (2024). G-quadruplex landscape and its regulation revealed by a new antibody capture method. In Oncotarget (Vol. 15, pp. 175–198). https://doi.org/10.18632/oncotarget.28564.
- 50. Hwang W, Rathinavelan T, et al. (2024). CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed. In Journal of Physical Chemistry B. https://doi.org/10.1021/acs.jpcb.4c04100.
- 51. Nial P S, Rathinavelan T, et al. (2024a). Computational Simulation and Biophysical Study on Cerium Chloride-Induced B-to-Z Transition in (CG)n DNA. In ACS Omega (Vol. 9, Issue 47, pp. 46784–46795). https://doi.org/10.1021/acsomega.4c04562.
- 52. Nial P S, Rathinavelan T, et al. (2024b). Praseodymium chloride-mediated B-to-Z DNA transition in pyrimidine-purine repeat sequences: Simulation and biophysical study. In Journal of Molecular Liquids (Vol. 407). https://doi.org/10.1016/j.molliq.2024.125173.
- 53. Sundaresan S, Rathinavelan T, et al. (2024). Entangled World of DNA Quadruplex Folds. In ACS Omega (Vol. 9, Issue 37, pp. 38696–38709). https://doi.org/10.1021/acsomega.4c04579.
- 54. Banerjee S, Ray S. et al. (2024). Chronobiological Aspects of Aging, Neurodegeneration, and Inflammation. In Progress in Inflammation Research (Vol. 93, pp. 129–147). https://doi.org/10.1007/978-3-031-74744-1 8.
- 55. Bhatnagar A, Ray S, et al. (2024). Integrated bioinformatics and interaction analysis to advance chronotherapies for mental disorders. In Frontiers in Pharmacology (Vol. 15). https://doi.org/10.3389/fphar.2024.1444342.
- Das S, Ray S, et al. (2024). Alterations in Circadian Rhythms, Sleep, and Physical Activity in COVID-19: Mechanisms, Interventions, and Lessons for the Future. In Molecular Neurobiology (Vol. 61, Issue 12, pp. 10115–10137). https://doi.org/10.1007/s12035-024-04178-5.
- 57. Ghosh P K, Ray S. et al. (2024). Telomerase: A nexus between cancer nanotherapy and circadian rhythm. In Biomaterials Science (Vol. 12, Issue 9, pp. 2259–2281). https://doi.org/10.1039/d4bm00024b.

Funded Research Projects:

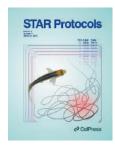
- 1. Abhishek Subramanian; Computational approaches to discover host-parasite metabolic interactions in human microeukaryotic parasite infections of the gut and lung; 10.00 L. [BT/RLF/Re-entry/04/2021].
- 2. Anamika Bhargava; Uncovering the functional roles and interplay of T-type calcium channels and estrogen receptors within various subtypes of breast cancers.; 15.99 L. [AC2024-1].
- 3. Anamika Bhargava; An experimental study of calcium channel expression and calcium dynamics in cells derived from Indian breast cancer patients; 18.25 L. [G536].
- Anindya Roy; Role of ALKBH family Protein in promoting Triple-negative breast cancer; 33.46 L. IG69711
- 5. Ashish Misra; Implantable dual drug-releasing scaffolds to reprogram the tumour immune milieu for robust cancer immuno therapy; 54.21 L. [G774].

- Avanthi Althuri; A Novel Cellulose-Based Bio-mulch from Lantana camara, Shellac, and Gum Ghatti with Integrated PGPRs for Sustainable Agricultural Applications (Role- PI); 95.00 L. [Under Review].
- 7. Avanthi Althuri; Broadening the Sugarcane tops derived product portfolio with lignin hydrogel, Nanocellulose-Aerogel, and Yeast Oil-An Integrated strategy for harnessing the sustainable mercantile products for high value applications (Role- PI); 22.57 L. [G712].
- 8. Avanthi Althuri; Exploring the synergistic potential of LPMO and Cellulases for next generation Biorefineries (Role- Co-PI); 12.00 L. [Not yet assigned (recently approved)].
- Avanthi Althuri; Rational Engineering of Fungal Strains for Enhanced 2G Cellulase Enzyme Production (Role-Co-PI); 117.00 L.
- 10. Gaurav Sharma; Genomic Diversity and Function analysis of chemosensory systems and chemoreceptor proteins along with identification of sensory ligand molecules in family vibrionaceae organisms; 28.02 L. [G724].
- 11. Gunjan Mehta; National Facility for' Single-Molecule and Super-Resolution Imaging'; 580.62 L. [G725].
- 12. Gunjan Mehta; Quantifying the role of chromatin remodelers in meiotic recombination using 1D southern hybridisation; 7.00 L. [AC2023-02].
- 13. Gunjan Mehta; Exploring the cohesin ring-independent functions of Rec8 during yeast meiosis; 7.50 L. [G398].
- 14. Himanshu Joshi; Multiscale molecular modelling of self-assembled and bio-inspired nanomaterials; 7.00 L. [F467].
- 15. Indranil Mailk; Mechanisms of chimeric peptide production and targeting dipeptide repeat toxicity in C9orf72-associated ALS/FTD; 26.00 L. [G810].
- Rahul Kumar; Investigating the role of miR-122 super-16.enhancer in hepatocarcinogenesis for therapeutic intervention; 39.00 L. [BT/PR52559/MED/30/2534/2024]. Rajakumara Eerappa; Mechanistic and structural studies on the allosteric regulation of phospho-mimetic
- 17. variants of poly(ADP-ribose) polymerases one activities by DNA break, PAR and PARP inhibitors; 86.00 L. [G727].
- Rajakumara Eerappa; Mechanistic studies on regulation 18. of poly (ADP-ribose) polymerases one activities by non-DNA factors, and PAR mimetics inhibitors design; 63.50 L. [G731].
- 19. Sandipan Ray; Circadian Rhythms in Health and Diseases (CRHD 2024); 3.50 L. [SSY/2024/001583].

- 20. Sandipan Ray; Investigation on the cross-talk among circadian aberrations, sleep deficiency, aging, and DNA damage for potential health and therapeutic benefits; 24.13 L. [G570].
- 21. Sandipan Ray; Validation of a translatable chronobiological signature of early relapse bipolar disorder; 541.48 L. [G691].
- 22. Savita Devi; Investigating the regulation of human Inflammasome activation in homeostasis and inflammatory disease; 64.19 L. [ANRF/ECRG/2024/003131/LS].

Awards & Recognitions:

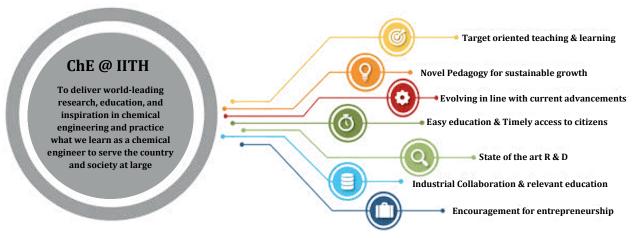
- Bhavya Surendran V S, PhD Scholar, working under the supervision of Althuri Avanthi, received the Best Poster Presentation Award in the Thematic Area of Microbial & Industrial Biotechnology at the International Conference on Advances in Biotechnology and Bioinformatics (ICABB 2024).
- 2. Utkarsha Mahanta, PhD Scholar, working under the supervision of Gaurav Sharma, secured Second Position for the Poster Presentation at the INBIX-ADNAT 2024 international scientific conference titled: "Integrating Archaeogenetics, Forensics & Multi-omics for Human Health Breakthrough" organised by Banaras Hindu University.
- 3. Nitesh Kumar Podh, PhD Scholar, working under the supervision of Gunjan Mehta, received the Best Poster Award at the International Chromosome Stability meeting organised at JNCASR.
- Kavita, PhD Scholar, working under the supervision of Rahul Kumar, received the Best Poster Award, accompanied by Rs. 50,000 cash at the Cancer NEXT 2024 conference, organised by the Federation of Asia Biotech Association (FABA) & Nizam Institute of Medical Sciences.
- Sandipan Ray joined the editorial board of the Journal of Proteins and Proteomics on invitation by the editorin-chief.
- 6. Sandipan Ray has been elected as the Vice President of the Indian Society for Chronobiology (InSC).
- 7. Saibal Saha, PhD Scholar, working under the supervision of Dr Sandipan Ray, received the 2nd Prize in Poster Presentation at the European Molecular Biology Organisation (EMBO) international meeting "Understanding Biological Clocks Theoretical Framework to Cellular Basis" organised at Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR).


Research Highlights:

This year, our faculty were honoured with two cover page articles

 Rajakumara Eerappa's Lab published a research article titled "Regulatory and Catalytic Domains of Poly (ADP-ribose) Polymerases Cross-Complement for DNA-Break-Dependent Allosteric Stimulation of Catalytic Activity", which was featured on the cover page of ACS Chemical Biology (American Chemical Society)!

2. Anamika Bhargava's group, in collaboration with Dr Yogesh Bhargava from Dr Harisingh Gour Central University, has made a significant contribution to ethical and accessible science! They've developed "ZebraTrack" – an open-source tool for analyzing zebrafish behaviour, a key alternative to higher animal models in research. While ZebraTrack was already a gamechanger, its latest transformation into a step-by-step protocol in the prestigious the highlight is that their protocol has been featured on the cover page of the current issue!



Department of Chemical Engineering

ChE@IITH is known for its pursuit of excellence in chemical engineering education, research, and expert consulting support for industries in the energy, health, and processing sectors. With the support of 23 core faculty, one adjunct faculty from Shimane University, Japan, and 10 staff members, the department adopts a holistic approach of (i) fractal and hands-on / project-based practical teaching, (ii) connecting interdisciplinary research approaches to socially relevant problems, and (iii) inculcating a start-up culture and making high-quality education accessible for all our students. Broadly, our teaching covers various aspects of chemical, biochemical, mineral, materials, and process systems engineering. Our electives provide exposure to the state-of-the-art developments in the fields of energy, new materials, nanoscience, machine learning, and biochemical engineering. ChE@IITH offers BTech, MTech, and PhD programs featuring a curriculum that is both comprehensive and flexible, with options for exploring mini-research projects and internship opportunities. Faculty from the department are known for their contribution to the field and have been recognised with awards like the prestigious National Geoscience Award, Vasvik Award, and INSA Associate Fellow (IAF). Further, several department faculty members appear among the top 2% scientists in the world(Stanford University list 2024), bearing testimony to the quality and research environment in the department.

A large number of the faculty from the department are actively involved in hosting conferences and outreach workshops (TEQIP, ATAL-FDP). Faculty also participate in conferences/workshops by delivering invited / keynote lectures, benefiting the students and faculty across several institutes in India. The department also houses state-of-the-art research and teaching laboratories. The faculty members in the department conduct research in a wide variety of exciting areas such as catalysis, fluid flow, nanotechnology, materials for energy and biological applications, bioengineering, atomistic simulations, efficient energy harvesting and storage, process control and optimisation, machine learning, techno-economic analysis, supply chain management, mineral processing, and climate change. The department also contributes to nation-building by engaging in several national mission projects associated with the Ministry of Mines and DRDO.

For more information, please visit: https://che.iith.ac.in/

Faculty Head of the Department

Balaji Iyer Vaidyanathan Shantha Associate Professor PhD - IIT Bombay Profile page: https://iith.ac.in/che/balaji/

Professor

Anand Mohan
PhD - Texas A&M, USA
Profile page:
https://iith.ac.in/che/anandm/

Chandra Shekhar Sharma
PhD - IIT Kanpur
Profile page:
https://iith.ac.in/che/cssharma/

Giridhar Madras
PhD - Texas A&M University
Profile page:
https://iith.ac.in/che/giridhar/

Kirti Chandra Sahu
PhD - JNCASR, Bangalore
Profile page:
https://iith.ac.in/che/ksahu/

Kishalay Mitra PhD - IIT Bombay Profile page: https://iith.ac.in/che/kishalay/

Narasimha Mangadoddy
PhD - JKMRC, University of Queensland
- Australia
Profile page:
https://iith.ac.in/che/narasimha/

Saptarshi Majumdar PhD - IIT Kharagpur Profile page: https://iith.ac.in/che/saptarshi/

Sunil Kumar Maity
PhD - IIT Kharagpur
Profile page:
https://iith.ac.in/che/sunil_maity/

Vinod M Janardhanan
PhD - KIT, Germany
Profile page: https://iith.ac.in/che/vj/

Debaprasad Shee
PhD - IIT Kanpur
Profile page:
https://iith.ac.in/che/dshee/

Devarai Santhosh Kumar
PhD - IIT Madras
Profile page:
https://iith.ac.in/che/devarai/

Lopamudra Giri
PhD - University of Iowa, USA
Profile page:
https://iith.ac.in/che/giril/

Parag D Pawar
PhD - Johns Hopkins, USA
Profile page:
https://iith.ac.in/che/parag/

Phanindra Varma Jampana
PhD - University of Alberta, Canada
Profile page:
https://iith.ac.in/che/pjampana/

Satyavrata Samavedi
PhD - Virginia Polytechnic Institute
and State University, USA
Profile page:
https://iith.ac.in/che/samavedi/

Alan Ranjit Jacob
PhD - University of Crete, Greece
Profile page:
https://iith.ac.in/che/arjacob/

Gande Vamsi Vikram
PhD - IIT Madras
Profile page:
https://www.iith.ac.in/che/vamsigande/

Mahesh Ganesan
PhD - University of Michigan, Ann
Arbor
Profile page:
https://iith.ac.in/che/maheshg/

Ramkarn Patne
PhD - IIT Kanpur
Profile page:
https://iith.ac.in/che/ramkarn/

Ranajit Mondal
PhD - IIT Madras
Profile page:
https://iith.ac.in/che/ranajit/

Shelaka Gupta PhD - IIT Delhi Profile page: https://iith.ac.in/che/shelaka/

Suhanya Duraiswamy
PhD - NUS, Singapore
Profile page:
https://iith.ac.in/che/suhanya/

Dr Hemanth Noothalapati
PhD - Shimane University, Japan
Profile page:
https://scholar.google.co.in/citations
?user=3b-kfpMAAAAJ&hl=en

Patents:

Published:

- Chandra Shekhar Sharma; A Biomass-Derived Porous Carbon as Sulfur Host for Energy Storage Device and a Method of Preparing Thereof; 202341033390.
- Chandra Shekhar Sharma; A Process of Synthesis of Su8-Derived Aligned and Non-Aligned Carbon Nanofibres and Fabrication Therefor; 202341070538.
- 3. Chandra Shekhar Sharma; Metals-Embedded Resorcinol-Formaldehyde Xerogel-Based Carbon Cathode for High-Performance Batteries and a Method of Preparation Thereof; 202341042659.
- Chandra Shekhar Sharma; A Process of Synthesis of Graphite Ink-Coated SU8 Polymer Derived Aligned and Non-Aligned Carbon Nanofibres and Fabrication Therefor; 202443047236.
- Lopamudra Giri; An In-Vitro Method for Detecting Proteins in a Biological Sample and a Kit Thereof; 202441037060.
- Lopamudra Giri; A Biocompatible Head Plate for Semibatch Bioreactors; 202441035701.
- Suhanya Duraiswamy; In-Situ Co-Flow Synthesis of Photocatalyst in Microphotoreactor for Organic Degradation; 202441036926.
- 8. Suhanya Duraiswamy; A Method for Producing Hyogel Encapsulated Spheroids and A Modified Microfluidic T-Junction Tubing Apparatus; 202441086027.
- Suhanya Duraiswamy; Chipless Millifluidics Device for Spheroid Generation; 202441086475.
- 10. Suhanya Duraiswamy; Programmable Self-Assembly and Surface Organisation of Anisotropic and Isotropic Gold Nanoparticles; 202441086462.

Granted:

- Chandra Shekhar Sharma; Interlayer for Battery and Method of Preparing Interlayer Using Coal Tar Pitch; 202131028646.
- Janardhanan Vinod; Kirti Chandra Sahu; Direct Paper-Based Fuel Cells for Micro-Nano System; 3515/CHE/2015.

Books:

 Sunil Kumar Maity, Tridib Kumar Bhowmick, Kalyan Gayen; Nanobiotechnology Applications of Nanomaterials in Biotechnology, Medicine, and Healthcare; CRC Press (2024); https://doi.org/10.1201/9781003305583-fm.

Book Chapters:

- Apparla N K, Sharma C S, et al. (2024). A Brief Review on Heteroatom-Doped Dual-Carbon Metal-Ion Hybrid Capacitors: The Role of Carbon Nanomaterials. In ACS Applied Nano Materials (Vol. 7, Issue 16, pp. 18676– 18694). https://doi.org/10.1021/acsanm.
- 2. Mishra N, Shee D, et al. (2024). Novel high-entropy materials for hydrogen production. In Novel Materials for Energy Translation and Storage. https://www.scopus.com/inward/record.uri?eid=2-s2.085205531468&partnerID=40&md5=c35102f81e20bb48b0d1c361145474.
- 3. Ravi kiran I, Nayak S, and Mitra K. Machine Learning Assisted Metaheuristic Based Optimization of Mixed Suspension Mixed Product Removal Process, In Advanced Machine Learning with Evolutionary and Metaheuristic Techniques", Editors: Jayaraman V K.
- Mahadevan J, Mitra K, & Giri L. (2024). Nonviral Platform for Expression of Recombinant Protein in Insect Cells. In Methods in Molecular Biology (Vol. 2829, pp. 289–300). https://doi.org/10.1007/978-1-0716-3961-0 23.

- Mahadevan J, Mitra K, & Giri L. (2024). Nonviral Platform for Expression of Recombinant Protein in Insect Cells. In Methods in Molecular Biology (Vol. 2829, pp. 289–300). https://doi.org/10.1007/978-1-0716-3961-0_23.
- Dhyani V, Giri L, et al. (2024). A Pipeline for Dynamic Analysis of Mitochondrial Content in Developing T Cells: Bridging the Gap Between High-Throughput Flow Cytometry and Single-Cell Microscopy Analysis. In Methods in Molecular Biology (Vol. 2800, pp.
- Agarwalla S, Singh S K, Ibrahim M A, Noothalapati H, & Duraiswamy S. (2024). Antimicrobial Coatings: Current Mechanisms, Challenges, and Opportunities. In Functional Coatings: Innovations and Challenges. https://www.scopus.com/inward/record.uri.
- 8. Bhabatush Biswas, Kalyan Gayen, Sunil K Maity, Tarun Kanti Bandyopadhyay, Tridib Kumar Bhowmick, Chapter 1: Importance of Nanomaterials for Biological Applications. In Tridib Kumar Bhowmick, Kalyan Gayen, Sunil K. Maity, Nanobiotechnology Applications.

Publications:

- Kavya M, Priyanka V, Jacob A R, & Nisha P. (2024). Investigating the Influence of Hydrogel and Oleogel Ratios on Physicochemical Characteristics, Microstructure, Rheology, and Texture of a Food-Grade Bigel. In Biomacromolecules. https://doi.org/10.1021/acs.biomac.4c00959.
- 2. Anand M Kiranmai P & Garimella S M. (2024). Stability of fully developed pipe flow of a shear-thinning fluid that approximates the response of viscoplastic fluids. In Applications in Engineering Science (Vol. 19). https://doi.org/10.1016/j.apples.2024.100191.
- 3. Roy T R, Dutta-Gupta S & Iyer B V S. (2024). Deformation-induced evolution of plasmonic responses in polymer-grafted nanoparticle thin films. In Nanoscale (Vol. 16, Issue 24, pp. 11705–11715). https://doi.org/10.1039/d4nr00789a.
- 4. Aadil K R, Sharma C S, et al. (2024). Investigation of human hair keratin-based nanofibrous scaffold for skin tissue engineering application. In Drug Delivery and Translational Research (Vol. 14, Issue 1, pp. 236–246). https://doi.org/10.1007/s13346-023-01396-7.
- Apparla N K Sharma C S, et al. (2024). A Brief Review on Heteroatom-Doped Dual-Carbon Metal-Ion Hybrid Capacitors: The Role of Carbon Nanomaterials. In ACS Applied Nano Materials (Vol. 7, Issue 16, pp. 18676– 18694). https://doi.org/10.1021/acsanm.4c01889.
- Bharti V K, Sharma C S, et al. (2024). Bacterial cellulosederived carbon as a self-supported and flexible anode for stable-performance lithium-ion batteries. In Journal of Electroanalytical Chemistry (Vol. 957). https://doi.org/10.1016/j.jelechem.2024.118142.
- Cherian S K, Sharma C S, et al. (2024). Iron, cobalt coembedded in situ graphitized xerogel-derived carbon as sulfur host for ultrahigh rate and high-performance lithium-sulfur batteries. In Journal of Energy Storage (Vol. 95). https://doi.org/10.1016/j.est.2024.112587.
- Cherian S K, Sharma C S, et al. (2024). Sulfur confinement into highly porous banana peduncle-derived carbon for high-rate performance lithium-sulfur battery. In Journal of Energy Storage (Vol. 89). https://doi.org/10.1016/j.est.2024.111803.
 Chourasia A K, Naik K M, & Sharma C S. (2024).
- Chourasia A K, Naik K M, & Sharma C S. (2024). Exploring the synergistic effects of chemical activation and N-doping in carbon nanospheres for advanced Li– CO2Mars batteries. In Carbon (Vol. 218). https://doi.org/10.1016/j.carbon.2023.118754.
- De S, Sharma C S, et al. (2024). Augmented ammonia sensing of ion-beam modified MoSe2. In Surfaces and Interfaces (Vol. 49). https://doi.org/10.1016/j.surfin.2024.104394.

- Goswami A P, Sharma C S, et al. (2024). In-situ banana fiber-modified carbonized bacterial cellulose as a freestanding and binder-free cathode host for potassiumsulfur batteries. In Carbon Trends (Vol. 16). https://doi.org/10.1016/j.cartre.2024.100391.
- Kandasamy M, Sharma C S, et al. (2024). Candle soot carbon-Co304 nanofibers composite as a binder-free electrode for high-performance supercapacitor application: An experimental and theoretical investigation. In Journal of Energy Storage (Vol. 81). https://doi.org/10.1016/j.est.2023.110371.
- Killada S, Sharma C S, et al. (2024). Phase separation induced controllable nanoscale roughness in PS-b-PMMA Di-block copolymer thin films for enhanced antireflectivity. In Nano Express (Vol. 5, Issue 4). https://doi.org/10.1088/2632-959X/ad8468.
- 14. Krishan K, Sharma C S, et al. (2024). Functionalized Metal-Free Carbon Nanosphere Catalyst for the Selective C-N Bond Formation under Open-Air Conditions. In ACS Omega (Vol. 9, Issue 33, pp. 35676– 35685). https://doi.org/10.1021/acsomega.4c03987.
- Kumar Surthi K, Sharma C S, et al. (2024). SU8 polymer derived high capacity and performance anode material for secondary and flexible Li-ion batteries: Experimental and first principle study. In Chemical Engineering Journal (Vol. 479). https://doi.org/10.1016/j.cej.2023.147561.
- Naik K M, Chourasia A K, & Sharma C S. (2024). N, S Codoped carbon anchored Co9S8 cathode: Advancing sustainable energy through efficient Li-CO2 Mars batteries. In Journal of Power Sources (Vol. 608). https://doi.org/10.1016/j.jpowsour.2024.234623.
- 17. Naik K M, Kumar Chourasia A, & Sharma C S. (2024). Nano-interface engineering of NiFe2O4/MoS2/MWCNTs heterostructure catalyst as cathodes in the Long-Life reversible Li-CO2 Mars batteries. In Chemical Engineering Journal (Vol. 490). https://doi.org/10.1016/j.cej.2024.151729.
- Namsheer K, Sharma C S, et al. (2024). Carbon Nanotube Interconnected Polypyrrole@ E-MXene Organic-Inorganic Hybrids for Interdigitated In-Plane Supercapacitor Applications. In Advanced Materials Technologies. https://doi.org/10.1002/admt.202401838.
- 19. Pathak A D, Chourasia A K, & Sharma C S. (2024). Holistic development of rechargeable Metal-CO2-Mars battery chemistry for Mars exploration. In Journal of Power Sources (Vol. 616). https://doi.org/10.1016/j.jpowsour.2024.235131.
- Ruksana S, Sharma C S, et al. (2024). MoSe2-Layered Nanosheet Decorated SnO2 Hollow Nanofiber-Based Highly Sensitive and Selective Room Temperature H2S Gas Sensor. In ACS Applied Materials and Interfaces (Vol. 16, Issue 46, pp. 64264-64275). https://doi.org/10.1021/acsami.4c14125.
- 21. Saha S, Sharma C S, et al. (2024). Zeolitic imidazolate framework derived stellate shaped cobalt-molybdenum hybrid sulfide microflower for enhanced supercapacitor properties. In Journal of Energy Storage (Vol. 99). https://doi.org/10.1016/j.est.2024.113294.
- 22. Saha S, Sharma C S, et al.(2024). 2-Methylimidazole assisted binder-free synthesis approach for hexagonal nickel-cobalt mixed oxide nanoplate as high-rate capability electrode for supercapacitor. In Journal of Energy Storage (Vol. 81). https://doi.org/10.1016/j.est.2024.110424.
- Biradar B R, Shee D, et al. (2024). Fabrication of supercapacitor electrode material using carbon derived from waste printer cartridge. In Ionics (Vol. 30, Issue 4, pp. 2273–2285). https://doi.org/10.1007/s11581-024-05402-x.
- 24. Chandewar P R & Shee D. (2024). Synergy between Fe-Co oxide catalysts supported over HZSM-5 for direct conversion of methane to methanol. In Molecular

- Catalysis (Vol. 562).
- 25. https://doi.org/10.1016/j.mcat.2024.114204. Kumar P, Maity S K, & Shee D. (2024). Hydrodeoxygenation of stearic acid to produce green diesel over alumina supported CoMo catalysts: Role of Co/Mo mole ratio. In Renewable Energy (Vol. 237). https://doi.org/10.1016/j.renene.2024.121700.
- Madhusree J E, Shee D, et al. (2024). Wells-Dawson Polyoxometalate Modified Lignin Derived High Surface Area Activated Carbon Electrode Materials for Energy Storage Application. In ChemistrySelect (Vol. 9, Issue 32). https://doi.org/10.1002/slct.202401533.
- 27. Mishra N, Shee D, et al. (2024). Novel high-entropy materials for hydrogen production. In Novel Materials for Energy Translation and Storage. https://www.scopus.com/inward/record.uri?eid=2-s2.085205531468&partnerID=40&md5=c35102f81e20 bb48b0d1c3611454749b.
- 28. Oruganti R K, Shee D, et al. (2024). Synthesis of algalbacterial sludge activated carbon/Fe3O4 nanocomposite and its potential in antibiotic ciprofloxacin removal by simultaneous adsorption and heterogeneous Fenton catalytic degradation. In Environmental Science and Pollution Research (Vol. 31, Issue 60, pp. 67594–67612). https://doi.org/10.1007/s11356-024-34830-5.
- 29. Puniyanikkottil M A, Shee D, et al. (2024). Synergistic Enhancement of Supercapacitor Performance: Vanadium-Substituted Phosphotungstic and Molybdic Acid Combined with Polypyrrole Using Pyridinium and Ammonium Ionic Containing Organic Cation Linkers with Improved Conductivity. In Energy Technology (Vol. 12, Issue 9). https://doi.org/10.1002/ente.202400708.
- Singh G, Shee D, et al. (2024). Polyoxometalate-HKUST-1 composite derived nanostructured Na-Cu-Mo2C catalyst for efficient reverse water gas shift reaction. In Nanoscale (Vol. 16, Issue 29, pp. 14066–14080). https://doi.org/10.1039/d4nr01185f.
- 31. Sunar S L, Shee D, et al. (2024a). Deep eutectic solvent pretreatment of sugarcane bagasse for efficient lignin recovery and enhanced enzymatic hydrolysis. In Journal of Industrial and Engineering Chemistry (Vol. 139, pp. 539–553). https://doi.org/10.1016/j.jiec.2024.05.030.
- 32. Sunar S L, Shee D, et al. (2024b). Pretreatment of sugarcane bagasse using ionic liquid for enhanced enzymatic saccharification and lignin recovery: Process optimization by response surface methodology. In Cellulose (Vol. 31, Issue 4, pp. 2151–2173). https://doi.org/10.1007/s10570-024-05768-1.
- 33. Hamza A, Khalad A, & Kumar D S. (2024). Enhanced production of mycelium biomass and exopolysaccharides of Pleurotus ostreatus by integrating response surface methodology and artificial neural network. In Bioresource Technology (Vol. 399). https://doi.org/10.1016/j.biortech.2024.130577.
- 34. Hamza A, Kumar D S, et al.(2024). An insight into the nutritional and medicinal value of edible mushrooms: A natural treasury for human health. In Journal of Biotechnology (Vol. 381, pp. 86–99). https://doi.org/10.1016/j.jbiotec.2023.12.014.
- 35. Hamza A, Kumar D S, et al. (2024). Submerged production of mycelium biomass and bioactive compounds from P. ostreatus in a controlled fermentation medium. In Food and Humanity (Vol. 2). https://doi.org/10.1016/j.foohum.2024.100302.
- 36. Shankar M P, Kumar D S, et al. (2024). Engineering mushroom mycelium for a greener built environment: Advancements in mycelium-based biocomposites and bioleather. In Food Bioscience (Vol. 62). https://doi.org/10.1016/j.fbio.2024.105577.
- 37. Cho P P, Madras G, et al. (2024). Rationalv Bi[sbnd]

- Mo[sbnd]O nanospheres decorated g-C3N4 for photocatalytic performance of dye degradation. In Surfaces and Interfaces (Vol. 50). https://doi.org/10.1016/j.surfin.2024.104522.
- 38. Kandukuri B, Madras G, et al. (2024). Non-thermal plasma mitigation of low concentration of air pollutants: Removal of isopropyl alcohol using transition metaloxide integration. In Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-024-32569-7.
- 39. Mon P P, Madras G, et al.(2024). Multiwalled Carbon Nanotube-Foam Composites for Fixed-Bed Continuous Flow Column Adsorption of Dyes. In ACS Applied Nano Materials (Vol. 7, Issue 22, pp. 25931–25943). https://doi.org/10.1021/acsanm.4c05010.
- 40. Mon P P, Madras G, et al.(2024). Highly Porous Multiwalled Carbon Nanotube-Foam Composite for Batch Adsorption Performances of Dyes. In Journal of Physical Chemistry B (Vol. 128, Issue 34, pp. 8223–8237). https://doi.org/10.1021/acs.jpcb.4c03228.
- 41. Mon P P, Madras G, et al.(2024). Synergistic sorption: Enhancing arsenic (V) removal using biochar decorated with cerium oxide composite. In Materials Today Sustainability (Vol. 25). https://doi.org/10.1016/j.mtsust.2024.100675.
- 42. Rangappa H S, Madras G, et al. (2024). Modeling Tetracycline Adsorption onto Blast Furnace Slag Using Statistical and Machine Learning Approaches. In Sustainability (Switzerland) (Vol. 16, Issue 1). https://doi.org/10.3390/su16010464.
- 43. Rao M U, Madras G, et al. (2024). Nonthermal Plasma-Assisted Enhanced CO2 Conversion over NiOx/γ-Al2O3 Catalyst. In Industrial and Engineering Chemistry Research (Vol. 63, Issue 21, pp. 9336–9346). https://doi.org/10.1021/acs.iecr.4c00489.
- 44. Swapna B, Madras G, et al.(2024). Catalytic recycling of PET waste bottles into a value-added amide monomer using a heterogeneous niobium pentoxide nanocatalyst. In Sustainable Energy and Fuels (Vol. 8, Issue 22, pp. 5170–5180). https://doi.org/10.1039/d4se01136h.
- 45. Swapna B, Madras G, et al. (2024). Efficient glycolysis of used PET bottles into a high-quality valuable monomer using a shape-engineered MnOx nanocatalyst. In Catalysis Science and Technology (Vol. 14, Issue 19, pp. 5574–5587). https://doi.org/10.1039/d4cy00823e.
- 46. Ade S S, Sahu K C. et al. (2024). Application of deep learning and inline holography to estimate the droplet size distribution. In International Journal of Multiphase Flow(Vol.177). https://doi.org/10.1016/j.ijmultiphaseflow.2024.104853.
- 47. Ade S S, Sahu K C, et al.(2024). Droplet breakup and size distribution in an airstream: Effect of inertia. In Physical Review Fluids (Vol. 9, Issue 8). https://doi.org/10.1103/PhysRevFluids.9.084004.
- 48. Anirudh N V, Behera S, & Sahu K C. (2024). Coalescence of non-spherical drops with a liquid surface. In International Journal of Multiphase Flow (Vol. 175). https://doi.org/10.1016/j.ijmultiphaseflow.2024.10480
 0.
- Bhadra S, Sahu K C, et al. (2024). Cracking of submerged beds. In Journal of Fluid Mechanics (Vol. 990). https://doi.org/10.1017/jfm.2024.524.
- Gu H-T, Sahu K C. et al.(2024). Three-dimensional simulation of film boiling on a horizontal surface with magnetic field. In Journal of Fluid Mechanics (Vol. 999). https://doi.org/10.1017/jfm.2024.967.
- 51. Hari Govindha A, Sahu K C. et al. (2024). Intricate Evaporation Dynamics in Different Multidroplet Configurations. In Langmuir (Vol. 40, Issue 35, pp. 18555–18567). https://doi.org/10.1021/acs.langmuir.4c01929.
- 52. Kirar P K, Kumar N & Sahu K C. (2024). Dynamics of jet breakup and the resultant drop size distribution-effect of nozzle size and impingement velocity. In Physics of

- Fluids (Vol. 36, Issue 10). https://doi.org/10.1063/5.0225452.
- 53. Kirar P K, Sahu K C, et al. (2024). An Experimental Investigation of an Effect of Swirl Flow Field and the Aerodynamic Force on the Droplet Breakup Morphology. In Lecture Notes in Mechanical Engineering (pp. 351–360).
- Engineering (pp. 351–360).
 54. https://doi.org/10.1007/978-981-99-6074-3 33.
 Pal A K, Sahu K C & Biswas G. (2024). Modeling binary collision of evaporating drops. In International Journal of Heat and Mass Transfer (Vol. 221).

 https://doi.org/10.1016/j.ijheatmasstransfer.2023.125 048.
- 55. Pal A K, Sahu K C. et al. (2024). Collision of two drops moving in the same direction. In Physics of Fluids (Vol. 36, Issue 1). https://doi.org/10.1063/5.0189168.
- 56. Pillai D S & Sahu K C. (2024). Universal scaling law for electrified sessile droplets on a lyophilic surface. In Physical Review E (Vol. 109, Issue 1, pp. 37–41). https://doi.org/10.1103/PhysRevE.109.L013101.
- 57. Rudolph M L, Sahu K C. et al. (2024). Bubble ascent and rupture in mud volcanoes. In Royal Society Open Science (Vol. 11, Issue 7). https://doi.org/10.1098/rsos.231555.
- 58. Inapakurthi R, kiran, & Mitra K. (2024). Towards Faster Multi-Objective Surrogate Optimization using SVR: A Casting Case Study. In Transactions of the Indian Institute of Metals (Vol. 77, Issue 12, pp. 4345–4354). https://doi.org/10.1007/s12666-023-03060-7.
- https://doi.org/10.1007/s12666-023-03060-7.

 59. Mahadevan J, Mitra K, et al. (2024). Towards Fluorescent-Tag-Less Viral Titration: Automated Estimation of Cell-Size Distribution and Infection Level from Phase-Contrast Microscopy Using Deep Learning and Transfer Learning. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. https://doi.org/10.1109/EMBC53108.2024.10782022.
- Mahadevan J, Mitra K, & Giri L. (2024). Nonviral Platform for Expression of Recombinant Protein in Insect Cells. In Methods in Molecular Biology (Vol. 2829, pp. 289–300). https://doi.org/10.1007/978-1-0716-3961-0 23.
- 61. Panghal R, Mitra K, et al. (2024). Study of gravitational sedimentation of two flexible circular shaped particles using Immersed Boundary Method. In Chinese Journal of Physics (Vol. 88, pp. 647–669). https://doi.org/10.1016/j.ciph.2024.01.031. Paul G P, Nagajyothi V, & Mitra K. (2024a).
- 62. Computational approach for copolymerization of lactide with lactone (5HDON) inimer. In Canadian Journal of Chemical Engineering. https://doi.org/10.1002/cjce.25548.
- 63. Paul G P, Nagajyothi V, & Mitra K. (2024b). Integration of Neural Networks and First-Principles Model for Optimizing l-Lactide Branched Polymerization. In Journal of Chemical Theory and Computation (Vol. 20, Issue 24, pp. 11058–11067). https://doi.org/10.1021/acs.jctc.4c01347.
- 64. Tadepalli A & Mitra K. (2024). Satellite Image based Crop Classification Using Convolutional Autoencoder. In GECCO 2024 Companion—Proceedings of the 2024 Genetic and Evolutionary Computation Conference Companion (pp. 615–618). https://doi.org/10.1145/3638530.3654383.
- 65. Ande S, Giri L, et al. (2024). Robust entropy rate estimation for nonstationary neuronal calcium spike trains based on empirical probabilities. In Journal of Neural Engineering (Vol. 21, Issue 5). https://doi.org/10.1088/1741-2552/ad6cf4.
- 66. Dark C, Giri L, et al.(2024). Mitochondrial fusion and altered beta-oxidation drive muscle wasting in a Drosophila cachexia model. In EMBO Reports (Vol. 25, Issue 4, pp. 1835–1858). https://doi.org/10.1038/s44319-024-00102-z.

- 67. Das S, Giri L, & Majumdar S. (2024). Interaction-Based Perspective for Designing Polymer Biomaterial: A Strategic Approach to the Chitosan-Glycerophosphate System. In ACS Biomaterials Science and Engineering (Vol. 10, Issue 7, pp. 4359–4373). https://doi.org/10.1021/acsbiomaterials.4c00723.
- 68. Dhyani V, Giri L, et al.(2024). A Pipeline for Dynamic Analysis of Mitochondrial Content in Developing T Cells: Bridging the Gap Between High-Throughput Flow Cytometry and Single-Cell Microscopy Analysis. In Methods in Molecular Biology (Vol. 2800, pp. 167–187). https://doi.org/10.1007/978-1-0716-3834-7_12.
- 69. Mahadevan J, Giri L, et al. (2024). Towards Fluorescent-Tag-Less Viral Titration: Automated Estimation of Cell-Size Distribution and Infection Level from Phase-Contrast Microscopy Using Deep Learning and Transfer Learning. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. https://doi.org/10.1109/EMBC53108.2024.10782022.
- Mahadevan J, Mitra K, & Giri L. (2024). Nonviral Platform for Expression of Recombinant Protein in Insect Cells. In Methods in Molecular Biology (Vol. 2829, pp. 289–300). https://doi.org/10.1007/978-1-0716-3961-0 23.
- Mallick A, Giri L, et al.(2024). AI-based 3-Lead to 12-Lead ECG Reconstruction: Towards Smartphone-based Public Healthcare. In 2024 IEEE International Conference on E-Health Networking, Application and Services, HealthCom 2024. https://doi.org/10.1109/HEALTHCOM60970.2024.108
 80752
- 72. Neelapala S D, Giri L, et al. (2024). Improved Segmentation of Confocal Calcium Videos of Hela Cells Using Deep-Learning-Assisted Watershed Algorithm. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS.
 - https://doi.org/10.1109/EMBC53108.2024.10781812.
- 73. Neelapala S D, Jana S & Giri L. (2024). U-Net-based HeLa Cell Segmentation with Zero Manual Labeling using DBSCAN-Generated Annotations. In 2024 IEEE International Conference on E-Health Networking, Application and Services, HealthCom 2024. https://doi.org/10.1109/HEALTHCOM60970.2024.108 80723.
- 74. Srikanth D, Giri L, et al. (2024). Next-Generation Teleophthalmology: AI-enabled Quality Assessment Aiding Remote Smartphone-based Consultation. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS.
- https://doi.org/10.1109/EMBC53108.2024.10782045.
 75. Ankireddy P R, Mangadoddy N, et al. (2024). Comparative Studies of Experimental and Numerical Investigations of Fluid Flow and Particle Separation of High-Gravity Spiral Concentrators. In Industrial and Engineering Chemistry Research (Vol. 63, Issue 27, pp. 12177–12198).
 - https://doi.org/10.1021/acs.iecr.4c00769.
- 76. Kopparthi P, Mangadoddy N, et al. (2024). Column flotation hydrodynamics operating in the heterogeneous regime estimated by electrical resistance tomography and multi-phase CFD model. In International Journal of Coal Preparation and Utilization.
- https://doi.org/10.1080/19392699.2024.2382781.

 77. Mittal A, Kumar M, & Mangadoddy N. (2024). A coupled CFD-DEM model for tumbling mill dynamics—Effect of lifter profile. In Powder Technology (Vol. 433).
- https://doi.org/10.1016/j.powtec.2023.119178.

 78. Mittal A, Mangadoddy N, & Banerjee R. (2024).

 Advances in granular flow modeling: GPU-based multisphere DEM approach and tumbling mill dynamics. In

- Powder Technology (Vol. 444). https://doi.org/10.1016/j.powtec.2024.120024.
- Sudikondala P, Mangadoddy N, et al. (2024). CFD Modelling of the Spiral Concentrator at Moderate Feed Solids Content-Prediction of Particle Segregation. In Transactions of the Indian Institute of Metals (Vol. 77, Issue 12, pp. 4193–4204). https://doi.org/10.1007/s12666-023-03017-w.
- Vadlakonda B, Kopparthi P, & Mangadoddy N. (2024). Numerical modelling of two-phase flow hydrodynamics of column flotation—Validation against ERT data. In International Journal of Coal Preparation and Utilization (Vol. 44, Issue 9, pp. 1378–1413). https://doi.org/10.1080/19392699.2023.2280659.
- 81. Gulati S, Jampana P, & Sastry C S. (2024a). A Comparative Study on Performances of Adaptive and Nonadaptive Sparse Solvers for Electrical Impedance Tomography. In Communications in Computer and Information Science: Vol. 2011 CCIS (pp. 458–467). https://doi.org/10.1007/978-3-031-58535-7_38.
- 82. Gulati S, Jampana P, & Sastry C S. (2024b). Series solution and sensitivity analysis of central disc-shaped objects in electrical impedance tomography. In Physica Scripta (Vol. 99, Issue 11). https://doi.org/10.1088/1402-4896/ad72a5.
- Kandukuri K R, Sucheendran M M & Jampana P. (2024). Detailed Study of Cavity Features and Air Entrainment Due to the Initial Impact of Plunging Jet Flows. In Industrial and Engineering Chemistry Research (Vol. 63, Issue 43, pp. 18586–18598). https://doi.org/10.1021/acs.iecr.4c01232.
- 84. Das S, Mahata K, Patne R Kumar S & Rana J. (2024). Unsteady solute dispersion in large arteries under periodic body acceleration. In Physics of Fluids (Vol. 36, Issue 10). https://doi.org/10.1063/5.0227338.
- 85. Dixit G,Bukhari S F & Patne R. (2024). Linear dynamics of a thick liquid layer subjected to an oblique temperature gradient. In Journal of Fluid Mechanics (Vol. 987). https://doi.org/10.1017/jfm.2024.409.
- 86. Patne R. (2024). Effect of inhaled air temperature on mucus dynamics in the proximal airways. In Journal of Fluid Mechanics (Vol. 978). https://doi.org/10.1017/jfm.2023.1030.
- 87. Rana J Das P, Sarifuddin Mandal P K & Patne R. (2024). Dispersion of a non-uniform solute slug in pulsatile viscoelastic fluid flow. In Physics of Fluids (Vol. 36, Issue 9). https://doi.org/10.1063/5.0228723.
- 88. Daware S V, Mondal R, et al. (2024). Synthesis and Characterization of Monolayer Colloidal Sheets. In Langmuir (Vol. 40, Issue 44, pp. 23198–23208). https://doi.org/10.1021/acs.langmuir.4c02262.
- 89. Basu T, Das S & Majumdar S. (2024). Elucidating the influence of electrostatic force on the re-arrangement of H-bonds of protein polymers in the presence of salts. In Soft Matter (Vol. 20, Issue 10, pp. 2361–2373). https://doi.org/10.1039/d3sm01440a.
- Basu T Goswami D & Majumdar S. (2024). Fabrication of crosslinker free hydrogels with diverse properties: An interplay of multiscale physical forces within polymer matrix. In iScience (Vol. 27, Issue 11). https://doi.org/10.1016/j.isci.2024.111227.
- 91. Das S Basu T & Majumdar S. (2024a). Electrostatic-Dominated Conformational Fluctuations and Transition States of Phase Separation in Charge-Balanced Protein Polymer. In ACS Macro Letters (Vol. 13, Issue 1, pp. 34–39). https://doi.org/10.1021/acsmacrolett.3c00625.
- 92. Das S Basu T & Majumdar S. (2024b). Molecular interactions of acids and salts with polyampholytes. In Journal of Chemical Physics (Vol. 160, Issue 5). https://doi.org/10.1063/5.0190821.
- 93. Das S Giri L & Majumdar S. (2024). Interaction-Based Perspective for Designing Polymer Biomaterial: A Strategic Approach to the Chitosan-Glycerophosphate System. In ACS Biomaterials Science and Engineering

- Issue pp. https://doi.org/10.1021/acsbiomaterials.4c00723.
- 94. Das S & Majumdar S. (2024a). An Experimentally Derived Prediction Model for Diffusion and Electrostatically Controlled Physical Interactions of Polyampholytes and Salts. In ChemistrySelect (Vol. 9, Issue 31). https://doi.org/10.1002/slct.202401482
- 95. Das S & Majumdar S. (2024b). Enhancing the Properties of Self-Healing Gelatin Alginate Hydrogels Mediated Hofmeister Electrostatic Effect. In (Vol. ChemPhysChem Issue 1). https://doi.org/10.1002/cphc.202300660.
- 96. Panigrahi S K, Das S, & Majumdar S. (2024a). A comparative analysis of PLA and PCL microparticles for hydrophilic and hydrophobic drugs. In Journal of Microencapsulation (Vol. 41, Issue 8, pp. 804-817). https://doi.org/10.1080/02652048.2024.2423631
- 97. Panigrahi S K, Das S, & Majumdar S. (2024b). Unveiling the potentials of hydrophilic and hydrophobic polymers in microparticle systems: Opportunities and challenges in processing techniques. In Advances in Colloid and Interface Science (Vol. 326). https://doi.org/10.1016/j.cis.2024.103121
- 98. Arunachalam S, Dixit H N, & Samavedi S. (2024). Establishment of Unique Cone Shapes and Universal Shape Parameters toward Predicting Fiber Diameter in https://doi.org/10.1016/j.indcrop.2024.119626
 Polymer Electrospinning. In Industrial and Engineering 112. Kumar P, Maity S K, & Shee D. Chemistry Research (Vol. 63, Issue 30, pp. 13238-13251). https://doi.org/10.1021/acs.iecr.4c01534.
- 99. Joy N, Venugopal D, Gopinath A M, & Samavedi S. (2024). Connecting in situ cone/jet length in electrospinning to fiber diameter and drug release for the rational design of electrospun drug carriers. In Chemical Engineering Science (Vol. https://doi.org/10.1016/j.ces.2024.120168.
- 100. Venugopal D, Vishwakarma S, Sharma N, Kaur I, & Samavedi S. (2024). Evaluating the protective effects of dexamethasone and electrospun mesh combination on primary human mixed retinal cells under hyperglycemic stress. In International Journal of Pharmaceutics (Vol. 651). https://doi.org/10.1016/j.ijpharm.2024.123768.
- 101. Narayanan A K, KaushiK D & Gupta S. (2024). C—C Bond Hydrogenation vs C-O Bond Hydrogenolysis of Furfuryl Alcohol on Ru: A DFT Study. In Journal of Physical Chemistry C (Vol. 128, Issue 43, pp. 18265-18272). https://doi.org/10.1021/acs.jpcc.4c05369.
- 102. Shenoy C S, Gupta S, et al. (2024). Rational design of bimetallic alloys for effective hydrodechlorination of 4chlorophenol. In New Journal of Chemistry (Vol. 48, 7799-7809). 17. https://doi.org/10.1039/d3nj05232j.
- 103. Tikoo A, Gupta S, & Meduri P. (2024). Property tunable two-dimensional zinc sulfoselenides as photocatalysts enhanced hydrogen peroxide production: Experimental and DFT analyses. In Journal of Catalysis (Vol. 438). https://doi.org/10.1016/j.jcat.2024.115684.
- 104. Agarwalla S, Singh S K, & Duraiswamy S. (2024). A surface acoustic wave-based micropiezoactuator: A tool for additive- and label-free cell lysis. In Biomicrofluidics (Vol. 18, Issue 5). https://doi.org/10.1063/5.0209663
- Agarwalla S, Singh S K, Ibrahim M A, Noothalapati H, & 105. Duraiswamy S. (2024). Antimicrobial Coatings: Current Mechanisms, Challenges, and Opportunities. In Functional Coatings: Innovations and Challenges. https://www.scopus.com/inward/record.uri?eid=2s2.085193638172&partnerID=40&md5=89778015948 7a60f51d772aff35b16b6.
- 106. Amornraksa S, Maity S K, et al. (2024). AOPC-based control for efficient uncertainty mitigation in UASB wastewater treatment with multiple manipulated variables and distributed biomass integration. In Computers and Chemical Engineering (Vol. 187). https://doi.org/10.1016/j.compchemeng.2024.108735.

- 4359-4373). 107. Bhowmick T K, Gayen K, & Maity S K. (2024). Nanobiotechnology: Applications of Nanomaterials in Biotechnology, Medicine and Healthcare. Nanobiotechnology: Applications of Nanomaterials in Medicine Biotechnology, and https://doi.org/10.1201/9781003305583.
 - Biswas B, Maity S K, et al. (2024). Importance of for Biological Applications. 108. Nanomaterials Nanobiotechnology: Applications of Nanomaterials in Biotechnology, Medicine and Healthcare. https://doi.org/10.1201/9781003305583-1
 - 109. Hafyan R H, Maity S K, et al. (2024a). Bread waste valorization: A review of sustainability aspects and challenges. In Frontiers in Sustainable Food Systems (Vol. 8). https://doi.org/10.3389/fsufs.2024.1334801
 - 110. Hafyan R H, Maity S K, et al. (2024b). Integrated biorefinery for bioethanol and succinic acid coproduction from bread waste: Techno-economic feasibility and life cycle assessment. In Energy Conversion and Management https://doi.org/10.1016/j.enconman.2023.118033.
 - 111. Jose D, Maity S K, et al. (2024). Effective deep eutectic solvent pretreatment in one-pot lignocellulose biorefinery for ethanol production. In Industrial Crops (Vol. and **Products**
 - Hydrodeoxygenation of stearic acid to produce green diesel over alumina supported CoMo catalysts: Role of Co/Mo mole ratio. In Renewable Energy (Vol. 237). https://doi.org/10.1016/j.renene.2024.121700.
 - 113. Kumar V, Maity S K, et al. (2024). Recent advances in bio-based production of top platform chemical, succinic acid: An alternative to conventional chemistry. In Biotechnology for Biofuels and Bioproducts (Vol. 17, Issue 1). https://doi.org/10.1186/s13068-024-025082.
 - 114. Rahman M Z, Maity S K, et al. (2024). Mechanism-Based Thermodynamic Analysis for One-Step and Two-Step Ethanol-to-1,3-Butadiene Conversion Processes. In Industrial and Engineering Chemistry Research (Vol. 63, Issue pp. 20697-20713). https://doi.org/10.1021/acs.iecr.4c02681
 - 115. Shrirame B S & Maity S K. (2024). Hydrodeoxygenation of C15 furanic precursor over mesoporous NiMo-ZrO2 composite catalysts for the production of sustainable aviation fuel. In Catalysis Today (Vol. 442). https://doi.org/10.1016/j.cattod.2024.114917.
 - 116. Tiwari B R, Maity S K, et al. (2024). Comprehensive techno-economic and environmental assessment for 2,3-butanediol production from bread waste. In Chemical Engineering Journal (Vol. https://doi.org/10.1016/j.cej.2024.157003
 - 117. Vanapalli K R, Maity S K, et al. V. (2024). Comparative Life Cycle Assessment of Glycerol Valorization Routes to 1,2- and 1,3-Propanediol Based on Process Modeling. In ACS Sustainable Chemistry and Engineering (Vol. 12, Issue 40. 14716-14731). pp. https://doi.org/10.1021/acssuschemeng.4c04691.
 - 118. Varma A R, Maity S K, et al.(2024). Techno-economic viability of bio-based methyl ethyl ketone production from sugarcane using integrated fermentative and chemo-catalytic approach: Process integration using pinch technology. In Chemical Engineering Journal (Vol. 489). https://doi.org/10.1016/j.cej.2024.151297

Funded Research Projects:

- 1. Alan Ranjit Jacob; Balaji Iyer Vaidyanathan Shantha; Mahesh Ganesan; Modelling and establishment of various process parameters for PCS fibers and modelling of PCS-SiC conversion process; 341.98 L.
- Alan Ranjit Jacob; Rheological Signatures and Structure-Property Underpinning of Soap- Polymer interactions -Skin Cleansing; 33.71 L. [S357].

- 3. Anand Mohan; An Efficient Framework for Simulating Blood Flow in a Stenosed Channel; 33.48 L. [G714].
- 4. Balaji Iyer Vaidyanathan Shantha; Effect of Functional Anisotropy on Mechanical Properties of Polymer Nanocomposites; 37.63 L. [G694].
- 5. Chandrasekhar Sharma; CLEANZ COE; 9800.00 L. [G795].
- 6. Chandrasekhar Sharma; Financial assistance for organizing EAC-WMT mid-term evaluation of ongoing projects; 9.87 L. [G722].

 7. Chandrasekhar Sharma; Brainstorming session on
- advanced materials; 31.80 L. [S342].
- 8. Debaprasad Shee; A combined experimental and theoretical approach towards rational design of metal catalysts for supported the reductive depolymerization of corncob lignin to produce bulk aromatic chemicals; 8.00 L. [G416].
- Debaprasad Shee; CoE: Clean coal energy and net zero; 5000.00 L. [G795].
- 10. Kishalay Mitra; Application of Deep learning techniques for Robust Optimal Design of Integrated Water networks towards sustainable water management in
- 11. Petroleum Refineries; 63.60 L. [G644]. Kishalay Mitra; Clean Coal Energy & Net Zero (CLEANZ CoE); 9800.00 L. [G795].
- 12. Kishalay Mitra; Development of an On-board Spray Controller Model for UAVs Using AI for Precision Agricultural Application; 40.18 L. [G436].
- 13. Kishalay Mitra; A Combined Experimental and Theoretical Approach Towards Rational Design of Supported Metal Catalysts for the Reductive Depolymerization of Corncob Lignin to Produce Bulk
- 14. Aromatic Chemicals; 40.18 L. [G416]. Kishalay Mitra; Development of a Compression Ignition Engine working on Ammonia/Natural Gas & Biodiesel Blends; 100.00 L.
- 15. Kishalay Mitra; The Experimental Investigation and Numerical Modeling of Heat Absorption Efficacy of Additive Enhanced Endothermic Rocket Fuels; 230.00 L. [S253].
- 16. Kishalay Mitra; Prediction of Microstructure & Correlating it with Mechanical Properties for all grades of steel rolled in HSM; 49.40 L. [S219].
- 17. Kishalay Mitra; Portable Imaging Solutions Towards Affordable Healthcare: Microfluidic Devices for the Detection of Disease-specific Proteins; 68.80 L. [S369].
- 18. Lopamudra Giri; Sustained dual drug release of Timolol Maleate and Latanoprost for Glaucoma Treatment: In vivo studies towards cross-linker free drug-polymer formulation for usage as eye drop; 188.74 L. [G796].
- 19. Lopamudra Giri; Portable Imaging Solutions towards affordable healthcare: Microfluidic devices for the detection of disease specific proteins; 25.00 L. [G709].

- 20. Mahesh Ganesan; Rheological Signatures and Structure-Property Underpinning of Soap-polymer Interactions -Skin Cleansing; 33.72 L. [S357].
- 21. Narasimha Mangadoddy; Synergizing Excellence: Fostering a Bilateral Critical Minerals Research Hub between India and Australia; 640.00 L. [P3941].
- 22. Narasimha Mangadoddy; CFD modelling of large-scale DE & CVD hydrocyclones; 52.21 L. [S372].
- 23. Narasimha Mangadoddy; Multi-phase CFD modelling of large-scale dense medium cyclones; 28.78 L. [S371].
- 24. Narasimha Mangadoddy; Development of Cold Plasma treatment-based technology; 15.00 L. [S315].
- 25. Saptarshi Majumdar; Liquid Liquid Phase Transitions in Cells; 85.00 L. [G608].
- 26. Saptarshi Majumdar; CLEANZ CoE; 9.8 L. [G795].
- 27. Saptarshi Majumdar; ICMR Project in Glaucoma Eye Drops; 3.7 L. [G796].
- 28. Satyavrata Samavedi; Implantable dual drug releasing scaffolds to reprogram the tumor immune milieu for robust cancer immunotherapy; 53.64 L. [G774].
- 29. Suhanya Duraiswamy; Microfluidics for antimicrobial susceptibility testing; 19.41 L. [G696].
- 30. Suhanya Duraiswamy; Bacterial Cellulose based Microfluidic Point-of-Care Device for Susceptibility Testing; 52.64 L. [G692].
- 31. Sunil Kumar Maity; Production of natural edible pigments (chlorophyll) from isolated microalgae: Pilot scale study and techno-economic analysis; 0.00 L. [CRG/2023/00383].
- 32. Vinod M Janardhanan; CFD analysis of multiphase flow field and thermal balance in Mg fused salt electrolytic cell; 0.00 L. [G572].
- 33. Vinod M Janardhanan; Development characterization of unitized regenrative fuel cells for high temperature operation; 9.00 L. [G415].

Awards & Recognitions:

- Chandra Shekhar Sharma has been elected as an INSA Associate Fellow (IAF) for 2025.
- Giridhar Madras, Kirti Chandra Sahu, Kishalay Mitra, Narasimha Mangadoddy and Sunil Kumar Maity have been featured in the Stanford top 2% scientists list for the year 2024.
- Kirti Sahu has been invited to join the Editorial Board, Industrial & Engineering Chemistry Research (ACS Publications).
- 4. Kirti Sahu has been invited to join the External Affairs Committee - American Physical Society, Division of Fluid Dynamics.
- Narasimha Mangadoddy received the prestigious National Geoscience Award - 2023 for his contributions to Mineral Benefaction and Sustainable Mineral Development.

Research Highlights:

CompFlu 2024

CompFlu 2024 - a flagship scientific conference that brings together the vibrant and rapidly growing soft matter research community from India along with speakers from abroad was conducted in December 2024 at IIT Hyderabad. The conference had a participation of over 500 people, including academicians, industry scientists as well as international researchers. The topic presented in this conference spanned a broad gamut of areas in soft matter research, including experimental, theoretical, simulations as well as material development studies. Unique to this version of CompFlu was a panel discussion on academic - industry collaboration and an industry-led workshop for students on preparing for industrial research career pathways. The event was hosted in the LHC with events spread across the rich and unique campus of IITH. Dr Alan Jacob, Dr Satyavrata Samavedi, Dr Ranajit Mondal, Dr Ramkarn Patne, Dr Suhanya Duraiswamy, Dr Balaji Iyer and Dr Mahesh Ganesan - faculty members from the Department of Chemical Engineering were key members of the organizing committee. The event received a resounding appreciation from the soft matter community

System Biology Seminar Series

The Department of Chemical Engineering has taken an effort in arranging a Lecture series on Systems Biology. The Systems Biology Seminar series is aimed at providing a better understanding of analytical tools in the area of Systems Biology for students and researchers. The seminar series includes the talks on "Integrated computational modeling and experimental validation of inflammatory response in mouse macrophages", "From Complexity to Coherence: Leveraging Investigative Physiology® AI for Precision Health", "Fundamental limits of spatially resolved cell-state decoding of the circadian clock from single-cell gene expression", and Modelling HIV dynamics and control: Learning in vivo immune responses using ex vivo data ".

Workshop on Applications of Statistics and ML in Life Sciences

The thematic focus of the workshop is on statistical methods and learning algorithms used in the domain of Systems Biology. The topics covered in the workshop "Workshop on Applications of Statistics and ML in Life Sciences" is as follows: Variational Autoencoder, Principles of variational inference, Estimation of Information Theoretic Quantities, Computer vision for life Science, Encoder and decoder, Stochastic Differential Equations, and Optimization, Hyperparameter tuning in Neural Network.

Centre of Clean Coal Energy & Net Zero (CLEANZ), An IITH-CIL Initiative

India ranks fifth in the world in terms of coal reserves and is the world's second largest coal producer and one of the largest coal reserves in the world. Coal is a fundamental asset in India's energy ecosystem and economy. However, most of this coal reserve in India is of low-rank coal with high ash content. This coal reserve has the potential to serve as the bedrock of India's energy security for several centuries.

However, due to environmental concerns and India's global commitment towards Greenhouse Gas Emissions and Net Zero, the development of clean coal technologies and diversification in coal utilization is of vital national importance amid a domino effect on India's energy markets and economy.

Towards this goal, the Centre of Clean Coal Energy C Net Zero (CLEANZ) is being proposed, which will work towards the above-mentioned objectives. This Centre of Excellence (CoE) will be a joint initiative between IIT Hyderabad and Coal India Ltd.

About CLEANZCoE and its Focused Areas

As Coal India is the largest stakeholder in this sector within the country, this collaborative effort is expected to yield the development of high-impact technologies towards sustainable growth of the country.

The broad thematic areas where the proposed CoE will focus are:

- Enhanced Coal Bed Methane/Coal Mine Methane Recovery
- Carbon Capture Technologies Mineral Beneficiation, REE & Critical Mineral
- Gasification & Syngas Utilization
- Coal Liquefaction & Pyrolysis
- · Circular economy and waste management
- AI ML applications
- Energy efficiency and conservation
- Development of Novel Carbon Materials

A set of 16 projects is being proposed that will be executed in a period of 5 years. These projects are divided into three groups:

Phase-1: The projects where a proof of concept already exists and will be delivered within 3 years.

Phase 2, type A: The projects will include exploratory projects that are expected to have a high impact on clean coal technology and net-zero applications.

Phase-2, type B: A few additional projects in the early stages of research have also been proposed under this CoE. These will be initiated following a review by an expert committeefrom NaCCER or the CIL Apex Committee. Additional funding will be required to carry out these projects.

All the projects will be delivered at a high TRL of 5 or 6.

This centre will be supported by CIL with an initial funding of approximately Rs 110 Crs spanning over a period of 5 years. This funding will include both recurring and non-recurring expenditure of the centre.

Waste to Wealth through Smart Supply Chains: GOKUL's Bold Leap- Prof. Kishalay Mitra

Turning bio-waste into biofuel is a powerful step toward Waste to Wealth (W2W) creation. Despite 70% of India's population depending on agriculture and forests, the bioenergy sector remains underutilized. The national target to blend 20% biofuels with fossil fuels acts as a catalyst for this transformation.

The Global Optimization and Knowledge Unearthing Laboratory (GOKUL) approaches this challenge from a supply chain (SC) network design perspective—a unique and comprehensive method. GOKUL successfully designed a nationwide biofuel SC for achieving 20% blending of bioethanol and biodiesel using second-generation biomass for the 2018–2026 horizon. With dual objectives of maximizing net present value (NPV) and minimizing greenhouse gas emissions, this mixed-integer linear programming problem incorporates uncertainties in demand, supply, and price using robust optimization.

In parallel, GOKUL is also redefining smart city development through e-waste-based closed-loop SC design. Applying the 5R principle (Refuse, Reduce, Reuse, Repurpose, Recycle), a ten-layered, pull-based SC network for Pune was developed for the 2014–2025 period. This multi-site, multi-echelon model optimizes the location of collection, repair, dismantling, recycling, and disposal centers, achieving a staggering 98.49% reduction in e-waste carbon emissions.

GOKUL proudly acknowledges collaboration with CMET Hyderabad through the IITH-CMET Master's program on E-Waste Resource and Engineering Management. GOKUL continues to lead India's W2W journey with optimization-powered innovation.

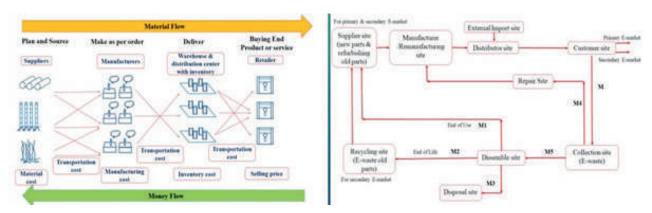


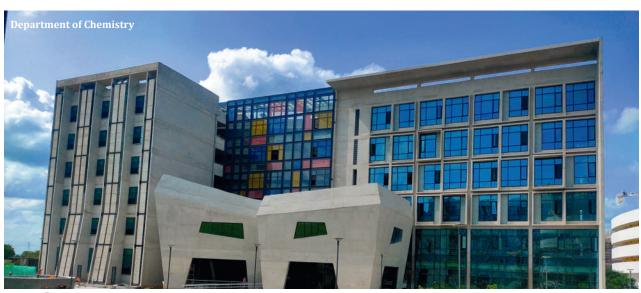
Figure. A. Bio-Supply Chain Network Design B. Closed loop Supply chain for e-Waste developed by researchers @ GOKUL (Prof. Kishalay Mitra's research lab)

Prof. Narasimha Mangadoddy:

Developed the GPU based 3D Discrete Element Model (DEM) solvers and tested for spherical and non-spherical particle dynamics recently. Specific applications in Mineral processing such as tumbling mills, hopper flow and gravity sedimentations are modelled using these DEM models & validated. An improved understanding these processes for their optimum performance elucidated.

An exploratory work was carried out to recovery of galena, sphalerite from the lead/zinc tailings by fine and ultrafine grinding & classification and novel ultrasonic treated shear floc-flotation under the Ministry of Mines' project during 2022-24. A galena concentrate having 1.42% total Pb grade with total recovery 50.17% is found as at grind size of 58 microns by the Ball mill. In Zinc flotation ultrasound treatment of 10 min had a positive impact with the overall grade of 5.73% and 58.10% recovery. Combination of collectors PEX and PAX had a positive impact on Zinc percentage in Zinc concentrate and but was detrimental on increasing the collectors dosage further. Nearly 92% of feed silver component (minor metal) is recoverable with this process.

Effect of non-spherical particles on tumbling mill dynamics has been investigated by experiments. For spherical particles, increasing mill speed and volume filling led to higher shoulder angles and power draw, while toe angle decreases with the filling. The center of circulation shifted upward with both speed and filling. At different aspect ratio Non-spherical particles (cubes, cuboids, cylinders, oblate) exhibited more complex behaviors. Higher aspect ratio shows more interlocking and friction than lower aspect ratio, resulting in higher shoulder and toe angles and higher power draw.


Department of Chemistry

The Chemistry Department started functioning from the very first day of the inception of IITH in 2008. Today the department has flourished into a state-of-the-art hub for basic and applied chemistry research. Chemistry is also one of the largest department at IITH in terms of number of PhD students, faculties and publications. The Department is committed to excellence in chemistry by establishing research programs for meeting scientific and technological challenges faced by the ever-changing, science-centered world of the 21st century. The Department of Chemistry is actively researching cutting-edge areas of Inorganic, Organic, Physical, and Theoretical Chemistry. Our Ph.D. program has been designed with an appropriate combination of coursework and research activities and faculty advisors' guidance. At the completion of the Ph.D. program, students should have a professional command of the fundamentals of their disciplines and the ability to initiate independent and creative research in their fields. With the help of non-teaching staff, we provide rigorous training to all students to build the foundation of modern chemistry. Both B. Tech. and M.Sc. programs are designed to have about 30 % hands in experience in research and core laboratory in their coursework, which enables them to achieve their career goals.

The department building has a unique architecture and a Periodic table look-alike frontier. The department owns basic to cutting-edge research instruments like 400 and 600 MHz NMR, XPS, In-situ XRD, Raman, AFM, ESR, HRMS, Single Crystal-XRD, CD, Fluorescence/lifetime and Raman spectrometers, atomic force microscopy (with conductive, CCD, Potentiostats-Galvanostats, glove boxes, Coin and pouch cell lithium- sodium-ion battery fabrication and testing facility, Gas Chromatography-Mass spectrometer, HPLC, high-resolution lasers, etc.

The department invites experts from around the world periodically for seminars and collaborations. The department organises an in-house symposium and an alumni day every year. Our alumni are spread across the globe, serving several non-academic and academic responsibilities, proudly maintaining a strong tie with the department, and contributing vividly to the progress of the nation. The productive and substantial experience at all levels of the programs will help the students have a pronounced career.

For more information, please visit: https://chemistry.iith.ac.in/

Faculty Head of the Department

Surendra Kumar Martha
PhD - IISc Bangalore
Professor
Profile page:
https://iith.ac.in/chy/martha/

Professor

Bhabani Shankar Mallik PhD - IIT Kanpur Profile page: https://iith.ac.in/chy/bhabani/

C Malla Reddy
PhD - School of Chemistry, University of
Hyderabad
Profile page:
https://www.iith.ac.in/chy/cmreddy/

Deepa M PhD - Delhi University Profile page: https://iith.ac.in/chy/mdeepa/

Faiz Ahmed Khan PhD - University of Hyderabad Profile page: https://iith.ac.in/chy/faiz/

Prabusankar G PhD - IIT Bombay Profile page: https://iith.ac.in/chy/prabu/

Satyanarayana G PhD - IISc Bangalore Profile page: https://iith.ac.in/chy/gvsatya/

Subrahmanyam Ch PhD - IIT Madras Profile page: https://iith.ac.in/chy/csubbu/

Tarun Kanti Panda PhD - Free University - Berlin, Germany Profile page: https://iith.ac.in/chy/tpanda/

Ashutosh Kumar Mishra PhD - IIT Delhi Profile page: https://www.iith.ac.in/chy/akm/

Jai Prakash PhD - IIT Delhi Profile page: https://iith.ac.in/chy/jaiprakash/

Sivakumar Vaidyanathan PhD - IIT Madras Profile page: https://www.iith.ac.in/chy/vsiva/

Somnath Maji PhD - IIT Bombay Profile page: https://iith.ac.in/chy/smaji/

Surajit Maity PhD - IIT Bombay Profile page: https://iith.ac.in/chy/surajitmaity/

Venkata Rao Kotagiri PhD - JNCASR, Bangalore Profile page: https://iith.ac.in/chy/kvrao/

Abhijit Sau PhD - Bose Institute, Kolkata Profile page: https://iith.ac.in/chy/asau/

Anup Bhunia PhD - National Chemical Laboratory (NCL) Pune Profile page: https://www.iith.ac.in/chy/abhunia/

Annadhasan M PhD - University of Madras Profile page: https://iith.ac.in/chy/annadhasan/

Arup Mahata PhD - IIT Indore Profile page: https://iith.ac.in/chy/arup/

Debasish Koner PhD - IIT Guwahati Profile page: https://iith.ac.in/chy/debasishkoner/

Kishore Natte PhD - Technical University of Berlin, Germany Profile page: https://iith.ac.in/chy/kishore.natte/

Koyel Banerjee Ghosh PhD - CSIR-Central Glass & Ceramic Research Institute, West Bengal Profile page: https://iith.ac.in/chy/koyel/

Krishna Gavvala PhD - IISER Pune Profile page: https://iith.ac.in/chy/kgavvala/

Narendra Kurra PhD - JNCASR, Bangalore Profile page: https://iith.ac.in/chy/narendra/

Priyadarshi Chakraborty PhD - Indian Association for the Cultivation of Science, Kolkata Profile page: https://iith.ac.in/chy/priyadarshi/

Saurabh Kumar Singh PhD - IIT Bombay Profile page: https://iith.ac.in/chy/sksingh/

Sudarsanam Putla PhD - CSIR-IICT, Hyderabad Profile page: https://iith.ac.in/chy/sudarsanam.putla/

Tarali Devi PhD - Ewha Womans University, Seoul, South Korea Profile page: https://www.iith.ac.in/chy/taralidevi/

Dr P V Srinivas Chief Technology Officer, Granules India Limited, Hyderabad, Telangana, India

Dr Osamu Tsutsumi Professor of Polymer Materials Chemistry, Dept. of Applied Chemistry, Ritsumeikan University, Japan Profile page: https://www.ritsumei.ac.jp/lifescienc e/achem/tsutsumi/eng/people/Osa mu-Tsutsumi.html

Prof Vadapalli Chandrasekhar
Tata Institute of Fundamental Research
Hyderahad

Profile page:

https://www.tifrh.res.in/~vc/

Prof Vasudevanpillai Biju
Hokkaido University
Profile page:
https://www.es.hokudai.ac.jp/englis
h/organization/profile/vasudevanpillai-biju/

Patents:

Filed:

 Ganesan Prabu Sankar; Fluorescent Enhanced Silver Triflate Nanoclusters Using Silver Triflate Precursor; 202441101142.

Published:

- Challapalli Subrahmanyam; A Non-Thermal Plasma Incinerator to Remove Dilute Volatile Organic Compounds in Indoor Concentrations; 202241039380.
- Ashutosh Kumar Mishra; A Flavin Analogue for Lysosome Tracking and Photodynamic Therapy; 202441000773.
- 3. Narendra Kurra; A Hybrid Electrodeti3C2TX.Cpdi and a Method for Preparing the Same; 202441030249.
- Venkata Rao Kotagiri; A Hybrid Electrodeti3C2TX.Cpdi and a Method for Preparing the Same; 202441030249. Challapalli Subrahmanyam; A Wound Dressing for
- Preventing Biofilm formation on a Wound; 202441036378.
- Kishore Natte; Aryl Difluoromethyl Ether Compounds and Method of Preparation Thereof; 202441071161.
- 7. M Annadhasan; Liposome of Saussurea Obvallata and Its Process of Preparation; 202441086405.
- 8. Ganesan Prabu Sankar; Co(Ii) Thione-Based Catalyst and Method of Preparation Thereof; 202441079009.

Granted:

- Surendra Kumar Martha; Corrosion-Protected Positive Grid for a Lead-Acid Battery; 201841025931.
- Ganesan Prabu Sankar; Modified PEG-400 (MPEG-AA Complex) and Uses Thereof; 202141003895.
- Ashutosh Kumar Mishra; A Pyrene Conjugated Boranil Derivative for Visualisation of Latent Fingerprints; 202441036292.
- Ashutosh Kumar Mishra; A Frequency Division Duplexer (FDD) to Facilitate Wideband Isolation of Transmitting and Receiving Frequency; 202441037093.

Book Chapters:

- 1. Maity D, Maitra S, & Deepa M. (2024). Au nanoparticles decorated textured Si with Fc/Fc+ and I-/I3- redox active gels for photoelectrochemical light harvesting. In Photoelectrochemical Engineering for Solar Harvesting.
- Kumawat S, Natte K, et al. (2024). Valorization of biorenewable glycerol by catalytic amination reactions. In Green Chemistry (Vol. 26, Issue 6, pp. 3021–3038). https://doi.org/10.1039/d3gc02699j.
- 3. Bhar M, Martha S K, et al. (2024b). Integrated technologies and novel nanostructured materials for energy storage. In Nanostructured Materials Engineering and Characterisation for Battery Applications. https://doi.org/10.1016/B978-0-323-91304-1.00015-0.
- 4. Bhar M, Martha S K, et al. (2024a). Electrochemical Mechanisms in Sodium-Ion Batteries. In Advanced Technologies for Rechargeable Batteries: Alkaline Metal Ion, Redox Flow, and Metal Sulfur Batteries: Volume 1. https://doi.org/10.1201/9781003310167-8.
- Sagar S, Panda T K, et al. (2024). Crafting sustainable solutions: Architecting biodegradable copolymers

through controlled ring-opening copolymerization. In Dalton Transactions (Vol. 53, Issue 31, pp. 12837–12866). https://doi.org/10.1039/d4dt01054j.

Publications:

- Ajitrao Kisan, D Sau A, et al. (2024). Facile access to trifluoromethyl propargyl alcohol by metal-free transfer hydrogenation and cyanation of alkynyl ketones. In Organic and Biomolecular Chemistry (Vol. 23, Issue 1,
- pp. 197–201). https://doi.org/10.1039/d4ob00844h.
 Dey S, Sau A, et al. (2024). Benzene-1,3-disulfonyl Fluoride Mediated Synthesis of Glycosyl Fluorides from Glycosyl Hemiacetals. In Organic Letters (Vol. 26, Issue 48, pp. 10351–10355). https://doi.org/10.1021/acs.orglett.4c03968.
- 3. Dey S, Thakur S, & Sau A. (2024). Glycosyl Fluorides: An Overview of Recent Synthesis and Activation. In Trends in Carbohydrate Research (Vol. 16, Issue 1, pp. 118–142).
- Dwivedi S, Dey S, & Sau A. (2024). Sugar functionalized coumarin motifs: Synthesis and applications. In Carbohydrate Research (Vol. 544). https://doi.org/10.1016/j.carres.2024.109244.
- Kisan D A, Paul I, Sau A, & Panda T K. (2024). Dimethyl Sulfoxide Promoted Quinazolinone Synthesis. In ChemistrySelect (Vol. 9, Issue 41). https://doi.org/10.1002/slct.202402809.
- 6. Kumar G S, Sau A, et al. (2024). Indium-catalyzed hydrosilylation of nitroarenes to aromatic amines. In Dalton Transactions (Vol. 54, Issue 4, pp. 1552–1559). https://doi.org/10.1039/d4dt02861a.
- Meher R K, Sau A, et al. (2024). Efficient Hydroboration of Ketones and Imines Using Amidophosphine-Borane Under Catalyst-Free Conditions. In European Journal of Organic Chemistry (Vol. 27, Issue 48). https://doi.org/10.1002/ejoc.202400985.
- Neeliveettil A, Sau A, et al. (2024). Deoxyfluorinated amidation and esterification of carboxylic acid by pyridinesulfonyl fluoride. In Chemical Communications (Vol. 60, Issue 36, pp. 4789–4792). https://doi.org/10.1039/d4cc00877d.
- Elfert J, Bhunia A & Studer A. (2024). Oxygen-free alkene hydration using nitroarenes: Diastereoselective hydration of cholesteryl acetate. In Organic Syntheses (Vol. 101, pp. 460-477). https://doi.org/10.15227/orgsyn.101.0460.
- Coccia C, Mahata A, et al. (2024). Ligand-Induced Chirality in ClMBA2SnI4 2D Perovskite. In Angewandte Chemie—International Edition (Vol. 63, Issue 10). https://doi.org/10.1002/anie.202318557.
 Das R, Mahata A, et al. (2024). Family of Chiral
- 11. Das R, Mahata A, et al. (2024). Family of Chiral Ferroelectric Compounds with Widely Tunable Band Gaps. In Chemistry of Materials (Vol. 36, Issue 4, pp. 1891–1898). https://doi.org/10.1021/acs.chemmater.3c02424.
- 12. Ghosh S, Mahata A, et al. (2024). Differences between cation and anion storage electrochemistry of graphite and its impact on the dual graphite battery. In Journal of Power Sources (Vol. 589). https://doi.org/10.1016/j.jpowsour.2023.233721.
- 13. Kudlu A, Mahata A, et al. (2024). Unravelling the structure-luminescence relationship in two-

- dimensional antimony (iii)-doped cadmium(ii) halide hybrids. In Journal of Materials Chemistry C (Vol. 13,Issue2,pp.808820).https://doi.org/10.1039/d4tc03543g.
- 14. Kumar M, Mahata A, et al. (2024). Synergetic NIR responsive plasmonic CuxS Nanodisks on Cu0 photocathodes for photo-electrochemical water splitting. In Applied Catalysis B: Environmental (Vol. 357). https://doi.org/10.1016/j.apcatb.2024.124317.
- Shamla A B, Mahata A, et al. (2024). Discerning the Structure-Photophysical Property Correlation in Zero-Dimensional Antimony(III)-Doped Indium(III) Halide Hybrids. In Journal of Physical Chemistry Letters (Vol. 15, Issue 32, pp. 8224–8232). https://doi.org/10.1021/acs.jpclett.4c01839.
- Velpandian M, Mahata A, et al. (2024). Unravelling the phase transition and electrochemical application of MoSe2 material for energy conversion and storage devices. In Applied Surface Science (Vol. 677). https://doi.org/10.1016/j.apsusc.2024.160990.
- 17. Moroni M, Mahata A, et al. (2024). Rationalizing the chiroptical behaviour of chiral hybrid metal halides: The role of composition and crystal structure. Acta Crystallographica Section a Foundations and Advances, 80(a1), e464–e464. https://doi.org/10.1107/S2053273324095354.
- 18. Moroni M, Mahata A, et al. (2024). Chiral hybrid organic-inorganic metal halides: Effect of composition and crystal structure tuning on the chiroptical properties. Acta Crystallographica Section A Foundations and Advances, 80(a1), e693–e693. https://doi.org/10.1107/S2053273324093069.
- Agrawal H G, Mishra A K, et al. (2024). Tuning the Flavin Core via Donor Appendage for Selective Subcellular Bioimaging and PDT Application. In Chemistry—A European Journal (Vol. 30, Issue 46). https://doi.org/10.1002/chem.202401483.
- Asthana S, Mishra A K, et al. (2024). Recent advances in AIEgen-based chemosensors for small molecule detection, with a focus on ion sensing. In Analytical Methods (Vol. 16, Issue 27, pp. 4431–4484). https://doi.org/10.1039/d4ay00618f.
- Mondal D, Mishra A K, et al. (2024). Bioinspired flavin analogues as organic electrode materials for supercapacitor applications. In Energy Advances (Vol. 3, Issue 7, pp. 1710–1716). https://doi.org/10.1039/d4ya00001c.
- 22. Wirtu S F, Mishra A K, et al. (2024). Ocimum basilicum and Ocimum americanum: A Systematic Literature Review on Chemical Compositions and Antimicrobial Properties. In Natural Product Communications (Vol. 19,Issue4). https://doi.org/10.1177/1934578X241247640.
- 23. Wirtu S F, Mishra A K, et al. (2024). Isolation, characterization and antimicrobial activity study of Thymus vulgaris. In Scientific Reports (Vol. 14, Issue 1). https://doi.org/10.1038/s41598-024-71012-2.
- 24. Panigrahi R & Mallik B S. (2024a). Chalcogen effects and cathodic properties of scandium-based materials for sodium-ion batteries. In Ionics (Vol. 30, Issue 8, pp. 4665–4674). https://doi.org/10.1007/s11581-024-05606-1.
- Panigrahi R & Mallik B S. (2024b). Mg-doped cathodic properties and solid-state ionic conduction in P2-type layered material for Na-ion batteries and supercapacitors. In New Journal of Chemistry (Vol. 48, Issue 5, pp. 2063–2072). https://doi.org/10.1039/d3nj04685k.
- Bezboruah J, Reddy C M, et al. (2024). Pyrazinoquinoxaline derivatives for flexible electronic devices: Effect of the mechanical properties of the crystals on device durability. In Chemical Science (Vol. 15, Issue 45, pp. 19000–19012). https://doi.org/10.1039/d4sc04157g.

- 27. Bhunia S, Reddy C M, et al. (2024). Mechanically flexible piezoelectric organic single crystals for electrical energy harvesting. In Chem (Vol. 10, Issue 6, pp. 1741–1754). https://doi.org/10.1016/j.chempr.2024.01.019.
- 28. Cotterell, N., Reddy, C. M, et al. (2025). Celebrating 10 years of #RSCPoster. In Chemical Science (Vol. 16, Issue 7, pp. 29502957).https://doi.org/10.1039/d5sc90028j.
- 29. Doonan C J & Reddy C M. (2024). Welcome from the new co-Editors-in-Chief of CrystEngComm. In CrystEngComm (Vol. 26, Issue 24, pp. 3141–3142). https://doi.org/10.1039/d4ce90063d.
- 30. Mondal A, Reddy C M, et al. (2024). Plasticization of a stiff pharmaceutical solid for better tabletability via cocrystallization: Shape synthons as supramolecular protecting groups. In Chemical Engineering Research and Design (Vol. 210, pp. 506–512). https://doi.org/10.1016/j.cherd.2024.08.042.
- 31. Mondal S, Reddy C M, & Saha S. (2024). Crystal property engineering using molecular-supramolecular equivalence: Mechanical property alteration in hydrogen bonded systems. In Chemical Science (Vol. 15, Issue 10, pp. 3578–3587). https://doi.org/10.1039/d3sc06462j.
- 32. Mudda R R, Reddy C M, et al. (2024). A zwitterionic salt-cocrystal: In vitro insights from niraparib tosylate, an anti-cancer drug. In CrystEngComm (Vol. 26, Issue 19, pp. 2463–2473). https://doi.org/10.1039/d4ce00114a.
- 33. Pathan J R, Reddy C M, et al. (2025). Single-Crystal-to-Single-Crystal Synthesis of a Polymer in Two Distinct Topologies. In Angewandte Chemie—International Edition. https://doi.org/10.1002/anie.202500646.
- 34. Mondal S, Koner D, et al. (2024). Mass Spectrometric Imaging of Anionic Phospholipids Desorbed from Human Hippocampal Sections: Discrimination between Temporal and Nontemporal Lobe Epilepsies. In ACS Chemical Neuroscience (Vol. 15, Issue 5, pp. 983–993). https://doi.org/10.1021/acschemneuro.3c00693.
- 35. Nandy A, Koner D, et al. (2024). Stabilizing Highly Reactive Aryl Carbanions in Water Microdroplets: Electrophilic Ipso-Substitution at the Air-Water Interface. In JACS Au (Vol. 4, Issue 11, pp. 4488–4495). https://doi.org/10.1021/jacsau.4c00810.
- Nandy A, Koner D, et al. (2024). Heavy Water Microdroplet Surface Enriches the Lighter Isotopologue Impurities. In Journal of the American Chemical Society (Vol. 146, Issue 28, pp. 19050–19058). https://doi.org/10.1021/jacs.4c03315.
- 37. Oca-Estévez M J M de, Koner D, et al. (2024). Quantum computations on a new neural network potential for the proton-bound noble-gas Ar2H+ complex: Isotopic effects. In Chemical Physics Letters (Vol. 856). https://doi.org/10.1016/j.cplett.2024.141641.
- 38. Pandey U, Koner D, et al. (2024). DeePNAP: A Deep Learning Method to Predict Protein-Nucleic Acid Binding Affinity from Their Sequences. In Journal of Chemical Information and Modeling (Vol. 64, Issue 6, pp. 1806–1815). https://doi.org/10.1021/acs.jcim.3c01151.
- 39. Ramesh G, Koner D, et al. (2024). Microscopic pathways of transition from low-density to high-density amorphous phase of water. In Journal of Chemical Physics (Vol. 160, Issue 19). https://doi.org/10.1063/5.0206489.
- 40. Tak A, Koner D, et al. (2024). Theoretical study of S + SH reaction on its ground state HS2(X2A") potential energy surface. In Molecular Physics. https://doi.org/10.1080/00268976.2024.2362385.
- 41. Barman S, Deepa M, et al. (2024). Sr3Zr2Cu4Q9 (Q = S and Se): Two novel layered quaternary mixed transition metal chalcogenides. In Dalton Transactions (Vol. 54, Issue 5, pp. 1871–1883). https://doi.org/10.1039/d4dt02928c.
- 42. Maity D, Ghosal P, & Deepa M. (2024). Organic inorganic hybrid solar cell with photoactive hole transporting

- CuSbS2 nanoflakes. In Solar Energy (Vol. 271). $\underline{\text{https://doi.org/10.1016/j.solener.2024.112455}}.$
- 43. Maity D, Maitra S, & Deep M. (2024). Au nanoparticles decorated textured Si with Fc/Fc+ and I-/I3- redox active gels for photoelectrochemical light harvesting. In Photoelectrochemical Engineering for Solar Harvesting: Chemistry, Materials, Devices. https://doi.org/10.1016/B978-0-323-95494-5.000045.
- Mondal D, Deepa M, et al. (2024). Bioinspired flavin analogues as organic electrode materials for supercapacitor applications. In Energy Advances (Vol. 3, Issue 7, pp. 1710–1716). https://doi.org/10.1039/d4ya00001c.
- 45. Naidu P Y, Deepa M, et al. (2024). Tuning recombination and charge separation in a n/p/p heterojunction solar cell with CZTS, Ag3SbS3 and a carbon interlayer. In Sustainable Energy and Fuels (Vol. 8, Issue 24, pp. 5887–5905). https://doi.org/10.1039/d4se00495g.
- Naskar I, Deepa M, et al. (2024). MIL-53(Al) metalorganic framework/carbon nanofibers and Alnanoflakes/carbon composites for a stable Al-battery. In Journal of Energy Storage (Vol. 77). https://doi.org/10.1016/j.est.2023.109956.
- Naskar S, Deepa M, et al. (2024). Pre-existing mobile Zn2+ ions in ZnZr4(PO4)6 for capacitive- and battery-type energy storage systems. In Chemical Engineering Journal (Vol. 500). https://doi.org/10.1016/j.cej.2024.157525.
- 48. Naskar S, Deepa M, et al. (2024). A Förster resonance energy transfer enabled photo-rechargeable battery with an energetically misaligned Cu-porphyrin dye/Cu: V205 photocathode. In Journal of Materials Chemistry A (Vol. 12, Issue 25, pp. 15203–15226). https://doi.org/10.1039/d3ta06248a.
- 49. Ojha M, Deepa M, et al. (2024). Long-lived electrochromic device with protonated viologen and Poly(ethylenedioxythiophene-carbazole)/Prussian blue composite for smart windows. In Solar Energy Materials and Solar Cells (Vol. 269). https://doi.org/10.1016/j.solmat.2024.112797.
- 50. Srivastava K, Deepa M, et al. (2024). A low-temperature solution route for the synthesis of single crystals of BaSe3 and its photovoltaic study. In New Journal of Chemistry (Vol. 48, Issue 38, pp. 16869–16876). https://doi.org/10.1039/d4nj03041a.
- 51. Srivastava K, Deepa M, et al. (2024). Thermoelectric and photovoltaic properties of 12-BaBi2S4. In Journal of Physics and Chemistry of Solids (Vol. 192). https://doi.org/10.1016/j.jpcs.2024.112085.
- 52. Ahamad J & Khan F. A. (2024). Biomimetic total syntheses of renifolin F and antiarone K. In Organic and Biomolecular Chemistry (Vol. 22, Issue 24, pp. 4877–4881). https://doi.org/10.1039/d4ob00651h.
- 53. Fatma M & Khan F A. (2024a). Electrochemical Synthesis of Quinolines. In Synlett (Vol. 35, Issue 20, pp. 2537–2541). https://doi.org/10.1055/a-2388-9743.
- 54. Fatma M & Khan F A. (2024b). Electrochemically driven regioselective organoselenation for selective synthesis of β hydroxy substituted selanylated ketones. In Tetrahedron Letters (Vol. 141). https://doi.org/10.1016/j.tetlet.2024.155051.
- 55. Khatua R R, Khan F A, et al. (2024). Synthesis and Antibacterial Studies of Phenethylamine Alkaloid Natural Products Along with Their Analogues: Discolin A, B, E and Bacillimidazole B. In Synlett (Vol. 35, Issue 16, pp. 1872–1876). https://doi.org/10.1055/a-2256-5500
- Naik V, & Khan F A, (2024). A Regioselective Domino Benzannulation Route to Indeno [1,2-a]fluorene-7,12diones. In Synthesis (Germany). https://doi.org/10.1055/a-2395-5433.
- 57. Seenivasan G, Khan F A, et al. (2024). Evaluation of a panel of furochromenones as the activator and inhibitor of tyrosinase. In Chemical Biology and Drug Design (Vol.

- 103, Issue 5). https://doi.org/10.1111/cbdd.14539.
- 58. Sreenivas K, Rao C N, & Khan F A. (2024). Intramolecular CH-Hydrogen Bonding During the Dissociation of the Oxaphosphetane Intermediate Facilitates Z/E-Selectivity in Wittig Olefination. In ChemistryOpen (Vol. 13, Issue 3). https://doi.org/10.1002/open.202300171.
- Barman S, Prakash J, et al. (2024). Sr3Zr2Cu4Q9 (Q = S and Se): Two novel layered quaternary mixed transition metal chalcogenides. In Dalton Transactions (Vol. 54, Issue 5, pp. 1871–1883). https://doi.org/10.1039/d4dt02928c.
- 60. Rout S S S, Prakash J, et al. (2024). Ba4FeCuS6: A new mixed metal sulfide with a pseudo-zero-dimensional structure containing rare CuS3 units. In New Journal of Chemistry (Vol. 48, Issue 42, pp. 18177–18186). https://doi.org/10.1039/d4nj03944k.
- 61. Shahid O, Niranjan M K & Prakash, J. (2024). Structure and physical properties of a new telluride Mg1.2(1)In1.2(1)Si2Te6. In Solid State Sciences (Vol. 156). https://doi.org/10.1016/j.solidstatesciences.2024.107677.
- 62. Shahid O, Prakash J, et al. (2024). Syntheses, crystal structures, and physical properties of noncentrosymmetric MgIn2Te4 and MnIn2Te4. In Solid State Sciences (Vol. 152). https://doi.org/10.1016/j.solidstatesciences.2024.107
- 63. Shahid O, Prakash J, et al. (2024). Low thermal conductivity in a new mixed metal telluride Mn1.8(1)In0.8(1)Si2Te6. In Dalton Transactions (Vol. 53, Issue 14, pp. 6245-6255). https://doi.org/10.1039/d3dt03900e.
- 64. Srivastava K, Prakash J, et al. (2024). A low-temperature solution route for the synthesis of single crystals of BaSe3 and its photovoltaic study. In New Journal of Chemistry (Vol. 48, Issue 38, pp. 16869–16876). https://doi.org/10.1039/d4nj03041a.
- 65. Srivastava K, Prakash J, et al. (2024). Thermoelectric and photovoltaic properties of 12-BaBi2S4. In Journal of Physics and Chemistry of Solids (Vol. 192). https://doi.org/10.1016/j.jpcs.2024.112085.
- 66. Swati N, Prakash J, et al. (2024). Syntheses of a series of BaCu2-xAgxSe2 (x = 0—1.0) selenides and evaluation of their thermoelectric properties. In New Journal of Chemistry (Vol. 48, Issue 24, pp. 11129-11139). https://doi.org/10.1039/d4nj00989d.
- 67. Yadav S, Niranjan M K, & Prakash J. (2024). Ba15Zr14Te42: A new complex ternary telluride structure with low thermal conductivity. In Dalton Transactions (Vol. 53, Issue 35, pp. 14848–14857). https://doi.org/10.1039/d4dt01878h.
- 68. Yadav S, Prakash J, et al. (2024). CsY2M3Se5: The first quaternary chalcogenides of the A-Y-M-Q (A = Rb/Cs; M = Cu/Ag; Q = S/Se) system. In Journal of Solid State Chemistry (Vol. 331). https://doi.org/10.1016/j.jssc.2023.124535.
- 69. Yadav S & Prakash J. (2024). Synthesis and crystal structure of Ba2Y0.87(1)Mn1.71(1)Te5. In Acta Crystallographica Section C: Structural Chemistry (Vol. 80, Issue Pt 1, pp. 9–14). https://doi.org/10.1107/S2053229623011099.
- 70. Bhatt T & Natte K. (2024). Transfer Hydrogenation of Nand O-Containing Heterocycles Including Pyridines with H3N-BH3 Under the Catalysis of the Homogeneous Ruthenium Precatalyst. In Organic Letters (Vol. 26, Issue 4, pp. 866-871). https://doi.org/10.1021/acs.orglett.3c04051.
- 71. Kumawat S, Dey S & Natte K. (2024). Ammonia-Borane Dependent Transfer Hydrogenation of Carboxylic Esters to Primary Alcohols. In Journal of Organic Chemistry (Vol. 89, Issue 15, pp. 10719–10728). https://doi.org/10.1021/acs.joc.4c00964
- 72. Kumawat S & Natte K. (2024a). Accessing structurally

- 73. Kumawat S & Natte K. (2024b). Iron(II) triflate as a photocatalyst for trifluoromethylation of functionalized arenes under blue LED light: Access to bioactive compounds. In Journal of Catalysis (Vol. 434). https://doi.org/10.1016/j.jcat.2024.115506.
- Kumawat S, Natte K, et al. (2024). Valorization of biorenewable glycerol by catalytic amination reactions. In Green Chemistry (Vol. 26, Issue 6, pp. 3021–3038). https://doi.org/10.1039/d3gc02699j.
- 75. Sarki N, Natte K, et al. (2024). Selective hydrogenation of carbonyl compounds and olefins using an efficient combination of homogeneous RuCl3/1,10-Phenanthroline. In Journal of Catalysis (Vol. 429). https://doi.org/10.1016/j.jcat.2023.115248.
- https://doi.org/10.1016/j.jcat.2023.115248.

 76. Sarki N, Natte K, et al. (2024). Corrigendum to "Biowaste carbon supported manganese nanoparticles as an active catalyst for the selective hydrogenation of bio-based aldehydes" Catal. Today 408 (2023) 127–138 (Catalysis Today (2023) 408 (127–138), (S0920586122002929(10.1016/j.cattod.2022.07.018)). InCatalysisToday(Vol.432).https://doi.org/10.1016/j.cattod.2024.114612.
- Vakati V, Natte K, et al. (2024). Practical and scalable hydrogenation of nitro compounds using palladium-based nanocatalyst under ambient conditions. In Catalysis Today (Vol. 442). https://doi.org/10.1016/j.cattod.2024.114940.
- 78. Gupta R, Ghosh K B, et al. (2024). The chirality-induced spin selectivity effect in asymmetric spin transport: From solution to device applications. In Chemical Science (Vol. 15, Issue 45, pp. 18751–18771). https://doi.org/10.1039/d4sc05736h.
- 79. Utkarsh U, Ghosh K B, et al. (2024). Chiral supramolecular polymer functionalized two-dimensional transition metal-based catalyst for enhancing the electrochemical water splitting via spin-polarized charge transfer. In Journal of Materials Chemistry A (Vol. 12, Issue 31, pp. 20354–20363). https://doi.org/10.1039/d4ta02665a.
- 80. Sharma S, Gavvala K, et al. (2024). Probing ionic liquid-based micellar structures using the photophysical properties of a plant alkaloid: Spectroscopy and microscopy-based approach. In Journal of Molecular Liquids (Vol. 401). https://doi.org/10.1016/j.molliq.2024.124632.
- 81. Sharma S, Gavvala K, et al. (2024). Unravelling energy transfer and fluorescence quenching dynamics in biomolecular complexes: A comprehensive study of imiquimod-rifampicin interaction. In Physical Chemistry Chemical Physics (Vol. 26, Issue 41, pp. 26291–26303). https://doi.org/10.1039/d4cp02732a.
- 82. Sharma S, Gavvala K, et al. (2024). Spectroscopy and dynamics of beta-lactoglobulin complexed with rifampicin. In Journal of Biomolecular Structure and Dynamics (Vol. 42, Issue 24, pp. 13460–13473). https://doi.org/10.1080/07391102.2023.2275191.
- 83. Takkella D, Gavvala, K, et al. (2024). Solvent effect on the excited state photophysics of Imiquimod: A DFT/TD-DFT and spectroscopic study. In Journal of Photochemistry and Photobiology A: Chemistry (Vol. 457). https://doi.org/10.1016/j.jphotochem.2024.1159
- 84. Takkella D, Gavvala K, et al. (2024). Probing photoinduced electron transfer events in phenylferrocene-corrole dyad. In Physical Chemistry Chemical Physics (Vol. 26, Issue 32, pp. 21688–21696). https://doi.org/10.1039/d4cp02376e.
- 85. Takkella D, Gavvala K, et al. (2024). Unveiling the interaction modes of Imiquimod with DNA: Biophysical and computational studies. In Journal of

- Photochemistry and Photobiology A: Chemistry (Vol. 447).https://doi.org/10.1016/j.jphotochem.2023.1151
- 86. Vishwakarma J, Gavvala K, et al. (2024). Unveiling differential interaction pattern for iminium and alkanolamine forms of Sanguinarine with β-Lactoglobulin protein. In International Journal of Biological Macromolecules (Vol. 283). https://doi.org/10.1016/j.ijbiomac.2024.137721.
- 87. Vishwakarma J, Gavvala K, et al. (2024). Modulation of excimer formation and photostability of avobenzone inside the nanocavities of cyclodextrins. In Journal of Photochemistry and Photobiology A: Chemistry (Vol. 449). https://doi.org/10.1016/j.jphotochem.2023.1154 11.
- 88. Bhoi S, Kurra N, et al. (2024). Extrinsic pseudocapacitance of Ti3C2Tx MXenes in divalent metal-ion electrolytes after assembly with perylene diimides. In Cell Reports Physical Science (Vol. 5, Issue 10). https://doi.org/10.1016/j.xcrp.2024.102229.
- 89. Goudar S H, Kurra N, et al. (2024). Supramolecular Engineering of Ti3C2Tx MXene -Perylene Diimide Hybrid Electrodes for the Pseudocapacitive Electrochemical Storage of Calcium Ions. In Small (Vol. 20, Issue 26). https://doi.org/10.1002/smll.202309905.
- 90. Sreelakshmi P, Kurra N, et al. (2024). Ti3C2Tx MXene bonded perylene diimide as a robust charge host for seawater electrolytes. In Chemical Communications (Vol. 60, Issue 95, pp. 14069–14072). https://doi.org/10.1039/d4cc05059b.
- 91. Yadav S & Kurra N. (2024a). Diffusion kinetics of ionic charge carriers across Ti3C2Tx MXene-aqueous electrochemical interfaces. In Energy Storage Materials (Vol. 65). https://doi.org/10.1016/j.ensm.2023.103094.
- 92. Yadav S & Kurra N. (2024b). Nanoconfinement-induced calcium ion redox charge storage of V2CTx MXene. In Journal of Materials Chemistry A. https://doi.org/10.1039/d4ta05932h.
- 93. Eswar K, Prabusankar G, et al. (2024). Omeprazole-Loaded Copper Nanoparticles for Mitochondrial Damage Mediated Synergistic Anticancer Activity against Melanoma Cells. In ACS Applied Bio Materials (Vol. 7, Issue 7, pp. 4795–4803). https://doi.org/10.1021/acsabm.4c00635
- 94. Mandal S, Prabusankar G, et al. (2024). Discrete copper(i) chalcogenones with metal-metal interaction. In New Journal of Chemistry (Vol. 48, Issue 28, pp. 12501–12509). https://doi.org/10.1039/d4nj01758g.
- 95. Mandal S, Prabusankar G, et.al. (2024). Fluorescent zinc(ii) thione and selone complexes for light-emitting applications. In Dalton Transactions (Vol. 54, Issue 4, pp. 1384–1392).
- https://doi.org/10.1039/d4dt02924k.

 96. Nandhini S, Prabusankar G, et al. (2024).
 Organoruthenium metallocycle induced mutation in gld-1 tumor suppression gene in JK1466 strain and appreciable lifespan expansion. In Journal of Inorganic Biochemistry (Vol. 257).
 https://doi.org/10.1016/j.jinorgbio.2024.112593.
- 97. Rose B J, Prabusankar G, et al. (2024). Novel 5-(2-chloro-quinolin-3-yl)-[1,3,4]thiadiazol-2-ylamines and their copper(II) metallates: Preparation, spectroscopy, X-ray crystallography, nucleic acid/albumin binding, DNA cleavage and in vitro cytotoxicity. In Inorganica Chimica Acta (Vol. 570). https://doi.org/10.1016/j.ica.2024.122170.
- 98. Sindhu M, Prabusankar G, et al. (2024). Preparation of new organo-ruthenium(ii) complexes and their nucleic acid/albumin binding efficiency and in vitro cytotoxicity studies. In Dalton Transactions (Vol. 53, Issue 7, pp. 3075–3096). https://doi.org/10.1039/d3dt04017h.

- 99. Veerapathiran S, Prabusankar G, et al. (2024). Organo Chalcogenone-Triggered Luminescent Copper(I) Clusters for Light Emitting Applications. In Inorganic Chemistry (Vol. 63, Issue 28, pp. 12708–12720). https://doi.org/10.1021/acs.inorgchem.3c04637.
- 100. Pande S, Pati F & Chakraborty P. (2024). Harnessing Peptide-Based Hydrogels for Enhanced Cartilage Tissue Engineering. In ACS Applied Bio Materials (Vol. 7, Issue 9, pp. 5885–5905). https://doi.org/10.1021/acsabm.4c00879.
- 101. Sahu I & Chakraborty P (2024). A repertoire of nanoengineered short peptide-based hydrogels and their applications in biotechnology. In Colloids and Surfaces B: Biointerfaces (Vol. 233). https://doi.org/10.1016/j.colsurfb.2023.113654.
- 102. Sahu I, Chakraborty P, et al. (2024). Bioinspired functional self-healing hydrogels from a minimalistic dipeptide building block. In Journal of Materials Chemistry A (Vol. 12, Issue 7, pp. 4169–4183). https://doi.org/10.1039/d3ta06663k.
- 103. Sahu I, Chakraborty P, et al. (2024). Synergistic Coassembly of Folic Acid-Based Supramolecular Polymer with a Covalent Polymer Toward Fabricating Functional Antibacterial Biomaterials. In ACS Applied Materials and Interfaces (Vol. 16, Issue 26, pp. 34141–34155). https://doi.org/10.1021/acsami.4c06785.
- 104. Balajirao Dapkekar A, Naveen J, & Satyanarayana G. (2024). Electrochemical Annulation of ortho-Alkynylbiphenyls to Fused Sulfenyl Phenanthrenes and Spiro Cyclohexenone Indenes. In Advanced Synthesis and Catalysis (Vol. 366, Issue 1, pp. 18–23). https://doi.org/10.1002/adsc.202300905.
- 105. Biswas D, Satyanarayana G, et al. (2024). KOtBu Assisted Regio- and Stereo-Selective Alkoxy-Isomerization of Ortho-Alkynyl Allylic Alcohols: Synthesis of Alkylidene Dihydroisobenzofurans and Indenones. In ChemistrySelect (Vol. 9, Issue 31). https://doi.org/10.1002/slct.202400224.
- 106. Dapkekar A B & Satyanarayana G. (2024a). Electrochemical selenofunctionalization of unactivated alkenes: Access to β -hydroxy-selenides. In Organic and Biomolecular Chemistry (Vol. 22, Issue 9, pp. 1775–1781). https://doi.org/10.1039/d4ob00105b.
- Dapkekar A B & Satyanarayana G. (2024b). 107. Electrochemically driven regioselective construction of 4-sulfenyl-isochromenones from o-alkynylbenzoates and diaryl disulfides. In Organic and Biomolecular Chemistry (Vol. 22, Issue 35, pp. 7111–7116). https://doi.org/10.1039/d4ob01137f.
- 108. Goel K & Satyanarayana G. (2024). A rapid pathway to molecular complexity: A palladium-catalyzed six-fold domino process to access polycyclic frameworks. In Chemical Communications (Vol. 61, Issue 3, pp. 536– 539). https://doi.org/10.1039/d4cc05380j.
- 109. Lakshminarayana B, Satyanarayana G, et al. (2024). Switching of support materials for the hydrogenation of nitroarenes: A review. In Catalysis Reviews—Science and Engineering (Vol. 66, Issue 1, pp. 259–342). https://doi.org/10.1080/01614940.2022.2057045.
- 110. Lakshminarayana B, Satyanarayana G, et al. (2024).

 Design and Synthesis of Silica Supported Pd
 Nanoparticles: Application to Cascade Reactions. In
 Catalysis Letters (Vol. 154, Issue 4, pp. 1404–1410).

 https://doi.org/10.1007/s10562-023-04442-8.
- 111. Mounika K & Satyanarayana G. (2024). Aliphatic Nitrile Template Enabled meta-C-H Olefination of Indene Enoate Esters under Microwave Accelerating Conditions. In Organic Letters. https://doi.org/10.1021/acs.orglett.4c03357.
- 112. Raj G, Satyanarayana G, et al. (2024). Computational and in vitro binding studies of the redesigned pentoxifylline analogue against phosphodiesterases function in sperm. In Journal of Biomolecular Structure andDynamics. https://doi.org/10.1080/07391102.2024 .2435042.

- 113. Shekhar C & Satyanarayana G. (2024a). Acid-Mediated Domino Cyclization of ortho-Formyl Cinnamate Esters: Synthesis of Substituted Indene/Indane Esters and Indeno[a]indenones. In Journal of Organic Chemistry (Vol. 89, Issue 7, pp. 5069–5090). https://doi.org/10.1021/acs.joc.4c00301.
- 114. Shekhar C & Satyanarayana G. (2024b). Acid-Promoted Domino Access to Substituted Benzo[b]carbazoles. In Journal of Organic Chemistry (Vol. 89, Issue 6, pp. 3732–3746). https://doi.org/10.1021/acs.joc.3c02483.
- 115. Singh P, Satyanarayana G, et al. (2024). An acid-mediated synthesis of substituted naphthalenes from ortho-alkynyl tertiary benzylic alcohols. In Tetrahedron (Vol. 167). https://doi.org/10.1016/j.tet.2024.134285.
- 116. Srinivas D & Satyanarayana G (2024a). Distal-C-H Functionalization of Biphenyl Scaffolds Assisted by Easily Removable/Recyclable Aliphatic Nitrile Templates. In Journal of Organic Chemistry (Vol. 89, Issue 1, pp. 433–451). https://doi.org/10.1021/acs.joc.3c02196.
- 117. Srinivas D & Satyanarayana G, (2024b). Palladium catalyzed remote-meta-C-H functionalization of aniline scaffolds. In Organic Chemistry Frontiers (Vol. 11, Issue 5, pp. 1473–1478). https://doi.org/10.1039/d3qo01943h.
- 118.Thondur J R, Sharada D S & Satyanarayana, G. (2024). Electrochemical stereoselective borylation of Morita-Baylis-Hillman adducts to functionalized allylic boronates. In Chemical Communications. https://doi.org/10.1039/d4cc04187a.
- 119. Ahmed N, Singh S K, et al. (2024). In situ hydrolysis of a carbophosphazene ligand leads to one-dimensional lanthanide coordination polymers. Synthesis, structure and dynamic magnetic studies. In Dalton Transactions (Vol. 53, Issue 27, pp. 11563–11577). https://doi.org/10.1039/d4dt00582a.
- 120. Gupta R, Singh S K, et al. (2024). Metal-free platforms for molecular thin films as high-performance supercapacitors. In Chemical Science (Vol. 15, Issue 23, pp. 8775–8785). https://doi.org/10.1039/d4sc00611a.
- 121. Kalita P, Singh S K, et al. (2024). Eight-coordinate mono- and dinuclear Dy(iii) complexes containing a rigid equatorial plane and an anisobidentate carboxylate ligand in the axial position: Synthesis, structure and magnetism. In Dalton Transactions (Vol. 53, Issue 25, pp. 10521–10535). https://doi.org/10.1039/d4dt00803k.
- 122. Kumar J, Singh S K, et al. (2024). A Spin-Frustrated Azide- and Alkoxide-Bridged Heterobimetallic Mixed-Valence MnIIMnIII2NiII4 Disc with S = 17/2 or 19/2. In ACS Omega (Vol. 9, Issue 5, pp. 5809–5818). https://doi.org/10.1021/acsomega.3c08817.
- 123. Kumari K & Singh S K, (2024). Substituted fullerenes as a promising capping ligand towards stabilization of exohedral Dy(iii) based single-ion magnets: A theoretical study. In Dalton Transactions (Vol. 53, Issue 40, pp. 16495–16511). https://doi.org/10.1039/d4dt02090a.
- 124.Mandal S, Singh S K, et al. (2024). Discrete copper(i) chalcogenones with metal-metal interaction. In New Journal of Chemistry (Vol. 48, Issue 28, pp. 12501–12509). https://doi.org/10.1039/d4nj01758g.
- 125. Moorthy S, Singh S K, et al. (2024). A highly anisotropic family of hexagonal bipyramidal Dy(iii) unsaturated 18-crown-6 complexes exceeding the blockade barrier over 2700 K: a computational exploration. In Dalton Transactions (Vol. 53, Issue 29, pp. 12073–12079). https://doi.org/10.1039/d4dt00632a.
- 126. Naskar S, Singh S K, et al. (2024). A Förster resonance energy transfer enabled photo-rechargeable battery with an energetically misaligned Cu-porphyrin dye/Cu:V205 photocathode. In Journal of Materials Chemistry A (Vol. 12, Issue 25, pp. 15203–15226). https://doi.org/10.1039/d3ta06248a.

- 127. Sagar S, Singh S K, et al. (2024). Green synthesis of poly e-caprolactone using a metal-free catalyst via non-covalent interactions. In Green Chemistry (Vol. 27, Issue 2, pp. 527–534). https://doi.org/10.1039/d4gc04411h.
- 128. Sarki N, Singh S K, et al. (2024). Selective hydrogenation of carbonyl compounds and olefins using an efficient combination of homogeneous RuCl3/1,10-Phenanthroline. In Journal of Catalysis (Vol. 429). https://doi.org/10.1016/j.jcat.2023.115248.
- 129. Sengupta A, Singh S K, et al. (2024). Support Vector Machine-Based Prediction Models for Drug Repurposing and Designing Novel Drugs for Colorectal Cancer. In ACS Omega (Vol. 9, Issue 16, pp. 18584–18592). https://doi.org/10.1021/acsomega.4c01195.
- 130. Shao D, Singh S K, et al. (2024). A Cyanide-Bridged FeCo5 Square-Pyramidal Single-Ion Magnet. In Crystal Growth and Design (Vol. 24, Issue 21, pp. 8703–8708). https://doi.org/10.1021/acs.cgd.4c01233.
 131. Shao D, Singh S K, et al. (2024). Tuning Magnetic
- 131. Shao D, Singh S K, et al. (2024). Tuning Magnetic Anisotropy of Four-Coordinated Cobalt(II) in Chain Complexes via Varying Organic Linkers. In Crystal Growth and Design (Vol. 24, Issue 17, pp. 7202–7211). https://doi.org/10.1021/acs.cgd.4c00828.
- 132. Shukla P, Singh S K, et al. (2024). Effect of diamagnetic Zn(ii) ions on the SMM properties of a series of trinuclear ZnDy2 and tetranuclear Zn2Dy2 (LnIII = Dy, Tb, Gd) complexes: Combined experimental and theoretical studies. In Dalton Transactions (Vol. 53, Issue 16, pp. 7053–7066). https://doi.org/10.1039/d4dt00417e.
- 133. Tarannum I & Singh S K, (2024). Unravelling the electronic structure, bonding, and magnetic properties of inorganic dysprosocene analogues [Dy(E4)2]– (E = N, P, As, CH). In Physical Chemistry Chemical Physics (Vol. 27, Issue 8, pp. 4109–4120). https://doi.org/10.1039/d4cp03016h.
- 134. Zhu J-Y, Singh S K, et al. (2024). Magnetic and Porous Regulation in Cobalt(II) Hydrogen-Bonded Organic Framework via Supramolecular Isomerism. In Crystal Growth and Design (Vol. 24, Issue 8, pp. 3449–3457). https://doi.org/10.1021/acs.cgd.4c00188.
- 135. Alam M I, Vaidyanathan S, et al. (2024). Tailoring structural rigidity utilizing a lock/unlock donor strategy for highly efficient solution processed blue and green HLCT OLEDs. In Journal of Materials Chemistry C (Vol. 12, Issue 34, pp. 13585–13595). https://doi.org/10.1039/d4tc00417e.
- 136. Alam M I, Vaidyanathan S, et al. (2024). Twisted Acceptor Core Molecular Design with Phenoxazine and Phenothiazine Donors Enabled Yellow Thermally Activated Delayed Fluorescent Emitters/Sensitizers for Long-Lifetime Solution-Processed Organic Light-Emitting Diodes Exceeding 31% External Quantum Efficiency. In Chemistry of Materials.
- 137. https://doi.org/10.1021/acs.chemmater.4c01001. Debata B P, Vaidyanathan S, et al. (2024). The design and synthesis of 1-phenylimidazo[1,5-a]pyridine-anthracene-based fluorophore for greenish-yellow organic light emitting diode and warm white LED. In Journal of Information Display (Vol. 25, Issue 4, pp. 319–331). https://doi.org/10.1080/15980316.2024.2304869.
- 138. Debata B P, Vaidyanathan S, et al. (2024). Benzilimidazole blue fluorophores and their applications in blue/white light-emitting diodes, sensing and anticounterfeiting. In Journal of Materials Chemistry C (Vol. 13, Issue 6, pp. 2711–2731).
- 139. https://doi.org/10.1039/d4tc04661g. Kumawat S, Vaidyanathan S, et al. (2024). Valorization of bio-renewable glycerol by catalytic amination reactions. In Green Chemistry (Vol. 26, Issue 6, pp.
- 140. 3021–3038). https://doi.org/10.1039/d3gc02699j. Marappan G, Vaidyanathan S, et. al. (2024). Response to VOCs stimuli by triphenylamine derivatives

- functionalized zinc oxide nanorods: A promising material for food freshness monitoring. In Surfaces and Interfaces (Vol. 44). https://doi.org/10.1016/j.surfin.2023.103648.
- 141.Maredi S, Vaidyanathan S, et al. (2024). White Light Emissive Eu(III) Complexes through Ligand Engineering and their Applications in Cool Near Ultraviolet White Light Emitting Diodes and Thermometer. In ChemPhysChem (Vol. 25, Issue 16). https://doi.org/10.1002/cphc.202400320.
- 142.Mund S, Vaidyanathan S, et al. (2024). Unveiling the Versatility of Coumarin-Integrated with Phenanthroline/Thiabendazole-Based EuIII Complexes for Smart LEDs, Vapoluminescence, and Bioimaging Applications. In ACS Applied Bio Materials (Vol. 7, Issue 9, pp. 5795–5809). https://doi.org/10.1021/acsabm.4c00839.
- 143.Mund S, Singh K & Vaidyanathan S. (2024). High-performance white light-emitting diodes based on an efficient trivalent europium molecular complex. In Journal of Materials Chemistry C (Vol. 12, Issue 45, pp. 18401–18415). https://doi.org/10.1039/d4tc03087g.
- 144.Rana S, Vaidyanathan S & Patel S. (2024). Aggregation-induced emission (AIE) based donor-π-acceptor fluorophores: An approach to fabricate acidochromic sensors and white light emitting diodes. In Journal of Materials Chemistry C (Vol. 12, Issue 35, pp. 14148–14164). https://doi.org/10.1039/d4tc02617a.
- 145.Thakur D & Vaidyanathan S. (2024). Chirality-inducing units in organic TADF molecules: A way to circularly polarised luminescence. In Journal of Materials Chemistry C (Vol. 12, Issue 34, pp. 13168–13229). https://doi.org/10.1039/d4tc01923g.
- 146.Muley A, Maji S, et al. (2024). Tailored design, synthesis, and catalytic aspects of mononuclear cis-dichloro copper(ii) complexes with simple DPA-derived tridentate ligands and their biomimicking activities. In New Journal of Chemistry (Vol. 48, Issue 17, pp. 7739–7753). https://doi.org/10.1039/d3nj05740b.
- 147.Muley A, Maji S. et al. (2024). Mononuclear copper(ii) complexes with polypyridyl ligands: Synthesis, characterization, DNA interactions/cleavages and in vitro cytotoxicity towards human cancer cells. In Dalton Transactions (Vol. 53, Issue 28, pp. 11697–11712). https://doi.org/10.1039/d4dt00984c.
- 148.Roy I, Maji S, et al. (2024). Triazine-based mononuclear copper(ii) cis-dichloro and dibromo complexes as functional biomimetic model systems for phenoxazinone synthase and catecholase activities. In New Journal of Chemistry (Vol. 48, Issue 26, pp. 11647–11661). https://doi.org/10.1039/d4nj01025f.
- 149.Cho P P, Subrahmanyam Ch, et al. (2024). Rational Bi[sbnd]Mo[sbnd]O nanospheres decorated g-C3N4 for photocatalytic performance of dye degradation. In Surfaces and Interfaces (Vol. 50). https://doi.org/10.1016/j.surfin.2024.104522.
- 150.Dastidar R G, Subrahmanyam Ch. et al. (2024). Dual-color photoluminescence modulation of zero-dimensional hybrid copper halide microcrystals. In Nanoscale (Vol. 16, Issue 10, pp. 5107–5114). https://doi.org/10.1039/d3nr05503e
- 151.Dobhal S, Subrahmanyam Ch. et al. (2024). Assessment of E-glass/epoxy prepreg aging via analytical, physical and mechanical techniques. In Polymer Composites (Vol. 45, Issue 8, pp. 7364–7375). https://doi.org/10.1002/pc.28272.
- 152.Dobhal S, Subrahmanyam Ch, et al. (2024). Basalt Fabric as a Superior Reinforcement for Low-Velocity Impact Protection. In Springer Proceedings in Materials (Vol. 39, pp. 337–351). https://doi.org/10.1007/978-981-99-8807-5 27.
- 153.Joseph M, Subrahmanyam Ch, et al. (2024). Rational design of a g-C3N4/Bi2S3/ZnS ternary heterojunction photoanode for improved solar water splitting. In

- Sustainable Energy and Fuels (Vol. 8, Issue 15, pp. 3412-3418). https://doi.org/10.1039/d4se00147h.
- 154. Joy R, Subrahmanyam Ch, et al. (2024). Exploring the role of ZnS as passivation layer on SrTiO3/Bi2S3 heterojunction photoanode for improved solar water Catalysis Today (Vol. splitting. In https://doi.org/10.1016/j.cattod.2024.114669
- 155. Kandukuri B, Subrahmanyam Ch, et al. (2024). Nonthermal plasma mitigation of low concentration of air pollutants: Removal of isopropyl alcohol using transition metal-oxide integration. In Environmental Pollution Research. and https://doi.org/10.1007/s11356-024-32569-7.
- 156. Kumar M, Subrahmanyam Ch, et al. (2024). Synergetic NIR responsive plasmonic CuxS Nanodisks on CuO photocathodes for photo-electrochemical splitting. In Applied Catalysis B: Environmental (Vol. 357). https://doi.org/10.1016/j.apcatb.2024.124317
- 157. Lakshminarayana B, Subrahmanyam Ch, et al. (2024). Switching of support materials for the hydrogenation of nitroarenes: A review. In Catalysis Reviews—Science and Engineering (Vol. 66, Issue 1, pp. 259–342). https://doi.org/10.1080/01614940.2022.2057045.
- 158. Lakshminarayana B, Subrahmanyam Ch, et al. (2024). Design and Synthesis of Silica Supported Pd Nanoparticles: Application to Cascade Reactions. In Catalysis Letters (Vol. 154, Issue 4, pp. 1404–1410). https://doi.org/10.1007/s10562-023-04442-8
- 159. Manna A K, Subrahmanyam Ch, et al. (2024). Fine bubble technology for the green synthesis of fairy chemicals. In Organic and Biomolecular Chemistry (Vol. 22, Issue 17, 3396-3404). pp. https://doi.org/10.1039/d4ob00237g
- 160. Maredi S, Subrahmanyam Ch, et al. (2024). White Light 174. Sahu P K, Subrahmanyam Ch, et al. (2024). Green-Emissive Eu(III) Complexes through Ligand Engineering and their Applications in Cool Near Ultraviolet White Light Emitting Diodes Thermometers. In ChemPhysChem (Vol. 25, Issue 16). https://doi.org/10.1002/cphc.202400320.
- 161. Mon P P, Subrahmanyam Ch, et al. (2024). Multiwalled Carbon Nanotube-Foam Composites for Fixed-Bed Continuous Flow Column Adsorption of Dyes. In ACS Applied Nano Materials (Vol. 7, Issue 22, pp. 25931-25943). https://doi.org/10.1021/acsanm.4c05010.
- 162. Mon P P, Subrahmanyam Ch, et al. (2024). Highly Porous Multiwalled Carbon Nanotube-Foam Composite for Batch Adsorption Performances of Dyes. In Journal of Physical Chemistry B (Vol. 128, Issue 34, pp. 8223-8237). https://doi.org/10.1021/acs.jpcb.4c03228.
- sorption: Enhancing arsenic (V) removal using biochar decorated with cerium oxide composite. In Materials Sustainability (Vol. https://doi.org/10.1016/j.mtsust.2024.100675
- 164. Pathmanathan P, Subrahmanyam Ch, et al. (2024). In situ generation of turbostratic nickel hydroxide as a 178. https://doi.org/10.1021/acssuschemeng.4c03886. nanozyme for salivary glucose sensor. In RSC Advances Issue 30, 21808-21820). 14. https://doi.org/10.1039/d4ra03559c
- 165. Rajesh G, Subrahmanyam Ch, et al. (2024). Effect of Coagent Concentration on Crosslinking, Physicoof the Peroxide-Cured Mechanical Properties Hydrogenated Acrylonitrile Butadiene Rubber (HNBR). In Springer Proceedings in Materials (Vol. 39, pp. 391-406). https://doi.org/10.1007/978-981-99-8807-5 32
- 166. Ramesh A, Subrahmanyam Ch, et al. (2024). MnCo204 Spinel Nanorods for Highly Sensitive Electrochemical Detection of Nitrite. In Inorganic Chemistry (Vol. 63, 9941-9952). Issue 21, pp. https://doi.org/10.1021/acs.inorgchem.4c01012
- 167. Rangappa H S, Subrahmanyam Ch, et al. (2024). Industrial waste-based adsorbents as a new trend for removal of water-borne emerging contaminants. In Environmental Pollution (Vol. 343).

- https://doi.org/10.1016/j.envpol.2023.123140.
- 168. Rangappa H S, Subrahmanyam Ch, et al. (2024). Modelling Tetracycline Adsorption onto Blast Furnace Slag Using Statistical and Machine Learning Approaches. In Sustainability (Switzerland) (Vol. 16,
- 433). 169. Issue 1). https://doi.org/10.3390/su16010464 Rangu S D, Subrahmanyam Ch, et al. (2024). KOHtreated tyre pyrolysed carbon as a green and easily available adsorbent for Bisphenol A and Methylene blue adsorption. In Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-024-34698-5.
 - 170. Rao K T, Subrahmanyam Ch, et al. (2024). Development and Characterization of Biocompatible Cellulose Acetate Substrate for Flexible Electrochemical Biosensors. In IEEE Journal on Flexible Electronics (Vol. Issue 312-319). pp. https://doi.org/10.1109/JFLEX.2024.3435809
 - 171. Rao M U, Nagda H J, & Subrahmanyam Ch. (2024). The influence of H2S on plasma catalysis and the conversion of CH4 and CO2 in a dielectric barrier discharge reactor for biogas reforming into syngas. In Energy Proceedings https://doi.org/10.46855/energy-(Vol. 45). proceedings-11094.
 - 172. Rao M U, Subrahmanyam Ch. et al. (2024). Nonthermal Plasma-Assisted Enhanced CO2 Conversion over NiOx/ γ-Al2O3 Catalyst. In Industrial and Engineering Chemistry Research (Vol. 63, Issue 21, pp. 9336–9346). https://doi.org/10.1021/acs.iecr.4c00489.
 - 173. Rao M U, Subrahmanyam Ch, et al. (2024). Recent advances on CO2 conversion into value-added fuels by non-thermal plasma. In Catalysis Today (Vol. 441). https://doi.org/10.1016/j.cattod.2024.114887
 - Synthesized Amino Carbons for Impedimetric Biosensing of E. coli O157:H7. In ACS Infectious Diseases (Vol. 10, Issue 5, pp. 1644–1653). https://doi.org/10.1021/acsinfecdis.3c00721.
 - 175. Swapna B, Subrahmanyam Ch, et al. (2024). Catalytic recycling of PET waste bottles into a value-added amide monomer using a heterogeneous niobium pentoxide nanocatalyst. In Sustainable Energy and Fuels (Vol. 8, Issue 22, 5170-5180). pp. https://doi.org/10.1039/d4se01136h.
 - 176. Arun Kumar M, Sudarsanam P, et al. (2024). Nb2O5/Ce1-xNbxO2-δ Nanorod Catalyst for Selective Oxidative Coupling of Aromatic Alcohols and Amines. In ACS Applied Nano Materials (Vol. 7, Issue 6, pp. 5899-5911). https://doi.org/10.1021/acsanm.3c055
- 163. Mon P P, Subrahmanyam Ch, et al. (2024). Synergistic 177. Arun Kumar M, Sudarsanam P, et al. (2024). Selective Synthesis of Renewable Diesel Fuel Precursors via C-C Condensation of Biomass-Derived Furans Using a Niobium Oxide Nanocatalyst. In ACS Sustainable Chemistry and Engineering (Vol. 12, Issue 43, pp. 15923-15934).
 - Chutia B, Sudarsanam P, et al. (2024). Durable and Stable Bifunctional Co304-Based Nanocatalyst for Oxygen Reduction/Evolution Reactions. In ACS Applied Nano Materials (Vol. 7, Issue 4, pp. 3620-3630). https://doi.org/10.1021/acsanm.3c04941.
 - 179. Kamali M, Sudarsanam P, et al. (2024). Nanostructured ceria-based catalysts for the conversion lignocellulosic biomass to fuels and chemicals. In Catalysis Today (Vol. https://doi.org/10.1016/j.cattod.2024.114814.
 - 180. Krishan K, Sudarsanam P, et al. (2024). Functionalized Metal-Free Carbon Nanosphere Catalyst for the Selective C-N Bond Formation under Open-Air Conditions. In ACS Omega (Vol. 9, Issue 33, pp. 35676-35685). https://doi.org/10.1021/acsomega.4c03987.
 - 181. Putla S B, Sudarsanam P, et al. (2024). Review of Shape-Controlled CeO2 Nanocatalysts for Purification of Auto-

- 7, Issue 7, pp. https://doi.org/10.1021/acsanm.4c00228 6749-6771).
- 182. Putla S B, Sudarsanam P, et al. (2024). Valorizing biomass waste glycerol to fuel additive at room temperature using a nanostructured W03/Nb205 catalyst. In Catalysis Communications (Vol. 186). https://doi.org/10.1016/j.catcom.2023.10682
- 183. Subha P, Krishan K, & Sudarsanam P. (2024). In situ hydroprocessing of lignocellulosic biomass-derived molecules into fuels and chemicals using heterogeneous catalysts. In Sustainable Energy and Fuels (Vol. 8, Issue 197. Das Chakraborty R, Pani T K, & Martha S K. (2024). 3775-3800). pp. https://doi.org/10.1039/d4se00666f.
- 184. Swapna B, Sudarsanam P, et al. (2024). Catalytic recycling of PET waste bottles into a value-added amide monomer using a heterogeneous niobium pentoxide nanocatalyst. In Sustainable Energy and Fuels (Vol. 8, 5170-5180). https://doi.org/10.1039/d4se01136h.
- 185. Swapna B, Sudarsanam P, et al. (2024). Efficient glycolysis of used PET bottles into a high-quality valuable monomer using a shape-engineered MnOx nanocatalyst. In Catalysis Science and Technology (Vol. 14. Issue 19. 5574-5587). https://doi.org/10.1039/d4cy00823e
- 186. Baweja S, Kalal B, & Maity S. (2024). Spectroscopic Characterization of Hydrogen-Bonded 2,7-Diazaindole Water Complex Isolated in the Gas Phase. In Journal of Physical Chemistry A (Vol. 128, Issue 17, pp. 3329-3338). https://doi.org/10.1021/acs.jpca.4c01113
- 187. Kalal B, Baweja S, & Maity S. (2024). Laser Spectroscopic Characterization of Supersonic Jet-Cooled 2,6-Diazaindole (26DAI). In Journal of Physical https://doi.org/10.1021/acs.jpca.4c04249.
- 188. Sen A, Khodia S, Maity S, et al. (2024). Spectroscopic characterization of the complexes of 2-(2'-pyridyl)benzimidazole and (H2O)1,2, (CH3OH)1,2, and (NH3)1,2 isolated in the gas phase. In Physical Chemistry Chemical Physics (Vol. 26, Issue 39, pp. 25697-25708). https://doi.org/10.1039/d4cp02244k.
- 189. Shabeeb M & Maity S. (2024). Computational investigation on adsorption and activation of atmospheric pollutants CO, NO and SO on small cobalt (Vol. In Chemical Physics 582). clusters. https://doi.org/10.1016/j.chemphys.2024.112291.
- 190. Bhar M, Martha S K, et al. (2024a). Electrochemical Mechanisms in Sodium-Ion Batteries. In Advanced Technologies for Rechargeable Batteries: Alkaline Metal Ion, Redox Flow, and Metal Sulfur Batteries: Volume 1. https://doi.org/10.1201/9781003310167-8.
- 191. Bhar M, Martha S K, et al. (2024b). Integrated technologies and novel nanostructured materials for In Nanostructured energy storage. Characterization Engineering and for Battery https://doi.org/10.1016/B978-0-323-Applications. <u>91304-1.00015-0</u>
- 192. Bhowmik S, Bhattacharjee U, & Martha S K. (2024). Designing in-situ carbon-coated mixed-phase iron oxides anode coupled with a heteroatom doped porous capacitors. carbon cathode for lithium-ion Electrochimica Acta (Vol. 484). https://doi.org/10.1016/j.electacta.2024.143995
- 193. Bhowmik S, Martha S K, et al. (2024). Harnessing Free-Standing Flexible Dual Carbon Lithium-Ion Capacitors with Carbon Fiber-Pitch Composite Electrodes. In ACS Applied Energy Materials (Vol. 7, Issue 23, pp. 11038-11047). https://doi.org/10.1021/acsaem.4c02069.
- 194. Chakraborty R D, Martha S K, et al. (2024). Synergistic Effect of 3D Electrode Architecture and in Situ Carbon Coating on the Electrochemical Performance of SnO2 Anodes for Sodium-Ion Batteries. In Journal of the Electrochemical Society (Vol. 171, Issue https://doi.org/10.1149/1945-7111/ad3b74.

- Exhaust Pollutants. In ACS Applied Nano Materials (Vol. 195. Chakraborty R D, Bhowmik S, & Martha S K. (2024). Synergistic effect of in-situ carbon-coated mixed-phase iron oxides and 3d electrode architectures as anodes for high-performance sodium-ion batteries. In Acta (Vol. Electrochimica https://doi.org/10.1016/j.electacta.2024.144952
 - 196. Chakraborty R D, Martha S K, et al. (2024). Binderless Electrodeposited NiCo2S4-MWCNT as a Potential Anode Material for Sodium-Ion Batteries. In Journal of the Electrochemical Society (Vol. 171, Issue 7). $\underline{\text{https:}}/\underline{\text{doi.org}}/\underline{10.1149}/\underline{1945-7111}/\underline{\text{ad63d3}}.$
 - Effect of concentration of dextrose-derived hard carbon anode on the electrochemical performance for sodiumion batteries. In Journal of Solid State Electrochemistry. https://doi.org/10.1007/s10008-024-06136-6.
 - 198. Dutta J, Martha S K, et al. (2024). Conducting LixPOy Interface Generated from Insulating Residual Lithium Compounds on LiNi0.8Mn0.1Co0.102 Surface Improves Cycle Life and Assists in Fast Cycling. In Small (Vol. 20, Issue 49). https://doi.org/10.1002/smll.202405432
 - 199. Dutta J, Ghosh S, & Martha S K. (2024a). A short review on fast charging of Ni-rich layered oxide cathodes. In of State Solid Electrochemistry. https://doi.org/10.1007/s10008-024-06031-0.
 - 200. Dutta J, Ghosh S, & Martha S K. (2024b). Transforming Residual Lithium Compounds on LiNi0.8Mn0.1Co0.102 Surface into a Li-Mn-P-O-Based Composite Coating for Multifaceted Improvements. In ACS Applied Materials and Interfaces (Vol. 16, Issue 15, 19720-19729). https://doi.org/10.1021/acsami.3c19371
 - 201. Garlapati K K, Martha S K, & Panigrahi B B. (2024). VOx anchored Ti3C2Tx MXene heterostructures for highperformance 2.2 V supercapacitors. In Journal of Power Sources (Vol. https://doi.org/10.1016/j.jpowsour.2024.234503
 - 202. Garlapati K K, Martha S K, et al. (2024a). AlCoCrFeNi HEA reinforced Al-Si-Mg alloy composite through hotpress sintering. In Bulletin of Materials Science (Vol. 47, Issue 4). https://doi.org/10.1007/s12034-024-033582.
 - 203. Garlapati K K, Martha S K, et al. (2024b). FeS2@Ti3C2Tx Pseudocapacitive Anode for Supercapacitors: Effect of Counter-Electrode Electrochemical Behavior on Supercapacitor Metrics. In ACS Applied Energy Materials (Vol. 7, Issue 16, pp. 6950-6960). https://doi.org/10.1021/acsaem.4c00962
 - 204. Ghosh S, Martha S K. et al. (2024). Mechanistic insights into the solvent-assisted thermal regeneration of spent graphite and its upcycling into dual graphite batteries. In Journal of Materials Chemistry, A (Vol. 12, Issue 19, 11362-11377). pp. <u> https://doi.org/10.1039/d4ta00668b</u>
 - 205. Ghosh S, Martha S K, et al. (2024). LiF/ LixPOy/ LixPOyFz-based artificial interface on graphitic cathode for improving the cycle life of dual ion batteries. In Journal of Power Sources (Vol. 623). https://doi.org/10.1016/j.jpowsour.2024.235440.
 - 206. Ghosh S, Martha S K, et al. (2024). LiNi0.5Mn1.504 Addition to Anion-Storing Graphite Cathode Yields Multifaceted Benefits to Dual Graphite Batteries. In Journal of the Electrochemical Society (Vol. 171, Issue 10). https://doi.org/10.1149/1945-7111/ad88ae.
 - 207. Ghosh S, Martha S K, et al. (2024). Integrating antimony-based compounds and hard carbon spheres for enhanced Na-ion storage. In Journal of Energy Storage (Vol.
 - $\frac{https://doi.org/10.1016/j.est.2024.111090}{208.~Ghosh~~S~~\&~~Martha~~S~~K.~~(2024).~~Electrolyte-lectrolyt$ concentration-dependent formation of artificial interface for prolonging the cycle life of Li-based anion storage batteries. In Journal of Energy Storage (Vol. 77). https://doi.org/10.1016/j.est.2023.109866.
 - 209. Ghosh S, Martha S K, et al. (2024). Differences between

- and its impact on dual graphite battery. In Journal of Sources (Vol. https://doi.org/10.1016/j.jpowsour.2023.233721
- 210. Ghosh S, Martha S K, et al. (2024). Soft carbon in nonaqueous rechargeable batteries: A review of its synthesis, carbonization mechanism, characterization, and multifarious applications. In Energy Advances (Vol. 1167-1195). Issue https://doi.org/10.1039/d4ya00174e.
- 211. Grace J P, Martha S K, et al. (2024). Synergistic Effect of CNT-TiO2 Catalyst and 3D Electrode Architecture for Electrochemical Performance in Lithium-Sulfur Batteries. In Journal of the Electrochemical Society (Vol. Issue 1). https://doi.org/10.1149/1945-7111/ad1a1e.
- 212. Grace J P, Kaliprasad Y, & Martha S K. (2024). Reduced graphene oxide derived from the spent graphite anodes as a sulfur host in lithium-sulfur batteries. In Energy Advances (Vol. 4, Issue 1, pp. 152–161). https://doi.org/10.1039/d4ya00480a.
- 213. Grace J P & Martha S K. (2024). Synergistic effect of 3Delectrode architecture and FeS2 decorated graphene sheet as a catalytic cathode in lithium-sulfur battery. In (Vol. Iournal of Energy Storage 88). https://doi.org/10.1016/j.est.2024.111585.
- 214. Muduli S, Martha S K, et al. (2024). Carbon nano-onions triggering the supercapacitive performance of PEDOThybrid wrapped M_0O3 microstructures in ultracapacitors. In Journal of Energy Storage (Vol. 95). https://doi.org/10.1016/j.est.2024.112396
- 215. Pani T K, Martha S K, et al. (2024). V205-MnO2 nanocomposites as an efficient electrode material for high-performance aqueous supercapacitors. In Materials Today Sustainability 28). https://doi.org/10.1016/j.mtsust.2024.101010
- 216. Ajitrao Kisan D, Panda T K, et al. (2024). Facile access to trifluoromethyl propargyl alcohol by metal-free transfer hydrogenation and cyanation of alkynyl ketones. In Organic and Biomolecular Chemistry (Vol. 197-201). 23. https://doi.org/10.1039/d4ob00844h
- 217. Ajitrao Kisan D, Panda T K, et al. (2024). Mononuclear Aluminum Complexes as Precursors for Cyanosilylation of Carbonyl Compounds. In ChemistrySelect (Vol. 9, Issue 28). https://doi.org/10.1002/slct.202402710.
- 218. Gundupalli M P, Panda T K, et al. (2024). Understanding the effect of low-concentrated protic ionic liquids (PILs) on coconut (Cocos nucifera) residues. In Biomass Conversion and Biorefinery (Vol. 14, Issue 3, pp. 3275-3291). https://doi.org/10.1007/s13399-022-02572-4.
- 219. Karmakar H, Panda T K, et al. (2024). Tri-coordinated zinc alkyl complexes with N^S/Se coordination of imino-phosphanamidinate chalcogenide ligands as precursors for efficient hydroboration of nitriles and esters. In Dalton Transactions (Vol. 53, Issue 25, pp. 10592–10602). https://doi.org/10.1039/d4dt00840e.
- 220. Kisan D A, Panda T K, et al. (2024). Dimethyl Sulfoxide Promoted Quinazolinone Synthesis. In ChemistrySelect Issue https://doi.org/10.1002/slct.202402809
- 221. Kumar G S, Panda T K, et al. (2024). Indium-catalyzed hydrosilylation of nitroarenes to aromatic amines. In Dalton Transactions (Vol. 54, Issue 4, pp. 1552–1559). https://doi.org/10.1039/d4dt02861a
- 222. Kumar R, Panda T K, et al. (2024). Hydrosilylation of nitriles and tertiary amides using a zinc precursor. In Organic and Biomolecular Chemistry (Vol. 22, Issue 15, pp. 3053–3058). https://doi.org/10.1039/d4ob00161c.
- 223. Mandal S, Jain, A & Panda T K. (2024). Green synthesis of thioamide derivatives in an environmentally benign deep eutectic solvent (DES). In RSC Sustainability (Vol. 2249-2255). Issue 8. https://doi.org/10.1039/d4su00206g

- cation and anion storage electrochemistry of graphite 224. Meher R K, Panda T K, et al. (2024). Efficient Hydroboration of Ketones and Imines Using Amidophosphine-Borane Under Catalyst-Free Conditions. In European Journal of Organic Chemistry Issue https://doi.org/10.1002/ejoc.202400985
 - 225. Narvariya R, Panda T K, et al. (2024). Catalytic cyanosilylation of ketones utilizing air-stable zinc complexes supported by amidophosphine chalcogenide ligands. In Inorganica Chimica Acta (Vol. 559). https://doi.org/10.1016./j.ica.2023.121781 226. Narvariya R, Panda T K, et al. (2024). Efficient
 - cyanosilylation of carbonyls using a well-defined dimeric sodium complex. In Journal of Organometallic Chemistry (Vol. 1020). https://doi.org/10.1016/j.jorganchem.2024.123350.
 - 227. Oruganti R K, Panda T K, et al. (2024). Synthesis of algal-bacterial sludge activated carbon/Fe3O4 nanocomposite and its potential in antibiotic ciprofloxacin removal by simultaneous adsorption and heterogeneous Fenton catalytic degradation. In Environmental Science and Pollution Research (Vol. 31, 67594-67612). Issue 60, pp. https://doi.org/10.1007/s11356-024-34830-5.
 - 228. Sagar S, Panda T K, et al. (2024). Binuclear and Mononuclear Aluminum Complexes as Quick and Controlled Initiators of Well-ordered ROP of Cyclic Esters. In ChemCatChem (Vol. 16, Issue 1). https://doi.org/10.1002/cctc.202300972
 - 229. Sagar S, Panda T K, et al. (2024). Unprecedented ROP of quinazolinones to polyacylamidines using a cesium catalyst. In Chemical Communications (Vol. 60, Issue 42, pp. 5542-5545). https://doi.org/10.1039/d4cc00491d.
 - 230. Sagar S, Panda T K, et al. (2024). Crafting sustainable solutions: Architecting biodegradable copolymers through controlled ring-opening copolymerization. In Dalton Transactions (Vol. 53, Issue 31, pp. 12837–12866). https://doi.org/10.1039/d4dt01054j.
 - 231. Sagar S, Panda T K, et al. (2024). Green synthesis of poly €-caprolactone using a metal-free catalyst via noncovalent interactions. In Green Chemistry (Vol. 27, Issue 2, pp. 527-534). https://doi.org/10.1039/d4gc04411h.
 - 232. Sagar S, Panda T K, et al. (2024). Magnesium-Catalyzed Dye-Embedded Polylactide Nanoparticles for the Effective Killing of Highly Metastatic B16F10 Melanoma Cells. In ACS Omega (Vol. 9, Issue 13, pp. 14860-14866). https://doi.org/10.1021/acsomega.3c07898.
 - 233. Sharma J, Panda T K, et al. (2024). Structural Diversity of Cadmium Complexes with N-Heterocyclic Carbene-Isothiocyanate Zwitterionic Ligand. In Zeitschrift fur Anorganische und Allgemeine Chemie (Vol. 650, Issue 24). https://doi.org/10.1002/zaac.202400169.
 - 234. Sunar S L, Panda T K, et al. (2024). Green approach on pretreatment of rice straw using deep eutectic solvent for lignin recovery and efficient hydrolysis. In Biomass Conversion Biorefinery. and https://doi.org/10.1007/s13399-024-05634-x
 - 235. Sunar S L, Panda T K, et al. (2024a). Deep eutectic solvent pretreatment of sugarcane bagasse for efficient lignin recovery and enhanced enzymatic hydrolysis. In Journal of Industrial and Engineering Chemistry (Vol. 539-553). 139, https://doi.org/10.1016/j.jiec.2024.05.030.
 - 236. Sunar S L, Panda T K, et al. (2024b). Pretreatment of sugarcane bagasse using ionic liquid for enhanced enzymatic saccharification and lignin recovery: Process optimization by response surface methodology. In Cellulose (Vol. 31, Issue 4, pp. 2151–2173). https://doi.org/10.1007/s10570-024-05768-1.

- 237.Bhoi S, Rao K V, et al. (2024). Extrinsic pseudocapacitance of Ti3C2Tx MXenes in divalent metal-ion electrolytes after assembly with perylene dimides. In Cell Reports Physical Science (Vol. 5, Issue 10). https://doi.org/10.1016/j.xcrp.2024.102229.
- 238.Goudar S H, Rao K V, et al. (2024). Supramolecular Engineering of Ti3C2Tx MXene -Perylene Diimide Hybrid Electrodes for the Pseudocapacitive Electrochemical Storage of Calcium Ions. In Small (Vol. 20, Issue 26). https://doi.org/10.1002/smll.202309905.
- 239.Ingle D S, Rao K V, et al. (2024). Postsynthetic Imidation of Conjugated Porous Polymers: Enhanced CO2 Capture and Selectivity. In ACS Applied Polymer Materials (Vol. 6, Issue 19, pp. 11743–11749). https://doi.org/10.1021/acsapm.4c01726.
- 240.Kotha S, Rao K V, et al. (2024). Pathway Selection in Temporal Evolution of Supramolecular Polymers of Ionic π-Systems: Amphiphilic Organic Solvent Dictates the Fate of Water. In Chemistry—A European Journal (Vol. 30, Issue 36). https://doi.org/10.1002/chem.202303813.
- 241.Kotha S, Rao K V, et al. (2024). Noncovalent synthesis of homo and hetero-architectures of supramolecular polymers via secondary nucleation. In Nature Communications (Vol. 15, Issue 1). https://doi.org/10.1038/s41467-024-47874-5.
- 242.Pramatha S R, Rao K V, et al. (2024). Secondary nucleation guided noncovalent synthesis of dendritic homochiral superstructures via growth on and from surface. In Nature Communications (Vol. 15, Issue 1). https://doi.org/10.1038/s41467-024-55107-y.
- 243.Sahu R, Rao K V, et al. (2024). Dispersion-Driven Cooperativity in Alkyl Perylene Diimide Oligomers: Insights from Density Functional Theory. In ChemPhysChem (Vol. 25, Issue 17). https://doi.org/10.1002/cphc.202400235.
- 244.Sankaranarayanan S A, Rao K V, et al. (2024). Tailoring Phage Nanosomes for Enhanced Theranostic Properties of Near-Infrared Dyes. In Langmuir (Vol. 40, Issue 32, pp. 16743–16756). https://doi.org/10.1021/acs.langmuir.4c01010.
- 245.Sreelakshmi P, Rao K V, et al. (2024). Ti3C2Tx MXene bonded perylene diimide as a robust charge host for seawater electrolytes. In Chemical Communications (Vol. 60, Issue 95, pp. 14069–14072). https://doi.org/10.1039/d4cc05059b.
- 246.Utkarsh U, Rao K V, et al. (2024). Chiral supramolecular polymer functionalized two-dimensional transition metal-based catalyst for enhancing the electrochemical water splitting via spin-polarized charge transfer. In Journal of Materials Chemistry A (Vol. 12, Issue 31, pp. 20354–20363). https://doi.org/10.1039/d4ta02665a.

- Subrahmanyam Challapalli; Single stage conversion of carbon dioxide to e-methanol- Demonstration of catalytic nonthermal Plasma Approach for e-Methanol Synthesis under ambient conditions; 41.10 L. [G695].
- Subrahmanyam Challapalli; Development of Al Ion technology; 55.10 L. [G813].
- Satyanarayana G; Synthesis of Oxacarbazepine; 22.00 L. [G584].
- Satyanarayana G; The synthetic electrochemical strategies and their applications to natural and pharmaceutically relevant products; 62.00 L. [G663].
- Satyanarayana G; Development Organic Electrochromic Molecules; 18.00 L. [S310].
- Tarun Kanti Panda; Preparation of Tris; 240000.00 L. [S 282].
- G Prabu Sankar; Development of Phage Modified Degradable Nanoclusters for Radioimmunotherapy of Triple Negative Breast Cancer; 203.13 L. [EMDR/IG /15/2024-01-02351].

- 8. G Prabu Sankar; Conversion of diagnostic X -ray systems into therapeutic radiation, mediated by Nanomultisensitizers through a circadian-oriented approach for the treatment of metastatic solid tumors; 93.33 L. [FIW-2024-01-0000020 8].
- Surendra Kumar Martha; Mechanistic Thermal Runaway in Lithium and Sodium-Iron Batteries; 25.00 L. [G737].
- Surendra Kumar Martha; Development of 3.8 V/30Ah Pouch-type Lithium-ion cells for EV 2 and 3-wheelers; 20.00 L. [With JICA].
- 11. Somnath Maji; Hybrid transition metal redox catalyst nanocomposite platform for plasmon enhanced electrochemical/photochemical reduction of CO2; 61.64 L. [G652].
- 12. Somnath Maji; Biohydrogen Production from dark fermentation effluent using MEC; 23.00 L. [S316].
- 13. Surajit Maity; Adsorption of CO2 and CO on Isolated Aromatic Molecular Surfaces: Spectroscopic Characterisation of Non-Covalent Bonding and Measurement of Desorption/Dissociation Energy; 2.00 L. [G662].
- 14. Ashutosh Kumar Mishra; Bioinspired novel design built around neutral flavin core skeleton as fluorescent probes for bioimaging and sensing applications; 7.00 L. [G530].
- 15. Venkata Rao Kotagiri; Centre of Excellence on Clean Coal Energy and Net Zero; 9800.00 L. [G795].
- 16. Narendra Kurra; Investigation of MXene Materials for Advanced Asymmetric and Hybrid Metal-ion Supercapacitors.; 45.00 L. [G784].
- 17. Natte Kishore; Design and Development of biocarbon supported Mn and Co-based Nano Catalysts for the transter hydroEenation/Deuteration Reactions using CH30H / CD30D as Hydrogen / Deuterium source and synthesis of pharmaceutical intermediates; 12.00 L. [G681].
- 18. Koyel Banerjee Ghosh; EFFECT OF ELECTRON'S SPIN IN INDUCING CHIRALITY DURING ELECTROCHEMICAL POLYMERIZATION AND ITS APPLICATION INDEVICE FABRICATION; 17.68 L. [G786].
- 19. Sudarsanam Putla; Production of aviation fuels from mixed plastic waste using heterogeneous nanoalloy/silica catalysts; 65.00 L. [G807].
- 20. Sivakumar Vaidyanathan; Molecular Design and Synthesis of Dual-Emissive Lanthanide Complexes for White Light Emitting Diodes and Luminescent Thermometer; 35.69 L. [G766].
- 21. Sivakumar Vaidyanathan; Synthesizing Chiral Thermally Activated Delayed Fluorescence Molecules for Circularly Polarized Luminescence and Multiresonance Deep Blue Emitters; 29.88 L. [PDF66].
- 22. Priyadarshi Chakraborty; Antibacterial, adhesive, and conductive supramolecular biomaterials towards functional cardiac patches; 34.94 L. [G700].
- 23. Debasish Koner; Investigations on near and far from equilibrium dynamical properties in quantum matter; 5.17 L. [G788].
- 24. Tarali Devi; Design and development of transition metals-based electro/photochemical catalysts for water oxidation; 35.13 L. [G752].
- Anup Bhunia; Methylation and Fluoromethylation: Electro(Photo)chemical Taming of Fundamental Intermediates and Their Applications; 46.00 L. [NRF/ECRG/2024/001187/CS].
- Surendra K. Martha; Development and Realization of High Energy Lithium-based Rechargeable Batteries for Electric Vehicles; Greenco School of Sustainability; March 2024; 1.1 cr

Awards & Recognitions:

- 1. Sudarsanam Putla has been elected as an Associate Fellow of the Telangana Academy of Sciences (AFTAS).
- Malla Reddy has been elected as a Fellow of Indian Academy of Sciences (FASc), one of the toughest Indian Academies to become a Fellow.
- 3. Surendra K Martha received ECSI Amara Raja Award 2024
- Sakshi Manekar, PhD Scholar, working under theguidance of Debaprasad Shee, received the Best Oral Presentation in DST-PURSE supported 24th National Symposium on Catalysis (CATSYMP-24) on "Catalysis for Sustainable Chemicals, Materials & Energy (CSCME-2025)"

Research Highlights:

- 1. Somnath Maji group has developed new anticancer metallodrugs based on Copper polypyridyl complexes, which are very effective for DNA binding, cleavage, and in vitro antiproliferative activities, which are beneficial in the design and development of future antitumor agents.
- 2. Priyadarshi Chakraborty's group has developed hydrogel-metal nanoparticle-based catalysts for effective dye degradation.
- 3. Surendra Martha's group has developed novel NASICON-type >3.5 V cathodes for Sodium-ion batteries, developed novel synthesis routes to mitigate residual lithium compound formation for long cycle life NMC-811 cathodes for lithium ion batteries, and aqua-thermal regeneration of spent graphite for Li-ion batteries.
- 4. Koyel Banerjee Ghosh led research on electron-spin catalysis employing chiral-induced spin-selectivity (CISS) effect, which is emerging as an unconventional yet powerful strategy to modulate reaction pathways by exploiting the quantum property of electron spin.

Research Facilities

Circular Dichroism Spectrophotometer

In circular dichroism (CD) spectroscopy, the absorbance of right and left circularly polarized light by molecules in solution is measured.

Nuclear Magnetic Resonance Spectroscopy

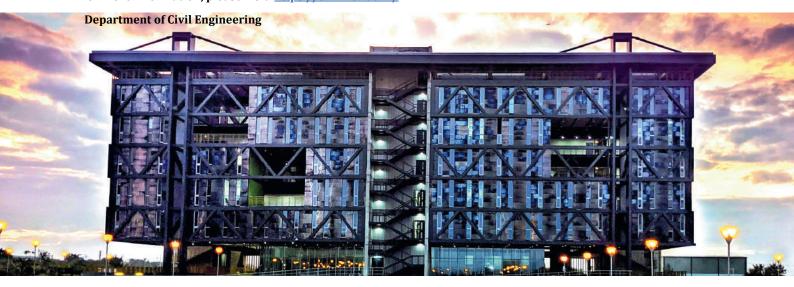
Nuclear Magnetic Resonance Spectroscopy is a research tool for organic chemists which can determine both the physical and chemical properties of atoms or molecules. The NMR Spectroscopy relies on the phenomenon of nuclear magnetic resonance and provides detailed information about the structure, reaction state, and chemical environment of molecules.

Department of Civil Engineering

Welcome to the Department of Civil Engineering at IIT Hyderabad!

We take pride in being one of the largest departments, with 455 enrolled students and 29 active faculty members, including two adjunct professors and three distinguished faculty members. Our dedicated support staff includes 6 Senior Technical Superintendents, 1 Technical Superintendent, 3 Technicians, 2 Junior Technicians, 1 Executive Assistant, and 1 Junior Assistant.

Our department offers five specializations, each represented by faculty members engaged in cutting-edge research. As of June 30, 2025, our impressive record includes over 1200 publications and a departmental h-index of 74, highlighting our commitment to impactful research.


We are actively involved in numerous projects, including 80 Grant-in-Aid and Sponsored projects valued at 55 Crores, and 260 Consultancy projects worth 20 Crores during the last financial year. This involvement reflects our dedication to advancing civil engineering through research and practical applications.

In the previous academic year, we organized several outreach activities. For instance, Ms. Matsuno, Managing Director and CEO of P9LLC, delivered a talk on "Environment and Sustainability: Experiences in Japan, and Future Applications in India. Faculty members gave invited lectures and provided input for policy-making at various events. The Department of Civil Engineering cordially organized a talk by Prof. S. Majid Hassanizadeh, Adjunct Professor, IIT Hyderabad, on "Enriching your CV, Expanding Networks, and Building a Reputation".

The faculty have published their research and academic works in internationally recognized conferences, journals, design competitions, and workshops. Our department organized a two-day Conference on Geotechnical Practices towards Sustainable Infrastructure [Geo Practices 2024] organized by the IGS Hyderabad Chapter and the Department of Civil Engineering.

We take immense pride in our academic community and continuously strive to create an environment that fosters excellence in research, innovation, and education.

For more information, please visit: https://civil.iith.ac.in/

Faculty Head of the Department

Phanindra K B V N PhD - New Mexico State University, USA

Profile page: https://iith.ac.in/ce/phanindra/

Professor

Amirtham Rajagopal
PhD - IIT Madras
Profile page:
https://iith.ac.in/ce/rajagopal/

Asif Qureshi
PhD - Swiss Federal Institute of
Technology, Switzerland
Profile page:
https://iith.ac.in/ce/asif/

Debraj Bhattacharyya
PhD - University of New Brunswick,
Canada
Profile page:
https://iith.ac.in/ce/debrajb/

Mahendrakumar Madhavan PhD - University of Alabama – Birmingham, USA Profile page: https://iith.ac.in/ce/mkm/

Munwar B Basha
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/ce/basha/

Shashidhar T PhD - IIT Madras Profile page: https://iith.ac.in/ce/shashidhar/

Sireesh S
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/ce/sireesh/

Subramaniam Kolluru V L
PhD - Northwestern University, USA
Profile page:
https://iith.ac.in/ce/kvls/

Suriya S Prakash
PhD - Missori University of Science &
Technology - Rolla, USA
Profile page:
https://iith.ac.in/ce/suriyap/

Umashankar B
PhD - Purdue University, USA
Professor
Profile page:
https://iith.ac.in/ce/buma/

Anil Agarwal
PhD - Purdue University, USA
Profile page:
https://iith.ac.in/ce/anil/

Digvijay S Pawar PhD - IIT Bombay Profile page: https://iith.ac.in/ce/dspawar/

Pritha Chatterjee
PhD - IIT Kharagpur
Profile page:
https://iith.ac.in/ce/pritha/

Satish Kumar Regonda
PhD - University of Colorado at
Boulder,USA
Profile page:
https://iith.ac.in/ce/satishr/

Seetha N
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/ce/seetha/

Surendra Nadh Somala
PhD - California Institute of
Technology, USA
Profile page:
https://iith.ac.in/ce/surendra/

Assistant Professor

Ambika S
PhD - IIT Madras
Profile page:
https://iith.ac.in/ce/ambika/

Biswarup Bhattacharyya
PhD - Université Claude Bernard Lyon
1, France
Profile page:
https://iith.ac.in/ce/biswarup/

Maheswaran R
PhD - IIT Delhi
Profile page:
https://iith.ac.in/ce/rmaheswaran/

Meenakshi PhD - IIT Delhi Profile page: https://iith.ac.in/ce/meenakshi/

Ramya Sri Mullapudi PhD - IIT Kharagpur Profile page: https://iith.ac.in/ce/ramyamullapudi/

Roshan Khan M
PhD - IIT Bombay
Profile page:
https://iith.ac.in/ce/roshan/

Shruti Upadhyaya PhD - IIT Bombay Profile page: https://iith.ac.in/ce/shrutiau/

Shwetabh Yadav
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/ce/shwetabh/

S k Zeeshan AliPhD - IIT Kharagpur **Profile page:**https://iith.ac.in/ce/zeeshan/

Sourav Das
PhD - University of British Columbia,
Canada
Profile page:
https://www.iith.ac.in/ce/sourav.das/

Majid Hassanizadeh S
Emeritus Professor at Dept of Earth
Sciences, Utrecht University
Profile page:
https://www.uu.nl/en/organisation/
faculty-ofgeosciences/majidhassanizadeh

Balaji Rajagopalan
University of Colorado Boulder, United
States
Profile page:
https://www.colorado.edu/ceae/rajagopalan-balaji

David W Graham
Newcastle university (NU), UK
Profile page:
https://www.ncl.ac.uk/engineering/s
taff/profile/davidgraham.html

Patents:

Filed:

- Balunaini Umashankar; Multiaxial Geogrid; 202421066553.
- 2. Balunaini Umashankar; Geogrid for Reinforcement and Base Stabilization; 202421066554.
- Debraj Bhattacharyya; An Anaerobic-Aerobic Algal-Bacterial Photo-Bioreactor for Wastewater Treatment; 202441028923.

Published:

- Ambika S; Fluorescence Method of Quantifying Perfluorooctanoic Acid Concentration in Aqueous Solutions; 202441077834.
- Mahendrakumar Madhavan; Cold-Formed Interlocked Built-Up Steel Column for Mid-Rise Building; 202341009493.
- 3. Mahendrakumar Madhavan; Cold-Formed Steel Interlocked Built-Up Beam; 202341047418.
- 4. Mahendrakumar Madhavan; A Cold formed Modular Built-Up Column Member Assembly; 202441028870.
- S Suriya Prakash; A Method to Produce an Ultra-High-Performance Fiber-Reinforced Concrete; 202341004954.
- T Shashidhar; A Non-Thermal Plasma Incinerator to Remove Dilute Volatile Organic Compounds in Indoor Concentrations; 202241039380.

Granted:

- Kolluru V L Subramaniam; A Sensing System for Vibro-Acoustic Emission Monitoring of Concrete Structures; 202341054901.
- Umashankar B; An Apparatus for Measuring Transverse Pullout Resistance of a Reinforcing Element and Method Thereof; 2927/CHE/2015.

Books:

- Ambika S; Technical Report for MoHUA: Sustainability Impact Assessment Study on Solid Waste Management' focusing on What has been the contribution of Indian Smart Cities in the Solid Waste Management Sector? Ministry of Housing and Urban Affairs, Government of India.
- 2. Ambika S; Technical Report for MoHUA: Sustainability Impact Assessment Study on Local Air Quality, focusing on What has been the impact of SCM in the improvement of local air quality in Indian smart cities? Ministry of Housing and Urban Affairs, Government of India.
- 3. Dey S, & Ali S Z. (2025). Fluvial Hydrodynamics—Solutions Manual (2024th edition). Springer Nature.

Book Chapters:

- Catherine Chakkalakkal, Benita Nishil, V Vishnudatha, Ambika S. Life Cycle Assessment of Edible Water Blobs Using OpenLCA, Recent Advances in Civil Engineering, CRC Press, Chapter 10, 2024. https://doi.org/10.1201/9781032657271.
- Vishnudatha V, B Nishil, C Chakkalakkal, Ambika S. Comparative Lifecycle Assessment of Alcohol-Based Hand Sanitizers Using Open LCA, Recent Advances in Civil Engineering, CRC Press, Chapter 13, 2024. https://doi.org/10.1201/9781032657271.
- 3. Gopal V & Selvaraj A. (2024a). Metal-Organic Framework (MOF)-Based Photocatalysts for Pharmaceutical Wastewater Treatment. In Advanced Materials for Pharmaceutical Wastewater Treatment. https://doi.org/10.1201/9781003340164-9.
- 4. Gopal V, & Selvaraj A. (2024b). Role of Biochar in Achieving Climate Resilience and Climate Change

- Mitigation. In Biochar Amendments for Environmental Remediation.
- https://doi.org/10.1201/9781003344803-7.
- Chaitanya N K, Chatterjee P, et al. (2024). Performance Comparison and Integration of Bioelectrochemical Systems with Other Wastewater Treatment Technologies. In Microbial Electrochemical Technologies: Fundamentals and Applications (Vols. 1– 2). https://doi.org/10.1002/9783527839001.ch24.
- Chatterjee P & Bhattacharya A. (2024). Microbial Desalination Cell. In Microbial Electrochemical Technologies: Fundamentals and Applications (Vols. 1– 2). https://doi.org/10.1002/9783527839001.ch16.
- Maganty S T & Subramaniam K V L. (2024). Fracture Behavior of Steel Fiber Reinforced Geopolymer and Normal Concrete. In RILEM Bookseries (Vol. 54, pp. 35– 42). https://doi.org/10.1007/978-3-031-70145-0 5.
- Duddi M, Kocherla A, & Subramaniam K V L. (2024). Real-Time Monitoring of Concrete Properties Using an Embedded Smart Piezoelectric Sensor with Active and Passive Sensing Abilities. In RILEM Bookseries (Vol. 48, pp. 1089–1100). https://doi.org/10.1007/978-3-031-53389-1 96.
- Kulkarni O, Subramaniam K V L, et al. (2024). Evaluation of Tensile Behaviour of 3D Printed Concrete Assemblies with Reinforcement. In RILEM Bookseries (Vol. 48, pp. 73–81). https://doi.org/10.1007/978-3-031-53389-1 7.
- Thakur M S, Subramaniam K V L, et al. (2024). Influence of Cold Joint on Fracture Behaviour of 3D Printed Concrete. In RILEM Bookseries (Vol. 48, pp. 194–202). https://doi.org/10.1007/978-3-031-53389-1 19.
- 11. Pranavi D & Rajagopal A. (2024). Constitutive Relation for Modelling Anisotropic Fracture in Heterogeneous Materials at Finite Strain. In Springer Proceedings in Materials (Vol. 35, pp. 377?383). https://doi.org/10.1007/978-981-99-6255-6 32.
- 12. Imtiyaz P A, Saride S, Yadav S. Numerical Analysis of Ground Improvement at Suvarnabhumi International Airport Using Vertical Drains and Deep Soil Mixing Columns, Sustainable Civil Infrastructure Development: Case Studies, Basack S, Goswami G.
- 13. Karnamprabhakara B K, Balunaini U, & Arulrajah A. (2024). Interfacial direct shear behavior of aluminum slag and uniaxial geogrids. In Green Materials in Civil Engineering. https://doi.org/10.1016/B978-0-443-19106-0.00006-3.

Publications:

- Gopal V, Harsha S & Selvaraj A. (2024). Cow urine-based green synthesis of sunlight-responsive ZrO2-Bi2O3 and its application in photocatalysis of 2,4-Dichlorophenoxyactetic acid in aqueous solution Kinetics, mechanisms and sustainability analysis. In Catalysis Communications (Vol. 187). https://doi.org/10.1016/j.catcom.2024.106869.
- Gopal V & Selvaraj A. (2024a). Metal-Organic Framework (MOF)-Based Photocatalysts for Pharmaceutical Wastewater Treatment. In Advanced Materials for Pharmaceutical Wastewater Treatment. https://doi.org/10.1201/9781003340164-9.
- 3. Gopal V & Selvaraj A. (2024b). Role of Biochar in Achieving Climate Resilience and Climate Change Mitigation. In Biochar Amendments for Environmental Remediation.
 - https://doi.org/10.1201/9781003344803-7.
- Nidheesh P V, Selvaraj A. (2024). Conversion of locally available materials to biochar and activated carbon for drinking water treatment. In Chemosphere (Vol. 353). https://doi.org/10.1016/j.chemosphere.2024.141566.
- Sreelakshmi P, Selvaraj A. (2024). Ti3C2Tx MXene bonded perylene diimide as a robust charge host for seawater electrolytes. In Chemical Communications

- (Vol. 60, Issue 95, pp. 14069–14072). https://doi.org/10.1039/d4cc05059b.
- Venu V, Selvaraj A. (2024). Exploring community attitudes and perceptions towards solid waste management: A case study of Kerala, India. In Current Science (Vol. 126, Issue 12, pp. 1472–1478). https://doi.org/10.18520/cs/v126/i12/1472-1478.
- 7. Aurojyoti P & Rajagopal A. (2024). Fourth order phase field modeling of brittle fracture by Natural element method. In International Journal of Fracture (Vol. 247, Issue 2, pp. 203–224). https://doi.org/10.1007/s10704-024-00773-8.
- 8. Aurojyoti P, Rajagopal A, et al. (2024). A nonlocal strain gradient model for buckling analysis of laminated composite nanoplates using CLPT and TSDT. In Meccanica (Vol. 59, Issue 1, pp. 127–156). https://doi.org/10.1007/s11012-023-01736-4.
- Gomathi K A, Rajagopal A, et al. (2024). Application of rate sensitive plasticity-based damage model for near and contact explosions. In International Journal of Mechanics and Materials in Design (Vol. 20, Issue 1, pp. 55–79). https://doi.org/10.1007/s10999-023-09661w.
- Gomathi K A, Rajagopal A, et al. (2024). Rate sensitive plasticity-based damage model for concrete under dynamic loading. In Mechanics of Advanced Materials and Structures (Vol. 31, Issue 29, pp. 11895–11914). https://doi.org/10.1080/15376494.2024.2313150.
- Mrunmayee S, Rajagopal A, et al. (2024). Phase field approach to predict mixed-mode delamination and delamination migration in composites. In Composite Structures (Vol. 337). https://doi.org/10.1016/j.compstruct.2024.118074.
- 12. Piska R, Rajagopal A, et al. (2024). A thermodynamically consistent phase field model for brittle fracture in graded coatings under thermo-mechanical loading. In Theoretical and Applied Fracture Mechanics (Vol. 131). https://doi.org/10.1016/j.tafmec.2024.104414.
- https://doi.org/10.1016/j.tafmec.2024.104414.

 13. Pranavi D & Rajagopal A. (2024). Constitutive Relation for Modelling Anisotropic Fracture in Heterogeneous Materials at Finite Strain. In Springer Proceedings in Materials (Vol. 35, pp. 377–383). https://doi.org/10.1007/978-981-99-6255-6_32.
- Pranavi D, Rajagopal A & Reddy J N. (2024a). A note on the applicability of Eringen's nonlocal model to functionally graded materials. In Mechanics of Advanced Materials and Structures (Vol. 31, Issue 10, pp.20912093). https://doi.org/10.1080/15376494.202 2.2150340.
- 15. Pranav D, Rajagopal A, & Reddy J N, (2024b). Phase field modeling of anisotropic fracture. In Continuum Mechanics and Thermodynamics (Vol. 36, Issue 5, pp. 1267–1282). https://doi.org/10.1007/s00161-023-01260-6.
- Pranavi D, Steinmann P, & Rajagopal A. (2024). A unifying finite strain modeling framework for anisotropic mixed-mode fracture in soft materials. In Computational Mechanics (Vol. 73, Issue 1, pp. 123–137). https://doi.org/10.1007/s00466-023-02359-y.
- Valecha D K, K J & Rajagopal A. (2024). Temperature-dependent model for ferroelectrics embedded into two-dimensional polygonal finite element framework. In Mechanics of Advanced Materials and Structures (Vol. 31, Issue 14, pp. 3091–3107). https://doi.org/10.1080/15376494.2023.2169793.
- Banoth I & Agarwal A. (2024). Bond between deformed steel rebars and concrete at elevated temperatures. In Fire Safety Journal (Vol. 145). https://doi.org/10.1016/j.firesaf.2024.104133.
- Sangani P & Agarwal A. (2024). A comprehensive methodology for residual capacity evaluation of damaged steel tubular columns. In Journal of Constructional Steel Research (Vol. 216). https://doi.org/10.1016/j.jcsr.2024.108625.
- 20. Sangani P, Agarwal A, et al. (2024). Numerical Analysis

- of Low-Velocity Deformable Projectile Impact on Steel Columns. In Lecture Notes in Civil Engineering (Vol. 52, pp. 601–609). https://doi.org/10.1007/978-981-99-9625-4-57.
- Sangani P, Agarwal A, et al. (2024). Material properties of YSt 310 steel tubular columns under extreme loading conditions. In Journal of Constructional Steel Research (Vol. 223). https://doi.org/10.1016/j.jcsr.2024.109076.
- 22. Sangani P, Singh S & Agarwal A, (2024). A Comprehensive Approach for Estimating Residual Capacity of Damaged Steel Tubular Sections: From Surface Scanning to Stress Analysis. In Proceedings of the Annual Stability Conference Structural Stability Research Council, SSRC 2024. https://www.scopus.com/inward/record.uri?eid=2-s2.085192821867&partnerID=40&md5=81f5e635411 44f2c5b3ad27cf9fa4706.
- 23. Benskin J, Qureshi A, et al. (2024). Outstanding Reviewers for Environmental Science: Processes & Impacts in 2023. In Environmental Science: Processes and Impacts (Vol. 26, Issue 8, p. 1267). https://doi.org/10.1039/d4em90024c.
- 24. Kapoor T S, Qureshi A, et al. (2024). Spatial Distribution in Surface Aerosol Light Absorption Across India. In Geophysical Research Letters (Vol. 51, Issue 18). https://doi.org/10.1029/2024GL110089.
- 25. Muthalagu A, Qureshi A, et al. (2024). Impacts of Floods on the Indoor Air Microbial Burden. In Aerosol and Air Quality Research (Vol. 24, Issue 1). https://doi.org/10.4209/aaqr.230191.
- Shende P, Qureshi A, et al. (2024). Potential reductions in fine particulate matter and premature mortality following implementation of air pollution controls on coal-fired power plants in India. In Air Quality, Atmosphere and Health (Vol. 17, Issue 5, pp. 1061–1075). https://doi.org/10.1007/s11869-024-01503-8.
- 27. Venkataraman C, Qureshi A, et al. (2024). Drivers of PM2.5 Episodes and Exceedance in India: A Synthesis from the COALESCE Network. In Journal of Geophysical Research: Atmospheres (Vol. 129, Issue 14). https://doi.org/10.1029/2024JD040834.
- 28. Vudamala K, Qureshi A, et al. (2024). Polychlorinated biphenyls in the surface and deep waters of the Southern Indian Ocean and Coastal Antarctica. In Chemosphere (Vol. 364). https://doi.org/10.1016/j.chemosphere.2024.143241.
- Hoda S & Bhattacharyya B. (2024). A Reduced Order Model for Damage Detection of Dynamic Problems. In Lecture Notes in Civil Engineering (Vol. 52, pp. 165– 173). https://doi.org/10.1007/978-981-99-9625-4 16.
- 30. Gundupalli M P, Bhattacharyya D, et al. (2024). Understanding the effect of low-concentration protic ionic liquids (PILs) on coconut (Cocos nucifera) residues. In Biomass Conversion and Biorefinery (Vol. 14, Issue 3, pp. 3275–3291). https://doi.org/10.1007/s13399-022-02572-4.
- 31. Oruganti R K, Bhattacharyya D. et al. (2024). Synthesis of algal-bacterial sludge activated carbon/Fe3O4 nanocomposite and its potential in antibiotic ciprofloxacin removal by simultaneous adsorption and heterogeneous Fenton catalytic degradation. In Environmental Science and Pollution Research (Vol. 31, Issue 60, pp. 67594–67612). https://doi.org/10.1007/s11356-024-34830-5.
- 32. Oruganti R K & Bhattacharyya D. (2024). Start-up phase performance evaluation of a pilot-scale sequential anaerobic-aerobic hybrid algal-bacterial suspended growth reactor for the domestic wastewater treatment. In Bioresource Technology Reports (Vol. 28). https://doi.org/10.1016/j.biteb.2024.101972.
- 33. Oruganti R K, Gungupalli M P, & Bhattacharyya D. (2024). Alkaline hydrolysis for the yield of glucose and kraft lignin from de-oiled Jatropha curcas waste: Multiresponse optimization using response surface

- methodology. In Biomass Conversion and Biorefinery (Vol. 14, Issue 10, pp. 11093–11111). https://doi.org/10.1007/s13399-022-03204-7.
- 34. Sunar S L, Bhattacharyya D, et al. (2024). Green approach on pretreatment of rice straw using deep eutectic solvent for lignin recovery and efficient hydrolysis. In Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-024-05634-x.
- Sunar S L, Bhattacharyya D, et al. (2024a). Deep eutectic solvent pretreatment of sugarcane bagasse for efficient lignin recovery and enhanced enzymatic hydrolysis. In Journal of Industrial and Engineering Chemistry (Vol. 139, pp. 539–553). https://doi.org/10.1016/j.jiec.2024.05.030.
- 36. Sunar S L, Bhattacharyya D, et al. (2024b). Pretreatment of sugarcane bagasse using ionic liquid for enhanced enzymatic saccharification and lignin recovery: Process optimization by response surface methodology. In Cellulose (Vol. 31, Issue 4, pp. 2151–2173). https://doi.org/10.1007/s10570-024-05768-1.
- 37. Chandrashekar C, Pawar D S. et al. (2024). Modeling real-world diesel car tailpipe emissions using regression-based approaches. In Transportation Research Part D: Transport and Environment (Vol. 128). https://doi.org/10.1016/j.trd.2024.104092.
- 38. Chowdappa C, Pawar D S, et al. (2024). Comparative analysis of real-world vehicular emissions from BS-IV and BS-VI cars in India. In Environmental Monitoring and Assessment (Vol. 196, Issue 8). https://doi.org/10.1007/s10661-024-12895-6.
- Pavan K, Pawar D S, et al. (2024). Classifying Driver Distraction with Textile Electrocardiograms. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS.
 - https://doi.org/10.1109/EMBC53108.2024.10782613.
- Pavan K, Pawar D S, et al. (2024). Assessment of Driver's Stress State Using Smart T-Shirt Textile Electrodes and Multimodal Cross-Attention Networks. In IEEE Sensors Letters (Vol. 8, Issue 10). https://doi.org/10.1109/LSENS.2024.3458931.
- 41. Singh A, Pawar D S, et al. (2024). Impact of Texting-Induced Distraction on Driving Behavior Based on Field Operation Tests. In Transportation Research Record. https://doi.org/10.1177/03611981241272091.
- Bondapalli S C, Natesan V, & Madhavan M. (2024). Numerical investigation of cold formed steel sleeve connection for channel sections subjected to combined bending and shear. In Journal of Constructional Steel Research(Vol.217).https://doi.org/10.1016/j.jcsr.2024.108588.
- Guru Prathap Reddy, V Selvaraj S, & Madhavan M. (2024). Structural Behaviour of Cold-Formed Steel Built-Up Beams. In Lecture Notes in Civil Engineering: Vol. 318 LNCE (pp. 321–330). https://doi.org/10.1007/978-981-19-9390-9 26.
- 44. Karthikeyan H, Naik B, & Madhavan M. (2024). Design of Cold-Formed Z-Shaped purlin-to-rafter connections subject to pull-through failure. In Thin-Walled Structures (Vol. 199). https://doi.org/10.1016/j.tws.2024.111725.
- 45. Madheswaran R, Mallepogu N, & Madhavan M. (2024). New design shear method for the bolted CFS connector in a CFS beam-to-column connection. In Journal of Constructional Steel Research (Vol. 222). https://doi.org/10.1016/j.jcsr.2024.108928.
- 46. Mallepogu N & Madhavan M. (2024). Ultimate Shear Capacity of the Cold-Formed Steel Torsionally Restrained Beam-to-Column Moment Connection with a Three-Bolted Clip Angle and Flange Cleat. In Journal of Structural Engineering (United States) (Vol. 150, Issue 6). https://doi.org/10.1061/JSENDH.STENG-12724.
- 47. Naik B & Madhavan M. (2024a). Comparative experimental studies on stiffened and unstiffened

- flange Cold Formed Steel welded sections using Cold Metal Transfer welding. In Structures (Vol. 62). https://doi.org/10.1016/j.istruc.2024.106140.
- https://doi.org/10.1016/j.istruc.2024.106140.

 48. Naik B & Madhavan M. (2024b). Design of cold metal transfer flare v-groove welds on cold-formed steel hat sections. In Engineering Structures (Vol. 305). https://doi.org/10.1016/j.engstruct.2024.117704.
- 49. Natesan V, Madhavan M, et al. (2024). Corrigendum to "Effectiveness of CFS web cleat bolted connections between beam-to-column" [Structures 33 (2021) 3269–3283, (S2352012421005725), (10.1016/j.istruc.2021.06.067)]. In Structures (Vol. 62). https://doi.org/10.1016/j.istruc.2024.106106.
- 50. Selvaraj S & Madhavan M. (2024a). Direct stiffness-strength method: An alternative design approach to aisi for sheathed cold-formed steel z-section structural members subjected to bending. In Journal of Structural Engineering (United States) (Vol. 150, Issue 4). https://doi.org/10.1061/JSENDH.STENG-12340.
- 51. Selvaraj S & Madhavan M. (2024b). Investigation on Structural Behaviour of Cold-formed Steel Built-up Columns—Modified Direct Strength Method. In Proceedings of the Annual Stability Conference Structural Stability Research Council, SSRC 2024. https://www.scopus.com/inward/record.uri?eid=2-s2.085192862476&partnerID=40&md5=6b6e3c0a3a201bfa1e807b3a9be24cb4.
- 52. Chetan Kumar S, Syam S S N & Rathinasamy M. (2024). Assessment of spatial variability of precipitation in Krishna River Basin using a metric based on apportionment entropy. In Hydrological Sciences Journal (Vol. 69, Issue 12, pp. 1571–1585). https://doi.org/10.1080/02626667.2024.2376708.
- 53. Marangu J M, Sharma M, et al. (2024). Durability of Ternary Blended Concrete Incorporating Rice Husk Ash and Calcined Clay. In Buildings (Vol. 14, Issue 5). https://doi.org/10.3390/buildings14051201.
- 54. Basha B M & Raghuram A S S. (2024). First- and Second-Order Reliability Analysis of Rainfall-Induced Kotropi Slope Failure. In Indian Geotechnical Journal (Vol. 54, Issue 1, pp. 266–283). https://doi.org/10.1007/s40098-022-00700-5.
- 55. Moghal A A B, Basha B M, et al. (2024). Reliability-Based Design Analysis of Cohesive Soil as an Embankment Material Amended Using Hydrophobic Biopolymers. In Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-024-09798-6.
- 56. Raghuram A S S & Basha B M. (2024). Rainfall-Induced Probability of Failure in Spatially Variable Soil Slopes and a Case Study of the Konkan Railway Slope Failure. In ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering (Vol. 10, Issue1). https://doi.org/10.1061/AJRUA6.RUENG-1112.
- 57. Raghuram A S S, Basha B M, et al. (2024). Effect of Sample Size, Dry Unit Weight, and Hysteresis of Expansive Soil on SWCC and Finite Slope Stability. In International Journal of Geosynthetics and Ground Engineering (Vol. 10, Issue 2). https://doi.org/10.1007/s40891-024-00531-9.
- 58. Rasheed R M, Basha B M, et al. (2024). Target reliability-based design optimization studies on cohesive soil amended with chitosan and casein for liner applications. In Scientific Reports (Vol. 14, Issue 1). https://doi.org/10.1038/s41598-024-64408-7.
- Soujanya D & Basha B M. (2024). Component and System Reliability Assessment of Landfill Cover Systems Using Pseudostatic and Pseudodynamic Methods. In International Journal of Geomechanics (Vol. 24, Issue 11). https://doi.org/10.1061/IJGNAI.GMENG-10239.
- 60. Soujanya D & Munwar Basha B. (2024). Pseudodynamic Stability Analysis of Landfill Veneer Cover Systems with Clogged Drainage Layer. In International Journal of Geomechanics (Vol. 24, Issue 2). https://doi.org/10.1061/IJGNAI.GMENG-8606.

- 61. Thapa I, Basha B M, et al. (2024). Prediction of California Bearing Ratio of nano-silica and bio-char stabilized soft sub-grade soils using explainable machine learning. In Transportation Geotechnics (Vol. 49). https://doi.org/10.1016/j.trgeo.2024.101387.
- 62. Anupoju V, Kambhammettu B V N P, & Peddinti S R. (2024). Comparative analysis of FAO dual Kc, Priestley-Taylor and flux variance similarity methods in partitioning evapotranspiration from flood-irrigated rice fields. In Irrigation and Drainage. https://doi.org/10.1002/ird.3039.
- 63. Chintala S, Kambhammettu B V N P, & Harmya T S. (2024). Performance of Gradient and Gradient-Free Optimizers in Transient Hydraulic Tomography. In Groundwater (Vol. 62, Issue 3, pp. 371–383). https://doi.org/10.1111/gwat.13347
- 64. Chintala S, Karimindla A R & Kambhammettu B P. (2024). Scaling relations between leaf and plant water use efficiencies in rainfed Cotton. In Agricultural Water Management (Vol. 292). https://doi.org/10.1016/j.agwat.2024.108680.
- 65. Karimindla A R, Kambhammettu B V N P. et al. (2024). The role of time averaging of eddy covariance fluxes on water use efficiency dynamics of maize. In Atmospheric Measurement Techniques (Vol. 17, Issue 18, pp. 5477–5490). https://doi.org/10.5194/amt-17-5477-2024.
- 66. Kumari S, Kambhammettu B V N P, et al. (2024).

 Analysis of flux footprints in fragmented, heterogeneous croplands. In Meteorology and Atmospheric Physics (Vol. 136, Issue 2). https://doi.org/10.1007/s00703-023-01004-w.
- 67. Bhattacharya A & Chatterjee P. (2024a). Enhancing microbial fuel cell performance through anodic denitrification: The influence of C/N ratios. In Journal of Water Process Engineering (Vol. 63). https://doi.org/10.1016/j.jwpe.2024.105489.
- 68. Bhattacharya A & Chatterjee P. (2024b). Impact of Reactor Configuration on Autotrophic Denitrification Performance in a Microbial Fuel Cell. In Journal of Hazardous, Toxic, and Radioactive Waste (Vol. 28, Issue 3). https://doi.org/10.1061/JHTRBP.HZENG-1314.
- 69. Bhattacharya A, Neena M & Chatterjee P. (2024). Microbial nutrient recovery cell as an efficient and sustainable nutrient recovery option in sewage treatment. In Journal of Environmental Management (Vol. 366). https://doi.org/10.1016/j.jenvman.2024.121753.
- 70. Chaitanya N K, Chatterjee P. et.al. (2024). Performance Comparison and Integration of Bioelectrochemical Systems with Other Wastewater Treatment Technologies. In Microbial Electrochemical Technologies: Fundamentals and Applications (Vols. 1–2). https://doi.org/10.1002/9783527839001.ch24.
- 71. Chandrashekar C, Chatterjee P. et al. (2024). Modeling real-world diesel car tailpipe emissions using regression-based approaches. In Transportation Research Part D: Transport and Environment (Vol. 128). https://doi.org/10.1016/j.trd.2024.104092.
- 72. Chatterjee P & Bhattacharya A. (2024). Microbial Desalination Cell. In Microbial Electrochemical Technologies: Fundamentals and Applications (Vols. 1–2). https://doi.org/10.1002/9783527839001.ch16.
- 73. Chowdappa C, Chatterjee P. et al. (2024). Comparative analysis of real-world vehicular emissions from BS-IV and BS-VI cars in India. In Environmental Monitoring and Assessment (Vol. 196, Issue 8). https://doi.org/10.1007/s10661-024-12895-6.
- 74. El-Qelish M, Chatterjee P. et al. (2024). Conversion of boreal lake sedimented pulp mill fibre into biogas: A two-stage hydrogen and methane production. In Biomass Conversion and Biorefinery (Vol. 14, Issue 7, pp. 8819–8828). https://doi.org/10.1007/s13399-022-03219-0.
- 75. Krishna Chaitanya, Chatterjee P. et al. (2024). Impact of

- cell voltage on synthesis of caproic acid from carbon dioxide and ethanol in direct current powered microbial electrosynthesis cell. In Bioresource Technology (Vol. 412). https://doi.org/10.1016/j.biortech.2024.131383.
- Kumar P, Chatterjee P. et al. (2024). Polyacrylic comaleic acid as an anti-scaling binder for air-cathode microbial fuel cell: An oxygen reduction reaction perspective. In Results in Chemistry (Vol. 7). https://doi.org/10.1016/j.rechem.2023.101251.
- 77. Dhandapani B P & Mullapudi R S. (2024). Cement-grouted bituminous mixtures containing reclaimed asphalt pavement material: Design and mechanical properties. In Road Materials and Pavement Design. https://doi.org/10.1080/14680629.2024.2430379.
- Mullapudi R S, Noojilla S L A, Tavva T L & Kusam S R. (2024). Evaluation of healing characteristics of reclaimed asphalt pavement (RAP) mixtures using monotonic loading. In Innovative Infrastructure Solutions (Vol. 9, Issue 12). https://doi.org/10.1007/s41062-024-01798-7.
- Nithinchary J, Dhandapani B P & Mullapudi R S. (2024).
 Application of warm mix technology—Design and performance characteristics: Review and way forward.
 In Construction and Building Materials (Vol. 414).
 https://doi.org/10.1016/j.conbuildmat.2024.134915.
- 80. Karalikkadan S & Roshan Khan M. (2024). EPS geofoam in-filled ground vibration barriers for environmental sustainability of ballasted high-speed railway tracks: State of the art. In Proceedings of 2024 Joint Rail Conference, JRC 2024. https://doi.org/10.1115/JRC2024-127705.
- 81. Guniganti S K, Regonda S K P A & Reed S. (2024). Modified calibration strategies and parameter regionalization potential for streamflow estimation using a hydrological model. In Hydrological Sciences Journal (Vol. 69, Issue 6, pp. 765–781). https://doi.org/10.1080/02626667.2024.2335294.
- 82. Yanto Rajagopalan B & Regonda S K. (2024). Linear and copula model for understanding climate drivers of hydroclimatic extremes: A case study of Serayu river basin, Indonesia. In Acta Geophysica (Vol. 72, Issue 2, pp. 1067–1078). https://doi.org/10.1007/s11600-023-01078-5.
- 83. Horta M J & Seetha N. (2024). Experimental and mathematical investigation of cotransport of clay and microplastics in saturated porous media. In Science of the Total Environment (Vol. 954). https://doi.org/10.1016/j.scitotenv.2024.176739.
- 84. Krishna Y S R, Seetha N & Hassanizadeh S M. (2024). Synergistic effects of temporal variations in flow and chemistry on colloid retention and remobilization in saturated porous media. In Journal of Hydrology (Vol. 645). https://doi.org/10.1016/j.jhydrol.2024.132144.
- 85. Seetha N, Dibyanshu & Raychoudhury T. (2024). Modeling the Transport Behavior of Zinc Oxide Nanoparticles in Soil Under Various Environmental Conditions. In Water, Air, and Soil Pollution (Vol. 235, Issue 1). https://doi.org/10.1007/s11270-023-068530.
- 86. Kandukuri B, Thatikonda S, et.al. (2024). Non-thermal plasma mitigation of low concentration of air pollutants: Removal of isopropyl alcohol using transition metal-oxide integration. In Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-024-32569-7.
- 87. Rathinavelu S, Thatikonda S, et.al. (2024). Mapping the scarcity of data on antibiotics in natural and engineered water environments across India. In Frontiers in Antibiotics (Vol. 3). https://doi.org/10.3389/frabi.2024.1337261.
- 88. Sonkar V, Venu V, Nishil B & Thatikonda S. (2024). Review on antibiotic pollution dynamics: Insights to occurrence, environmental behaviour, ecotoxicity, and management strategies. In Environmental Science and

- Pollution Research (Vol. 31, Issue 39, pp. 51164–51196). https://doi.org/10.1007/s11356-024-345671.
- 89. Srivastava R, Thatikonda S, et.al. (2024). Bioinspired Photoresponsive Algosomes as a Nanocarrier for Combating Cancer and Bacterial Infections. In ACS Applied Nano Materials. https://doi.org/10.1021/acsanm.4c05104.
- 90. Yadav S, Chawla H & Sagapuram D. (2024). IN SITU OBSERVATIONS OF SHEAR LOCALIZATION AND FRACTURE IN MACHINING. In Proceedings of ASME 2024 19th International Manufacturing Science and Engineering Conference, MSEC 2024 (Vol. 2). https://doi.org/10.1115/MSEC2024-124723.
- Gangisetti R & Saride S. (2024). Effect of Mean Particle Size and Uniformity on Modulus Degradation of Nonlinearly Graded Marine Sands. In Journal of Geotechnical and Geoenvironmental Engineering (Vol. 150, Issue 5). https://doi.org/10.1061/JGGEFK.GTENG-11625.
- Jallu M & Saride S. (2024a). Effect of Alkaline Activator Ratio on Mechanical Strength of Fly Ash Stabilized RAP Use as Pavement Base Material. In Lecture Notes in Civil Engineering: Vol. 485 LNCE (pp. 747–755). https://doi.org/10.1007/978-981-97-3994-3 50.
- 93. Jallu M & Saride S. (2024b). Performance of Alkali-Activated Fly Ash Stabilized High Percentage RAP Aggregates as a Pavement Base Course: Laboratory and Field Perspectives. In International Journal of Geosynthetics and Ground Engineering (Vol. 10, Issue 2). https://doi.org/10.1007/s40891-024-00523-9.
- 94. Saride S & Mypati V N K. (2024a). Effect of area improvement ratio of geopolymer-based deep mixing columns on swell-shrink behavior of expansive soils. In Construction and Building Materials (Vol. 417). https://doi.org/10.1016/j.conbuildmat.2024.135163.
- Saride S & Mypati V N K. (2024b). Scale-Model Studies on Geopolymer Binder-Based Deep Mixing of Loose Sands to Improve Strength and Shear Modulus. In Indian Geotechnical Journal (Vol. 54, Issue 1, pp. 169– 184). https://doi.org/10.1007/s40098-023-00823-3.
- 96. Ali S Z & Dey S. (2024a). Generalized scaling law of equilibrium scour depth at a cylinder embedded in an erodible bed. In Physics of Fluids (Vol. 36, Issue 6). https://doi.org/10.1063/5.0214724.
- 97. Ali S Z & Dey S. (2024b). Universal skin friction laws for turbulent flow in curved tubes. In Physics of Fluids (Vol. 36, Issue 8). https://doi.org/10.1063/5.0222083.
- 98. Bhargav T & Ali S Z. (2024). Revisiting the analysis of self-formed threshold alluvial channels. In Environmental Fluid Mechanics (Vol. 24, Issue 6, pp. 1323–1348). https://doi.org/10.1007/s10652-024-10004-2.
- 99. Cantero-Chinchilla F N, Ali S Z, et al. (2024a). Experiments on hydraulic jumps over uneven bed for turbulent flow modelling validation in river flow and hydraulic structures. In Scientific Data (Vol. 11, Issue 1). https://doi.org/10.1038/s41597-024-03135-0.
- 100. Cantero-Chinchilla F N, Castro-Orgaz O, Ali S Z, & Dey S. (2024b). Shallow water hydrodynamics: Surge propagation and sill-controlled flows. In Physics of Fluids (Vol. 36, Issue 12). https://doi.org/10.1063/5.0240401.
- 101. Dey S & Ali S Z. (2024a). The universal two-fifths law of pier scour. In Physics of Fluids (Vol. 36, Issue 4). https://doi.org/10.1063/5.0200865.
- 102. Dey S & Ali S Z. (2024b). Turbulent Friction in Canonical Flows: State of the Science and Future Outlook. In Journal of Hydraulic Engineering (Vol. 150, Issue 6). https://doi.org/10.1061/JHEND8.HYENG-14109.
- 103. Dey S, Mahato & Ali S Z. (2024). Linear and Weakly Nonlinear Instabilities of Sand Waves Caused by a Turbulent Flow. In Journal of Hydraulic Engineering (Vol. 150, Issue 3). https://doi.org/10.1061/JHEND8.HYENG-13760.

- 104. Duddi M, Kocherla A & Subramaniam K V L. (2024). Real-Time Monitoring of Concrete Properties Using an Embedded Smart Piezoelectric Sensor with Active and Passive Sensing Abilities. In RILEM Bookseries (Vol. 48, pp. 1089–1100). https://doi.org/10.1007/978-3-031-53389-1 96.
- 105. Gomathi K A, Subramaniam K V L, et.al. (2024). Application of rate sensitive plasticity-based damage model for near and contact explosions. In International Journal of Mechanics and Materials in Design (Vol. 20, Issue 1, pp. 55–79). https://doi.org/10.1007/s10999-023-09661-w.
- 106. Gomathi K A, Subramaniam K V L, et.al. (2024). Rate sensitive plasticity-based damage model for concrete under dynamic loading. In Mechanics of Advanced Materials and Structures (Vol. 31, Issue 29, pp. 11895–11914). https://doi.org/10.1080/15376494.2024.2313150.
- 107. Kamakshi T A, Subramaniam K V L, et.al. (2024). Fly Ash-Based Aqueous Nanosilica Enhanced Activator for Efficient Production of Room Temperature-Cured Concrete with Two-Part Alkali-Activated Binders. In Journal of Materials in Civil Engineering (Vol. 36, Issue 10). https://doi.org/10.1061/JMCEE7.MTENG-17580.
- 108. Kamakshi T A & Subramaniam K V L. (2024). Rheology control and 3D concrete printing with fly ash-based aqueous nano-silica enhanced alkali-activated binders. In Materials and Structures/Materiaux et Constructions (Vol. 57, Issue 5). https://doi.org/10.1617/s11527-024-02385-z.
- 109. Kamakshi T A, Thakur M S & Subramaniam K V L. (2024). Formulating printable concrete mixtures based on paste rheology and aggregate content: Application to alkali-activated binders. In Cement and Concrete Research (Vol. 184). https://doi.org/10.1016/j.cemconres.2024.107611.
- 110. Kulkarni O, Subramaniam K V L, et al. (2024). Evaluation of Tensile Behaviour of 3D Printed Concrete Assemblies with Reinforcement. In RILEM Bookseries (Vol. 48, pp. 73–81). https://doi.org/10.1007/978-3-031-53389-1 7
- 111. Maganty S T & Subramaniam K V L. (2024). Fracture Behavior of Steel Fiber Reinforced Geopolymer and Normal Concrete. In RILEM Bookseries (Vol. 54, pp. 35–42). https://doi.org/10.1007/978-3-031-70145-0_5.
- 112. Narayanan A, Subramaniam K V L, et.al. (2024). Continuous Monitoring of the Early-Age Strength Development of Cement Paste Using Embeddable Piezoelectric-Based Ultrasonic Transducers. In Lecture Notes in Civil Engineering: Vol. 516 LNCE (pp. 44–51). https://doi.org/10.1007/978-3-031-62253-3 4.
- 113. Subramaniam K V L, Paritala S, Kulkarni O & Thakur M S. (2024). Fracture in 3D-Printed Concrete Beams: Deflection and Penetration of Impinging Cracks at Layer Interfaces. In Journal of Engineering Mechanics (Vol. 150, Issue 12). https://doi.org/10.1061/JENMDT.EMENG-7846.
- 114. Thakur M S, Subramaniam K V L, et al. (2024). Influence of Cold Joint on Fracture Behaviour of 3D Printed Concrete. In RILEM Bookseries (Vol. 48, pp. 194–202). https://doi.org/10.1007/978-3-031-53389-1 19.
- 115. Abac A G, Somala S N, et al. (2024). Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo. In Astrophysical Journal (Vol. 973, Issue 2). https://doi.org/10.3847/1538-4357/ad65ce.
- 116. Abac A G, Somala S N, et al. (2024). Ultralight vector dark matter search using data from the KAGRA 03GK run. In Physical Review D (Vol. 110, Issue 4). https://doi.org/10.1103/PhysRevD.110.042001.
- 117. Abbott R, Somala S N, et al. GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. In Physical Review D (Vol. 109, Issue 2).

- https://doi.org/10.1103/PhysRevD.109.022001.
- 118. Abbott R, Somala S N, et al. (2024a). Search for Gravitational-lensing Signatures in the Full Third Observing Run of the LIGO-Virgo Network. In Astrophysical Journal (Vol. 970, Issue 2). https://doi.org/10.3847/1538-4357/ad3e83.
- 119. Abbott R, Somala S N, et al. (2024b). Search for Gravitational-wave Transients Associated with Magnetar Bursts in Advanced LIGO and Advanced Virgo Data from the Third Observing Run. In Astrophysical Journal (Vol. 966, Issue 1). https://doi.org/10.3847/1538-4357/ad27d3.
- 120. Fletcher C, Somala S N, et al. (2024). A Joint Fermi-GBM and Swift-BAT Analysis of Gravitational-wave Candidates from the Third Gravitational-wave Observing Run. In Astrophysical Journal (Vol. 964, Issue 2). https://doi.org/10.3847/1538-4357/ad1eed.
- 121. Parla R & Somala S N. (2024). INFLUENCE OF HILLS AND VALLEYS ON FREE SURFACE SLIP AMPLIFICATION IN DYNAMIC RUPTURE ON A DIPPING FAULT. In Geodynamics and Tectonophysics (Vol. 15, Issue 4). https://doi.org/10.5800/GT-2024-15-4-0777.
- 122. Payyappilly L J, Somala S N, et al. (2024). Influence of rupture velocity on risk assessment of concrete moment frames: Supershear vs. Subshear ruptures. In Structures (Vol. 60). https://doi.org/10.1016/j.istruc.2024.105895.
- 123. Saha S, Somala S N, et al. (2024). Investigating seismic performance of SMRF buildings under subshear and supershear rupture conditions: Assessment of storey-level internal damage. In Engineering Structures (Vol. 309). https://doi.org/10.1016/j.engstruct.2024.118069
- 124. Somala S N, Somala S N, et al. (2024). Explainable XGBoost-SHAP Machine-Learning Model for Prediction of Ground Motion Duration in New Zealand. In Natural Hazards Review (Vol. 25, Issue 2). https://doi.org/10.1061/NHREFO.NHENG-1837.
- 125. Uchikata N, Somala S N, et al. (2024). The first joint observation by KAGRA with GEO 600. In Proceedings of Science (Vol. 444). https://www.scopus.com/inward/record.uri?eid=2-s2.085212260149&partnerID=40&md5=334445bbc23d9bdb50fae22c45aaf4cc.
- 126. Balla T M R & Prakash S S. (2024). Cracking and failure mode behavior of hybrid FRP strengthened RC column members under flexural loading. In Structural Concrete (Vol. 25, Issue 3, pp. 2164–2182). https://doi.org/10.1002/suco.202300789.
- 127. Lakavath C & Prakash S S. (2024a). Influence of fiber dosage, fiber type, and level of prestressing on the shear behaviour of UHPFRC I-girders. In Engineering Structures (Vol. 300). https://doi.org/10.1016/j.engstruct.2023.117146.
- 128. Lakavath C & Prakash S S. (2024b). Interface Shear Behavior of Ultrahigh-Performance Fiber-Reinforced Concrete Using Digital Image Correlation Technique. In Journal of Materials in Civil Engineering (Vol. 36, Issue 3). https://doi.org/10.1061/JMCEE7.MTENG-16817
 Lakavath C & Prakash S S. (2024c). Tensile constitutive
- 129. relationship of UHPFRC from crack hinge based inverse analysis of notched beams. In Engineering Structures (Vol. 318). https://doi.org/10.1016/j.engstruct.2024.118698.
- 130. Lakavath C, Prakash S S, & Allena S. (2024). Tensile characteristics of ultra-high performance fiber reinforced concrete with and without longitudinal steel rebars. In Magazine of Concrete Research. https://doi.org/10.1680/jmacr.23.00181.
- 131. Paleti M K, Prakash S S, & Narayanamurthy V. (2024). A shell theory approach for the analysis of metal-FRP hybrid toroidal pressure vessels. In Thin-Walled Structures (Vol. 204). https://doi.org/10.1016/j.tws.2024.112266.

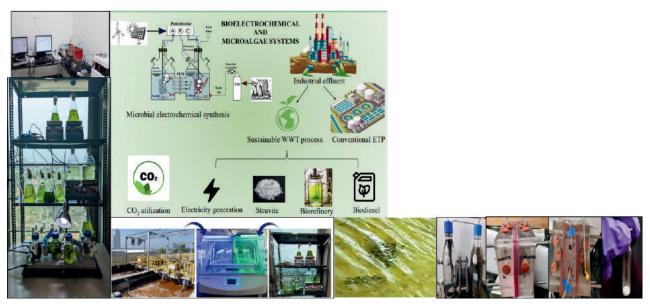
- 132. Patil G M & Prakash S S. (2024). Effect of macrosynthetic and hybrid fibres on the behaviour of square concrete columns reinforced with GFRP rebars under eccentric compression. In Structures (Vol. 59). https://doi.org/10.1016/j.istruc.2023.105707.
- 133. Raiyani S D, Patel P V & Prakash S S. (2024). Effectiveness of partial wrapping of stainless-steel wire mesh on compression behavior of concrete cylinders. In Frattura ed Integrita Strutturale (Vol. 18, Issue 69, pp. 71–88). https://doi.org/10.3221/IGF-ESIS.69.06.
- 134. Ranjithkumar S, Prakash S S, et al. (2024). Compression behaviour of self-compacting concrete under dynamic loading at different ages. In Magazine of Concrete Research (Vol. 76, Issue 19, pp. 1137–1149). https://doi.org/10.1680/jmacr.24.00012.
- 135. Abedin Khan Z, Balunaini U, & Costa S. (2024). Environmental feasibility and implications in using recycled construction and demolition waste aggregates in road construction based on leaching and life cycle assessment A state-of-the-art review. In Cleaner Materials (Vol. 12). https://doi.org/10.1016/j.clema.2024.100239.
- 136. Abedin Khan Z, Balunaini U, Costa S, & Nguyen N H T. (2024). A review on sustainable use of recycled construction and demolition waste aggregates in pavement base and subbase layers. In Cleaner Materials (Vol. 13). https://doi.org/10.1016/j.clema.2024.100266.
- 137. Baadiga R & Balunaini U. (2024). Effective CBR and Elastic Modulus of Geogrid-Stabilized Prepared Subgrades Overlying Existing Soft Subgrades. In International Journal of Geosynthetics and Ground Engineering (Vol. 10, Issue 3). https://doi.org/10.1007/s40891-024-00540-8.
- 138. Bherde V, Gorantala N, & Balunaini U. (2024). Liquefaction susceptibility prediction using ML-based voting ensemble classifier. In Natural Hazards. https://doi.org/10.1007/s11069-024-06960-z.
- 139. Bherde V, Koushik P M V, & Balunaini U. (2024). Application of Ensemble-Based Methods for Prediction of Undrained Shear Strength of Soft Sensitive Clays. In Geotechnical Special Publication (Vols. 2024-February, Issue GSP 352, pp. 52–61). https://doi.org/10.1061/9780784485347.006.
- 140. Duddu S R, Kommanamanchi V, Chennarapu H, & Balunaini U. (2024). Field Evaluation of Deformation Modulus of Geogrid and Geocell-Stabilized Subgrade Soil. In KSCE Journal of Civil Engineering (Vol. 28, Issue 11, pp. 4944–4960). https://doi.org/10.1007/s12205-024-2322-7.
- 141. Garala T K & Balunaini U. (2024). Investigating the Dynamic Behaviour of Bottom Ash Versus Sand Using Cyclic Simple Shear Tests. In Geotechnical and Geological Engineering (Vol. 42, Issue 5, pp. 3539–3560). https://doi.org/10.1007/s10706-024-02743-2.
- 142. Karnamprabhakara B K, Balunaini U & Arulrajah A. (2024). Interfacial direct shear behavior of aluminum slag and uniaxial geogrids. In Green Materials in Civil Engineering. https://doi.org/10.1016/B978-0-443-19106-0.00006-3.
- 143. Karnamprabhakara B K, Guda P V, & Balunaini U. (2024). Resilient Modulus Studies on Fly Ash and Granulated Rubber Composites. In Lecture Notes in Civil Engineering: Vol. 492 LNCE (pp. 249–259). https://doi.org/10.1007/978-981-97-2704-9 24.
- 144. Khan Z A, Balunaini U, et al. (2024). Evaluation of cement-treated recycled concrete aggregates for sustainable pavement base/subbase construction. In Construction and Building Materials (Vol. 449). https://doi.org/10.1016/j.conbuildmat.2024.138417.
- 145. Ksheeraja A L, Balunaini U, et al. (2024). Evaluation of Deformations in Two-Layered Pavement Systems Under Monotonic Loading Using Digital Image Correlation Technique. In Lecture Notes in Civil E

- 146. Mondem N & Balunaini U. (2024). Manufacturing Artificial Aggregates from Overburden Coal Mine Waste and Their Properties for Pavement Applications. In Journal of Materials in Civil Engineering (Vol. 36, Issue 7). https://doi.org/10.1061/JMCEE7.MTENG-17138.

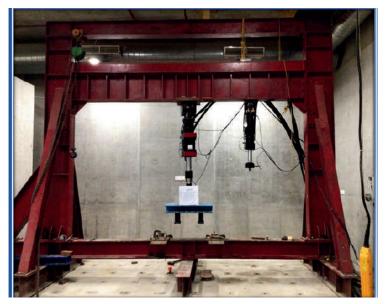
- 1 Ambika S; Sustainability Impact Assessment Study on Solid Waste Management' focusing on What has been the contribution of Indian Smart Cities in the Solid Waste Management Sector? Ministry of Housing and Urban Affairs, Government of India, 2024; 6.00 L. [G648].
- 2. Ambika S; Sustainability Impact Assessment Study on Local Air Quality, focusing on What has been the impact of SCM in the improvement of local air quality in Indian smart cities? Ministry of Housing and Urban Affairs, Government of India, 2024; 6.00 L. [G647].
- 3. Amirtham Rajagopal; Microstructure evolution and fracture in concrete; 55.00 L. [G468].
- Asif Qureshi; Audit of city action plan and technical assistance; 1.13 L. [G718].
- 5. Asif Qureshi; Centre for Godavari River Basin Management and Studies; 134.00 L. [G687].
- 6. Asif Qureshi; Study on efficiency of mechanical road sweepers by assessing the silt on roads; 10.03 L. [S329].
- 7. Biswarup Bhattacharyya; Time-dependent reliability analysis and structural health monitoring of ship structures considering uncertainty; 6.38 L. [S308].
- 8. Debraj Bhattacharyya; Improving the Nutrient and Micropollutant Removal Efficiency of Johkasou under Indian Condition; 1.08 L. [S326].
- Debraj Bhattacharyya; Developing Improved Aeration systems for biological wastewater Treatment processes; 36.07 L. [S327].
- 10. Debraj Bhattacharyya; Seawater Desalination and Recovery of Value-added Products Using Novel Technologies; 30.00 L. [S325].
- 11. Digvijay S Pawar; Evaluating Effectiveness of Lane Departure Warning System in Distracted Driving WorldP.O.No:RPI/100842748 & Date:12.06.2024 (Total Expenditure SEP2024-OCT 2024 in INR:429362 Total Amount in GBP 3904@1 GBP = 109.993 INR as on 08.10.2024); 17.41 L. [S347].
- Digvijay S Pawar; Comprehensive Evaluation of Human factor and ADAS for Enhancing Driver Safety; 26.59 L. [S360].
- 13. Mahendra Kumar Madhavan; Updating Teaching Resource Material; 14.16 L. [S296].
- 14. Mahendra Kumar Madhavan; Experimental and Numerical Optimization of circular economy-driven Sustainable Lightweight Composite Slabs (SLCS); 39.00 L. [TDG-09].
- Maheswaran Rathinasamy; Unravelling multiscale connections to improve the Seasonal to sub-seasonal forecasting of Precipitation and Temperature; 129.57 L. IG7871.
- 16. Meenakshi Sharma; Development of low-carbon concrete using carbonated recycled concrete aggregates and early-age carbonation curing; 24.94 L. [G744].
- 17. Phanindra K B V N; One Year AMC and Capacity Building on In-GRES; 35.40 L. [S340].
- 18. Ramya Mullapudi; Development of Hybrid GFRP Dowels for Slab On-grade and Rigid Pavement Applications as Co-PI; 25.00 L. [TDG-06].
- 19. Roshan Khan; Pavement-friendly Autonomous Vehicle Platooning through preset Inter-Vehicular Wheel Wandering Offsets; 35.00 L. [G641].
- Roshan Khan; Evaluation of dynamic load-settlement characteristics of graviloft earth retention system for high speed railway embankments; 20.00 L. [S284].
- 21. Roshan Khan; Attenuation of vibration and earth

- pressure in retaining walls supporting high-speed railway embankments using EPS Geofoam; 20.00 L. [S285].
- 22. Satish Kumar Regonda; Centre for Godavari River Basin Management and Studies (cGodavari); 134.00 L. [G687].
- 23. Satish Kumar Regonda; Unravelling multiscale connections to improve the seasonal to sub-seasonal forecasting of Precipitation and Temperature; 124.00 L. [G787].
- 24. Satish Kumar Regonda; AI for Sustainable Infrastructure and Resource Planning, Analysis and Monitoring (AiSwARYAM); 200.00 L. [G693].
- 25. Sireesh Saride; Evaluation of MIF factors for geo tech geogrids to be used in flexible payements; 34.92 L. [C1321].
- 26. Shruti Upadhyaya; "PrecipCube" Geospatial Satellite Observations Data Cube for Precipitation research; 50.44 L. [G745].
- 27. Subramaniam K V L; TARE Scheme: Development of Self-Sensing Cementitious Composites using Nano
- 28. Tailored Spent Catalysts for Enhanced Structural Health Monitoring awarded to Dr ESTR Chandrasekhar B of St Joseph Engineering College, Vamanjoor, Mangalore; 18.30 L. [G748].
- 29. Suriya Prakash S; GFRP Rebar Characterization and Development W.O.No: NE1/230183016; 50.40 L. [S333].
- 30. Suriya Prakash S; Development of the testing methodology for CFRP composites; 12.98 L. [S341].
- 31. Suriya Prakash S; Development of precast prestressed Hollow Core slabs using ultra High-Performance Concrete for Large-span Applications; 20.53 L. [S365].
- 32. Umashankar Balunaini; Laboratory and Field Investigations on Geosynthetic Reinforced Unpaved and Paved Roads Overlying Soft Subgrades; 90.00 L. [G556].
- 33. Umashankar Balunaini; Use of Geosynthetics in Pavements Over Soft and Expansive Subgrades; 56.00 L. [G458].
- 34. Umashankar Balunaini; Advanced Numerical Models to Simulate Different Transportation Infrastructure Systems; 30.00 L. [G480E].
- 35. Umashankar Balunaini; Use of Slag and C&D Wastes as Bases/Subbases of Pavements; 80.00 L. [G480D].
- Umashankar Balunaini; Evaluation of Soil Stabilised Base Courses with Cement and StabilRoad Additive; 25.00 L. [S151].

Awards & Recognitions:


- Amarteja Kocherla received the Marie Skłodowska-Curie Individual Fellowship Award to carry out research at the Federal Institute for Materials Research and Testing (Bundesanstalt für Materialforschung undprüfung, BAM) in Germany. The details of the project can be found here:
 - https://cordis.europa.eu/project/id/101151488.
- Mahendrakumar Madhavan has been elected as a fellow of the Institution of Structural Engineers (FIStructE), UK and a Chartered Structural Engineer (CEng).
- 3. Nitin Kumar (Alumnus- MTech), who worked under the guidance of Prof Amirtham Rajagopal, has been selected as an Assistant Professor at IIT Patna.
- 4. Md Abul Hasanath received the Best Poster Award in an international conference titled IWA Leading Edge Conference on Water and Wastewater Technologies, held at Essen, Germany.
- Rohit Dhondge (Alumni) secured the first rank in the UPSC Civil Engineering examination.

Research Highlights


Revolutionizing Waste into Resources by Pritha Chatterjee

Research Description

- Application of Microbial electrosynthesis to reduce CO2 into valuable products
- Easibility of interaction of microalgae-microbial fuel cell for enhancement of antibiotics removal from pharmaceutical wastewater
- Nutrient Removal and Recovery from domestic and industrial wastewater using microbial fuel cell
- · Application of Microalgae for industrial wastewater treatment and biodiesel production

A few Research Facilities

MTS Pseudo Dynamic Test System

MTS Pseudo Dynamic Test System 500kN

Department of Computer Science and Engineering

The Computer Science and Engineering (CSE) department has been growing steadily since its inception in 2008 and is one of the most sought-after destinations for incoming students as well as faculty. The department faculty comprises 25 faculty members with a good representation in the areas of theoretical computer science, artificial intelligence/machine learning, and computer systems areas. The CSE department has graduated around 68 PhDs, with many of the PhD graduates taking positions in top R&D labs and academic institutes - nine of our PhD graduates have taken up faculty positions at other IITs. The department faculty and students consistently publish in top-tier conferences and journals. The undergraduate program has been consistently preferred by the top-ranked JEE performers - as evidenced by the improving opening and closing ranks. Our industry engagement has also been very strong with the MTech in Data Science (MDS) program, providing an opportunity for industry professionals to stay up-to-date with the latest R&D developments in the area of data science. The CSE department also collaborates with various other industry and R&D labs, including Samsung, Intel, Microsoft, Google, AMD, DRDO, Honeywell, KLA, IBM, Adobe, Suzuki Motors, Fujitsu AI, and Weather News Inc., to name a few. The department faculty members routinely engage with other colleges and institutions by giving invited lectures and also serving in positions of advisory capacity on the Board of Studies and Board of Governors.

In the year 2024-25, the department of CSE admitted 16 PhD students, 97 MTech students and 66 BTech students. A steady stream of PhD students has been graduating every year, with 8 of them graduating in 2024-25. In the last year, two new facilities were established in the department: The Marvell Data Acceleration and Offload Research Facility and the Centre for Cryptography and Cybersecurity. The department also hosted internationally acclaimed events such as ACM ROCS (Research Opportunities in Computer Science), ACM Women India Grad Cohort, HAHT (Harnessing AI for Healthcare Transformation) -IUS 2024 workshop and the ICDCN (International Conference on Distributed Computing and Networking) 2025 conference.

For more information, please visit: https://cse.iith.ac.in/

Faculty Head of the Department

Antony Franklin
PhD - IIT Madras
Profile page:
https://iith.ac.in/cse/antony.franklin/

Professor

Bheemarjuna Reddy Tamma
PhD - IIT Madras
Profile page:
https://iith.ac.in/cse/tbr/

C Krishna Mohan
PhD - IIT Madras
Profile page:
https://iith.ac.in/cse/ckm/

Kotaro Kataoka PhD - Media and Governance, Keio University Profile page: https://iith.ac.in/cse/kotaro/

Sathya Peri PhD - University of Texas at Dallas Profile page: https://iith.ac.in/cse/sathya p/

M V Panduranga Rao PhD - IISc Bangalore Profile page: https://iith.ac.in/cse/mvp/

Subrahmanyam Kalyanasundaram PhD - Georgia Tech, USA Associate Professor Profile page: https://iith.ac.in/cse/subruk/

Vineeth N Balasubramanian PhD - Arizona State University, USA Profile page: https://iith.ac.in/cse/vineethnb/

Associate Professor

Aravind N R PhD - Institute of Mathematical Sciences, Chennai Profile page: https://iith.ac.in/cse/aravind/

J Saketha Nath PhD - IISc Bangalore Profile page: https://iith.ac.in/cse/saketha/

Manish Singh PhD - University of Michigan, USA https://iith.ac.in/cse/msingh/

Maunendra Sankar Desarkar PhD - IIT Kharagpur Profile page: https://iith.ac.in/cse/maunendra/

Ramakrishna Upadrasta PhD - University of Paris and INRIA, Paris Profile page: https://iith.ac.in/cse/ramakrishna/

Rameshwar Pratap PhD - Chennai Mathematical Institute Profile page: https://iith.ac.in/cse/rameshwar/

Rogers Mathew PhD - IISc Bangalore Profile page: https://iith.ac.in/cse/rogers/

Sobhan Babu PhD - IIT Bombay Profile page: https://iith.ac.in/cse/sobhan/

Srijith P K PhD - IISc Bangalore Profile page: https://iith.ac.in/cse/srijith/

Assistant Professor

Ashish Mishra PhD - IISc Bangalore Profile page: https://aegis-iisc.github.io/

Jyothi Vedurada PhD - IIT Madras Profile page: https://iith.ac.in/cse/jyothiv/

Maria Francis PhD - IISc Bangalore Profile page: https://iith.ac.in/cse/mariaf/

Nitin Saurabh PhD - IMSc Chennai Profile page: https://iith.ac.in/cse/nitin/

Praveen Tammana PhD - University of Edinburgh Profile page: https://iith.ac.in/cse/praveent/

Rajesh Kedia PhD - IIT Delhi Profile page: https://iith.ac.in/cse/rkedia/

Rakesh Venkat PhD - TIFR Profile page: https://iith.ac.in/cse/rakesh/

Saurabh Kumar PhD - IIT Kanpur Profile page: https://www.iith.ac.in/cse/saurabhkr/

Shirshendu Das PhD - IIT Guwahati Profile page: https://iith.ac.in/cse/shirshendu/

Adjunct Professor

Kenzo FUJISUE Member of the House of Councilors in the Diet (the national legislature of Japan) Profile page: https://www.oii.ox.ac.uk/people/profil

es/kenzo-fujisue/

Ponnurangam Kumaraguru Professor, International Institute of Information Technology Hyderabad, Gachibowli, Hyderabad, Telangana Profile page: https://www.iiit.ac.in/faculty/ponnura ngam-kumaraguru/

Naveen Sivadasan TCS Research, India Profile page: https://people.iith.ac.in/nsivadasan/

Ravi Balasubramanian Associate Professor, Oregon State University Profile page: https://engineering.oregonstate.edu/p eople/ravi-balasubramanian

C Siva Ram Murthy Visiting Professor, IIT Hyderabad Profile page: https://iith.ac.in/cse/murthy/

Patents:

Filed:

1. Antony Franklin; Slice-Specific Rapid N2-Based Handover for A Single or A Group of Ues in 5G Networks: 202441097874.

Published:

- Antony Franklin; A Method and System for Updating High-Definition Maps in Vehicle Navigation Systems; 202341083188.
- Jyothi Vedurada; Method and System for Performing Approximate Nearest Neighbour Search on Billion-Scale Vectors; 202441037405.
- Maunendra Sankar Desarkar; A Method and a System for Recommending Jobs for Differently Individuals; 202441066966.

Granted:

- 1. Antony Franklin; System and Method for Performing Efficient Scheduling in Cloud Radio Access Network; 202141020062.
- Maria Francis; System for Generating an Anonymous Credential, over a Blockchain and Method for Opening a Credential Thereof; 202341061008.
- Tamma Bheemarjun Reddy; System and Method for Performing Efficient Scheduling in Cloud Radio Access Network; 202141020062.

Books:

1. Kalyanasundaram S & Maheshwari A. (2024). Preface. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 14508 LNCS (p.

Book Chapters:

Kotaro Kataoka, Rural and Social Innovation: India Japan Collaboration", Book: "India, Japan and Beyond: Human Security, Environment, Development, Innovation and Resilience", Springer Nature Singapore, 2024."

Publications:

- Kumari S, Vittal S & Franklin A A. (2024). Resource-Aware Service Prioritization in a Slice-Supportive 5G Core Control Plane for Improved Resilience and Proceedings—IEEE Sustenance. In Consumer Communications and Networking Conference, CCNC 113-120). https://doi.org/10.1109/CCNC51664.2024.10454708
- Vittal S, Sarkar S & Franklin A A. (2024). Revamping the Resilience and High Availability of 5G Core for 6G Ready Network Slices. In IEEE Transactions on Network and Service Management (Vol. 21, Issue 2, pp. 2287-2302). https://doi.org/10.1109/TNSM.2023.3348137
- Aravind N R, Misra N & Mittal H. (2024). Chess is hard even for a single player. In Theoretical Computer Science (Vol. 1015). https://doi.org/10.1016/j.tcs.2024.114726
- Aravind N R & Saxena R. (2024). The Parameterized Complexity of Terminal Monitoring Set. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 14549 LNCS (pp. 76–90). https://doi.org/10.1007/978-981-97-0566-5_7
- Annavazzala M, Tamma B R, et al. (2024). Adaptive Broadcast Scheduling Scheme for High-Definition Map Tile Dissemination in Vehicular Networks. In IEEE

- Conference. Vehicular Technology https://doi.org/10.1109/VTC2024-Spring62846.2024.10683544
- Chintapalli V R, Tamma B R, et al. (2024). Energy- and Reliability-Aware Provisioning of Parallelized Service Function Chains With Delay Guarantees. In IEEE Transactions on Green Communications and Networking (Vol. 8, Issue 1, pp. 205–223). https://doi.org/10.1109/TGCN.2023.3317927
- 7. Chintapalli V R, Tamma B R, et al. (2024). Energy efficient and delay aware deployment of parallelized service function chains in NFV-based networks. In Computer Networks (Vol. https://doi.org/10.1016/j.comnet.2024.110289
- Daw S, Kar A, Tamma B R, et al. (2024). LAMP: A latency-aware MAC protocol for joint scheduling of CAM and DENM traffic over 5G-NR sidelink. In Computer Communications (Vol. 217, https://doi.org/10.1016/j.comcom.2024.01.011
- Gautam V K, Tamma B R, et al. (2024). Enhancing Uplink Scheduling in 5G Enabled Vehicular Networks: A Cross-Layer Approach with Predictive Buffer Status Reporting. In IEEE Vehicular Technology Conference. https://doi.org/10.1109/VTC2024-<u> Spring62846.2024.10683169</u>
- 10. Gautam V K & Tamma B R. (2024). RETALIN: A Queue Aware Uplink Scheduling Scheme for Reducing Scheduling Signaling Overhead in 5G NR. In IEEE Access 16632-16651). (Vol. 12. pp. https://doi.org/10.1109/ACCESS.2024.3359028
- 11. Gudepu V, Tamma B R, et al. (2024). The drift handling framework for open radio access networks: An experimental evaluation. In Computer Networks (Vol. 243). https://doi.org/10.1016/j.comnet.2024.110290
- 12. Gudepu V, Tamma B R, et al. (2024). GAN-Based Drift and Anomaly Detection for Open Radio Access Networks. In IEEE International Conference on High Performance Switching and Routing, HPSR (pp. 124-
- https://doi.org/10.1109/HPSR62440.2024.10635911 13. Inukonda M S, Tamma B R, et al. (2024). TEFAR: An Efficient Transparent Finer-Grained Encryption of Internet Access Artifacts. In 2024 16th International Conference on COMmunication Systems and NETworkS, COMSNETS 2024 (pp. 1164-1169). https://doi.org/10.1109/COMSNETS59351.2024.1042 7430
- 14. Kar A, Tamma B R & Siva Ram Murthy C. (2024). Unified Aerial and Terrestrial 5G NR Sidelink Multi-hop Transmission for Enhanced V2X Communication. In Vehicular Technology Conference. https://doi.org/10.1109/VTC2024-Fall63153.2024.10757911
- 15. Tripathi A, Thakur A & Tamma B R. (2024). Security Framework for Non-public 5G Network Deployments. In ACM International Conference Proceeding Series (pp. 248-249). https://doi.org/10.1145/3631461.3632513
- 16. Datla R, Mohan C K, et al. (2024). Learning scenevectors for remote sensing image scene classification. In Neurocomputing (Vol. https://doi.org/10.1016/j.neucom.2024.127679
- 17. Divya P, Mohan C K, et al. (2024). Memory Guided Transformer With Spatio-Semantic Visual Extractor for Medical Report Generation. In IEEE Journal of Biomedical and Health Informatics (Vol. 28, Issue 5, pp. 3079-3089).
 - https://doi.org/10.1109/JBHI.2024.3371894
- 18. Dubey S K, Mohan C K, et al. (2024a). Enhancing Object Detection Accuracy with Variational Autoencoders as a Filter in YOLO. In Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (Vol. 4, pp. 270–277). https://doi.org/10.5220/0012347700003660

- Dubey S K, Mohan C K, et al. (2024b). False Positive Elimination in Object Detection Methods for Videos. In Proceedings of SPIE - The International Society for Optical Engineering (Vol. 13072). https://doi.org/10.1117/12.3023362
- 20. Joshi A, Mohan C K, et al. (2024). An integrated approach for prediction of magnitude using deep learning techniques. In Neural Computing and Applications (Vol. 36, Issue 27, pp. 16991–17006). https://doi.org/10.1007/s00521-024-09891-9
- Joshi A, Mohan C K, et al. (2024a). A new machine learning approach for estimating shear wave velocity profile using borelog data. In Soil Dynamics and Earthquake Engineering (Vol. 177). https://doi.org/10.1016/j.soildyn.2023.108424
- Joshi A, Mohan C K, et al. (2024b). Application of a new machine learning model to improve earthquake ground motion predictions. In Natural Hazards (Vol. 120, Issue 1, pp. 729–753). https://doi.org/10.1007/s11069-023-06230-4
- Joshi A, Mohan C K, et al. (2024). Application of XGBoost model for early prediction of earthquake magnitude from waveform data. In Journal of Earth System Science (Vol. 133, Issue 1). https://doi.org/10.1007/s12040-023-02210-1
- 24. Kondapally M, Mohan C K, et al. (2024). Object Detection in Transitional Weather Conditions for Autonomous Vehicles. In Proceedings of the International Joint Conference on Neural Networks. https://doi.org/10.1109/IJCNN60899.2024.10651445
- 25. Kondapally M, Mohan C K, et al. (2024). Towards a Transitional Weather Scene Recognition Approach for Autonomous Vehicles. In IEEE Transactions on Intelligent Transportation Systems (Vol. 25, Issue 6, pp. 5201–5210). https://doi.org/10.1109/TITS.2023.3331882
- 26. Kumar K N, Mitra R & Mohan C K. (2024). Revamping Federated Learning Security from a Defender's Perspective: A Unified Defense with Homomorphic Encrypted Data Space. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 24387–24397). https://doi.org/10.1109/CVPR52733.2024.02302
- 27. Kumar K N, Mohan C K & Cenkeramaddi L R. (2024). The Impact of Adversarial Attacks on Federated Learning: A Survey. In IEEE Transactions on Pattern Analysis and Machine Intelligence (Vol. 46, Issue 5, pp. 2672–2691). https://doi.org/10.1109/TPAMI.2023.3322785
- 28. Kumar K N, Mohan C K & Machiry A. (2024). Precision Guided Approach to Mitigate Data Poisoning Attacks in Federated Learning. In CODASPY 2024—Proceedings of the 14th ACM Conference on Data and Application Security and Privacy (pp. 233–244). https://doi.org/10.1145/3626232.3653268
- 29. Kumar K N, Mohan C K, et al. (2024). TSANet: Forecasting traffic congestion patterns from aerial videos using graphs and transformers. In Pattern Recognition (Vol. 155). https://doi.org/10.1016/j.patcog.2024.110721
- Nagaraju C, Ramesh Y & Mohan C K. (2024). A Data Parallel Approach for Distributed Neural Networks to Achieve Faster Convergence. In Proceedings of SPIE -The International Society for Optical Engineering (Vol. 13072). https://doi.org/10.1117/12.3023413
- 31. Rambabu D, Mohan C K, et al. (2024). A Hybrid Embedding for Generalized Zero-Shot Scene Classification in Remote Sensing Images. In Proceedings—IEEE International Conference on Advanced Video and Signal-Based Surveillance, AVSS (Issue 2024). https://doi.org/10.1109/AVSS61716.2024.10672594
- Rambabu D, Mohan C K, et al. (2024). RSZero-CSAT: Zero-Shot Scene Classification in Remote Sensing Imagery using a Cross Semantic Attribute-guided

- Transformer. In Proceedings of the International Joint Conference on Neural Networks. https://doi.org/10.1109/IJCNN60899.2024.10650858
- 33. Samudrala S & Mohan C K. (2024). Semantic segmentation of breast cancer images using DenseNet with proposed PSPNet. In Multimedia Tools and Applications (Vol. 83, Issue 15, pp. 46037–46063). https://doi.org/10.1007/s11042-023-17411-5
- 34. Soumya A, Mohan C K, et al. (2024). High Precision Single Shot Object Detection in Automotive Scenarios. In Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (Vol. 2, pp. 604–611). https://doi.org/10.5220/0012383100003660
- 35. Swetha G, Mohan C K, et al. (2024). M 2-APNet: A multimodal deep learning network to predict major air pollutants from temporal satellite images. In Journal of Applied Remote Sensing (Vol. 18, Issue 1). https://doi.org/10.1117/1.JRS.18.012005
- 36. Win K C, Akhtar Z & Mohan C K. (2024). Does Hard-Negative Contrastive Learning Improve Facial Emotion Recognition? In ACM International Conference Proceeding Series (pp. 162–168). https://doi.org/10.1145/3653946.3653971
- Yelleni S H, Mohan C K, et al. (2024). Monte Carlo DropBlock for modeling uncertainty in object detection. In Pattern Recognition (Vol. 146). https://doi.org/10.1016/j.patcog.2023.110003
- Narasimha S M, Malpani T, Mohite O S, Nath J S & Raman K. (2024). Understanding flux switching in metabolic networks through an analysis of synthetic lethals. In Npj Systems Biology and Applications (Vol. 10, Issue 1). https://doi.org/10.1038/s41540-024-00426-5
- Bisht K, Kataoka K,et al. (2024). Revocable TACO: Revocable Threshold based Anonymous Credentials over Blockchains. In ACM AsiaCCS 2024—Proceedings of the 19th ACM Asia Conference on Computer and Communications Security (pp. 1378–1393). https://doi.org/10.1145/3634737.3637656
- 40. Dangat S, Kataoka K, et al. (2024). OTEx: Ownership Transfer and Execution Protocol for Blockchain Interoperability. In Proceedings—2024 IEEE International Conference on Blockchain, Blockchain 2024 (pp. 165–173). https://doi.org/10.1109/Blockchain62396.2024.00030
- 41. Kataoka K. (2024). Rural and Social Innovation: India Japan Collaboration. In India, Japan and beyond: Human Security, Environment, Development, Innovation and Resilience. https://doi.org/10.1007/978-981-97-3282-1
- 42. Raj A, Verma R & Kataoka K. (2024). Implementing Blockchain Technology in Healthcare: An Overview, Key Requirements, and Challenges. In Lecture Notes in Networks and Systems: Vol. 994 LNNS (pp. 145–159). https://doi.org/10.1007/978-981-97-3180-0 10
- 43. Vijayan V K, Francis M & Kataoka K. (2024). Off-Chaining Approaches for Cost-Efficiency in Threshold-Based Elliptic Curve Systems over Blockchains. In International Conference on Information Systems Security and Privacy (Vol. 1, pp. 411–422). https://doi.org/10.5220/0012361600003648
- 44. Kadambi S & Panduranga Rao M V. (2024). Constrained Quadratic Model Formulations for MDCVRPTW: Quantum Vs Classical. In 2024 16th International Conference on COMmunication Systems and NETworkS, COMSNETS 2024 (pp. 258–263). https://doi.org/10.1109/COMSNETS59351.2024.1042
- 45. Ramesh Y & Panduranga Rao M V. (2024). Serial and parallel algorithms for short time horizon multi-attribute queries on stochastic multi-agent systems. In Simulation.
 - https://doi.org/10.1177/00375497241264815

- 46. Srivastava A & Rao M V P. (2024). Statistical Model Checking for Entanglement Swapping in Quantum Networks. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 14837 LNCS (pp. 345–359). https://doi.org/10.1007/978-3-031-63778-0_25
- - $\frac{85200538437\&partnerID=40\&md5=ce38758747a63b}{b7dbef66e91acb4034}$
- 48. Kuchibhotla S & Singh M. (2024). TpT-ADE:
 Transformer Based Two-Phase ADE Extraction. In
 CoNLL 2024—28th Conference on Computational
 Natural Language Learning, Proceedings of the
 Conference (pp. 209-218).
 https://www.scopus.com/inward/record.uri?eid=2-s2.0-
 - 85215532612&partnerID=40&md5=daa11634bca435c 691547667645e1b65
- 49. Bisht K, Francis M, et al. (2024). Revocable TACO: Revocable Threshold based Anonymous Credentials over Blockchains. In ACM AsiaCCS 2024—Proceedings of the 19th ACM Asia Conference on Computer and Communications Security (pp. 1378–1393). https://doi.org/10.1145/3634737.3637656
- 50. Vijayan V K, Francis M & Kataoka K. (2024). Off-Chaining Approaches for Cost-Efficiency in Threshold-Based Elliptic Curve Systems over Blockchains. In International Conference on Information Systems Security and Privacy (Vol. 1, pp. 411–422). https://doi.org/10.5220/0012361600003648
- 51. Adhikari S, Desarkar M S, et al. (2024). DEFAULT at CheckThat! 2024: Retrieval Augmented Classification using Differentiable Top-K Operator for Rumor Verification based on Evidence from Authorities. In CEUR Workshop Proceedings (Vol. 3740, pp. 351–360). https://www.scopus.com/inward/record.uri?eid=2-s2.0-
 - 85201576558&partnerID=40&md5=c7bb3120b918b7 c92dda5fd2fc98df4a
- 52. Basak D, Srijith P K & Desarkar M S. (2024).

 Transformer based Multitask Learning for Image Captioning and Object Detection. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 14646 LNAI (pp. 260–272).

 https://doi.org/10.1007/978-981-97-2253-2 21
- 53. Brahma M, Sahoo P & Desarkar M S. (2024). NLIP_Lab-IITH Multilingual MT System for WAT24 MT Shared Task. In Conference on Machine Translation— Proceedings (Vols 2024-November, pp. 804–809). https://www.scopus.com/inward/record.uri?eid=2s2.0-
 - 85216082383&partnerID=40&md5=7cf6e85cfdd200ed c750d466cb9ee26b
- 54. Dani M N & Desarkar M S. (2024). Detecting Attribute Information in Notice to Airman. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 14763 LNCS (pp. 195–206). https://doi.org/10.1007/978-3-031-70242-6-19
- 55. Dwivedi Y K, Desarkar M S, et al. (2024). Artificial intelligence (AI) futures: India-UK collaborations emerging from the 4th Royal Society Yusuf Hamied workshop. In International Journal of Information Management (Vol. 76). https://doi.org/10.1016/j.ijinfomgt.2023.102725
- 56. Maheswaran A, Desarkar M S, et al. (2024a). DAC: Quantized Optimal Transport Reward-based

- Reinforcement Learning Approach to Detoxify Query Auto-Completion. In SIGIR 2024—Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 608–618). https://doi.org/10.1145/3626772.3657779
- 57. Maheswaran A, Desarkar M S, et al. (2024b). DQAC: Detoxifying Query Auto-completion with Adapters. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 14650 LNAI (pp. 108–120). https://doi.org/10.1007/978-981-97-2266-2_9
- 58. Maurya K K, Desarkar M S, et al. (2024). CHARSPAN: Utilizing Lexical Similarity to Enable Zero-Shot Machine Translation for Extremely Low-resource Languages. In EACL 2024—18th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the Conference (Vol. 2, pp. 294–310). https://www.scopus.com/inward/record.uri?eid=2-s2.0-
 - 85189931959&partnerID=40&md5=51e8be7e44e7141 c6b9eb314f12bc613
- Sahoo P, Brahma M & Desarkar M S. (2024). NLIP_Lab-IITH Low-Resource MT System for WMT24 Indic MT Shared Task. In Conference on Machine Translation— Proceedings (Vols 2024-November, pp. 781–787). https://www.scopus.com/inward/record.uri?eid=2-s2.0-
 852160851028:partnerID=408:md5=9d8a1d8df54af39
 - 85216085102&partnerID=40&md5=9d8a1d8df54af39 3464e4b48784a3a8f
- 60. Sai Krishna Y, Raju G & Desarkar M S. (2024). Damage mode classification in CFRP laminates using convolutional autoencoder and convolutional neural network on acoustic emission waveforms. In Structural Health Monitoring. https://doi.org/10.1177/14759217241298403
- Chakraborty S, Saurabh N, et al. (2024). Approximate Degree Composition for Recursive Functions. In Leibniz International Proceedings in Informatics, LIPIcs (Vol. 317). https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.202
 - https://doi.org/10.4230/LIPIcs.APPRUX/RANDOM.202
- 62. Mande N S, Saurabh N, et al. (2024). On the Communication Complexity of Finding a King in a Tournament. In Leibniz International Proceedings in Informatics, LIPIcs (Vol. 317). https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.64
- 63. Harish S A, Tammana P, et al. (2024). Securing In-Network Fast Control Loop Systems from Adversarial Attacks. In 2024 16th International Conference on COMmunication Systems and NETworkS, COMSNETS 2024 (pp. 953–961). https://doi.org/10.1109/COMSNETS59351.2024.1042 7291
- 64. Makkena Y C, Tammana P, et al. (2024). Real-Time Object Detection as a Service for UGVs Using Edge Cloud. In 2024 16th International Conference on COMmunication Systems and NETworkS, COMSNETS 2024 (pp. 303-305). https://doi.org/10.1109/COMSNETS59351.2024.1042 6975
- 65. Mittal S, Tammana P, et al.(2024). iGuard: Efficient Isolation Forest Design for Malicious Traffic Detection in Programmable Switches. In CoNEXT 2024—Proceedings of the 20th International Conference on Emerging Networking Experiments (pp. 55–64). https://doi.org/10.1145/3680121.3697807
- 66. Mittal S, Tammana P, et al. (2024). AdaFlow: Efficient In-Network Traffic Classification using Programmable Switches. In 2024 IFIP Networking Conference, IFIP Networking 2024 (pp. 258–266). https://doi.org/10.23919/IFIPNetworking62109.2024.10619766
- 67. Parekh N, Tammana P, et al. (2024). Real-time UAV

- Resource Monitoring and Alerts with Automated Control Mechanism. In 2024 16th International Conference on COMmunication Systems and NETworkS, COMSNETS 2024 (pp. 406–408). https://doi.org/10.1109/COMSNETS59351.2024.1042
- Pathak D, Tammana P, et al. (2024). Anomaly Detection in In-Network Fast ReRoute Systems. In 2024 IFIP Networking Conference, IFIP Networking 2024 (pp. 122–130). https://doi.org/10.23919/IFIPNetworking62109.2024.
 - https://doi.org/10.23919/IFIPNetworking62109.2024
- 69. Prashanth P S, Tammana P, et al. (2024). DL3: Adaptive Load Balancing for Latency-critical Edge Cloud Applications. In Proceedings of the 2024 20th International Conference on Network and Service Management: AI-Powered Network and Service Management for Tomorrow's Digital World, CNSM 2024.
 - $\frac{\text{https://doi.org/10.23919/CNSM62983.2024.1081440}}{5}$
- 70. Goel S, Kedia R, Sen R & Balakrishnan M. (2024). EXPRESS: A Framework for Execution Time Prediction of Concurrent CNNs on Xilinx DPU Accelerator. In ACM Transactions on Embedded Computing Systems (Vol. 24, Issue 1). https://doi.org/10.1145/3697835
- 71. Muneeb M A & Kedia R. (2024). Characterizing CNN Throughput and Energy under Multithreaded and Multiaccelerator Execution. In IEEE Embedded Systems Letters (Vol. 16, Issue 4, pp. 369–372). https://doi.org/10.1109/LES.2024.3446896
- VenkataKeerthy S, Upadrasta R, et al. (2024). The Next 700 ML-Enabled Compiler Optimizations. In CC 2024— Proceedings of the 33rd ACM SIGPLAN International Conference on Compiler Construction (pp. 238–249). https://doi.org/10.1145/3640537.3641580
- 73. Verma B D, Pratap R & Dubey P P. (2024). Sparsifying Count Sketch. In Information Processing Letters (Vol. 186). https://doi.org/10.1016/j.ipl.2024.106490
- Verma B D, Pratap R & Thakur M. (2024). Unbiased estimation of inner product via higher order count sketch. In Information Processing Letters (Vol. 183). https://doi.org/10.1016/j.ipl.2023.106407
- 75. Chandran L S, Mathew R, et al. (2024). New bounds on the anti-Ramsey numbers of star graphs via maximum edge q-coloring. In Discrete Mathematics (Vol. 347, Issue 4). https://doi.org/10.1016/j.disc.2024.113894
- Kaul H, Mathew R, et al. (2024). Flexible list colorings: Maximizing the number of requests satisfied. In Journal of Graph Theory (Vol. 106, Issue 4, pp. 887–906). https://doi.org/10.1002/jgt.23103
- 77. Krishnan P, Mathew R & Kalyanasundaram S. (2024). Pliable Index Coding via Conflict-Free Colorings of Hypergraphs. In IEEE Transactions on Information Theory (Vol. 70, Issue 6, pp. 3903–3921). https://doi.org/10.1109/TIT.2024.3355416
 78. Mathew R, Panolan F & Seshikanth. (2024).
- Mathew R, Panolan F & Seshikanth. (2024).
 Parameterized Algorithms and Hardness for the Maximum Edge q-Coloring Problem. In Leibniz International Proceedings in Informatics, LIPIcs (Vol. 323). https://doi.org/10.4230/LIPIcs.FSTTCS.2024.31
- Anjana P S, Peri S, et al. (2024). OptSmart: A space efficient Optimistic concurrent execution of Smart contracts. In Distributed and Parallel Databases (Vol. 42, Issue 2, pp. 245–297). https://doi.org/10.1007/s10619-022-07412-y
- 80. Bhardwaj G, Ahmed A & Peri S. (2024a). Concurrent Lock-Free Dynamic Graphs with wait-free snapshots using versioning. In ACM International Conference Proceeding Series (pp. 258–259). https://doi.org/10.1145/3631461.3632510
- 81. Kalyanasundaram S & Maheshwari A. (2024). Preface. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

- Lecture Notes in Bioinformatics): Vol. 14508 LNCS (p. vi).
- 82. Krishnan P, Mathew R & Kalyanasundaram S. (2024). Pliable Index Coding via Conflict-Free Colorings of Hypergraphs. In IEEE Transactions on Information Theory (Vol. 70, Issue 6, pp. 3903–3921). https://doi.org/10.1109/TIT.2024.3355416
- 83. Dittakavi B, Balasubramanian V N, et al. (2024). CARE: Counterfactual-based Algorithmic Recourse for Explainable Pose Correction. In Proceedings—2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024 (pp. 4890–4899). https://doi.org/10.1109/WACV57701.2024.00483
- 84. John T A, Balasubramanian V N & Jawahar C V. (2024). Explaining Deep Face Algorithms Through Visualization: A Survey. In IEEE Transactions on Biometrics, Behavior, and Identity Science (Vol. 6, Issue 1, pp. 15–29). https://doi.org/10.1109/TBIOM.2023.3319837
- 85. Kamath S, Balasubramanian V N, et al. (2024). Rethinking Robustness of Model Attributions. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, Issue 3, pp. 2688–2696). https://doi.org/10.1609/aaai.v38i3.28047
- 86. Khindkar V, Balasubramanian V N, et al. (2024). Can Reasons Help Improve Pedestrian Intent Estimation? A Cross-Modal Approach. In IEEE International Conference on Intelligent Robots and Systems (pp. 11515–11522). https://doi.org/10.1109/IROS58592.2024.10802097
- 87. Kuchibhotla H C, Balasubramanian V N, et al. (2024).
 Semantic Alignment for Prompt-Tuning in Vision
 Language Models. In Transactions on Machine Learning
 Research (Vol. 2024).
 - https://www.scopus.com/inward/record.uri?eid=2-<u>s2.0-</u> 85219516088&partnerID=40&md5=06c0c0c6d6fc696
 - 85219516088&partnerID=40&md5=06c0c0c6d6fc696 35ad05ef39d50fddc
- 88. Menta T R, Balasubramanian V N, et al. (2024). Active Transferability Estimation. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (pp. 2659–2670). https://doi.org/10.1109/CVPRW63382.2024.00272
- Panda P, Balasubramanian V N, et al. (2024).
 Interpretable Model Drift Detection. In ACM International Conference Proceeding Series (pp. 1–9).
 https://doi.org/10.1145/3632410.3632434
- Panda P, Tandon S & Balasubramanian V N. (2024). FW-SHAPLEY: REAL-TIME ESTIMATION OF WEIGHTED SHAPLEY VALUES. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing
 —Proceedings (pp. 6210–6214). https://doi.org/10.1109/ICASSP48485.2024.10446778
- 91. Rebbapragada S V, Panda P & Balasubramanian V N. (2024). C2FDrone: Coarse-to-Fine Drone-to-Drone Detection using Vision Transformer Networks. In Proceedings—IEEE International Conference on Robotics and Automation (pp. 6627–6633). https://doi.org/10.1109/ICRA57147.2024.10609997
- 92. Reddy A G, Balasubramanian V N, et al. (2024). Towards Learning and Explaining Indirect Causal Effects in Neural Networks. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, Issue 13, pp. 14802–14810). https://doi.org/10.1609/aaai.v38i13.29399
- 93. Reddy A G & Balasubramanian V N. (2024). NESTER: An Adaptive Neurosymbolic Method for Causal Effect Estimation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, Issue 13, pp. 14793–14801). https://doi.org/10.1609/aaai.v38i13.29398
- 94. Sarkar H, Balasubramanian V N, et al. (2024). Open-Set Object Detection by Aligning Known Class Representations. In Proceedings—2024 IEEE Winter Conference on Applications of Computer Vision, WACV

- 2024 (pp. 218–227). https://doi.org/10.1109/WACV57701.2024.00029
- 95. Sinha P, Das S, et al. (2024). PROLONG: Priority based Write Bypassing Technique for Longer Lifetime in STT-RAM based LLC. In ACM International Conference Proceeding Series (pp. 89–103). https://doi.org/10.1145/3695794.3695803
- 96. Sinha P, Das S, et al. (2024). TENDRA: Targeted Endurance Attack on STT-RAM LLC. In IEEE Embedded Systems

 https://doi.org/10.1109/LES.2024.3502297
- 97. Batreddy S, Babu C S, et al. (2024). Adaptive Neighborhood Sampling and KAN-Based Edge Features for Enhanced Fraud Detection. In Proceedings—2024 IEEE International Conference on Big Data, BigData 2024 (pp. 3375–3381). https://doi.org/10.1109/BigData62323.2024.1082495
- 98. Pamisetty G, Babu C S, et al. (2024). EHRGPT:
 Leveraging language models for generating synthetic
 health records. In Proceedings—2024 IEEE
 International Conference on Big Data, BigData 2024
 (pp. 4579-4587).
 https://doi.org/10.1109/BigData62323.2024.1082505
- 99. Basak D, Srijith P K & Desarkar M S. (2024). Transformer based Multitask Learning for Image Captioning and Object Detection. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 14646 LNAI (pp. 260–272). https://doi.org/10.1007/978-981-97-2253-2_21
- 100. Bhavanam S R, Srijith P K, et al. (2024). Enhanced astronomical source classification with integration of attention mechanisms and vision transformers. In Astrophysics and Space Science (Vol. 369, Issue 8). https://doi.org/10.1007/s10509-024-04357-9
- 101. Satapara S & Srijith P K. (2024). TL-CL: Task And Language Incremental Continual Learning. In EMNLP 2024—2024 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference (pp. 12123–12142). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85217822016&partnerID=40&md5=d8bd22f37fad19aa63a01c58aa9369d4
- 102. Yelleni S H, Srijith P K, et al. (2024). Monte Carlo DropBlock for modeling uncertainty in object detection. In Pattern Recognition (Vol. 146). https://doi.org/10.1016/j.patcog.2023.110003
- 103. Bhyravarapu S, Kalyanasundaram S, et al. (2024).
 Conflict-Free Coloring: Graphs of Bounded Clique-Width and Intersection Graphs. In Algorithmica (Vol. 86, Issue 7, pp. 2250–2288). https://doi.org/10.1007/s00453-024-01227-2
- 104. Brand C, Kalyanasundaram S, et al.(2024). The Complexity of Optimizing Atomic Congestion. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, Issue 18, pp. 20044–20052). https://doi.org/10.1609/aaai.v38i18.29982
- 105. Bhardwaj G, Ahmed A & Peri S. (2024b). Concurrent Wait-Free Graph Snapshots Using Multi-versioning. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 14783 LNCS (pp. 32–49). https://doi.org/10.1007/978-3-031-67321-4_2
- 106. Bhardwaj G, Peri S, et al. (2024a). Brief Announcement: Lock-free Learned Search Data Structure. In Annual ACM Symposium on Parallelism in Algorithms and Architectures (pp. 65-67). https://doi.org/10.1145/3626183.3660267
- 107. Bhardwaj G, Peri S, et al. (2024b). Kanva: A Lock-free Learned Search Data Structure. In ACM International Conference Proceeding Series (pp. 252–261).

- https://doi.org/10.1145/3673038.3673082
- 108. Piduguralla M, Sarkar S & Peri S. (2024). Improving Throughput and Fault Tolerance of Blockchain Nodes. In ACM International Conference Proceeding Series (pp. 256–257). https://doi.org/10.1145/3631461.3632509
- 109. Ranjan N, Kapoor R & Peri S. (2024). Short Paper: An Efficient Framework for Supporting Nested Transaction in STMs. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 14783 LNCS (pp. 204–210). https://doi.org/10.1007/978-3-031-67321-4_13
- 110. Sahu S, Peri S, et al. (2024a). DF PageRank: Incrementally Expanding Approaches for Updating PageRank on Dynamic Graphs. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 14803 LNCS (pp. 312–326). https://doi.org/10.1007/978-3-031-69583-4_22
- 111. Sahu S, Peri S, et al. (2024b). Lock-free Computation of PageRank in Dynamic Graphs. In 2024 IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2024 (pp. 825–834). https://doi.org/10.1109/IPDPSW63119.2024.00148
- 112. Gangwar A S, Das S, et al. (2024). Flush+earlyRELOAD:
 Covert Channels Attack on Shared LLC Using MSHR
 Merging. In Proceedings -Design, Automation and Test
 in Europe, DATE.
 https://www.scopus.com/inward/record.uri?eid=2s2.085196556146&partnerID=40&md5=16135491af84623
 b52f1e2e9f5f029d1
- 113. Kaur J & Das S. (2024). RSPP: Restricted Static Pseudo-Partitioning for Mitigation of Cross-Core Covert Channel Attacks. In ACM Transactions on Design Automation of Electronic Systems (Vol. 29, Issue 2). https://doi.org/10.1145/3637222
- 114. Kumar A, Das S & Subba B. (2024). HTree: Hardware Trojan Attack on Cache Resizing Policies. In IEEE Embedded Systems Letters (Vol. 16, Issue 3, pp. 263–266). https://doi.org/10.1109/LES.2023.3347607

- 1. Antony Franklin; Information Security Education and Awareness (ISEA) Project Phase-III; 201.60 L. [G736].
- Antony Franklin; Center for Cybersecurity and Cryptography; 6823.00 L. [G756].
- 3. Ashish Mishra; Brahma Sutra a NeuroSymbolic Synthesis Toolchain for Verified Programs in Complex Domains; 61.00 L. [ANRF/ECRG/2024/006437/ENS].
- 4. Bheemarjuna Reddy Tamma; Co-PI of ISEA Phase-3 project on Security of Wireless Systems; 47.80 L. [G736].
- 5. Bheemarjuna Reddy Tamma; Co-PI of Center for Cryptography and Cybersecurity; 200.00 L. [G756].
- 6. Krishna Mohan C; Design and Development of Road Element Segmentation; 11.94 L. [G798].
- 7. Krishna Mohan C; Teachers Associateship for Research Excellence(TARE); 18.30 L. [G779].
- 8. Krishna Mohan C; Enhancing small language models through domain adaptive federated framework; 15.00 L. [S339].
- Krishna Mohan C; Synthetic data model generation & Graph Analytic Model P.O. No:NPCI-PO-0006849 & Dt:15.05.2024; 144.00 L. [S324].
- Maria Francis; Poist-Quantum Cryptography; 113.50 L. [S331].
- 11. Maunendra Sankar Desarkar; Bharat-GPT A Suite of Generative AI Tech for India; 106.00 L. [S356].
- 12. Panduranga Rao M V; NQMTG on Quantum Communications; 20.01 L. [G791].
- 13. Panduranga Rao M V; Center for cyber Security; 6823.30 L. [G756].

- 14. Praveen Aravind Babu Tammana; Performance Aware Cloud-level Load Balancer for connected and Autonomous Vehicles; 50.00 L. [S328].
- Praveen Aravind Babu Tammana; Accelerated computer Facility (As Per PO. N248001108 dated 10.03.2025); 62.50 L. [S367].
- 16. Rajesh Kedia; Accelerating innovation and research using Arm technologies; 12.95 L. [S366].
- 17. Rameshwar Pratap; Improving Similarity Search in Practice; 70.00 L. [ANRF/ECRG/2024/001063/ENS].
- 18. Sathya Peri; AI/ML-Based seeker processing with High performance Computing; 83.85 L. [G762].
- 19. Sathya Peri; An Efficient Framework for Distributed Execution of Smart Contracts; 74.04 L. [G767].
- 20. Shirshendu Das; Do not Forget Cache Content Management Policies while Designing Secure Last-level Cache; 23.00 L. [SERB/CSE/F330/2023-24/G661].
- 21. Sobhan Babu Chintapalli; Identifying Anomalous dealers using big data Analytics; 1190.75 L. [S322].
- 22. Srijith P K; Centre of Excellence in AI for Sustainable Cities; 200.00 L. [G693].
- 23. Srijith P K; Development of a Technological Innovation aware large language model; 48.00 L. [S359].
- 24. Subrahmanyam Kalyanasundaram; Conflict-free Coloring of Graphs and Related Problems; 0.00 L. [G524].
- 25. Upadrasta Ramakrishna; Qualcomm Complier Collaboration; P.O. No:4300068093 & Dt:16.08.2024; 10.00 L. [S352].
- 26. Vineeth N Balasubramanian; AI for Sustainable infrastructure and Resource Planning, Analysis and Monitoring; 200.00 L. [G693].
- 27. Vineeth N Balasubramanian; Microsoft Unrestricted Research Grant: Kancheti Sai Srinivas; 10.00 L. [F004].

Awards & Recognitions:

- 1. Debaditya Roy, (PhD Alumnus), who worked under the supervision of Prof C Krishna Mohan, has been selected as an Assistant Professor at IIT Kharagpur.
- Sriram Bhyravarapu, (Alumnus), who worked under the supervision of Subrahmanyam Kalyanasundaram has been selected as an Assistant Professor at IIT Guwahati.
- Vineeth N Balasubramanian elected as an INSA Associate Fellow-2024.
- 4. Vineeth N Balasubramanian elected as Fellow of Indian National Academy of Engineering (INAE).

Research Highlights

Introduced several useful products across multiple verticals as part of the center of excellence in AI for sustainable cities, led by Srijith PK

AI Tech Stack and User Interfaces: AI technology stack with reusable modules and APIs to analyze and understand data from diverse sources, including IoT devices, surveillance cameras, mobile, and social media. The stack provides AI and ML-based predictive analytics with integrated modules for explainability, fairness, and privacy. It also provides easy-to-use interfaces with a unified dashboard and chat-based services.

Waste Management: Developed AI-based solutions and technologies for sustainable waste management practices, addressing problems in the entire waste management life cycle. The technologies use state-of-the-art AI and ML approaches and will be deployed in the real world to improve waste management practices across cities as part of the Phase 2 plans of CoE in AI for sustainable cities.

Department of Design

This year has been outstanding for the Department of Design at IIT Hyderabad — a period marked by growth, innovation, and the realisation of our core vision to "creatively engage in the space between technologies and people". We ran several exciting academic programs: the Bachelor of Design (B.Des) programme continues with its four-level structure, enabling students to evolve from foundational exploration to specialist domains in Product Design, Visual Communication and Interaction Design. Our Master of Design (M.Des) programmes—Regular and Practice modes—have also matured further, offering student-driven specialisations, flexible online modes for working professionals and enriched curricula in emerging areas such as sustainability, systems design and XR.

On the research and innovation front, we spearheaded major initiatives this year: hosted the 4th All India DIC Meet 2024 at IIT Hyderabad, in the presence of the Secretary, Ministry of Education (MoE), MoE delegates, and representatives from various IITs and CFIs, with participation from over 1300 members. During the event, DIC IIT Hyderabad was conferred the Nodal Centre status by the Secretary, MoE, global biennial conference ICoRD '25 with over 650 participants, reinforcing our position as a leader in design research. We also held our student-led annual fest Ayaam 2025, fostering vibrant creativity and community engagement.

Our labs and studios have been further upgraded: from digital-heritage visualisation to XR/interaction design and advanced fabrication, enabling hands-on, people-centred, interdisciplinary work. Industry and society oriented initiatives continue to be integral to our ethos. We strengthened partnerships with MSMEs, established a Center of Design Excellence, integrated circular-economy design perspectives into projects, and embedded ethical, sustainable frameworks into all levels of teaching and research. Our growing pool of visiting faculty and industry mentors enhances exposure for students while helping align our programmes with real-world demands.

Our students and faculty have achieved outstanding recognition — award-winning student projects, design registrations and strong placement records reflect the applied and future-ready nature of our department. We continue to build on the institute's broader culture of innovation, and leverage IITH's excellent ecosystem that ranks among the top in NIRF Innovation and Engineering. Looking forward, our mission remains clear: to cultivate a new generation of designers who shape the quality of human experience in products, communications and system-integrated solutions. Together, we are positioned to make design not only a discipline of creation but one of impact. I thank all students, faculty, staff and industry partners for their dedicated contributions this year and invite you to join us in the next phase of our journey toward design excellence.

For more information, please visit: https://design.iith.ac.in/

Faculty Head of the Department

Shiva Ji
Associate Professor
PhD - IIT Guwahati
Profile page:
https://iith.ac.in/des/shivaji/

Professor

Deepak John Mathew
PhD - Center for Advanced Studies in
Education, M S University of Baroda
Profile page:
https://iith.ac.in/des/djm/

Associate Professor

Prasad S Onkar
PhD - IISc Bangalore
Associate Professor
Profile page:
https://iith.ac.in/des/psonkar/

Assistant Professor

Ankita Roy Profile page: https://iith.ac.in/des/aroy/

Anusmita Das
PhD: IIT Guwahati
Profile page:
https://www.iith.ac.in/des/anusmita/

Delwyn Jude Remedios Profile page: https://iith.ac.in/des/delwyn/

Neelakantan P K
PhD - IIT Bombay
Profile page:
https://iith.ac.in/des/neel/

Saurav Khuttiya Deori
PhD - IIT Guwahati
Profile page:
https://www.iith.ac.in/des/skhuttiyadeori/

Seema Krishnakumar Profile page: https://iith.ac.in/des/seema/

Shahid Mohammad
PhD - IIT Guwahati
Profile page:
https://iith.ac.in/des/mohammad.shahid/

Sonali Srivastav
PhD - School of Journalism and New
Media Studies
Profile page:
https://www.iith.ac.in/des/sonali.sri
vastav/

Srikar A V R Profile page: https://iith.ac.in/des/srikaravr/

Dr Shuhita Bhattacharjee
Assistant Professor
Department of Liberal Arts
IIT Hyderabad
Profile page:
https://iith.ac.in/la/shuhita/

Nina Sabnani IIT Bombay Profile page: https://www.idc.iitb.ac.in/people/fac ulty/sabnani-nina

Uday Athavankar Chief Mentor, MITSD School of Design Profile page: http://www.udayathavankar.in/

Books:

 Ankita Roy and Malay Mandal. Embark Explore Experience ANCIENT EGYPT with Augmented Reality, ISBN: 978-8193208571, 2024

Book Chapters:

- Ankita Roy. Quest for the Chest A Pop-Up Storybook. Kiriith_ISSN: 2583-7222, KID: 20240310, 2024.
 Ankita Roy. Visual Voices of Kerala's Politics.
- Ankita Roy. Visual Voices of Kerala's Politics. Kiriith_ISSN: 2583-7222, KID: 20240319, 2024
- 3. Ankita Roy. Roots and Rooms Migration and Memory. Kiriith_ISSN: 2583-7222, KID: 20240309, 2024
- Mathew Deepak John, Solanki Chaitanya. (2024). 3D Game Asset Generation of Historical Architecture Through Photogrammetry. Encyclopedia of Computer Graphics and Games.
- Chakraborty S & Ji S. (2024b). Analyzing spatial technology trends in urban heritage preservation: A bibliometrics study. In International Journal of Architectural Computing. https://doi.org/10.1177/14780771241287348.
- Chakraborty S & Ji S. (2024a). A review of integrating space syntax analysis into heritage impact assessment: A comprehensive framework for sustainable historic urban development. In International Journal of Urban Sciences.

https://doi.org/10.1080/12265934.2024.2438190

- Sonali Srivastav. Published unit in IGNOU's MOOC -Bachelor of Arts (Journalism and Digital Media) (BAJDM). Unit-1 Writing: Processes and Methods.
- 8. Sonali Śrivastav. Published unit in IGNOU's MOOC Bachelor of Arts (Journalism and Digital Media) (BAJDM). Unit-2 Effective Writing.
- Sonali Śrivastav. Published unit in IGNOU's MOOC -Bachelor of Arts (Journalism and Digital Media) (BAJDM). Unit-9 Story Formats and Storytelling.

Patents:

1. Indian Institute of Technology Hyderabad, Deepak John Mathew, Ketan Madan Chaturmutha

Title: Urban Air Mobility Aircraft Type: Design Patent Granted

Level: National

Filed Under: SD_Designs Patent No.: 400332-001

2. Indian Institute of Technology Hyderabad, Deepak John Mathew, Ketan Madan Chaturmutha

Title: Autonomous Advanced Air Mobility

Type: Design Patent Granted

Level: National

Filed Under: SD_Designs Patent No.: 443767-001

3. Indian Institute of Technology Hyderabad, Deepak John Mathew, Ketan Madan Chaturmutha

Title: Autonomous Urban Air Mobility

Type: Design Patent (Filed) Level: National Filed Under: SD_Designs Patent No.: 442793-001

4. Indian Institute of Technology Hyderabad, Deepak John Mathew, Ketan Madan Chaturmutha

Title: Autonomous Urban Air Mobility for Intra-city Travel of Passengers

Type: Design Patent (Filed)

Level: National

Filed Under: SD_Designs Patent No.: 450704-001

5. Indian Institute of Technology Hyderabad, Srikar, Shivadekar

Title: MYCELIUM BIO-COMPOSITE EMERGENCY

SHELTER

Type: Design Patent (Filed)

Level: National Filed Under: Design Patent No.: 455512-001 6. Indian Institute of Technology Hyderabad, Srikar, Shivadekar

Title: MYCELIUM BIO-COMPOSITE REVERSIBLE DESKTOP MINI-PEDESTAL

Type: Design Patent (Filed)

Level: National Filed Under: Design Patent No.: 455790-001

7. Indian Institute of Technology Hyderabad, Srikar, Shiyadekar

Title: MYCELIUM Phone Stand Type: Design Patent Granted

Level: National Filed Under: Design Patent No.: 441804-001

8. Indian Institute of Technology Hyderabad, Srikar, G.Lal

Title: High Chair

Type: Design Patent (Filed)

Level: National Filed Under: Design Patent No.: 441803-001

9. Indian Institute of Technology Hyderabad, Srikar, Rishabh

Title: Micro Ambulance Design to Enhance Access to

Remote Locations in India Type: Design Patent Granted

Level: National Filed Under: Design Patent No.: 393073-001

Design registration:

1. Indian Institute of Technology Hyderabad, Mohammad Shahid, Nishi Bajaj

Title: GOAL CARD FOR A CARD GAME Registration No: 445089-001

2. Indian Institute of Technology Hyderabad, Mohammad Shahid, Nishi Bajaj

Title: GOAL CARD FOR A CARD GAME Registration No: 445092-001

3. Indian Institute of Technology Hyderabad, Mohammad Shahid, Nishi Bajaj

Title: GOAL CARD FOR A CARD GAME Registration No: 445098-001

4. Indian Institute of Technology Hyderabad, Mohammad Shahid, Nishi Bajaj Title: GOAL CARD FOR A CARD GAME

5. Registration No: 445097-001

Indian Institute of Technology Hyderabad, Mohammad Shahid, Nishi Bajaj

Title: GOAL CARD FOR A CARD GAME Registration No: 445099-001

Publications:

 Gokul R and Ankita Roy, Navigational Integration: Enhancing User Experience through Illustration-Driven Wayfinding in a Multi-Storied Building in real and augmented environments. Proceedings of the 14th Indian Conference on Human-Computer Interaction, IndiaHCI, Studies in Computational Intelligence, vol 1162. Springer, Singapore, 2024 https://doi.org/10.1007/978-981-97-4335-3 8

 H Gond and Ankita Roy, Revival of the traditional Gond Art of Madhya Pradesh through modern technologies of digital platforms and UX-UI. Proceedings of the 14th Indian Conference on Human-Computer Interaction, IndiaHCI, Studies in Computational Intelligence, vol 1162. Springer, Singapore, 2024 https://doi.org/10.1007/978-981-97-4335-3 6

8. Remedios D J, Mathew D J, & Schleser M. (2024). Navigating parallel interactive narratives in virtual reality. In Media Practice and Education (Vol. 25, Issue 2, pp. 188–201). https://doi.org/10.1080/25741136.2024.2324088

- Schleser M, Mathew D J, et al. (2024). Imaginative storytelling–novel immersive production practices and processes for mobile cinematic, interactive 360-degree and real-time VR. In Media Practice and Education. https://doi.org/10.1080/25741136.2024.2426076
- Shijith V P & Mathew D J, (2024). Emergence of Colour Film Laboratories in Bombay: A Historical Narrative of Technological Dependence, Redesign and Inordinate Delay of Colour Cinema. In Historical Journal of Film, Radio and Television. https://doi.org/10.1080/01439685.2024.2396191
- Schleser M, Remedios D J, et al. (2024). Imaginative storytelling–novel immersive production practices and processes for mobile cinematic, interactive 360-degree and real-time VR. In Media Practice and Education. https://doi.org/10.1080/25741136.2024.2426076
- 7. Satpute A D, Rai P, & Onkar P. (2024). Driving sustainable mobility: A study of electric vehicle adoption in rural India. In Proceedings of the Design Society (Vol. 4, pp. 1427–1436). https://doi.org/10.1017/pds.2024.145
- Chakraborty S, & Ji S, (2024a). A review of integrating space syntax analysis into heritage impact assessment:
 A comprehensive framework for sustainable historic urban development. In International Journal of Urban Sciences.
 https://doi.org/10.1080/12265934.2024.2438190
- Chakraborty S, & Ji S. (2024b). Analyzing spatial technology trends in urban heritage preservation: A bibliometrics study. In the International Journal of Architectural Computing. https://doi.org/10.1177/14780771241287348
- Sharma A, & Ji S, (2024). Linkages between Traditional Water Systems (TWS) and Sustainable Development Goals (SDGs): A case of Govardhan, India. In Social Sciences and Humanities Open (Vol. 9). https://doi.org/10.1016/j.ssaho.2024.100816

 Ankita Roy; Co-PI for the Project Titled - Adolescent Sexual Health Education through Picture Books: Designing and Disseminating Picture Books on Sexual Health - Taking the Conversation to Children, Doctors, Teachers; 18.00 L. [ICSSR/RPD/MJ/2023-24/G/157].

- 2. Deepak John Mathew; Virtual Recreation and Digital preservation of cultural heritage temple sites of southern states of India; 97.42 L. [G777].
- 3. Deepak John Mathew; Compact and affordable Portable Solar Cooker (Tiffin Box) for Daily Wages worker, who works in open field; 25.00 L. [TDG/IITH/F132/2024-25/TDG-03].
- Deepak John Mathew; All India DIC Meet 2024; 24.00 L. [S321].
- Mohammad Shahid; Cheriyal Craft of Telangana state; 11.60 L. [S269].
- 6. Prasad S Onkar; Centre of Design Excellence (CoDE); 585.00 L. [G790].
- 7. Shiva Ji; Creating Digital Immersive Heritage Experience, Risk Assessment and Vernacular Architecture Analysis of Five Historically Significant Temple Marvels of Kashi; 90.00 L. [G483].
- 8. Sonali Srivastav; Digital Video Technologies and Women Filmmakers: An Exploration of the Emergent Narratives in Indie cinema; 35.00 L. [SG 190].

Awards and Recognitions

- 1. Shiva JI received the Best Paper Award at the International Conference on Research into Design 2025
- Mohammad Shahid received the Best Paper Award at the International Conference on Research into Design 2025
- 3. Ankita Roy was selected as a Winner Top 30, Click! Japan Photo Contest 2025, Japan Foundation, Embassy of Japan in India.
- 4. Srikar AVR received the Research Fellowship Award (2024 & 2025); UBU, Thailand.
- Chimti (IIT Hyderabad, Student Film, 2D Animation) guided by Delwyn Remedios and Directed by Prashasti Chaudary was listed for Official Selection at Animela 2025
- 6. Dr. Saurav Khuttiya Deori received the award for Excellent teaching contributions, curated by Honourable Director, Prof. B. S. Murty of IIT Hyderabad during the 16th Foundation Day '24.
- 7. Film titled 'Loud and Unheard', made by Atul Anthony, under the guidance of Dr Sonali Srivastav was selected for screening at the Waterfront International Film Festival, Mumbai, 2025.

Highlights

4th ALL INDIA DIC MEET 2024

The 4th All India Design Innovation Centre (DIC) Meet 2024 was a landmark national event hosted by the Design Innovation Centre (DIC), Indian Institute of Technology Hyderabad (IITH), which has been conferred the Nodal Centre status by the Ministry of Education (MoE), Government of India. This prestigious gathering served as a confluence of creativity, innovation, and collaboration, bringing together over 1300 participants, including faculty members, researchers, coordinators, and student innovators from various IITs, IIITs, NIDs, CFIs, and other academic institutions across India that are part of the DIC network.

10th International Conference on Research in Design 2025 (ICoRD '25)

The dynamic world of design research explored at ICoRD'25 from January 8th to 10th, 2025, at the Department of Design, IIT Hyderabad which also celebrated the shaping of a decade of "Design Excellence" at the Intersection of Innovation and Collaboration.

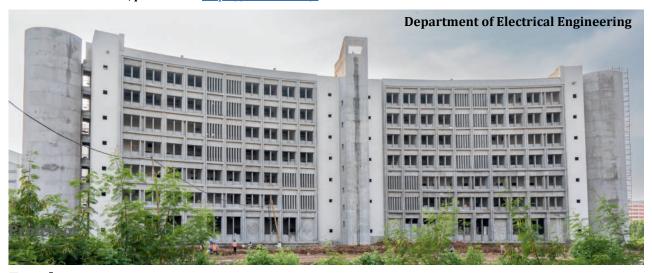
Organized jointly with the Department of Design and Manufacturing (DM) (erstwhile Centre for Product Design and Manufacturing – CPDM), Indian Institute of Science (IISc), Bengaluru, this event brings together practitioners, researchers, pupils, and educators in a vibrant space where technology and human experience intersect. Join us in shaping the future of design innovation.

Department of Electrical Engineering

Welcome to the Electrical Engineering Department. This report provides a comprehensive overview of the department's achievements, activities, and advancements during the past year. Our commitment to excellence in electrical engineering education and research remains unwavering, and we are proud to present the highlights of our journey in 2024-2025.

The Electrical Engineering Department has been a cornerstone of engineering education since its establishment. We offer a comprehensive range of undergraduate and graduate programs in Electrical Engineering, specializing in areas such as Microelectronics & VLSI, Power Electronics and Power Systems, Systems and Control, Communications, Signal Processing, and Learning. Our department fosters an innovative and collaborative learning environment to nurture the next generation of electrical engineers.

This year EE department is reaching a total of 609 students (on roll up to March 2025: BTech + MTech + PhD). Our department is home to 38 dedicated faculty members, each possessing a strong academic background and expertise in diverse electrical engineering domains, and 16 support staff members, who played a crucial role in maintaining a conducive learning environment for our students. We strive to foster innovation, critical thinking, and a collaborative spirit among our students.


Project Funding

The department secured significant funding from various sources to support research initiatives, develop advanced technologies, and foster academic growth. The support and funding received through various private/public agencies have been instrumental in advancing the research and educational endeavours of the Electrical Engineering department during 2024-2025. These financial resources have enabled the department to make significant strides in cutting-edge research and innovation, enriching the learning experience of our students, and strengthening our impact in the field of electrical engineering.

Placement

The high placement rate achieved by our Electrical Engineering students showcases the department's dedication to nurturing skilled and industry-ready professionals. We are proud of our students' accomplishments and express gratitude to the faculty, staff, and industry partners for their support in making these achievements possible. We remain committed to empowering our students with the knowledge and skills needed to excel in their chosen careers and contribute significantly to the field of Electrical Engineering.

For more information, please visit: https://ee.iith.ac.in/

Faculty Head of the Department

K Siva Kumar PhD - IISc Bangalore Profile page: https://iith.ac.in/ee/ksiva/

Professor

Abhinav Kumar
PhD - IIT Delhi
Profile page:
https://iith.ac.in/ee/abhinavkumar/

Amit Acharyya
PhD - University of Southampton, UK
Profile page:
https://iith.ac.in/ee/amit_acharyya/

Ashudeb Dutta
PhD - IIT Kharagpur
Profile page:
https://iith.ac.in/ee/asudeb_dutta/

Kiran Kumar Kuchi
PhD - University of Texas at Arlington,
USA
Profile page:
https://iith.ac.in/ee/kkuchi/

Rajalakshmi P PhD - IIT Madras Profile page: https://iith.ac.in/ee/raji/

Ravikumar Bhimasingu
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/ee/ravikumar/

Shiv Govind Singh
PhD - IIT Bombay
Professor
Profile page:
https://iith.ac.in/ee/sgsingh/

Siva Rama Krishna V
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/ee/svanjari/

Soumya Jana
PhD - UIUC, USA
Profile page:
https://iith.ac.in/ee/jana/

Sri Rama Murty KodukulaPhD - IIT Madras **Profile page:**https://iith.ac.in/ee/ksrm/

Sumohana S Channappayya
PhD - The University of Texas
at Austin, USA
Profile page:
https://iith.ac.in/ee/sumohana/

Sushmee Badhulikha
PhD - University of California, USA
Profile page:
https://iith.ac.in/ee/sbadh/

Vaskar Sarkar PhD - IIT Bombay Profile page: https://iith.ac.in/ee/vaskar/

Zafar Ali Khan Mohammed PhD - IISc Bangalore Profile page: https://iith.ac.in/ee/zafar/

Aditya T Siripuram
PhD - Stanford University
Profile page:
https://iith.ac.in/ee/staditya/

G V V Sharma
PhD - IIT Bombay
Profile page:
https://iith.ac.in/ee/gadepall/

Gajendranath Chowdary Ch
PhD - IIT Delhi
Profile page:
https://iith.ac.in/ee/gajendranath/

Kaushik Nayak PhD - IIT Bombay Profile page: https://iith.ac.in/ee/knayak/

Ketan Detroja PhD - IIT Bombay Profile page: https://iith.ac.in/ee/ketan/

Lakshmi Prasad Natarajan PhD - IISc Bangalore Profile page: https://iith.ac.in/ee/lakshminatarajan/

Naresh Kumar Emani PhD - Purdue University, West Lafayette Campus, USA Profile page: https://iith.ac.in/ee/naresh/

Pradeep Kumar Yemula PhD - IIT Bombay Profile page: https://iith.ac.in/ee/ypradeep/

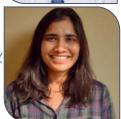
Rupesh Ganpatrao Wandhare PhD - IIT Bombay Profile page: https://iith.ac.in/ee/rupesh/

Seshadri Sravan Kumar V PhD - IISc Bangalore Profile page: https://iith.ac.in/ee/seshadri/

Sundaram Vanka PhD - University of Notre Dame, Notre Dame, Indiana, USA Profile page: https://iith.ac.in/ee/sundar.vanka/

Abhishek Kumar PhD - IIT Madras Profile page: https://iith.ac.in/ee/akumar/

Aneesh Sobhanan PhD - IIT Madras Profile page: https://www.iith.ac.in/ee/aneesh/


Anjana A M PhD - IISc, Bengaluru Profile page: https://www.iith.ac.in/ee/anjana.am/

Jose Titus PhD - IIT Madras Profile page: https://iith.ac.in/ee/jtitus/

Kapil Jainwal PhD - IIT Delhi Profile page: https://www.iith.ac.in/ee/kapiljainwal/

Vajha Myna PhD - IISc Bangalore Profile page: https://people.iith.ac.in/mynav/bio.html

Oves Badami
PhD - Universita Degli Studi di Udine,
Udine, Italy
Profile page:
https://iith.ac.in/ee/oves.badami/

Pechetti Sasi
PhD - IIT Delhi
Profile page:
https://www.iith.ac.in/ee/psvinay/

Shashank Vatedka
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/ee/shashankvatedka/

Shishir Kumar
PhD - Trinity College, Dublin
Profile page:
https://iith.ac.in/ee/shishirk/

Shubhadeep Bhattacharjee
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/ee/shubhadeep/

Vishal Sawant
PhD - IIT Bombay
Profile page:
https://www.iith.ac.in/ee/vishalsawant/

Adjunct Professor

Alan O' Riordan
Senior Research Fellow
Tyndall National Institute
Profile page:
https://www.tyndall.ie/people/alan-oriordan/

Amit Kumar Mishra
(SERB-VAJRA)
Profile page:
https://ieeexplore.ieee.org/author/3
7290432700

Bidyadhar Subudhi
Director, NIT Warangal, Hanamkonda,
Telangana
https://nitw.ac.in/tlc/pages/people/
Director/director.htm

Gokul Kumar
Senior Director
Micron Technology
Profile page:
https://www.semiconindia.org/smar
t-manufacturing/Gokul-Kumar

Emeritus Faculty

Uday B Desai Chancellor ICFAI Dehradun, Chancellor, Anurag University Profile page: https://iith.ac.in/ee/ubdesai/

Patents:

Filed:

- Amit Acharyya; Japan Application Amit Acharya; 2024-139125.
- 2. Kiran Kumar Kuchi; Beam formed Physical Downlink Control Channel; US 18/790,683.
- 3. Kiran Kumar Kuchi; Selection of Control Channel; US 18/795,398.
- Kiran Kumar Kuchi; Systems and Methods for Generating Waveform with Low Peak-To-Average Power Ratio (Papr); 202441058167.
- 5. Kiran Kumar Kuchi; Hybrid Automatic Repeat Request (HARQ) System; 202441058168.
- 6. Kiran Kumar Kuchi; Physical Random Access Channel (PRACH) Receiver; 202441058336.
- 7. Kiran Kumar Kuchi; Physical Downlink Control Channel (PDCCH) and Physical Broadcast Channel (PCBH) Transmitters; 202441058292.
- 8. Kiran Kumar Kuchi; Methods for Optimizing Cellular Network Coverage and Systems Thereof; 202441058361.

- 9. Kiran Kumar Kuchi; Methods for Generating a Low Peak-To-Average Power Ratio (Papr) Waveform and Systems Thereof; 202441058415.
- 10. Kiran Kumar Kuchi; An Architecture for Channel State Information (CSI) Feedback; 1. 202441058429.
- 11. Kiran Kumar Kuchi; An Adaptive Framework with CSI Dvnamic Dimensioning for Feedback: 202441058442.
- 12. Kiran Kumar Kuchi; Npzs: A Novel Neural Network-Based Ciphering Algorithm in 3Gpp; 202441059180.
- 13. Kiran Kumar Kuchi; Method and System for Transmitting One Or More Waveforms to One Or More Users; 202441060928.
- 14. Kiran Kumar Kuchi; NPDS: A Novel Neural Network and Dynamic S-Box Based Ciphering Method in 3GPP; 202441075935.
- 15. Kiran Kumar Kuchi; Distributed Communication; US 18/795,505.
- 16. Rajalakshmi P; A Method for Adaptive Beamforming in A Sixth-Generation Vehicle-To-Everything (6G-V2X) Communication System; 202441017748.
- 17. Rajalakshmi P; A Cellular-Vehicle-To-Everything (C-V2X) Based Network System for Aerial and Ground Vehicles; 202441031129.
- 18. Rajalakshmi P; A Lidar and Gnss Based System and Method for Precise Localization of Autonomous Vehicle; 202441033559.
- 19. Rajalakshmi P; Multifunction Ive-by -Wire Control System and Method with Integrated Processor and Interfaces; 202441037183.
- 20. Rajalakshmi P; An Automated Parking Brake Enable Ive by Wire for Autonomous Vehicle for Hilly Terrain; 202441036814.
- 21. Rajalakshmi P; A Depth-Enhanced Neural State System and Method for Accurate Traffic Light Detection and Contextual Decision-Making in Autonomous Vehicles; 202441035962.
- 22. Rajalakshmi P; A Real-Time Traffic Sign Recognition and Integration System for Autonomous Vehicle Navigation in Diverse and Dynamic Living Environments; 202441035963.
- 23. Rajalakshmi P; A Cloud-Ai-Based Remotely Controlling Unmanned Aerial Vehicles (UAVS) System for Object/ Incident Detection; 202441036813.
- 24. Rajalakshmi P; Dual Mode Slotted Lever Braking Autonomous Mechanism for Electric Vehicle: 202441046436.
- 25. Rajalakshmi P; An Accurate Ground Removal System with Key Ground Feature Preservation Using Lidar for Pothole Peed Bump and Tiny Object Detection; 202441055458.
- 26. Rajalakshmi P; A System and Method for Excluding Non-Threatening and Static Roadside Obstacles Enhanced Autonomous Navigation; 202441069657.
- 27. Rajalakshmi P; A System and Method for Multimodal Management with Real-Time Transport Integration; 202441071734.
- 28. Shiv Govind Singh; A Three-Dimensional Vertically Integrated Superconducting Qubit and Method for Preparing the Same; 202441102730.
- 29. Shiv Govind Singh; Sensor for Flow Measurement Inside a Microchannel; 202421027948.

Published:

- Amit Acharyya; Optimised Transformer Encoder Architecture for Edge Computing Applications; 202441075188.
- Amit Acharyya; Method for Run-Time Power Management at Soc Architecture Using Digital Twin and Reinforcement Learning; 202441080746.
- Amit Acharyya; Hardware-Aware Width and Depth Shrinking with Convolutional and Fully Connected

- Layer Merging; 202441081768.
- Amit Acharyya; A Skyrmion-Based Tsetlin Machine Inference System; 202441086334.
- Amit Acharyya; A Methodology for Structural Health Monitoring of Steel Based On Phase Space Reconstruction; 202441083025.
- Amit Acharyya; Α Skymiron-Based 202441071776.
- Amit Acharyya; A Method of Generation of Register Transfer Level (Rtl) Design from Gate Level Netlist; 202441090125.
- Gajenanath Chowdary; A High Precision Frequency Synthesizer; 202441036163.
- Kiran Kumar Kuchi; Method for Adaptive Coverage via A Base Station; 202442070025
- 10. Kiran Kumar Kuchi; Base Station with Adaptive Coverage; 202442070027.
- 11. Kiran Kumar Kuchi; Generation of A Zone-Specific Waveform; US 18/790,209.
- 12. Kiran Kumar Kuchi; Waveform Generation According to Cyclic-Shifted Sequences; US 18/790,388.
- 13. Kiran Kumar Kuchi; Modulation and Coding Scheme Based On Channel State Information; US 18/790,600.
- 14. Kiran Kumar Kuchi; Waveform Generation via Lookup Table; US 18/790,771.
- 15. Kiran Kumar Kuchi; Distributed Communication Within a Base Station; US 18/791,240.
- 16. Kiran Kumar Kuchi; Method for Adaptive Coverage via A Base Station; US 18/791,189.
- 17. Kiran Kumar Kuchi; Base Station with Proximity Zones; US 18/795,277.
- 18. Kiran Kumar Kuchi; Waveform Differentiation Using Cyclic-Shifted Sequences; US 18/795,311.
- 19. Kiran Kumar Kuchi; Modulation and Coding Scheme Reception; US 18/795,347.
- 20. Kiran Kumar Kuchi; Reception of A Waveform
- Generated via A Lookup Table; US 18/795,451. 21. Kiran Kumar Kuchi; Base Station with Adaptive Coverage; US 18/795,586.
- 22. Kiran Kumar Kuchi; Graph neural networks for userpairing in wireless communication 202341033604.
- 23. Kiran Kumar Kuchi; Method and System for Generating a Waveform in a Communication Network; US 18/527.828.
- 24. Kiran Kumar Kuchi; Method and System for Generating a Transmit Waveform for Reference Sequences; US 18/413,594.
- 25. Kiran Kumar Kuchi; Method for Communication Using Beamformed Physical Downlink Control Channel (PDCCH); US 18/405,081.
- 26. Kiran Kumar Kuchi; Method of Determining Modulation and Coding Scheme (MCS) and A System Thereof; US 18/413,557.
- 27. Kiran Kumar Kuchi; System and Method to Generate a Waveform in a Communication Network; US 18/405,068.
- 28. Mohammed Zafar Ali Khan; A Method of Semantic Transmission and Reception of a Video Frame for Static Environments; 202441087158.
- 29. Shishir Kumar; A Device for Localised Temperature Control of a Microfluidic Chip; 202441038865.
- 30. Shiv Govind Singh; A Device for Neuromodulation and Neuromonitoring; 202441036426.
- 31. Siva Rama Krishna Vanjari; A System for Harvesting Energy Using Triboelectric Nanogenerators Biomimetic Unmanned Vehicles: Aerial 202341004596.
- 32. Shiv Govind Singh; A System for Harvesting Energy Using Triboelectric Nanogenerators in Biomimetic Unmanned Aerial Vehicles; 202341004596.
- 33. Siva Rama Krishna Vanjari; A Wound Dressing for Preventing Biofilm formation on a Wound; 202441036378.

- 34. Rajalakshmi P; An Automated Pipeline Device for Analysis and Inference of UAV-Based Hyperspectral Images of Crop Water Stress; 202441064638.
- 35. Rajalakshmi P; System for Real-Time Geo-Referencing of Moving Objects Around a Moving Vehicle for Autonomous Transportation; 202341004566.
- Rajalakshmi P; A System for Harvesting Energy Using Triboelectric Nanogenerators in Biomimetic Unmanned Aerial Vehicles; 202341004596."
- Sushmee Badhulika; V-TCPP-CU Metal Organic Framework and The Method of Preparation Thereof; 202441076277.
- 38. Sumohana S Channappayya; Multi-Spectral System Design for Robust Detection and Tracking of Objects; 202241050692.

Granted:

- 1. Amit Acharyya; Method and a System for Fault Tolerance in 3D-ICS; 201711038800.
- Amit Acharyya; Method for 3D-IC Design Using Dynamic Libraries and a System Therefor; 201711015607.
- 3. Amit Acharyya; Partitioning and Placement Method and System for 3D-IC Design; 201711015615.
- Amit Acharyya; Digital-Twin Based Cost-Effective and Scalable Fault-Tolerance Framework for RAM-Based Neural Computing Systems; 202341044159.
- Amit Acharyya; System and Method for Graphene-Based Area-Efficient Power Planning Nanomagnetic Logic Architecture Design and Implementation; 202341039661.
- Amit Acharyya; System and Method for Skyrmion-Based 3D Low-Complex Runtime Reconfigurable Architecture Design Methodology of Universal Logic Gate; 202341039644.
- Amit Acharyya; System and Method for the Energy Efficient Nano Magnetic Logic based Architecture Design Methodology for the Tsetlin Machine; 202341039699.
- Amit Acharyya; Unlocking the locked netlist using a Deep learning model for Intellectual Property reverse engineering; 202341045970.
- Amit Acharyya; A System with Nanomagnetic Logic-Based Spiking Neural Network Inference Architecture; 202441038984.
- Amit Acharyya; Graph Representation Learning-Based Average Power Estimation of Synthesized ASIC RTL Designs; 202341047558.
- 11. Kiran Kumar Kuchi; Method and Apparatus for a Cluster Specific Cloud Radio Transmission and Reception; 201641024178.
- Kiran Kumar Kuchi; Method and System for Scheduling a Pool of Resources to a Plurality of User Equipment's; 201841029885.
- 13. Kiran Kumar Kuchi; A Method of Receiving Signal Stream and a Receiver Thereof; 201841020438.
- Rajalakshmi P; Fully Non-Invasive Self-Sustaining Current Monitoring Device Using Magnetic Flux Based Energy Harvesting; 201841029504.
- Kiran Kumar Kuchi; System and Method for Generating Reference Signals With Low Peak-To-Average Power Ratio (PAPR) Waveform; 201841040625.
- Kiran Kumar Kuchi; Method and system for generating a transmit waveform for reference sequences; US 17/284,050.
- Kiran Kumar Kuchi; Method of determining modulation and coding scheme (MCS) and a system thereof; US 17/284,230.
- Kiran Kumar Kuchi; Beamformed Physical Downlink Control Channel for Lte With Full Dimension Multi-Input Output; 201941017958.
- Kiran Kumar Kuchi; Method and System for Generating A Waveform In A Communication Network; US 17/601,785.

- 20. Kiran Kumar Kuchi; Method and System for Transferring Data Between Distributed Unit and Radio Unit; 202041021530.
- 21. Kiran Kumar Kuchi; Method and System for Transmitting and Receiving a Waveform with Low Papr; 202042025341.
- 22. Kiran Kumar Kuchi; Method and System of Pre-Coding a Waveform for Synchronization in a Communication Network; 202042045110.
- 23. Kiran Kumar Kuchi; Method and System for Designing a Waveform for Data Communication; 202148016040.
- 24. Kiran Kumar Kuchi; A Method for Allocating Resources to a Plurality of Users by a Base Station; 202041005719.
- 25. Kiran Kumar Kuchi; Method and System for Designing a Waveform for Data Communication; 202148016050.
- 26. Kiran Kumar Kuchi; Method for Wireless Communication Using Beamformed Physical Downlink Control Channel (PDCCH); US 17/290,290.
- 27. Kiran Kumar Kuchi; System and Method to Generate a Waveform in a Communication Network; US 17/832,970.
- 28. Mohammed Zafar Ali Khan; A Novel Nanoparticle Array Sandwiched Multilayer Thin Film Photovoltaic Device; 5429/CHE/2014.
- 29. Rajalakshmi P; A System for Determination of Flight Performance of Bioinspired Aerial Vehicle in Simulated Space Conditions; 202241043483.
- 30. Rajalakshmi P; A Cost-Effective Retrofitting Drive by Wire Kit for Autonomous Electric Vehicles; 202341079931.
- 31. Rajalakshmi P; On-Chip System Architecture for Low-Complex DWT-Based Eye Blink Identification for Controlling IoT Environments; 201741010868.
- 32. Rupesh Ganpatrao Wandhare; A Dual Loop Bidirectional CLLLC Resonant Converter; 202441004623.
- 33. Shishir Kumar; A Detachable Connector for Transferring Fluids to a Microfluidic Device; 202341074239.
- 34. Sushmee Badhulika; Core-Shell Microfibers for Advanced Supercapacitor Applications and Method of Preparation Thereof; 202441025917.
- 35. Sushmee Badhulika; Synthesis of Zinc Metal-Organic Framework @ Zirconium Metal-Organic Framework Core-Shell Nanostructures; 202441026460.

Books:

- 1. Sharma G V V. (2024). Matrices in Geometry.
- 2. Sharma G V V. (2024). Digital Design through Arduino.

Book Chapters:

- Abhinav Kumar Reddy & M P. (2024). Resource management and cloud-RAN implementation for narrowband-IoT systems. In Managing Internet of Things Applications across Edge and Cloud Data Centres. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85197680343&p.
- Rajalakshmi P, Syam Narayanan S. (2024). Navigation of Unconventional Drones – Autonomous Ornithopter, Artificial Intelligence Applications in Aeronautical and Aerospace Engineering. Wiley Publication.
- Rajalakshmi P, Adduru U G, Sankararao, Sunita Choudhary, Jana Kholova, & Chris S Jones. AI-enabled UAV borne Hyperspectral Imaging for Livestock Farm Management. Smart Technologies for Sustainable Livestock Systems: CRC Press (Taylor & Francis Group).
- Shiv Govind Singh, Deswal H, et al. (2024). Flow sensors for on-chip microfluidics: Promise and challenges. In Experiments in Fluids (Vol. 65, Issue 12). https://doi.org/10.1007/s00348-024-03918-6.
- 5. Yemula Pradeep Kumar, Dwivedi D, et al. (2024). Technological advancements and innovations in enhancing resilience of electrical distribution systems.

n International Journal of Critical Infrastructure Protection (Vol. 46). https://doi.org/10.1016/j.ijcip.2024.

Publications:

- Abhirami S, Kumar A, et al. (2024). Handover Algorithms for Enhanced Throughput in a Hybrid OMA-NOMA System with Imperfect SIC. In IEEE Vehicular TechnologyConference.https://doi.org/10.1109/VTC20 24-Spring62846.2024.10683320.
- Kumar A, Mishra P K, Tongbram D, Rao T S, Soni V, Prasad J B, Shunsuke A, Miwa S, Eri T, Taisei T & Satoru I. (2024). Kimochi: A Career Guidance and Mentorship Network for Rural Underprivileged Kids. In 2024 16th International Conference on COMmunication Systems and NETworkS, COMSNETS 2024 (pp. 288–290). https://doi.org/10.1109/COMSNETS59351.2024.1042 7244.
- 3. Mouni N S, Kumar A, et al. (2024). Optimizing Time Scheduling for Hybrid OMA-NOMA Systems under Imperfect SIC: An α -Fair Utility Approach. In IEEE Vehicular Technology Conference. https://doi.org/10.1109/VTC2024-Spring62846.2024.10683480.
- Mouni N S, Kumar A, et al. (2024). Adaptive Multi-User Clustering and Power Allocation for Hybrid OMA-NOMA System with Imperfect SIC. In 2024 16th International Conference on COMmunication Systems and NETworkS, COMSNETS 2024 (pp. 747–751). https://doi.org/10.1109/COMSNETS59351.2024.1042 6961.
- Nelson W A, Kumar A, et al. (2024). RL-Based Energy-Efficient Data Transmission over Hybrid BLE/LTE/Wi-Fi/LoRa UAV-Assisted Wireless Network. In IEEE/ACM Transactions on Networking (Vol. 32, Issue 3, pp. 1951– 1966). https://doi.org/10.1109/TNET.2023.3332296.
- Reddy M P & Kumar A. (2024). Resource management and cloud-RAN implementation for narrowband-IoT systems. In Managing Internet of Things Applications across Edge and Cloud Data Centres. https://www.scopus.com/inward/record.uri?eid=2-s2.085197680343&partnerID=40&md5=fa0adb9f240979ddfc685e7deac44801.
- 7. Sanjeev N R & Kumar A. (2024). Memory and Latency Requirements on a gNodeB SoC for Supporting 5G NR Dual-SIM Phones. In Proceedings—2024 IEEE 17th International Symposium on Embedded Multicore/Many-core Systems-on-Chip, MCSoC 2024 (pp. 202–209). https://doi.org/10.1109/MCSoC64144.2024.00042.
- 8. Sonny A, Kumar A, & Cenkeramaddi L R. (2024). Dynamic Targets Occupancy Status Detection Utilizing mmWave Radar Sensor and Ensemble Machine Learning. In IEEE Open Journal of the Industrial Electronics Society (Vol. 5, pp. 251–263). https://doi.org/10.1109/0JIES.2024.3377012.
- Srivastava S, Kumar A, et al. (2024a). Poster: α Fair Resource Allocation for RIS-Assisted NOMA V2X Systems with Imperfect Phase Compensation. In IEEE Vehicular Networking Conference, VNC (pp. 243–244). https://doi.org/10.1109/VNC61989.2024.10575995.
- Srivastava S, Kumar A, et al. (2024b). Resource Allocation in Reconfigurable Intelligent Surfaces with Imperfect Phase Compensation. In 2024 16th International Conference on COMmunication Systems and NETworkS, COMSNETS 2024 (pp. 594–597). https://doi.org/10.1109/COMSNETS59351.2024.1042 7188.
- 11. Pochimireddy C R, Siripuram A, & Osgood B. (2024). Fast DFT Computation for Signals With Structured Support. In IEEE Transactions on Information Theory (Vol. 70, Issue 2, pp. 1498–1524). https://doi.org/10.1109/TIT.2023.3329804.

- 12. Dheeraj A, Acharyya A, et al. (2024). Multiple PUF-CPRNG based Authentication Methodology for Protecting the IP Cores. In International System on Chip Conference.
 - https://doi.org/10.1109/SOCC62300.2024.10737787.
- 13. Ghosh D, Acharyya A, et al. (2024). Design and Development of Low-Complex Methodology for sEMG-Based Hand Activity Identification and Actuation of Soft Robots for Rehabilitating and Amputated Patients. In Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems. https://doi.org/10.1109/ICECS61496.2024.10848986.
- 14. Jain A, Acharyya A, et al. (2024). ANN-based Accurate and Fast Post-Route QoR Data Prediction Methodology from Pre-Clock Tree Synthesis by Skipping CTS and Routing. In Proceedings—IEEE International Symposium on Circuits and Systems. https://doi.org/10.1109/ISCAS58744.2024.10557874.
- Joshi D K, Acharyya A, et al. (2024). Design and Evaluation of Conventional and NN-Based Methods for Corrosion and Fatigue Growth Rate Prediction. In Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems. https://doi.org/10.1109/ICECS61496.2024.10848852.
- 16. Katti P, Acharyya A, et al. (2024). Bayesian Inference Accelerator for Spiking Neural Networks. In Proceedings—IEEE International Symposium on Circuits and Systems. https://doi.org/10.1109/ISCAS58744.2024.10558608.
- 17. Kumari R, Acharyya A, et al. (2024). P2E-LGAN: PPG to ECG Reconstruction Methodology using LSTM based Generative Adversarial Network. In Proceedings—IEEE International Symposium on Circuits and Systems. https://doi.org/10.1109/ISCAS58744.2024.10558493.
- 18. Narwariya A S, Acharyya A, et al. (2024). Non-invasive Methodology for the Age Estimation of ICs using Gaussian Process Regression. In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. https://doi.org/10.1109/TCAD.2024.3499893.
- 19. Narwariya A S, Acharyya A, et al. (2024). REVBiT: REVerse Engineering of BiTstream for LUT Extraction & Logic Identification. In Proceedings—IEEE International Symposium on Circuits and Systems. https://doi.org/10.1109/ISCAS58744.2024.10558465.
- Nimbekar A, Acharyya A, et al. (2024). Hardware-Software Co-optimised Fast and Accurate Deep Reconfigurable Spiking Inference Accelerator Architecture Design Methodology. In International System on Chip Conference. https://doi.org/10.1109/SOCC62300.2024.10737858.
- 21. Nisha P, Acharyya A, et al. (2024). Run-Time Prevention of Thermal Throttling on the Edge using Reinforcement-Learning Based Predictive Thermal Aware Power and Performance Management. In 2024 22nd IEEE Interregional NEWCAS Conference, NEWCAS 2024 (pp. 273–277). https://doi.org/10.1109/NewCAS58973.2024.106661 09.
- 22. Pinisetty A, Acharyya A, et al. (2024). IR Thermography and RGB Combined Processing Methodology for Defects and Deformations Localization on the Go. In Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems. https://doi.org/10.1109/ICECS61496.2024.10848958.
- 23. Sivasubramani S, Acharyya A, et al. (2024). Area-Efficient Skyrmion Logic based Approximate Adder Architecture Design Methodology. In IEEE Transactions on Emerging Topics in Computing (pp. 1–12). https://doi.org/10.1109/TETC.2024.3434723
- 24. Verma P, Acharyya A et al. (2024). Hardware-Aware Network Adaptation using Width and Depth Shrinking including Convolutional and Fully Connected Layer Merging. In the International System on Chip

- Conference.
- https://doi.org/10.1109/SOCC62300.2024.10737722.
- Verma P, Acharyya A, et al. (2024). Platform-Aware Accelerated Compilation for Edge Via Fully Connected and Convolutional Layer Merging. In Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems. https://doi.org/10.1109/ICECS61496.2024.10849059.
- 26. Vinay R, Acharyya A, et al. (2024). Digital Twin-Based Run-Time Power Management for Edge SoC using Performance-Aware Reinforcement Learning. In the International System on Chip Conference. https://doi.org/10.1109/SOCC62300.2024.10737819.
- Chary P P, Shaik Peerla R, & Dutta A. (2024). A Simplified Gm C Filter Technique for Reference Spur Reduction in Phase-Locked Loop. In Journal of Low Power Electronics and Applications (Vol. 14, Issue 1). https://doi.org/10.3390/jlpea14010017.
- 28. Nagaveni S, Dutta A, et al. (2024). On-Chip Configurable RF Energy Harvester for Biomedical Implantable Devices. In IEEE Transactions on Circuits and Systems I: Regular Papers (Vol. 71, Issue 11, pp. 5030–5039). https://doi.org/10.1109/TCSI.2024.3416252.
- Pathak D, Vardhan S G, & Dutta A. (2024). A Compact and Efficient RF Rectifier Using Series-Parallel LC Network for UHF Battery-Less RFIDs. In IEEE Sensors Letters (Vol. 8, Issue 6, pp. 1-4). https://doi.org/10.1109/LSENS.2024.3406576.
- Vardhan G S, Pathak D, & Dutta A. (2024). A Gain Reconfigurable CMOS Wideband LNA for Sub-7GHz 5G NR Receiver. In IEEE Transactions on Circuits and Systems II: Express Briefs (Vol. 71, Issue 4, pp. 1829– 1833). https://doi.org/10.1109/TCSII.2023.3333047.
- 1833). https://doi.org/10.1109/TCSII.2023.3333047.
 31. Mohanty S, Chowdary G, et al. (2024a). Aptamer Assisted Simultaneous Detection of Lead and Arsenic in Water Using a Handheld System. In Proceedings of IEEE Sensors.
 https://doi.org/10.1109/SENSORS60989.2024.107850 19.
- Mohanty S, Chowdary G, et al. (2024b). Coordination Complex-Based Reusable Electrochemical Aptasensor for Arsenic Detection in Lake Water. In IEEE Sensors Letters (Vol. 8, Issue 1, pp. 1-4). https://doi.org/10.1109/LSENS.2023.3340952.
- 33. Mohanty S, Chowdary G, et al. (2024). Handheld chemiresistive sensing system for lead ion detection in water. In Journal of Water Process Engineering (Vol. 63). https://doi.org/10.1016/j.jwpe.2024.105475.
- 34. Rajendran M K & Chowdary G. (2024). A Dual Input Five Output Solar Energy Harvester with 93.46% Peak Efficiency for Heterogeneous Wireless Sensor Node Applications. In Proceedings of IEEE Sensors. https://doi.org/10.1109/SENSORS60989.2024.107851 04.
- Harikrishnan P, Pandey P, Titus J & Hatua K. (2024). A 12-Pulse LCI- and VSI-fed Hybrid Medium-Voltage Drive for an Induction Motor with a Tapped Split-Phase Stator Winding. In IEEE Transactions on Power Electronics (Vol. 39, Issue 1, pp. 1230–1243). https://doi.org/10.1109/TPEL.2023.3322458.
- Jegatheesan K & Titus J. (2024). A Comparative Evaluation of the Performance of a novel H9-VSI for Reduced Common Mode Currents. In IEEE International Symposium on Industrial Electronics. https://doi.org/10.1109/ISIE54533.2024.10595830.
- Tanguturi J & Keerthipati S. (2024a). Module Power Balancing Mechanism for a Single-Phase Single-Stage Grid-Connected Photovoltaic Cascaded H-Bridge Inverter. In IEEE Transactions on Power Electronics (Vol. 39, Issue 2, pp. 2777–2786). https://doi.org/10.1109/TPEL.2023.3330519.
- 38. Tanguturi J & Keerthipati S. (2024b). Panel Arrangement Technique to Mitigate Power Imbalance Arising Due to Partial shading in a PV Single-phase CHB

- Inverter System. In 4th International Conference on Smart Grid and Renewable Energy, SGRE 2024—Proceedings.
- https://doi.org/10.1109/SGRE59715.2024.10428763.
- Tanguturi J & Keerthipati S. (2024c). Power Balancing Strategy for Cascaded H-Bridge Inverter in a Grid-Connected Photovoltaic System under Asymmetrical Operating Conditions. In IEEE Transactions on Industrial Electronics (Vol. 71, Issue 6, pp. 5853–5862). https://doi.org/10.1109/TIE.2023.3292869.
- Bisen M, Jainwal K & Khanna N. (2024). Design and Implementation of SPAD-Based Linearly Stable Multi-Mode Configurable TAC Pixel. In Proceedings of the IEEE International Conference on VLSI Design (pp. 135– 139).
 - https://doi.org/10.1109/VLSID60093.2024.00028.
- 41. Philip P, Jainwal K, van Schaik A & Thakur C S. (2024). Tau-Cell-Based Analog Silicon Retina with Spatio-Temporal Filtering and Contrast Gain Control. In IEEE Transactions on Biomedical Circuits and Systems (Vol. 18, Issue 2, pp. 423-437). https://doi.org/10.1109/TBCAS.2023.3332117.
- 42. ETF dead-time compensation based multiloop control approach for multivariable processes. In IFAC-PapersOnLine (Vol. 58, Issue 7, pp. 25–30). https://doi.org/10.1016/j.ifacol.2024.08.005.
- 43. Kranthi Kumar P & Detroja K P. (2024). Gain Scheduled PI controller design using Multi-Objective Reinforcement Learning. In IFAC-PapersOnLine (Vol. 58, Issue 7, pp. 132–137). https://doi.org/10.1016/j.ifacol.2024.08.023.
- 44. Tiwari S N & Detroja K P. (2024). Flexibility modeling and autopilot design of interceptor missile using multiple sensing. In Franklin Open (Vol. 9). https://doi.org/10.1016/j.fraope.2024.100184.
- 45. Bisoyi S, Kuchi K, et al. (2024). Massive MIMO with Circular Antenna Array: Design, Implementation, and Validation. In IEEE Access (Vol. 12, pp. 21070–21083). https://doi.org/10.1109/ACCESS.2024.3362245.
- 46. Bisoyi S, Kuchi K, et al. (2024). Meeting IMT-2030 Performance Targets: The Potential of OTFDM Waveform and Structural MIMO Technologies. In 2024 ITU Kaleidoscope: Innovation and Digital Transformation for a Sustainable World, ITU K 2024. https://doi.org/10.23919/ITUK62727.2024.10772838.
- 47. Gudimitla K R, Kuchi K, et al. (2024). Pre-DFT Multiplexing of Reference Signals and Data in DFT-s-OFDM Systems. In IEEE Open Journal of the Communications Society (Vol. 5, pp. 514–525). https://doi.org/10.1109/0JCOMS.2023.3348190.
- 48. Mourya S, Kuchi K, et al. (2024). Spectral Temporal Graph Neural Network for Massive MIMO CSI Prediction. In IEEE Wireless Communications Letters (Vol. 13, Issue 5, pp. 1399–1403). https://doi.org/10.1109/LWC.2024.3372148.
- 49. Siddheshwar A, Natarajan L P & Krishnan P. (2024). Recursive Subproduct Codes with Reed-Muller-like Structure. In IEEE International Symposium on Information Theory—Proceedings (pp. 291–296). https://doi.org/10.1109/ISIT57864.2024.10619225.
- https://doi.org/10.1109/ISIT57864.2024.10619225.
 50. Ramkumar V, Vajha M & Krishnan M N. (2024). Streaming Codes for Three-Node Relay Networks with Burst Erasures. In IEEE International Symposium on Information Theory—Proceedings (pp. 1979–1984). https://doi.org/10.1109/ISIT57864.2024.10619218.
- 51. Ramkumar V, Vajha M & Nikhil Krishnan M. (2024). Streaming Codes for Three-Node Relay Networks With Burst Erasures. In IEEE Transactions on Information Theory. https://doi.org/10.1109/TIT.2024.3504538.
- 52. Ashai A, Badami O, & Sarkar B. (2024). A Normalizing Flow Based Validity-Preserving Inverse-Design Model for Nanoscale MOSFETs. In Advanced Theory and Simulations. https://doi.org/10.1002/adts.202400988.
- 53. Gauhar G A, Bhattacharjee S & Badami O. (2024).

- Insights into Sub-Thermionic Transport in Schottky Barrier FETs. In Advanced Theory and Simulations (Vol. 7, Issue 8). https://doi.org/10.1002/adts.202400202.
- 54. Singh A K, Badami O, et al. (2024). Accurate and fast electrostatic simulation of double-gate FETs using deep neural network. In IEEE Electron Devices Technology and Manufacturing Conference: Strengthening the Globalization in Semiconductors, EDTM 2024. https://doi.org/10.1109/EDTM58488.2024.10511954.
- 55. Babu K V S M, Yemula P K, et al. (2024). A Resilient Power Distribution System Using P2P Energy Sharing. In IEEE Transactions on Industry Applications (Vol. 60, Issue 6, pp. 8228–8238). https://doi.org/10.1109/TIA.2024.3443246.
- 56. Cherala V S C T & Yemula P K. (2024). Post Facto Calculation of Peer to Peer Transactions: Proportional and Preferential Energy Sharing Models. In Electric Power Components and Systems. https://doi.org/10.1080/15325008.2024.2329331.
- Dwivedi D, Yemula P K, et al. (2024a). Evaluation of operational resilience in electrical distribution systems. In Electric Power Systems Research (Vol. 234). https://doi.org/10.1016/j.epsr.2024.110537.
- 58. Dwivedi D, Yemula P K, et al. (2024b). Identification of surface defects on solar PV panels and wind turbine blades using attention based deep learning model. In Engineering Applications of Artificial Intelligence (Vol. 131). https://doi.org/10.1016/j.engappai.2023.107836.
- Dwivedi D, Yemula P K, et al. (2024). Technological advancements and innovations in enhancing resilience of electrical distribution systems. In International Journal of Critical Infrastructure Protection (Vol. 46). https://doi.org/10.1016/j.ijcip.2024.100696.
- 60. Dwivedi D, Yemula P K, et al. (2024). Data-driven evaluation for quantifying energy resilience in distribution systems with microgrids and P2P energy trading. In E-Prime—Advances in Electrical Engineering, Electronics and Energy (Vol. 9). https://doi.org/10.1016/j.prime.2024.100714.
- 61. Dwivedi D, Yemula P K, et al. (2024). Identification of Critical Nodes Using Granger Causality for Strengthening Network Resilience in Electrical Distribution System. In Lecture Notes in Electrical Engineering (Vol. 1109, pp. 49–60). https://doi.org/10.1007/978-981-99-8289-9_5.
- 62. Nayak S, Yemula P K et al. (2024). Data Imputation Using Self Attention Based Model for Enhancing Distribution Grid Monitoring and Protection Systems. In IEEE Transactions on Instrumentation and Measurement (Vol. 73, pp. 1–11). https://doi.org/10.1109/TIM.2024.3372213.
- 63. Reddy B K, Yemula P K, et al. (2024). Experimental Benchmarking of Existing Offline Parameter Estimation Methods for Induction Motor Vector Control. In Technologies (Vol. 12, Issue 8). https://doi.org/10.3390/technologies12080123.
- 64. Reddy B K, Yemula P K, et al. (2024). Optimal Operation of Cogeneration Power Plant Integrated with Solar Photovoltaics Using DLS-WMA and ANN. In International Journal of Energy Research (Vol. 2024). https://doi.org/10.1155/2024/5562804.
- 65. Annu & Rajalakshmi P. (2024a). 6G Standards: Novel Approaches for Efficient Resource Allocation in V2X Sidelink Communication. In 2024 ITU Kaleidoscope: Innovation and Digital Transformation for a Sustainable World, ITU K 2024. https://doi.org/10.23919/ITUK62727.2024.10772915.
- Annu & Rajalakshmi P. (2024b). Distance-Based Queue Modeling in Sidelink C-V2X Communication for Platooning: Towards 6G-V2X. In IEEE Vehicular Technology Conference. https://doi.org/10.1109/VTC2024Fall63153.2024.107
- 67. Annu & Rajalakshmi P. (2024c). Enhancing Sidelink V2X

- Communication in 6G Networks: Power-Domain NOMA-Based Priority Message Transmission Approach. In IEEE Vehicular Networking Conference, VNC (pp. 117–124). https://doi.org/10.1109/VNC61989.2024.10576016.
- 68. Annu & Rajalakshmi P. (2024d). Future-Proofing 6G V2X Sidelink Connectivity: Scheduling and Adaptive Beamforming Integration. In 2024 IEEE International Black Sea Conference on Communications and Networking, BlackSeaCom 2024 (pp. 192–198). https://doi.org/10.1109/BlackSeaCom61746.2024.106 46246.
- Annu & Rajalakshmi P. (2024e). Towards 6G V2X 69. Sidelink: Survey of Resource Allocation-Mathematical Formulations, Challenges, and Proposed Solutions. In IEEE Open Journal of Vehicular Technology (Vol. 5, pp. 344–383). https://doi.org/10.1109/0JVT.2024.3368240.
- Behera S, Anand B, & Rajalakshmi P. (2024). YoloV8
 Based Novel Approach for Object Detection on LiDAR
 Point Cloud. In IEEE Vehicular Technology Conference.
 https://doi.org/10.1109/VTC2024-Spring62846.2024.10683316.
- Dutta T, Reddy D S, & Rajalakshmi P. (2024). Real-Time Deep Learning Based Safe Autonomous Navigation. In 2024 8th International Conference on Robotics, Control and Automation, ICRCA 2024 (pp. 400-406). https://doi.org/10.1109/ICRCA60878.2024.10649375.
- 72. Gao Y, Li L, Rajalakshmi P, et al. (2024). Bridging real and simulated data for cross-spatial-resolution vegetation segmentation with application to rice crops. In ISPRS Journal of Photogrammetry and Remote Sensing (Vol. 218, pp. 133–150). https://doi.org/10.1016/j.isprsjprs.2024.10.007.
- 73. Kumar K, Rajalakshmi P, et al. (2024). 3D YOLO-SM: End-to-End Approach for Real-time Traffic Light Detection and Recognition in Complex Scenarios. In IEEE Vehicular Technology Conference. https://doi.org/10.1109/VTC2024Fall63153.2024.107 57851.
- 74. Kumar R, Rajalakshmi P. et al. (2024). Evaluating Driver Reactions to Speed Bumps and Potholes for Enhancing Autonomous Vehicle Performance. In IEEE Vehicular Technology Conference. https://doi.org/10.1109/VTC2024Fall63153.2024.107
- Narayanan S S, Gangurde Y, & Rajalakshmi P. (2024). Aerodynamic Performance of Lambda Wing-UCAV at Different Back-sweep Angles. In Journal of Applied Fluid Mechanics (Vol. 17, Issue 6, pp. 1182–1190). https://doi.org/10.47176/jafm.17.6.2403.
- Nt S K, Yadav S, & Rajalakshmi P. (2024). A Sliding Window Technique-Based Radar and Camera Fusion Model for Object Detection in Adverse Weather Condition. In IEEE Sensors Letters (Vol. 8, Issue 6, pp. 1–4). https://doi.org/10.1109/LSENS.2024.3401233.
- 77. Patil U, Rajalakshmi P, et al. (2024). Healthcare IoT Application for Hospitals Using Multi-Access Edge Layer Computation Architecture. In 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation, IATMSI2024. https://doi.org/10.1109/IATMSI60426.2024.10503096.
- 78 Reddy D S, Rajalakshmi P, et al. (2024). Robust Obstacle Detection and Collision Warning for Autonomous Vehicles Using Autoware Universe. In 2024 16th International Conference on Computer and Automation Engineering, ICCAE 2024 (pp. 378–384). https://doi.org/10.1109/ICCAE59995.2024.10569220.
- Samuktha V, Rajalakshmi P, et al. (2024). A Framework for Object Classification via Camera-Radar Fusion with Automated Labeling. In 2024 IEEE Sensors Applications Symposium, SAS 2024—Proceedings. https://doi.org/10.1109/SAS60918.2024.10636564.
- 80. Samuktha V, Rajalakshmi P, et al. (2024). Improving

- Radar-Camera Fusion Network for Distance Estimation. In 2024 16th International Conference on Computer and Automation Engineering, ICCAE 2024 (pp. 23–29). https://doi.org/10.1109/ICCAE59995.2024.10569776.
- 81. Sanju Kumar N T, Rajalakshmi P, et al. (2024). Aeroacoustics and Vibration Analysis of Multirotor eVTOL for Sustainable Urban Air Mobility (UAM). In IEEE Sensors Letters (Vol. 8, Issue 5, pp. 1–4). https://doi.org/10.1109/LSENS.2024.3387329.
- 82. Sankararao A U G, Rajalakshmi P & Choudhary S. (2024). UC-HSI: UAV-Based Crop Hyperspectral Imaging Datasets and Machine Learning Benchmark Results. In IEEE Geoscience and Remote Sensing Letters (Vol. 21). https://doi.org/10.1109/LGRS.2024.3431644.
- 83. Singh G, Rajalakshmi P. et al. (2024). Evaluating Federated Learning-Based Intrusion Detection Scheme for Next Generation Networks. In IEEE Transactions on Network and Service Management (Vol. 21, Issue 4, pp. 4816–4829).
 - https://doi.org/10.1109/TNSM.2024.3385385.
- 84. Syam Narayanan S, Rajalakshmi P, et al. (2024). Development of an Autonomous Blimp (Airship) for Indoor Navigation. In SAE Technical Papers. https://doi.org/10.4271/2024-26-0436.
- 85. Tejasri N, Rajalakshmi P, et al. (2024). Panicle Segmentation on UAV Captured Multispectral Paddy Crop Imagery. In International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 2823–2827). https://doi.org/10.1109/IGARSS53475.2024.1064177
 0.
- Thakur A & Rajalakshmi P, (2024a). L3D-OTVE: LiDAR-Based 3-D Object Tracking and Velocity Estimation Using LiDAR Odometry. In IEEE Sensors Letters (Vol. 8, Issue 7). https://doi.org/10.1109/LSENS.2024.3416411.
- 87. Thakur A & Rajalakshmi P. (2024b). LiDAR-Based Optimized Normal Distribution Transform Localization on 3-D Map for Autonomous Navigation. In IEEE Open Journal of Instrumentation and Measurement (Vol. 3). https://doi.org/10.1109/0JIM.2024.3412219.
- 88. Thakur A & Rajalakshmi P. (2024c). Real-time 3D Map Generation and Analysis Using Multi-channel LiDAR Sensor. In 2024 IEEE 9th International Conference for Convergence in Technology, I2CT 2024. https://doi.org/10.1109/I2CT61223.2024.10544111.
- 89. Thakur A, Rajalakshmi P, et al. (2024). Autonomous Cooperative Platooning Powered by LiDAR-Guided Adaptive Cruise Control. In IEEE Vehicular Technology Conference. https://doi.org/10.1109/VTC2024-Spring62846.2024.10683147.
- Thakur A, Rajalakshmi P, et al. (2024). LiDAR-GNSS Fusion to Initiate Localization at Intermediate Points on a 3D Point Cloud Map. In IEEE Vehicular Technology Conference. https://doi.org/10.1109/VTC2024-Fall63153.2024.10757568.
- 91. Yadav K, Rajalakshmi P, et al. (2024). Design Considerations and Framework Analysis for Software-Defined Autonomous Vehicles. In IEEE Vehicular Technology Conference. https://doi.org/10.1109/VTC2024-Spring62846.2024.10683354.
- 92. Chegireddy P R & Bhimasingu R. (2024). Multi-Terminal Fault Locator for Homogeneous Transmission Lines Using Extended Proportions. In IEEE Transactions on Power Delivery (Vol. 39, Issue 1, pp. 155–167). https://doi.org/10.1109/TPWRD.2023.3332166.
- 93. Gajula S & Bhimasingu R. (2024). Enhanced Transient Stability of Grid Forming Inverter with Modified Active Power Loop during Symmetrical Voltage Sag. In 2024 IEEE 3rd International Conference on Electrical Power and Energy Systems, ICEPES 2024. https://doi.org/10.1109/ICEPES60647.2024.10653481

- 94. Latha A H & Bhimasingu R. (2024). Improved Impedance Based Parameter Free Fault Location Estimation Algorithm for Two Terminal Transmission Line Using Phasor Components. In 2024 IEEE 3rd International Conference on Electrical Power and Energy Systems, ICEPES 2024. https://doi.org/10.1109/ICEPES60647.2024.1065354.
- 95. Raj Kar R & Wandhare R. (2024). Passivity Principle-Based Active Damper Design to Enhance Stability of a Voltage Source Converter for Weak Grid Scenario. In IEEE Journal of Emerging and Selected Topics in Power Electronics (Vol. 12, Issue 5, pp. 5076–5089). https://doi.org/10.1109/JESTPE.2024.3406566.
- 96. Anirudh C V S & Kumar V S S. (2024). Enhanced Estimation of Frequency and Symmetrical Component Phasors of Three-Phase Voltage Signals. In IEEE Transactions on Power Delivery (Vol. 39, Issue 3, pp. 1500–1511). https://doi.org/10.1109/TPWRD.2024.3371225.
- 97. P N N S V K & V S S K. (2024). A new configuration for enhanced integration of a battery-ultracapacitor system. In Renewable Energy (Vol. 229). https://doi.org/10.1016/j.renene.2024.120708.
- Chandar V, Tchamkerten A, & Vatedka S. (2024). Entropy-Achieving Compression with Private Local Decodability. In IEEE International Symposium on Information Theory—Proceedings (pp. 3492–3497). https://doi.org/10.1109/ISIT57864.2024.10619338.
- Zhang Y, & Vatedka S. (2024). Multiple Packing: Lower Bounds via Error Exponents. In IEEE Transactions on Information Theory (Vol. 70, Issue 2, pp. 1008–1039). https://doi.org/10.1109/TIT.2023.3334032.
- 100. Ak N & Kumar S. (2024a). Electrostatic Modulation for Enhanced Ion Selectivity in Gate-All-Around Multilayer Stacked Graphene Nanopore. In ACS Applied Materials and Interfaces (Vol. 16, Issue 40, pp. 54919–54926). https://doi.org/10.1021/acsami.4c13281.
- 101. Ak N & Kumar S. (2024b). Integration of 2D Nanoporous Membranes in Microfluidic Devices. In ACS Omega (Vol. 9, Issue 20, pp. 22305–22312). https://doi.org/10.1021/acsomega.4c01688.
- 102. Niketa A K & Kumar S. (2024). Ion Selectivity in Multilayered Stacked Nanoporous Graphene. In ACS Applied Materials and Interfaces (Vol. 16, Issue 4, pp. 5294–5301). https://doi.org/10.1021/acsami.3c15044.
- 103. Bhagavathi K A, Singh S G, et al. (2024). Silk-Aloe Vera Composite Piezoelectric Film: A New Paradigm in Eco-Friendly Piezoelectrics. In IEEE Journal on Flexible Electronics (Vol. 3, Issue 7, pp. 292–299). https://doi.org/10.1109/JFLEX.2024.3425812.
- 104. Bonam S, Singh S G, et al. (2024). Self-heated W03 nanowires for selective and sensitive detection of N02 gas at room temperature. In Journal of Materials Science: Materials in Electronics (Vol. 35, Issue 17). https://doi.org/10.1007/s10854-024-12974-x.
- 105. Deswal H, Singh S G, et al. (2024). On-chip resistive microfluidic flow sensor with reduced analysis time using transient analysis. In Experiments in Fluids (Vol. 65, Issue 5). https://doi.org/10.1007/s00348-024-03811-2.
- 106. Deswal H, Singh S G, et al. (2024a). Microfluidic flow sensor based on chronoamperometric measurements in a microchannel. In International Journal of Thermofluids (Vol. 23). https://doi.org/10.1016/j.ijft.2024.100760.
- 107. Deswal H, Singh S G, et al. (2024b). Modeling the coulometric data for on-chip flow rate detection as a first order decay problem in a microfluidic device. In Progress in Biomedical Optics and Imaging—Proceedings of SPIE (Vol. 12837). https://doi.org/10.1117/12.3000467.
- 108. Deswal H, Singh S G, & Agrawal A. (2024). Electrolytic bubble-based flow sensing using electrochemical resistance measurement in a microchannel. In Sadhana

- 49, Issue 2). https://doi.org/10.1007/s12046-024-
- 109. Deswal H, Singh S G, et al. (2024). Flow sensors for onchip microfluidics: Promise and challenges. In Experiments in Fluids (Vol. 65, Issue 12). https://doi.org/10.1007/s00348-024-03918-6.
- 110. Gangwar R, Singh S G, et al. (2024). Development of a TLR1/TLR2-Based Chemiresistive Biosensor for Ultra-Sensitive Gram-Positive Bacterial Detection Using Amine-Terminated Carbon Surfaces. In IEEE Sensors (Vol. 8. Issue https://doi.org/10.1109/LSENS.2024.3496995
- 111. Ghosh T N, Singh S G, et al. (2024). Succinimide-Functionalized Reduced Graphene Oxide Nanosheets: A High-throughput Resistive Sensing Platform for Age-Related Macular Degeneration Biomarker Determination Using Human Tears. In ACS Applied Bio (Vol. 7, Issue 9, pp. Materials 6014-6024). https://doi.org/10.1021/acsabm.4c00636.
- 112. Mishra H, Singh S G, et al. (2024). Novel Wafer-Level Ta-Ta Direct Thermocompression Bonding for 3D Integration of Superconducting Interconnects for Scalable Quantum Computing System. In IEEE Electron Device Letters (Vol. 45, Issue 11, pp. 2221-2224). https://doi.org/10.1109/LED.2024.3453174.
- 113. Mohanty S, Singh S G, et al. (2024a). Aptamer Assisted Simultaneous Detection of Lead and Arsenic in Water Using a Handheld System. In Proceedings of IEEE Sensors.https://doi.org/10.1109/SENSORS60989.2024 10785019
- 114. Mohanty S, Singh S G, et al. (2024b). Coordination Complex-Based Reusable Electrochemical Aptasensor for Arsenic Detection in Lake Water. In IEEE Sensors (Vol. 8. Issue 1. https://doi.org/10.1109/LSENS.2023.3340952
- 115, Mohanty S, Singh S G, et al. (2024). A comprehensive multi-technique electrochemical study and TEM insights into an WO3-based Pb(II) Apta-sensor in lake water. In Electrochimica Acta (Vol. https://doi.org/10.1016/j.electacta.2024.143975
- 116. Mohanty S, Singh S G, et al. (2024). Handheld chemiresistive sensing system for lead ion detection in water. In Journal of Water Process Engineering (Vol. 129.Zalke J B, Singh S G, et al. (2024). Non-enzymatic glucose 63). https://doi.org/10.1016/j.jwpe.2024.10547
- 117. Naganaboina V R, Jana S & Singh S G. (2024). Chemiresistive sensor array for quantitative prediction of CO and NO2 gas concentrations in their mixture using machine learning algorithms. In Microchimica Acta (Vol. 191. Issue 12). https://doi.org/10.1007/s00604-024-06835-x.
- 118. Pandey U, Singh S G, et al. (2024). An Innovative 3D-IDE Design and Adaptive Signal Extraction Algorithm for Efficient Ovarian Cancer Detection. In ACS Applied Materials and Interfaces (Vol. 16, Issue 50, pp. 68825-68835). https://doi.org/10.1021/acsami.4c13117. 119. Pandey U, Goswami P P & Singh S G. (2024). ZnO
- Nanoflower-Based Electrochemical SARS-CoV-2 Molecular Biosensors with Improved Diagnostic Accuracy. In ACS Applied Nano Materials (Vol. 7, Issue 683-694). pp. https://doi.org/10.1021/acsanm.3c04834
- 120. Patta S, Singh S G, et al. (2024). PPY-fMWCNT Nanocomposite-Based Chemicapacitive Biosensor for Detection of TBI-Specific GFAP Ultrasensitive Biomarker in Human Plasma. In IEEE Sensors Letters 8, Issue https://doi.org/10.1109/LSENS.2024.3497003
- 121. Paul N, Singh S G, et al. (2024). Silicon Membranes for Microbolometers: Simulation and Fabrication Using Frontend Bulk Micromachining. In Proceedings of 2024 IEEE International Conference of Electron Devices Society Kolkata Chapter, EDKCON 2024 (pp. 623-628). https://doi.org/10.1109/EDKCON62339.2024.108707 51.

- -Academy Proceedings in Engineering Sciences (Vol. 122.Rotake D R, Singh S G, et al. (2024a). Cost-effective chemiresistive biosensor with MWCNT-ZnO nanofibers early detection of tuberculosis lipoarabinomannan (LAM) antigen. In Microchimica 191, Acta (Vol. Issue https://doi.org/10.1007/s00604-024-06780-9
 - 123. Rotake D R, Singh S G, et al. (2024b). Tuberculosis Volatile Organic Compounds (VOCs) Detection Using Multi-walled Carbon Nanotube- Zinc Oxide (MWCNT-ZnO) Nanofiber: A Chemiresistive Biosensor. In International Conference on Integrated Circuits, Communication, and Computing Systems, ICIC3S 2024 —Proceedings.
 - https://doi.org/10.1109/ICIC3S61846.2024.10603002.
 - 124. Salot M Singh, S G, et al. (2024). Effect of microwave treatment on structural characteristics and energy bandgap of electrochemically synthesized hydrated tungsten oxide quantum dots. In Ceramics International (Vol. 50. Issue 9. 15110-15123). pp. https://doi.org/10.1016/j.ceramint.2024.01.430.
 - 125. Sreenivasulu V B, Singh S G, et al. (2024). Benchmarking of Multi-Bridge-Channel FETs Toward Analog and Mixed-Mode Circuit Applications. In IEEE Access (Vol. pp. https://doi.org/10.1109/ACCESS.2024.3350779.
 - 126. Supraja P, Singh S G, et al. (2024). Electrospun SnO2 nanofibers-based electrochemical sensor using AB (1-40) for early detection of Alzheimer's. In APSCON 2024 —2024 IEEE Applied Sensing Conference, Proceedings. https://doi.org/10.1109/APSCON60364.2024.1046616
 - 127. Yalagandula B P, Singh S G, et al. (2024). Optimizations towards a nearly invariable WO3-functionalized electrochemical aptasensor for ultra-trace identification of arsenic in lake water. In Sensors and Actuators B: Chemical (Vol. https://doi.org/10.1016/j.snb.2023.134730.
 - 128. Zalke J B, Singh S G, et al. (2024). A Machine Learning Assisted Non-Enzymatic Electrochemical Biosensor to Detect Urea Based on Multi-Walled Carbon Nanotube Functionalized with Copper Oxide Micro-Flowers. In Biosensors (Vol. 14. Issue https://doi.org/10.3390/bios14100504.
 - detection with screen-printed chemiresistive sensor using green synthesised silver nanoparticle and multiwalled carbon nanotubes-zinc oxide nanofibers. In Nanotechnology (Vol. 6, Issue 65502). https://doi.org/10.1088/1361-6528/ad090c.
 - 130. Zalke J B, Singh S G, et al. (2024). Facile chemiresistive biosensor functionalized with PANI/GOx and novel green synthesized silver nanoparticles for glucose sensing. In Microchemical Journal (Vol. https://doi.org/10.1016/j.microc.2024.110339.
 - 131. Gauhar G A, Bhattacharjee S & Badami O. (2024). Insights into Sub-Thermionic Transport in Schottky Barrier FETs. In Advanced Theory and Simulations (Vol. 7, Issue 8). https://doi.org/10.1002/adts.202400202
 - 132. Bhagavathi K A, Vanjari S R K, et al. (2024). Silk-Aloe Vera Composite Piezoelectric Film: A New Paradigm in Eco- Friendly Piezoelectrics. In IEEE Journal on Flexible Electronics (Vol. 3, Issue 7, pp. 292–299). https://doi.org/10.1109/JFLEX.2024.3425812.
 - 133. Gangwar R, Vanjari S R K, et al. (2024). Development of a TLR1/TLR2-Based Chemiresistive Biosensor for Ultra-Sensitive Gram-Positive Bacterial Detection Using Amine-Terminated Carbon Surfaces. In IEEE Sensors Letters (Vol. 8, Issue 12). https://doi.org/10.1109/LSENS.2024.3496995
 - 134. Patta S, Vanjari S R K, et al. (2024). PPY-fMWCNT Nanocomposite-Based Chemicapacitive Biosensor for Ultrasensitive Detection of TBI-Specific GFAP Biomarker in Human Plasma. In IEEE Sensors Letters (Vol. 8, Issue 12).

- https://doi.org/10.1109/LSENS.2024.3497003.
- 135.Rao K T,Vanjari S R K, et al. (2024). Development and Characterization of Biocompatible Cellulose Acetate Substrate for Flexible Electrochemical Biosensors. In IEEE Journal on Flexible Electronics (Vol. 3, Issue 7, pp. 312–319).
 - https://doi.org/10.1109/JFLEX.2024.3435809
- 136. Sahu P K, Vanjari S R K, et al. (2024). Green-Synthesized Amino Carbons for Impedimetric Biosensing of E. coli 0157:H7. In ACS Infectious Diseases (Vol. 10, Issue 5, pp. 1644–1653). https://doi.org/10.1021/acsinfecdis.3c00721.
- 137. Supraja P, Vanjari, S R K, et al. (2024). Electrospun Sn02 nanofibers-based electrochemical sensor using AB (1-40) for early detection of Alzheimer's. In APSCON 2024—2024 IEEE Applied Sensing Conference, Proceedings. https://doi.org/10.1109/APSCON60364.2024.1046616
- 138. Ande S, Jana S, et al. (2024). Robust entropy rate estimation for nonstationary neuronal calcium spike trains based on empirical probabilities. In Journal of Neural Engineering (Vol. 21, Issue 5). https://doi.org/10.1088/1741-2552/ad6cf4.
- 139. Du K, Jana S, et al. (2024). Detection of Disease Features on Retinal OCT Scans Using RETFound. In Bioengineering (Vol. 11, Issue 12). https://doi.org/10.3390/bioengineering11121186.
- 140. Mahadevan J, Jana S, et al. (2024). Towards Fluorescent-Tag-Less Viral Titration: Automated Estimation of Cell-Size Distribution and Infection Level from Phase-Contrast Microscopy Using Deep Learning and Transfer Learning. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. https://doi.org/10.1109/EMBC53108.2024.10782022.
- 141. Mallick A, Jana S, et al. (2024). AI-based 3-Lead to 12-Lead ECG Reconstruction: Towards Smartphone-based Public Healthcare. In 2024 IEEE International Conference on E-Health Networking, Application and Services, HealthCom 2024. https://doi.org/10.1109/HEALTHCOM60970.2024.108 80752.
- 142. Naganaboina V R, Jana S, & Singh S G. (2024). Chemiresistive sensor array for quantitative prediction of CO and NO2 gas concentrations in their mixture using machine learning algorithms. In Microchimica Acta (Vol. 191, Issue 12). https://doi.org/10.1007/s00604-024-06835-x.
- 143. Neelapala S D, Jana S, et al. (2024). Improved Segmentation of Confocal Calcium Videos of Hela Cells Using Deep-Learning-Assisted Watershed Algorithm. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS.
 - https://doi.org/10.1109/EMBC53108.2024.10781812.
- 144. Neelapala S D, Jana S & Giri L. (2024). U-Net-based HeLa Cell Segmentation with Zero Manual Labeling using DBSCAN-Generated Annotations. In 2024 IEEE International Conference on E-Health Networking, Application and Services, HealthCom 2024. https://doi.org/10.1109/HEALTHCOM60970.2024.108 8072.3.
- 145.Srikanth D, Jana S, et al. (2024). Next-Generation Teleophthalmology: AI-enabled Quality Assessment Aiding Remote Smartphone-based Consultation. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS.
- https://doi.org/10.1109/EMBC53108.2024.10782045.

 146. Parvathala V & Kodukula S R M. (2024). Light-Weight Causal Speech Enhancement Using Time-Varying Multi-Resolution Filtering. In 2024 National Conference on Communications, NCC 2024. https://doi.org/10.1109/NCC60321.2024.10485757.

- 147. Rafi S M B, Sankala S, & Murty Kodukula S R. (2024). Speaker Verification Using Frame-Level Similarities. In 2024 International Conference on Signal Processing and Communications, SPCOM 2024. https://doi.org/10.1109/SPCOM60851.2024.1063158.
- 148. Sankala S, Murty Kodukula S R, & Yegna Narayana B. (2024). Signal Processing Interpretation for Adversarial Examples in Speaker Verification. In 2024 National Conference on Communications, NCC 2024. https://doi.org/10.1109/NCC60321.2024.10485920.
- 149. Amalapuram S K, Channappayya S S, et al. (2024). SPIDER: A Semi-Supervised Continual Learning-based Network Intrusion Detection System. In Proceedings—IEEE INFOCOM (pp. 571–580). https://doi.org/10.1109/INFOCOM52122.2024.10621 428.
- 150. Bardhan I, Channappayya S S, et al.(2024). Are Standard CNNs Good Enough for No-Reference Stereoscopic Image Quality Assessment? In 2024 International Conference on Signal Processing and Communications, SPCOM2024.https://doi.org/10.1109/SPCOM60851.2024.10631608.
- 151. Bhavanam S R, Channappayya S S, et al. (2024). Enhanced astronomical source classification with integration of attention mechanisms and vision transformers. In Astrophysics and Space Science (Vol. 369, Issue 8). https://doi.org/10.1007/s10509-024-04357-9.
- 152. Pendota A & Channappayya S S. (2024). Are Deep Learning Models Pre-trained on RGB Data Good Enough for RGB-Thermal Image Retrieval? In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (pp. 4287–4296). https://doi.org/10.1109/CVPRW63382.2024.00432.
- 153. Suresh N & Channappayya S S. (2024). Graph-based No-Reference Video Quality Assessment Using Spatial Features. In 2024 International Conference on Signal Processing and Communications, SPCOM 2024. https://doi.org/10.1109/SPCOM60 851.2024.10631648
- 154. Uggi A & Channappayya S S. (2024). MS-NetVLAD: Multi-Scale NetVLAD for Visual Place Recognition. In IEEE Signal Processing Letters (Vol. 31, pp. 1855–1859). https://doi.org/10.1109/LSP.2024.3425279.
- 155. Amritha V K & Badhulika S. (2024a). Fabrication and characterization of ZnW04/CoW04 heterojunction for multispectral photodetection on flexible substrate. In Sensors and Actuators A: Physical (Vol. 374). https://doi.org/10.1016/j.sna.2024.115463.
- 156. Amritha V K & Badhulika S. (2024b). Fabrication of broadband MnS/NiCo2S4 heterojunction photodetector by successive ionic layer adsorption and reaction technique. In Journal of Photochemistry and Photobiology A: Chemistry (Vol. 453). https://doi.org/10.1016/j.jphotochem.2024.115627.
- 157. Bapathi K S R, Badhulika S, et al. (2024). Cumulative effect of spectral downshifting, anti-reflection and space-charge region formation in enhancing the spectral response of self-powered silicon photodetectors on sensitisation with CdZnS/ZnS coreshell quantum dots. In Nano Energy (Vol. 122). https://doi.org/10.1016/j.nanoen.2024.109277.
- 158. Bapathi K S R, Badhulika S, et al. (2024). Enhancing silicon photodetector performance through spectral downshifting using core-shell CdZnS/ZnS and perovskite CsPbBr3 quantum dots. In Nano Energy (Vol. 128). https://doi.org/10.1016/j.nanoen.2024.109832.
- 159. Das N K, Chahal S & Badhulika S. (2024). Highly electronegative borophene/PVDF composite hybrid nanofibers based triboelectric nanogenerator for self-powered sensor for human motion monitoring and energy harvesting from rain. In Materials Science in Semiconductor Processing (Vol. 180). https://doi.org/10.1016/j.mssp.2024.108555.

- 160. Das N K Nanda O P & Badhulika S. (2024). Electrospun 173. Mukherjee S & Badhulika S. (2024). WSe2/chitosanvanadium oxide hollow nanofibers based supercapacitor inspired triboelectric nanogenerator as self-powered visible-blind ultraviolet photodetector. In of Power Sources https://doi.org/10.1016/j.jpowsour.2024.234303
- 161. Deepak M S, Kumar Das N & Badhulika S. (2024). V2CTx MXene interspersed PVDF electrospun nanofibers based piezoelectric nanogenerator for self-powered electronic devices and mechano-electrodeposition. In Journal of Alloys and Compounds (Vol. 1007). https://doi.org/10.1016/j.jallcom.2024.176426.
- 162. Jagannathan M & Badhulika S. (2024). Graphitic carbon nitride and its nanocomposites-based sensors for detection of pharmaceutical effluents in food, ecological and biological samples: A mini-review. In Sensors and Actuators Reports (Vol. https://doi.org/10.1016/j.snr.2023.100183
- 163. K A V & Badhulika S. (2024). Efficient sunlight-assisted degradation of organic dyes using V203/g-C3N4 nanocomposite catalyst. In Optical Materials (Vol. 147). https://doi.org/10.1016/j.optmat.2023.114633
- 164. Karmakar S, Badhulika S, et al. (2024). 2D V2C MXene Based Flexible Gas Sensor for Highly Selective and Sensitive Toluene Detection at Room Temperature. In ACS Applied Electronic Materials (Vol. 6, Issue 5, pp. 3717-3725). https://doi.org/10.1021/acsaelm.4c00369.
- 165. Koncha G, Das N K & Badhulika, S. (2024). Ni3C nanosheets and PVA nanocomposite based memristor for low-cost and flexible non-volatile memory devices. In Materials Science in Semiconductor Processing (Vol. 184). https://doi.org/10.1016/j.mssp.2024.108804
- 166. Kulakarni S P, Kumar Das N & Badhulika S. (2024). Fabrication of high-performance triboelectric nanogenerator based on Ni3C nanosheets to self-power thermal patch for pain relief. In Nanotechnology (Vol. https://doi.org/10.1088/1361-35, Issue 1). 6528/ad0057.
- 167. Kumaar Swamy Reddy, B Badhulika S, et al. (2024). Ambient processed highly stable self-powered lead-free Cs2AgBiBr6 double perovskite photodetector in HTMfree architecture with Carbon as electrode. In Solar (Vol. https://doi.org/10.1016/j.solener.2024.112989
- 168. Kumar Das N & Badhulika S. (2024a). Recyclable waste derived green triboelectric nanogenerator for Self-Powered synthesis of Defect-Free graphene via Mechano-Electrochemical exfoliation. In Chemical Engineering Journal (Vol. 480). https://doi.org/10.1016/j.cej.2023.147897.
- 169. Kumar Das N & Badhulika S. (2024b). SILAR deposited cadmium sulphide (CdS) over graphitic carbon nitride photo-enhanced based triboelectric (g-C3N4) nanogenerator for self-powered visible light photodetector. In Materials Science and Engineering: B 310). https://doi.org/10.1016/j.mseb.2024.117714.
- 170. Maji B & Badhulika S. (2024). V2CTx MXene-derived porphyrin-based MOF modified with ZIF-67 as an ultrastretchable and deformable double-network hydrogel for room temperature detection of dimethylamine. In Chemical Engineering Journal (Vol. https://doi.org/10.1016/j.cej.2024.156838
- 171. Maji B Singh P & Badhulika S. (2024). A highly sensitive and fully flexible Fe-Co metal-organic framework hydrogel based gas sensor for ppb level detection of acetone. In Applied Surface Science (Vol. 678). https://doi.org/10.1016/j.apsusc.2024.161047.
- 172. Muduli S P Badhulika S, et al. (2024). Lead-free polymer composite film for photon energy influenced piezoelectric nanogenerator based on photoactive SnS2. Materials Research Bulletin (Vol. 178). https://doi.org/10.1016/j.materresbull.2024.112923

- based wearable multi-functional platform monitoring electrophysiological signals, pulse rate, respiratory rate, and body movements. In Microchimica 191, (Vol. Issue https://doi.org/10.1007/s00604-024-06595-8
- 174. Mukherjee S, Reddy K S & Badhulika S. (2024). Facile SILAR deposited SnS/NiS vertical heterojunction for high performance flexible broadband photodetector. In Optical Materials (Vol. https://doi.org/10.1016/j.optmat.2024.115949
- 175. Mukundan G & Badhulika S. (2024a). Binary Ni-Fe layered double hydroxide on flexible nickel foam for the wide-range voltammetric detection of fibrinogen in simulated body fluid. In Nanotechnology (Vol. 35, Issue 6). https://doi.org/10.1088/1361-6528/ad0593.
- 176. Mukundan G & Badhulika S. (2024b). Composite of a Stabilizer-Free Trimetallic Prussian Blue Analogue (PBA) and Polyaniline (PANI) on 3D Porous Nickel Foam for the Detection of Nitrofurantoin in Biological Fluids. In ACS Applied Bio Materials (Vol. 7, Issue 5, pp. 2924-2935). https://doi.org/10.1021/acsabm.3c01297
- 177. Mukundan G & Badhulika, S. (2024c). Nickel-cobalt metal-organic frameworks based flexible hydrogel as a wearable contact lens for electrochemical sensing of urea in tear samples. In Microchimica Acta (Vol. 191, Issue 5). https://doi.org/10.1007/s00604-024-06339-
- 178. Mukundan G,Ravipati M & Badhulika S. (2024). Bimetallic Fe/Co-MOF dispersed in a PVA/chitosan multi-matrix hydrogel as a flexible sensor for the detection of lactic acid in sweat samples. In (Vol. Microchimica Acta 191, Issue 10). https://doi.org/10.1007/s00604-024-06687-5.
- 179. Nanda O P, Gunasekaran S S & Badhulika S. (2024). One-pot synthesis of hybrid-ternary nickel-oxide decorated polypyrrole/activated carbon nanocomposite as cathode for record-high long life asymmetric supercapattery. In Materials Chemistry and Physics (Vol. https://doi.org/10.1016/j.matchemphys.2023.128702
- 180. Nanda O P,Kong C Y & Badhulika S. (2024). Rapid Microwave-Assisted Synthesis of a 2D Borophene-Graphene Composite Embedded in a 3D Porous Hydrogel for Flexible Solid-State Supercapacitors with High Energy Density. In ACS Applied Energy Materials (Vol. Issue 18. 7844-7853). pp. https://doi.org/10.1021/acsaem.4c01437
- 181. Nanda O P, Badhulika S et al. (2024). Synergistic performance of co-precipitated CoCuFe Prussian blue analogue and hydrothermally synthesized V₂C MXene in a solid-state asymmetric supercapacitor. In Journal of Energy 96). Storage (Vol. https://doi.org/10.1016/j.est.2024.112610
- Nanda O P, Badhulika S, et al. (2024). Hydro/solvothermally grown ZnS/MnO2-metal organic 182. Nanda framework based hydrogel for all solid-state flexible supercapacitor. In Journal of Energy Storage (Vol. 75).
- https://doi.org/10.1016/j.est.2023.109729.

 183. Ravipati M & Badhulika S. (2024a). Nanoporous Copper-Metal Organic Framework Microneedles on Nickel Foam as a Bifunctional Electrocatalyst for Glycerol Fuel Cell and Electrochemical Glycerol Detection in Biodiesel. In ACS Applied Nano Materials 7, 7, 7277-7288). (Vol. Issue pp. https://doi.org/10.1021/acsanm.4c00002
- 184. Ravipati M & Badhulika S. (2024b). Zr-MOF Nanospheres on Zn-MOF Nanorods on Ni Foam for the Electrochemical Detection of Ivermectin in Urine ACS Applied Materials. Samples. In Nano https://doi.org/10.1021/acsanm.4c04237
- 185. Ravipati M, chahal S & Badhulika S. (2024). Hybridization of 2D MnO2 and MoS2 via single-step

- microwave synthesis for trace-level detection of thrombin in simulated blood serum samples. In Microchemical Journal (Vol. 202). https://doi.org/10.1016/j.microc.2024.110831.
- 186. Ravipati M,Sai Deepak M & Badhulika S. (2024). Solvothermal synthesis of Zr-metal-organic framework/V2C MXene based composite on nickel foam for highly selective detection of epinephrine in simulated blood serum. In Microchemical Journal (Vol. 207). https://doi.org/10.1016/j.microc.2024.112120.
- 187. Ravipati M, Singh P& Badhulika S. (2024). Bismuth sulfide micro flowers decorated nickel foam as a promising electrochemical sensor for quantitative analysis of melamine in bottled milk samples. In Nanotechnology (Vol. 35, Issue 17). https://doi.org/10.1088/1361-6528/ad2016.
- 188. Singh P, Aggrawal V & Badhulika S. (2024). Synergistic integration of Ni-metal organic framework/SnS2 nanocomposite and nickel foam electrode for ultrasensitive and selective electrochemical detection of albumin in simulated human blood serum. In Nanotechnology (Vol. 35, Issue 18). https://doi.org/10.1088/1361-6528/ad247f.
- 189. Singh P Mukundan G& Badhulika S. (2024). ZnS/MnO2 metal organic framework based conductive hydrogel for highly selective and sensitive detection of glutathione in serum samples. In Microchemical Journal (Vol. 197). https://doi.org/10.1016/j.microc.2023.109727.
- 190. Swamy Reddy B K, Badhulika S, et al. (2024). Self-powered photodetector based on 1D TiO2-3D CdS mixed dimensional heterostructure fabricated at low temperature. In Solar Energy (Vol. 274). https://doi.org/10.1016/j.solener.2024.112594.
- 191. Swamy Reddy Bapathi, K Badhulika S, et al. (2024). Passivation-free high performance self-powered photodetector based on Si nanostructure-PEDOT:PSS hybrid heterojunction. In Applied Surface Science (Vol. 648). https://doi.org/10.1016/j.apsusc.2023.158992.
- 192. Tanusha D & Badhulika S. (2024). Comparative analysis of micro patterned PDMS-based piezoresistive pressure sensors with multifunctional strain and health monitoring applications. In Sensors and Actuators A: Physical (Vol. 369).
- 193. https://doi.org/10.1016/j.sna.2024.115139.

 V K A Swamy Reddy K, & Badhulika S. (2024).

 Fabrication of cobalt-doped ZnS thin films by successive ionic layer adsorption and reaction for UV-visible photodetectors on flexible substrate. In Optical Materials (Vol. 153).
- 194. https://doi.org/10.1016/j.optmat.2024.115546.
 Vamsi I S S, Das N K, & Badhulika, S. (2024). FeNbO4
 nanoparticles-PDMS based triboelectric nanogenerator
 as self-powered sensor for human motion and artefact
 position tracking applications. In Materials Science in
 Semiconductor Processing (Vol. 169).
- 195. https://doi.org/10.1016/j.mssp.2023.107945.

 Veeralingam S & Badhulika S. (2024). Rapid Degradation of Organic Dyes via Ultrasound Triggered Piezo-Catalysis Using PVDF/ZnSnO3/MoS2 Nanocomposite. In ACS Applied Nano Materials (Vol. 7, Issue 16, pp. 18128–18137).
- 196. https://doi.org/10.1021/acsanm.3c02070.
 Yao F Badhulika S, et al. (2024). Scalable one-step synthesis of reduced graphene oxide: Towards flexible transparent conductive films and active supercapacitor electrodes. In Chemical Engineering Journal (Vol. 488). https://doi.org/10.1016/j.cej.2024.150828.
- 197. Kolakaluri V K, Aalam M N, & Sarkar V. (2024). Sampling Time Modulation of a Photovoltaic Power Tracking Controller Based Upon Real-Time Monitoring of Converter Dynamics. In IEEE Transactions on Power Electronics (Vol. 39, Issue 2, pp. 2822–2834). https://doi.org/10.1109/TPEL.2023.3336389.
- 198. Ahmed A M, Patel A, & Khan M Z A. (2024). Parity Check

- Coded Super-MAC for Reliability Enhancements in Next-Generation Networks. In 2024 16th International Conference on Communication Systems and NETworkS, COMSNETS 2024 (pp. 1116–1121). https://doi.org/10.1109/COMSNETS59351.2024.1042 6880.
- 199. Bere P S, Khan M Z A & Hanzo L. (2024). A Low-Complexity Diversity-Preserving Universal Bit-Flipping Enhanced Hard Decision Decoder for Arbitrary Linear Codes. In IEEE Open Journal of Vehicular Technology (pp. 1–22). https://doi.org/10.1109/0JVT.2024.3437470.

Funded Research Projects:

- Abhinav Kumar; Reconfigurable Intelligent Surface for Next Generation Communication Networks; 5.50 L. [S337].
- Abhinav Kumar; Digital tin of network gateway and communication protocols for intra-vehicular networks; 52.50 L. [S335].
- 3. Abhinav Kumar; Australian Alumni Grant Scheme; 6.53 L. [\$336].
- 4. Abhinav Kumar; development of an OTFS Physical Layer on an FPGA for porting; 9.82 L. [S338].
- Abhishek Kumar; Design of transceiver for on-board wireless interface of distributed control systems; 60.38 L. [G734].
- Abhishek Kumar; Compressive Sensing-based Wide Open Sub-Nyquist Frequency Estimation; 180.00 L. [G772].
- 7. Abhishek Kumar; Initial Advance Payment (CARS for Design & Development of EBD & VM); 121.26 L. [S348].
- 8. Abhishek Kumar; QIF-India-A Tunable Fdd Duplexer using Electrical Balance with N-Path Filters P.O.No: 4300068092 & Dt:16.08.2024; 10.24 L. [S345].
- 9. Aditya T Siripuram; Fast DFT Computation for signals with additively structured support; 6.60 L. [G673].
- Amit Acharyya; Artificially Intelligent Hyper-Elastic 10. Glove for IoT-based Assessment of Post-Stroke Grasp Impairment of Mobile Health applications; 45.91 L. [G746].
- 11. Amit Ācharyya; ML/DL aided Passive Seeker Direction Finding; 203.78 L. [G770].
- Amit Acharyya; AI-based Fault-tolerant ultra-low power 12. Architectures for Neuromorphic Circuits; 66.65 L. [G726].
- Amit Acharyya; Qualcomm Innovation Fellowship 13. P.O.No: 4300068145 & Dt: 20.08.2024; 10.24 L. [S346].
- Amit Acharyya; Training and Development at IIT 14. Hyderabad P.O. No: 5100658063 & Dt: 21.06.2024; 29.62 L. [S332].
- Aneesh S; Photonic tensor accelerators; 35.00 L. [SG-15. 194].
- Aneesh S; An Efficient All-Optical Dot-Product Engine
 16. for Photonic Accelerators Using Cascaded Intensity
 Modulation; 70.72 L. [G829].
- Ashudeb Dutta; Air Quality Monitor P.O. No:
- 17. A001874638 Dt: 11.10.2024; 13.80 L. [S355]. Gajendranath Chaudhury; 5G Enabled Wireless Portable
- ECG Monitoring IoT System; 1.12 L. [S362].
 Gajendranath Chaudhury; Design and Development of
- 19. battery-free-low-maintenance Transient IoT Environment Monitoring System; 6.40 L. [G749]. Kapil Jainwal; Sanction Seeker Compressive sensing;
- 20. 180.00 L. [DIA-CoE_IITH_030].
- Kapil Jainwal; A fully integrated low-latency, high
- 21. dynamic range, bio-inspired event-based dynamic and active vision sensor (DAVIS) with global shutter operation for object tracking, classification, and recognition in a highly dynamic scene; 43.80 L. [G587].
- 22. Lakshmi Prasad N; Versatile Codes for 60 Communications; 16.50 L. [F176/D01].

- 23. Mohammed Zafar Ali Khan; Detetction in Foilage; 17.00 L. [S244].
- 24. Naresh Kumar Emani; India Taiwan Collaborative Workforce Development Program in Semiconductor Manufacturing; 801.00 L. [G706].
- 25. Naresh Kumar Emani; NQMTG on Quantum Communications; 20.00 L. [G791].
- Pechetti Sasi Vinay; Design Development and Implementation of Secure Dual Function Radar Communication Schemes; 32.15 L. [G747].
- 27. Rajalakshmi P; Automated Pipeline for Early Identification of Water and Nitrogen Stress Through Drone-based Hyperspectral Sensors for Smart Agriculture; 58.98 L. [G778].
- 28. Rajalakshmi P; TiHAN Spraying and Surveillance Drone; 19.99 L. [TG003].
- 29. Rupesh Ganpatrao Wandhare; Hybrid bridge isolated DC-DC converter with zero voltage switching for a wide range of operations and suitable for auxiliary supply in EV; 7.15 L. [G460].
- 30. Rupesh Ganpatrao Wandhare; A HYBRID CHARGING SYSTEM; 14.00 L. [G571].
- 31. Rupesh Ganpatrao Wandhare; Design of power converter for 3-phase grid integration of Hydrogen-fed PME Fuel cell using high frequency link multistage converter; 12.70 L. [G433].
- 32. Sawant Vishal Sopan; Time-optimal Consensus of Multi-Agent Systems; 30.00 L. [SG/IITH/F344/2024-25/SG-202].
- 33. Shashank Vatedka; Distributed estimation and learning with limited communication; 10.00 L. [G522].
- 34. Shiv Govind Singh; India US Collaborative Workforce Development Program in Semiconductor Manufacturing; 706.00 L. [G707].
- Shiv Govind Singh; Development of Portable lab-on-chip device for detection of adulteration in milk; 60.00 L. [S349].
- 36. Shiv Govind Singh; Identifying Anomalous dealers using big data analytics; 10.44 L. [S322].

- 37. Shubhadeep Bhattacharjee; India US Collaborative Workforce Development Program in Semiconductor Manufacturing; 70.00 L. [G707].
- 38. Shubhadeep Bhattacharjee; Scalable co-integration of 2D materials for the hardware realization of spiking neural networks; 34.97 L. [G710].
- 39. Siva Rama Krishna Vanjari; Flexible, Transparent and High Density Subdural Microelectrode Arrays for Brain Activity Mapping; 41.67 L. [G769].
- 40. Sri Rama Murty Kodukula; Speech-to-Speech translation for tribal languages; 17.39 L. [G384].
- 41. Sri Rama Murty Kodukula; NLTM Bashini Voice Search Module; 27.00 L. [G459].
- 42. Sumohana S Channappayya; Machine Learning Models for Predicting Airflow Hotspots in Urban Settings P.O. No: A001887734; 9.20 L. [S354].
- 43. Sundaram Vanka; Scalable Network Architectures for Unmanned Aerial Vehicles; 17.00 L. [S293].
- 44. Vajha Myna; Codes for Storage, Streaming and Design of Next Generation Communication Systems; 23.75 L. [SG-183].

Awards and Recognitions:

- Bhanu Ganesh Ganta (PhD Scholar), working under the guidance of Pradeep Yemula, received the Silver Award for the Best Student Paper for his full conference paper titled "Feasibility Study and Economic Analysis of an Add-on Battery for Electric Vehicles", submitted to the 2024 International Conference organized by the Asian Institute of Technology.
- Kiran Kumar Kuchi was honored with the prestigious national award, the Pandit Deendayal Upadhyaya Telecom Excellence Award 2024.
- 3. Rajalakshmi P has been selected for the 3rd batch INSA-NCGG Leadership in Science & Technology (LEADS) Programme, aimed at training Scientists to become future leaders, to be held at INSA, New Delhi.
- 4. Sushmee Badhulika received the Applied Materials Innovation Challenge Award organised by Applied Materials (AMAT) in Delhi.

Research Highlights

Kiran Kumar Kuchi:

- Led a delegation with DoT that codified India-Specific Requirements into the ITU 6G Vision, positioning India as a key stakeholder.
- Briefed the Prime Minister on India's 5G/6G successes, patent strength, and growing global standing; received assurance of full support for Atmanirbhar initiatives.
- Enabled an IITH-Sharp demo of a 5G-Advanced system: an IITH 5G-Adv base station connected to Sharp's 5G-Adv, 6G-upgradable SoC.
- Inducted into the India 6G Apex Committee (chaired by the Secretary, DoT) and into the governing councils of TSDSI
 and the Bharat 6G Alliance.
- At the India-hosted August 2025 6G standards meeting, ensured the framework retains his team's 5G inventions/IP and advances consideration of a new 6G waveform his team developed.

Tarandeep Singh (MTech-AI), Dr. Shashank Vatedka, Dr. Lakshmi Prasad Natarajan and Prof. Soumya Jana

Faculty members of the EE department (Shashank Vatedka, Lakshmi Prasad and Soumya Jana) and an MTech-AI student (Tarandeep Singh) collaborated with the Department of Posts and the National Remote Sensing Centre, ISRO, Government of India to develop DIGIPIN – an open-source, machine-interpretable geospatial addressing system designed to provide precise and standardised digital addresses across the country.

DIGIPIN is a compact, intuitive, and human-readable geohash, capable of encoding the latitude and longitude of any point of interest in India, from urban households to remote maritime locations. The system is designed for offline usability, privacy, and robustness, making it suitable for diverse applications including e-commerce, emergency response, and public service delivery.

Dr Rupesh Ganpatrao Wandhare

IEEE Sponsored PhD Summer school / Workshop: The IEEE PELS PhD Summer School, hosted by the Department of Electrical Engineering, IIT Hyderabad, was successfully conducted from 19th July to 23rd July 2025. The event witnessed enthusiastic participation of PhD students across India as well as industry professionals, with a total attendance of 103. The summer school provided a comprehensive blend of technical sessions, hands-on lab experiences, and networking opportunities with academia and industry. It was sponsored by the IEEE Power Electronics Society with a total support of USD 10100. Total budget outlay was around INR 14 Lakh. This PhD Summer School also celebrated women in engineering, under the IEEE Women in Engineering (WiE) initiative.

Startup established by Dr Rupesh Wandhare, Dept. of EE, - "PEEC Research and Manufacturing Private Limited" in the iTIC incubation centre. This startup is engaged in the design and development of Power Electronics-based converters for renewable energy sources, storage and other industrial applications such as high capacity UPS, industrial welding, electroplating, induction heating, etc. The startup is also targeting higher-end power converters and import substitutes such as programmable power supply, bidirectional VFD, electronics loads, SMPS, and amplifiers.

Department of Entrepreneurship and Management

The Department of Entrepreneurship and Management at IIT Hyderabad is one amongst few departments in the country to offer academic programs in the domain of Entrepreneurship and Management. The second batch of MTech Techno-Entrepreneurship program with 17 students is intended to convocate in 2025. Apart from the MTech Techno-Entrepreneurship program, the department also offers a Minor in Entrepreneurship, Double Major in Entrepreneurship for Undergraduate students & PhD program. The department also takes active interest in offering several workshops and certificate programs to students and entrepreneurs in the space of entrepreneurship and management individually as well as in collaboration with internal and external stakeholders.

For more information, please visit: https://em.iith.ac.in/

Faculty

Head of the Department

Nakul Parameswar
Assistant Professor
PhD - IIT Delhi
Profile page:
https://iith.ac.in/em/nakul/

Assistant Professor

Jayshree Patnaik
PhD - IIT Kharagpur
Profile page:
https://iith.ac.in/em/jpatnaik/

Lohithaksha Maniraj Maiyar PhD - IIT Kharagpur Profile page: https://iith.ac.in/em/l.maiyar/

Rajesh Ittamalla
PhD - University of Hyderabad
Profile page:
https://iith.ac.in/em/rajeshittamalla/

RanaPratap Maradana PhD - IIT Kharagpur Profile page: https://iith.ac.in/em/ranapratap/

Affiliated Faculty

M P Ganesh
Associate Professor, Dept of Liberal
Arts
PhD - IIT Bombay
Profile page:
https://iith.ac.in/la/mpganesh/

Adjunct Professor

Bhallamudi Ravi
Institute Chair Professor,
ME Department, IIT Bombay
Profile page:
https://www.me.iitb.ac.in/?
q=faculty/Prof.%20B.%20Ravi

Publications:

- Kumar Tarei P, Patnaik J, et al.(2024). Analysing barriers to humanitarian logistics for distributing relief aid in pre- and post-disaster situations. In International Journal of Disaster Risk Reduction (Vol. 104). https://doi.org/10.1016/j.ijdrr.2024.104388.
- Patnaik J & Hashir A. (2024). Challenges in Rural Innovation and Entrepreneurship: A Lens Through Effectuation Theory. In 2024 IEEE Global Humanitarian Technology Conference, GHTC 2024 (pp. 297–302). https://doi.org/10.1109/GHTC62424.2024.10771576.
- 3. Patnaik J & Tarei P K. (2024). Design Thinking for Frugal Innovation: Unleashing Sustainable Business Models in Emerging Markets. In Proceedings of the European Conference on Innovation and Entrepreneurship, ECIE (Vol. 19, Issue 1, pp. 611–618). https://doi.org/10.34190/ecie.19.1.2417.
- Wasi K, Patnaik J, et al. (2024). Analyzing factors influencing competitiveness of Indian tech start-ups: Modified total interpretive structural model (m-TISM) approach. In International Journal of Productivity and Performance Management. https://doi.org/10.1108/IJPPM-01-2024-0032.
- Roy I, & Maiyar L M. (2024). An Ecologically Sustainable Omnichannel Fresh Food Distribution Model Considering Freshness-Keeping Effort and Carbon Emissions. In Lecture Notes in Networks and Systems: Vol. 994 LNNS (pp. 871–888). https://doi.org/10.1007/978-981-97-3180-0 58.
- Singhal V, Maiyar L M, & Roy I. (2024). Environmental sustainability consideration with just-in-time practices in industry 4.0 era – A state of the art. In Operations Management Research. https://doi.org/10.1007/s12063-024-00478-0.

- Parameswar N, Hasan Z, Shri C & Saini N. (2024). Exploring the barriers to ESG adoption using modified TISM approach. In Kybernetes (Vol. 53, Issue 12, pp. 5775–5800). https://doi.org/10.1108/K-05-2023-0888.
- Parameswar N & Venkitachalam K. (2024). A framework on interplay of knowledge types and dimensions in pandemics Example of COVID-19. In Knowledge and Process Management (Vol. 31, Issue 3, pp. 221–229). https://doi.org/10.1002/kpm.1775.
- Wasi K, Parameswar N, et al.(2024). Analyzing factors influencing competitiveness of Indian tech start-ups: Modified total interpretive structural model (m-TISM) approach. In International Journal of Productivity and Performance Management. https://doi.org/10.1108/IJPPM-01-2024-0032.
- Wasi K, Parameswar N, et al.(2024). Exploring the competitiveness of Indian technological start-ups the case study approach. In Foresight (Vol. 26, Issue 6, pp. 1040–1066). https://doi.org/10.1108/FS-05-2023-0076.
- 11. Pradhan R P, Maradana R P, et al. (2024). Climate change disclosure and firm value in a frontier market: Exploring the determinants. In Natural Resources Forum. https://doi.org/10.1111/1477-8947.12462.
- Samarakoon S M R K, Maradana R P, et al. (2024). How does equity derivative market affect economic growth? Evidence from the Asia-Pacific region. In Review of Financial Economics (Vol. 42, Issue 2, pp. 186–205). https://doi.org/10.1002/rfe.1195.
- Samarakoon S M R K, Maradana R P, et al. (2024). What determines the success of equity derivatives markets? A global perspective. In Borsa Istanbul Review (Vol. 24, pp. 15–28). https://doi.org/10.1016/j.bir.2023.10.008.
- 14. Samarakoon S, Maradana R P, et al. (2024). DYNAMICS OF PRICE AND VOLATILITY SPILLOVERS AMONG STOCK AND FOREIGN EXCHANGES: EVIDENCE FROM SOUTH ASIAN COUNTRIES. In Journal of Economic Development (Vol. 49, Issue 2, pp. 111–138). https://doi.org/10.35866/caujed.2024.49.2.006.

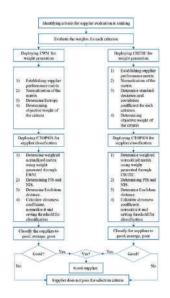
Funded Research Projects:

- Jayshree Patnaik; Exploring design thinking practices in identifying the utility of frugal innovation for rural development: Avenues for a sustainable future; 15.6L [SG 148]
- Lohithaksha Maniraj Maiyar; Exploring the Impact of 2. the Jal Jeevan Mission on the Wellbeing of Rural Women in Telangana: A socio-Economic and Health Study; 9.00 L. [09/2024-25/JJMGEN/RP/ICSSR].

- 3. Lohithaksha M Maiyar; Reducing Food Waste and Inculcating Sustainability in Technology-Enabled Post-COVID Fresh Food Supply Chains, Principal Investigator (2022-2024). Funded by IIT Hyderabad (11.00 L INR).
- 4. Nakul Parameswar; Sustainable Dairy Farming and Value Chain Development through Primary Dairy Cooperatives: Livelihood Diversification Strategies for Small and Marginal Dairy Farmers in Rural Uttar Pradesh, Bihar, and Madhya Pradesh; 75.00 L. [Project is Coordinated from Institute of Rural Management Anand (I am a Co-PI in the Project)].
- 5. Nakul Parameswar; Strategic Alliance by Start-ups and Entrepreneurial Ventures: An Exploratory and Longitudinal Study; 17.5 L. [SG/IITH/F269/2021-22/SG-105].
- Nakul Parameswar (PI), Major Project by ICSSR on "Competitiveness of Indian Technological Start Ups-An Exploratory Study"; 6.93 L. [G468].
- Rajesh Ittamalla; Start-up Branding: Determinants, Dynamics, and Management Strategies; 13.00 L. [SG149].
- 8. Rajesh Ittamalla; Creating Agritourism Experiences: Customers' Perspectives, Service Providers' Perspectives, and Entrepreneurial Perspective; 12.90.00 L. [G561].
- Ranapratap Maradana; Venture Capital Funding and University Startups Connection: Catalysts' Role for Innovation; 14.20 L. [SG/IITH/F314/2023-24/SG-173].

Awards & Recognitions:

- Manimaran V, (PhD Scholar) working under the supervision of Dr Lohithaksha M Maiyar, received the Best Thesis Proposal Award for his Presentation titled "Cost-efficient Humanitarian Logistics Network Design for Relief Material Deliveries Considering social vulnerability" at the International Conference on Emerging, Technologies, Analytics, and Operations (ICETAO 2024) at ICFAI Business School (IBS) Hyderabad.
- Sibasish Dhibar, (Full Time Post-Doctoral Fellow)
 working under the supervision of Dr Lohithaksha M
 Maiyar, has received the Best Presentation Award for
 presenting of his paper titled "Bi-objective Optimization
 of Warehouse Management System with Orbital System
 and Additional Service" in the 2nd Transformative
 Leadership in STEMM (TLS) Workshop held at IIT Delhi.


Research Highlights

Research being undertaken in the areas of –Sustainable Food Supply Chain, Startup Branding and New Venture Marketing, Venture Capital Investments and Innovation, Financial Inclusion, Corporate Social Responsibility, AI Startup, Sustainable Entrepreneurship, Gen AI and Entrepreneurship, Women in Entrepreneurship and Competitiveness of Tech Start-ups.

Proposed framework for supplier selection and evaluation. Co-authored by Anadi Gautam, Lohithaksha M Maiyar and Indira Roy.

Highlights of Activities in the Department

The Department undertook many activities during the year to promote and nurture entrepreneurial mind set and innovative thinking among the students of IIT Hyderabad. A few notable programmes undertaken during the year are:

Tongali Program 2025

The Department of Entrepreneurship and Management (EM) at IIT Hyderabad, in association with the Institute's Innovation Council, hosted the third edition of the "Tongali" from 24th to 28th February 2025. The Startup Challenge Event is a prestigious Indo-Japanese collaboration, in association with different universities of Japan. As part of the "IITH Tongali Entrepreneurship Program from Student entrepreneurs from Japan, along with two professors, Dr. Sawako Tanaka from Nagoya University and Dr. Sai Chandra Teja from Japan, visited our institute under the program titled "Overseas Training for Fostering Global Entrepreneurs (Tongali Project)." The Department of EM hosted and supported them for all the field visits in Hyderabad and conducted several events like the Business Plan Development Challenge (LEAD Pitch) for Japanese and Indian students.

IIT Hyderabad witnessed an inspiring exchange of ideas as M. Tech Techno-Entrepreneurship (Batch 2024-2026) students collaborated with Japanese startups. This program focused on enhancing leadership skills, refining product-market fit, and developing commercialization strategies for innovative Japanese ventures. The distinguished panel of judges, including Prof. Tarun Kanti Panda (Dean International Relations IITH), Ms. Chikako Kasai (JICA FRIENDSHIP Project Representative), EM faculty, provided expertise and insightful evaluations that greatly contributed to the event's success.

Entrepreneurship Talk Series

The flagship Entrepreneurship Talk Series, organized by the Department of Entrepreneurship and Management, gained further traction in the year 2024-2025, wherein 12 talks were undertaken as part of the series (details of these talks are mentioned below)

1	Mr. Jogendra Singh	President & Group CFO of Hero Enterprise
2	Dr. Shin Sakane	CEO & CSMO of GFIT Inc. Japan.
3	Satyanarayana Kuchibhatla	Co-founder & Director, Parisodhana Technologies Pvt. Ltd
4	Sricharan Lakkaraju	Founder, Student Tribe
5	Abhik Giri	Principal OR Scientist, Sandisk
6	Indraneel Ganguly	Founder and CEO of ReachIG, a Brand Consultancy firm, and Global Head of Brand and Communications at Sutherland
7	V.S. Rao	Chairman and MD of BT&BT
8	Aditya Agare	Co-Founder & Director of Thermoflyde
9	Dr. Sandeep Patalay	Delivery Head, TCS
10	Mr. Amarednra Sahu	Co-Founder & CEO, Nestaway
11	Mr Akash Jadhav	Founder, GoPool
12	Mr. Purushothaman Cannan	Founder, GreenII

Workshop on "Ideas to Impact"

The <u>Department of Entrepreneurship and Management, IIT Hyderabad</u> organized a 1 day workshop on 1st March 2025 on "Ideas to Impact" attended by 83 participants. The workshop offered insightful sessions led by Dr. Jayshree Patnaik and Dr. Nakul Parameswar delving into key aspects of entrepreneurship, including developing an entrepreneurial mindset, crafting compelling value propositions, and building effective business models. Participants gained valuable knowledge, broadened their perspectives, and engaged in meaningful discussions that encouraged innovative and strategic thinking

Deeptech Symposium 2025

The Department of Entrepreneurship and Management, IIT Hyderabad organized a Deeptech Symposium 2025 on 23rd March 2025, bringing together thought leaders, industry experts, and aspiring entrepreneurs to explore deeptech's role in driving India's self-reliance. An engaging panel discussion on "Building a Sustainable Deeptech Startup Ecosystem in India" featured industry pioneers sharing insights on navigating the deeptech landscape, overcoming commercialization challenges, and fostering innovation.

Workshop on "Business Plan Development"

The_Department of Entrepreneurship and Management, <u>IIT Hyderabad</u>, hosted an engaging Business Plan Development Workshop led by Mr._Ajay Parasrampuria, Founder of Business Design Lab and Calm Studio on 13th January 2025. Mr. Parasrampuria shared his vast knowledge and expertise, guiding participants through the essentials of crafting impactful business plans. The session emphasized actionable strategies, frameworks, and real-world insights, helping aspiring entrepreneurs turn innovative ideas into viable business models sailing across different parameters of crafting a business model.

Workshop on "Design Thinking and Entrepreneurship"

The Department of Entrepreneurship and Management, IIT Hyderabad hosted a workshop titled "Design Thinking and Entrepreneurship", led by Mr. Deepak Reddy, Founder of Bhaumya Innovations Private Limited on 19th November 2024. The session focused on inspiring journey as an entrepreneur of Mr. Deepak, drawing from his engineering background and agricultural roots. He introduced the audience to the principles of design thinking, highlighting its transformative role in addressing real-world challenges and fostering innovation.

Workshop on "Entrepreneurship Essentials"

The Department of Entrepreneurship and Management, IIT Hyderabad, along with BVR SCIENT, conducted a 2-day workshop on "Entrepreneurship Essentials" on 28-29 May 2024. The workshop covered topics on entrepreneurial mindset, developing innovative ideas from a business and customer perspective, and becoming familiar with business models, finance, and marketing aspects of entrepreneurship.

Workshop on "Deeptech Entrepreneurship: Opportunities and Challenges in Deeptech"

The Department of Entrepreneurship and Management, IIT Hyderabad and BVR SCIENT conducted a 4-day program on "Deeptech Entrepreneurship: Opportunities and Challenges in Deeptech" from July 22-25, 2024, at IIT Hyderabad. The program was designed to equip aspiring entrepreneurs, early-stage startup founders and professionals with the knowledge and skills necessary to build successful Deeptech startups. The program covered various topics related to entrepreneurship and the Deeptech ecosystem, featuring lectures, interactions with corporate experts and a startup showcase. The program imparted valuable information, providing the participants with practical frameworks, models, and methodologies to turn their innovative ideas into viable business ventures. The program ended on a high note, with participants gaining a comprehensive overview of Deeptech entrepreneurship and its applications in India.

Department of Liberal Arts

The Department of Liberal Arts at IIT Hyderabad currently has 21 full time faculty, 7 Adjunct faculty of distinct repute, and 1 distinguished professor. The department currently has 95 MA and PhD students, 3 staff members and one attendant. We are a fast growing and extremely diverse group of academics and scholars, where faculty and students strive through their research and practice to contribute to social, cultural, economic, and political development of the nation and the world. In Liberal Arts we engage with a significant amount of phenomenological and theoretical work as well as hands on learning and field-based research such that there is a strong continuum between academia, society, industry, healthcare, policies, and media, to name a few. The department received its own building space in August 2024 and is now fully functional with eight labs, seminars rooms, classrooms, conference rooms, and a state-of-the-art experimental theater. In terms of research and teaching the department of Liberal Arts at IIT Hyderabad is keenly aware of the Sustainable Development Goals of the United Nations, and our pedagogy and research work relentlessly toward these goals. As a department we boast of Economists dealing with National Agricultural Market and Electronics; Economic Growth of India's Urban Poor in post-Covid Times; Gender, Education, and use of AI and other disruptive technologies on society and economy. We also house psychologists, anthropologists, gender studies experts, and littérateurs who together work on Mental and Physical health including Disability, Gender, Reproductive Health, Disease and Pathology, Body Image, Geriatric Healthcare, Cancer Care, Chronic Disease Management, Personality Psychology, Health Behavior Change, Caste and Feminism, Gendered Violence, and also Issues of Climate Change, Global Warming and Environmental Crises. We, likewise, have Development Studies and Cognitive Science experts who variously work on Migration and Labor Policies, Mathematical and Formal Foundations of Language, Biolinguistics, Issues of Cognition, Brain, Learning, and Memory Consolidation; to name a few. We also have substantial work going on in the areas of Media and Popular Culture and literary studies along with cutting edge discourses in Digital Humanities. Our department has also recently begun its Public Humanities initiative which is a unique forum for academic exchange and practice in India. Finally, we are also immensely happy to foster both practice and training in creative and performing arts. We run a hugely popular Minor program in creative arts for our students and also offer them a minor in Economics.

Our students have also won several awards and have been actively publishing and presenting their work on various national and international platforms of repute. Many of our alumni are now faculty members at other IITs, IIMs, and universities of repute.

In sum, at Liberal Arts we therefore work with both traditional and upcoming discourses in the Humanities, the Social Sciences, and the Fine and Performing Arts. We deeply aspire to connect humanity and culture to science and technology in holistic and profound ways, forge interdisciplinary ties that encourage cutting-edge scholarship, and cultivate a deeper understanding of humanity at large.

For more information, please visit: https://la.iith.ac.in/

Faculty Head of the Department

Srirupa Chatterjee
PhD - IIT Kanpur
Associate Professor
Profile page:
https://iith.ac.in/la/srirupa/

Professor

Badri Narayan Rath
PhD - Institute for Social and Economic
Change, Bengaluru
Profile page:
https://iith.ac.in/la/badri/

Prabheesh K P
PhD - IIT Madras
Profile page:
https://iith.ac.in/la/prabheesh/

Mahati Chittem
PhD - University of Sheffield, UK
Profile page:
https://iith.ac.in/la/mahati/

Associate Professor

Aalok Dinkar Khandekar
PhD - Rensselaer Polytechnic Institute
Profile page:
https://iith.ac.in/la/aalok/

Amrita Deb
PhD - BHU, Varanasi
Profile page:
https://iith.ac.in/la/amrita/

Anindita Majumdar
PhD - IIT Delhi
Profile page:
https://iith.ac.in/la/anindita/

Ganesh M P
PhD - IIT Bombay
Profile page:
https://iith.ac.in/la/mpganesh/

Haripriya Narasimhan
PhD - Syracuse University - NY, USA
Profile page:
https://iith.ac.in/la/haripriya/

Indira Jalli
PhD - University of Hyderabad
Profile page:
https://iith.ac.in/la/indiraj/

Prakash Chandra Mondal
PhD - IIT Delhi
Profile page:
https://iith.ac.in/la/prakashmondal/

Shubha Ranganathan PhD - IIT Bombay Profile page: https://iith.ac.in/la/shubha/

Assistant Professor

Aardra Surendran
PhD - Jawaharlal Nehru University, New
Delhi
Profile page:
https://iith.ac.in/la/aardra/

Amrita Datta
PhD - The Hague, The International
Institute of Social Sciences (Erasmus
University Rotterdam)
Profile page:
https://iith.ac.in/la/amritadatta/

Anandita Pan
PhD - IIT Kanpur
Profile page:
https://www.iith.ac.in/la/anandita/

Chandan Bose
PhD - University of Canterbury, New
Zealand
Profile page:
https://iith.ac.in/la/chandanbose/

Dinabandhu Sethi
PhD - University of Hyderabad
Profile page:
https://iith.ac.in/la/dinabandhu/

Gaurav Dhamija
PhD - Shiv Nadar University
Profile page:
https://iith.ac.in/la/gauravdhamija/

Nandini Ramesh Sankar
PhD - Cornell University, USA
Profile page:
https://iith.ac.in/la/nandini/

Neeraj Kumar
PhD - IIT Gandhinagar
Profile page:
https://iith.ac.in/la/neeraj.kumar/

Rashmi Singh
PhD - Ambedkar University Delhi
Profile page:
https://www.iith.ac.in/la/rashmi.singh/

Shuhita Bhattacharjee
PhD - University of Lowa
Profile page:
https://iith.ac.in/la/shuhita/

Jandhyala B G Tilak

S Irudaya Rajan
Professor, CDS, Thiruvananthapuram,
Kerala
Profile page:
https://www.mei.edu/profile/s-irudaya-rajan

ICSSR National Fellow & Distinguished Professor
Council for Social Development, New Delhi

Profile page:
https://csdindia.org/people/faculty/prof-jandhyala-b-g-tilak/

Anjal Prakash
Research Director and Adjunct
Professor, Indian School of Business
Profile page:
https://www.isb.edu/en/IndoPacific/AnjalPrakash.html

Mridula Anand
Associate Director, Indian School of
Business
Profile page:
https://www.linkedin.com/in/mridul
aanand1/?originalSubdomain=in

Nanda Kishore Kannuri
Additional Professor, Indian Institute of
Public Health, Hyderabad
Profile page:
https://phfi.org/member/nandakishore-kannuri-2/

Timothy Marthand
School of the Arts Singapore (SOTA)
Profile page:
https://www.linkedin.com/in/timoth
y-marthand-39264732/?
originalSubdomain=in

Yuka Kataoka Lead Coordinator, Human Resources Division, Suzuki Motor Corporation, Japan

Books:

- 1. Anindita Majumdar and Taguchi Y. (2024). Kinship as Fiction. London: Routledge
- Amrita Datta, Alakshendra A, & Reddy B. (2024). Introduction. In Sustainable Development Goals Series: Vol. Part F4041 (pp. 1–5). https://doi.org/10.1007/978-981-97-6863-9-1
- 3. Prakash Chandra Mondal. (2024c). The Cognitive Variation of Semantic Structures. In The Cognitive Variation of Semantic Structures. https://doi.org/10.4324/9781032726236
- Srirupa Chatterjee and Shweta Rao Garg. (2024). Female Body Image and Beauty Politics in Contemporary Indian Literature and Culture. Temple University Press, Pennsylvania, USA.

Book Chapters:

- Amrita Deb, & Hephsebha J. (2024c). Transitional impact, resilience outcome expectations, mental health, resilience, and well-being during COVID-19 in India. In Mental, Emotional and Behavioural Needs of the General Population Following COVID-19 in India.
- Amrita Deb & Soni S. (2024). EXPLORING POSITIVE ADAPTATION TO COVID-19: The Indian Context. In Exploring the Psycho-Social Impact of Covid-19: Global Perspectives on Behaviour, Interventions and Future Directions. https://doi.org/10.4324/97810033572099.
- 3. Chandan Bose. (2024a). Devi or art history? Reading entangled narratives on the lineage of artisanal skill from Telangana. In Studies in Religion and the Everyday.https://doi.org/10.1093/oso/978019890278 2.003.0008.
- Chatterjee Srirupa. Why Fear Endures? Teaching Dracula in a Post-Millennial Indian Classroom. Ed. William Thomas McBride. MLA's Approaches to Teaching Bram Stoker's Dracula. New York: Modern Language Association of America. pg. 75-82. 2025.
- Mahati Chittem, Weiss Goitiandia S, et al. (2024). Beyond the bench: LGBTQ+ health equity after India's "no same-sex marriage" verdict. In The Lancet Regional Health—Southeast Asia (Vol. 30). https://doi.org/10.1016/j.lansea.2024.100494.
- Mahati Chittem, Kataoka Y, Namjoshi S, & Chittem M. (2024). Edu-Tech and Its Implications in Promoting Japanese Language Education in India. In India, Japan and beyond: Human Security, Environment, Development, Innovation, and Resilience. https://doi.org/10.1007/978-9.
- M P Ganesh & Dey C. (2024). Alleviating Stress Among Indian Higher Education Faculty–Moderating Effect of Support for Online Teaching. In Stress, Wellness, and Performance Optimization (pp. 53-70). Apple Academic Press
- 8. M P Ganesh, Sinha N, Srivastava P. (2024). Affective Computing in Mood Disorders: Beyond Conventional Diagnostic Tools to Modern Technologies. In Affective Computing for Social Good: Enhancing Well-being, Empathy, and Equity (pp. 47-67).
- 9. Shubha Ranganathan. (2024). Contextualising Interdisciplinarity: The Possibilities and Challenges of Liberal Arts Spaces in India. In Practising Interdisciplinarity: Convergences and Contestations.

- https://doi.org/10.4324/9781003329428-4.
- 10. Shubha Ranganathan, Pattadath B, and Hussain MWA. (2024). Aging, caregiving, and disability futurities: Challenging policy frameworks. In S. Irudaya Rajan (Ed.). Handbook of aging, health, and public policy: Perspectives from Asia. Springer: Singapore.
- 11. Shuhita Bhattacharjee. Encyclopedic entry on 'Mira Nair.' Contemporary Literary Criticism. Gale Database. Volume 524. 2024.
- 12. Shuhita Bhattacharjee. (2024). Producing the Vampire: Neo-Victorian Afterlife of the "Un-Dead" and Contemporary Sexual Crime in the Cinema of Anushka Sharma. In Women in Contemporary Indian Films and Media: Representations and Responses. https://www.taylorfrancis.com/chapters/edit/10.4324/9781003583851-15/producing-vampire-shuhita-bhattacharjee.
- Shuhita Bhattacharjee. Criminal Mesmerism, Culpability, and the Automaton in Richard Marsh, Victorian Automata: Mechanism and Agency in the Nineteenth Century. Cambridge University Press, 2024. DOI: https://doi.org/10.1017/9781009110129.

Publications:

- Khandekar A, Cross J & Maringanti A. (2024). Scale and modularity in thermal governance: The replication of India's heat action plans. In Urban Studies (Vol. 61, Issue 15, pp. 2868–2886). https://doi.org/10.1177/00420980231195193
- Raqib M & Khandekar A. (2024). Innovative Pathways to Social Transformation: Disruptive Maintenance Through Social Impact Start-ups in Kerala. In Science, Technology and Society (Vol. 29, Issue 3, pp. 397–414). https://doi.org/10.1177/09717218241246358
- Hephsebha J & Deb A. (2024a). Introducing Resilience Outcome Expectations: New Avenues for Resilience Research and Practice. In International Journal of Applied Positive Psychology (Vol. 9, Issue 2, pp. 993– 1005). https://doi.org/10.1007/s41042-024-00164-3
- Hephsebha J & Deb A. (2024b). Introducing Resilience Outcome Expectations Scale: Development and Initial Validation. In Adversity and Resilience Science. https://doi.org/10.1007/s42844-024-00157-w
- Hephsebha J & Deb A (2024c). Transitional impact, resilience outcome expectations, mental health, resilience, and well-being during COVID-19 in India. In Mental, Emotional and Behavioural Needs of the General Population Following COVID-19 in India: Findings from Qualitative and Quantitative Studies. https://doi.org/10.4324/9781003471189-9
- Krishnan A & Deb A. (2024). Mental health professionals' experiences of navigating the COVID-19 pandemic: A systematic narrative hybrid review. In Current Psychology. https://doi.org/10.1007/s12144-024-06650-w
- 7. Sharma P & Deb A. (2024). Authenticity: Conceptual Analysis and Relevance in the Indian Sociocultural Context. In Journal of Humanistic Psychology. https://doi.org/10.1177/00221678231225495
- 8. Soni S & Deb A. (2024). EXPLORING POSITIVE ADAPTATION TO COVID-19: The Indian Context. In

- Exploring the Psycho-Social Impact of Covid-19: Global Perspectives on Behaviour, Interventions and Future Directions. https://doi.org/10.4324/97810033572099 Alakshendra A, Datta A & Reddy B. (2024).
- Alakshendra A, Datta A & Reddy B. (2024). Introduction. In Sustainable Development Goals Series: Vol. Part F4041 (pp. 1–5). https://doi.org/10.1007/978-981-97-6863-9_1
- Datta A & Rajan S I. (2024). Internal Migration and Development in India. In Indian Journal of Human Development (Vol. 18, Issue 1, pp. 7–19). https://doi.org/10.1177/09737030241251865
- 11. Datta A, et al. (2024). Unpacking women's work during the COVID-19 pandemic in India: A feminist analysis of mainstream print media. In Journal of Gender Studies. https://doi.org/10.1080/09589236.2024.2381125
- Kulkarni P & Datta A. (2024). Trade Unions in Contemporary India: Revitalisation Strategies and Migrant Workers. In Indian Journal of Human Development (Vol. 18, Issue 1, pp. 90–106). https://doi.org/10.1177/09737030241250113
- Jacobson H, König A, & Majumdar A. (2024). Im/mobility in the transnational surrogacy market: Disruptions and vulnerabilities in and beyond pandemic times. In Applied Mobilities (Vol. 9, Issue 4, pp. 301–317). https://doi.org/10.1080/23800127.2023.2274238
- 14. Majumdar A. (2024a). Childlessness in Bangladesh: Intersectionality, suffering and resilience Childlessness in Bangladesh: intersectionality, suffering and resilience, by Papreen Nahar, London, Routledge, 2022, xviii + 210, 31.19 GBP (paperback), 104 GBP (hardback), ISBN 978-0-367-50485-4: by Papreen Nahar, London, Routledge, 2022, xviii + 210, 31.19 GBP (paperback), 104 GBP (hardback), ISBN 978-0-367-50485-4. Contemporary South Asia, 32(1), 115-116. https://doi.org/10.1080/09584935.2024.2307743
- 15. Majumdar A. (2024b). Hannaford, Dinah. Aid and the help: International development and the transnational extraction of care. 228 pp., bibliogr. Stanford: Univ. Press, 2023. £23.99 (paper). Journal of the Royal Anthropological Institute, 30(1), 237–238. https://doi.org/10.1111/1467-9655.14074
- Majumdar A. (2024c). Toxic disruptions: Polycystic ovary syndrome in urban India: by Gauri Pathak, London and New York, Routledge, 2023, 158pp, GBP 120 (hardback), ISBN 9781032669274. New Genetics and Society, 43(1), e2305956. https://doi.org/10.1080/14636778.2024.2305956
- Akram V, Rath B N, & Sahoo P K. (2024). Club convergence in per capita carbon dioxide emissions across Indian states. In Environment, Development and Sustainability (Vol. 26, Issue 8, pp. 19907–19934). https://doi.org/10.1007/s10668-023-03443-2
- Behera C & Rath B N. (2024). The interconnectedness between crude oil prices and stock returns in G20 countries. In Resources Policy (Vol. 91). https://doi.org/10.1016/j.resourpol.2024.104950
- Behera C, Rath B N, & Mishra P K. (2024). The impact of monetary and fiscal stimulus on stock returns during the COVID-19 Pandemic. In Journal of Asian Economics (Vol. 90). https://doi.org/10.1016/j.asieco.2023.101680
- Danta S & Rath B N. (2024a). Do Green Patent and Renewable Energy Consumption Matter for Sustainable Green Growth in the African Region? In Economic Papers (Vol. 43, Issue 4, pp. 370–388). https://doi.org/10.1111/1759-3441.12426
- 21. Danta S & Rath B N. (2024b). Do institutional quality and human capital matter for innovation in case of Asian region? In Innovation and Green Development (Vol. 3, Issue 3). https://doi.org/10.1016/j.igd.2024.100141
- 22. Gumte K Akram V & Rath B N. (2024). Handling bioenergy sector uncertainties with carbon credit

- revenue in developing nation's economy: An Indian case study. In Environment, Development and Sustainability. https://doi.org/10.1007/s10668-024-05058-7
- Jangam B P, Rath B N & Ridhwan M M. (2024). Does Global Value Chain Integration Enhance Export Competitiveness? Evidence from Indonesia's Industry-Level Analysis. In Emerging Markets Finance and Trade (Vol. 60, Issue 7, pp. 1578–1598). https://doi.org/10.1080/1540496X.2023.2284304
- 24. Patnaik S & Rath, B. N. (2024). Is There Any Link Between FDI and Profitability in the Indian Manufacturing Sector? In Vision. https://doi.org/10.1177/09722629241255728
- Rath B N, Dash A K & Mishra A K. (2024). The linkage between FDI and energy use in the case of emerging market economies. In Environment, Development and Sustainability. https://doi.org/10.1007/s10668-024-05747-3
- Shaurav K, Deheri A & Rath B N. (2024). Understanding corruption in India: Determinants, nonlinear dynamics and policy implications. In International Journal of Emerging Markets. https://doi.org/10.1108/IJOEM-08-2023-1273
- 27. Shaurav K & Rath B N. (2024). The Linkage Between ICT Development and Corruption in the Case of Emerging Market Economies. In Journal of the Knowledge Economy (Vol. 15, Issue 2, pp. 6604–6616). https://doi.org/10.1007/s13132-023-01397-4
- 28. Bose C (2024a). Devi or art history? Reading entangled narratives on the lineage of artisanal skill from Telangana.In Studies in Religion and the Everyday. https://doi.org/10.1093/oso/9780198902782. 003.0008
- 29. Bose C (2024b). "People are desperate for intimacy": 'Intimacy Urgencies' and 'Doing Trust'—How do Grindr users Respond to Risks of Violence in Contemporary India? In Sexuality and Culture (Vol. 28, Issue 3, pp. 1255–1275). https://doi.org/10.1007/s12119-023-10178-9
- 30. Weiss Goitiandia S, Bose C, et al. (2024). Beyond the bench: LGBTQ+ health equity after India's "no same-sex marriage" verdict. In The Lancet Regional Health—Southeast Asia (Vol. 30). https://doi.org/10.1016/j.lansea.2024.100494
- 31. Chang T, Sethi D, et al. (2024). Revisiting the twin deficits hypothesis in the United States: Further evidence based on system-equation ADL test for threshold cointegration. In Journal of International Trade and Economic Development (Vol. 33, Issue 4, pp. 723–737). https://doi.org/10.1080/09638199.2023.2222418
- 32. Mohanty A, Sethi D, et al. (2024). Fiscal autonomy and public expenditure performance: Some panel-data evidence from Indian states. In Bulletin of Economic Research (Vol. 76, Issue 4, pp. 1065–1093). https://doi.org/10.1111/boer.12460
- 33. Sahoo P K & Sethi D. (2024). Market efficiency of the cryptocurrencies: Some new evidence based on price-volume relationship. In International Journal of Finance and Economics (Vol. 29, Issue 2, pp. 1569–1580). https://doi.org/10.1002/ijfe.2744
- 34. Sethi D, Acharya D, & Sharma U. (2024). Does Central Bank Transparency Matter for Inflation: Role of Inflation Targeting. In Journal of Economic Integration (Vol. 39, Issue 3, pp. 646-670). https://doi.org/10.11130/jei.2024031
- 35. Sethi D, Sharma U & Meher A. (2024). Does central bank transparency converge across the world? Evidence from a club convergence perspective. In Finance Research Letters (Vol. 66). https://doi.org/10.1016/j.frl.2024.105732
- 36. Sethi C, Mishra B R & Sethi D. (2024). Exploring the nexus between inflation targeting and exchange market

- pressure: Evidence from the global financial crisis. Economic Analysis and Policy, 84, 1359–1369. https://doi.org/10.1016/j.eap.2024.10.027
- 37. Roychowdhury P & Dhamija G. (2024). Educational hypogamy and female employment in rural India. In Empirical Economics (Vol. 67, Issue 6, pp. 2893–2931). https://doi.org/10.1007/s00181-024-02629-5
- 38. Purang P, Chittem M & Narsimhan H. (2024). Reimagining work but operating with a no off button: Experiences of working mothers in India during the COVID-19 pandemic. In Gender in Management (Vol. 39, Issue 5, pp. 714–728). https://doi.org/10.1108/GM-08-2022-0283
- Chawak S, Chittem M, Dhillon H, Huligol N, & Butow P. (2024). Development of a question prompt list for Indian cancer patients receiving radiation therapy treatment and their primary family caregivers. In Psycho-Oncology (Vol. 33, Issue 1). https://doi.org/10.1002/pon.6295
- Chittem M (2024). Coming Full Circle: Concluding Remarks for the Special Issue on Psycho-Oncology in India. In Indian Journal of Medical and Paediatric Oncology (Vol. 45, Issue 3, pp. 276–277). https://doi.org/10.1055/s-0044-1787711
- 41. Kataoka Y, Namjoshi S & Chittem M. (2024). Edu-Tech and Its Implications in Promoting Japanese Language Education in India. In India, Japan and beyond: Human Security, Environment, Development, Innovation and Resilience. https://doi.org/10.1007/978-981-97-3282-1
- 42. Lathia, T, Chittem M, et al. (2024). Experiences and expectations of physician communication: A focus group discussion with Indian patients with type 2 diabetes mellitus. In Chronic Illness (Vol. 20, Issue 3, pp. 549–556).
 - https://doi.org/10.1177/17423953231200683
- 43. Maya S, Chittem M, et al. (2024). Experiences of prognosis disclosure versus nondisclosure among family caregivers of persons with advanced cancer. In Death Studies (Vol. 48, Issue 9, pp. 905–915). https://doi.org/10.1080/07481187.2023.2293711
- 44. Purang P, Chittem M & Narsimhan H. (2024). Reimagining work but operating with a no off button: Experiences of working mothers in India during the COVID-19 pandemic. In Gender in Management (Vol. 39, Issue 5, pp. 714–728). https://doi.org/10.1108/GM-08-2022-0283
- Weiss Goitiandia S, Chittem M, et al. (2024). Beyond the 45. bench: LGBTQ+ health equity after India's "no same-sex marriage" verdict. In The Lancet Regional Health—Southeast Asia (Vol. 30). https://doi.org/10.1016/j.lansea.2024.100494
- 46. Kundal K, Kumar N, et al. (2024). Comprehensive benchmarking of CNN-based tumor segmentation methods using multimodal MRI data. In Computers in Biology and Medicine (Vol. 178). https://doi.org/10.1016/j.compbiomed.2024.108799
- 47. Juhro S M, Prabheesh K P & Lubis A. (2024). THE EFFECTIVENESS OF TRILEMMA POLICY CHOICE IN THE PRESENCE OF MACROPRUDENTIAL POLICIES: EVIDENCE FROM EMERGING ECONOMIES. In Singapore Economic Review (Vol. 69, Issue 2, pp. 483–515). https://doi.org/10.1142/S0217590821410058
- 48. Kumar S & Prabheesh K P. (2024). Assessing the Effects of Macroprudential Policy on the Indian Macroeconomy. In Emerging Markets Finance and Trade (Vol. 60, Issue 6, pp. 1182–1208). https://doi.org/10.1080/1540496X.2023.2278643
- Panigrahi B & Prabheesh K P. (2024). Spillover Effects of Capital Controls: A Critical Review and New Agenda for the Future Directions. In Buletin Ekonomi Moneter dan Perbankan (Vol. 27, pp. 7–44). https://doi.org/10.59091/2460-9196.2165
- 50. Prabheesh K P, et al. (2024). Impact of Public Debt,

- Cashless Transactions on Inflation in Emerging Market Economies: Evidence from the COVID-19 Period. In Emerging Markets Finance and Trade (Vol. 60, Issue 3, pp. 557–575). https://doi.org/10.1080/1540496X.2023.2228463
- 51. Prabheesh K P, Padhan R, & Bhat J A. (2024). Do financial markets react to emerging economies' asset purchase program? Evidence from the COVID-19 pandemic period. In Journal of Asian Economics (Vol. 90). https://doi.org/10.1016/j.asieco.2023.101678
- 52. Prabheesh K P, Wickramarachchi V, & Kumar S. (2024). Assessing the Impact of US Monetary Policy on Foreign Currency Debt and Credit Growth in Emerging Markets During the COVID-19 Pandemic". In Emerging Markets Finance and Trade (Vol. 60, Issue 10, pp. 2313–2329). https://doi.org/10.1080/1540496X.2024.2303991
- 53. Vidya C T & Prabheesh K P. (2024). Climate Risk and Sustainable Investment in Asia. In Journal of Environmental Assessment Policy and Management (Vol. 26, Issue 3). https://doi.org/10.1142/S146433322450008X
- 54. Mondal P. (2024a). A Critical Perspective on the (Neuro)biological Foundations of Language and Linguistic Cognition. In Integrative Psychological and Behavioral Science (Vol. 58, Issue 4, pp. 1501–1525). https://doi.org/10.1007/s12124-022-09741-0
- 55. Mondal P. (2024b). Bridging the Chasm Between Cognitive Representations and Formal Structures of Linguistic Meanings. In Cognitive Science (Vol. 48, Issue 5). https://doi.org/10.1111/cogs.13456
- 56. Mondal P. (2024c). The Cognitive Variation of Semantic Structures. In The Cognitive Variation of Semantic Structures. https://doi.org/10.4324/9781032726236
- 57. Nirupama R & Mondal P. (2024). On the unified representation of continuity and discontinuity and its neurocognitive grounding. In Folia Linguistica (Vol. 58, Issue 2, pp. 441–471). https://doi.org/10.1515/flin-2024-2017
- 58. Singh R Negi R, Gonji A I, Sharma N & Sharma R K. (2024). Past shadows and gender roles: Human-elephant relations and conservation in Southern India. In Journal of Political Ecology (Vol. 31, Issue 1, pp. 604–623). https://doi.org/10.2458/jpe.283.
- Chetan S V & Ranganathan S. (2024). Representation of dyslexia in Indian media. In Media Asia. https://doi.org/10.1080/01296612.2024.2353459
- Gairola V & Ranganathan S. (2024). Linking Body, Memory, and Divine Embodiment: Two Cases of Ritual Healers from the Garhwal Himalaya. In Journal of Dharma Studies. https://doi.org/10.1007/s42240-024-00194-9
- 61. Mahalakshmi S & Ranganathan S. (2024). Treating Chronic Pain as Invisible Disability. In Economic and Political Weekly (Vol. 59, Issue 22, pp. 19–21).
- 62. Ranganathan S. (2024). Contextualizing Interdisciplinarity: The Possibilities and Challenges of Liberal Arts Spaces in India. In Practising Interdisciplinarity: Convergences and Contestations. https://doi.org/10.4324/9781003329428-4
- 63. Satyanarayana M, & Ranganathan S. (2024). Reimagining chronic pain management: The case for integrated care in India. In Journal of Integrated Care (Vol. 32, Issue 3, pp. 313–320). https://doi.org/10.1108/JICA-03-2024-0015
- 64. Bhattacharjee S. (2024). Producing the Vampire: Neo-Victorian Afterlife of the "Un-Dead" and Contemporary Sexual Crime in the Cinema of Anushka Sharma. In Women in Contemporary Indian Films and Media: Representations and Responses. https://doi.org/10.4324/9781003583851-15
- 65. Kar S & Bhattacharjee S. (2024). "Ancestral Voices Prophesying War": Investigating the Legacy of the 1947 Partition in the 21st-Century Indian Cultural Imagination of Nuclear War. In South Asian Review (

- Vol. 45, Issues 1–2, pp. 22–38). https://doi.org/10.1080/02759527.2023.2277969
- 66. Rout D & Bhattacharjee S. (2024). Anger as a feminist instrument of the female superhero in Abhijit Kini's Angry Maushi trilogy. In Journal of Graphic Novels and Comics.

https://doi.org/10.1080/21504857.2024.2378899

67. Taylor M M & Bhattacharjee S. (2024). Revisiting/Reframing the Academic "Nineteenth Century." In Nineteenth-Century Gender Studies (Issue 20.2). https://www.scopus.com/inward/record.uri?eid=2s2.085213694139&partnerID=40&md5=476048d69c4a7a50357d1b1f800ef216

Funded Research Projects:

- 1. Anandita Pan; Vulnerable Bodies in Literature and Culture; 1.50 L. [Conference Grant].
- 2. Anandita Pan; Women's Reserved Seats in Municipal Councils in India and Taiwan; 11.83 L. [S344].
- 3. Anindita Majumdar; Viksit Bharat ki Atmanirbhar Betiyan: Exploring the role of CCTs and Beti Bachao Beti Padhao in Empowering Girls in India; 20.00 L. [G755].
- 4. Amrita Deb; Resilience and Mental Illness: Exploring Multisystemic Resilience among Adults using Participatory Action Research (PAR); 16.00 L. [ICSSR/LA/F054/2025-26/G812].
- 5. Neeraj Kumar; Neural structures and Mechanisms Involved in Motor Reconsolidation; 68.75 L. [G740].
- Prabheesh K P; Assessment & Management Plan for Godavari River Basin; 200.00 L. [G687].

- 7. Shuhita Bhattacharjee; Victorian Diversities Research Network [ONGOING]; 1.84 L. [UKRI AH/Y002598/1].
 Shuhita Bhattacharjee: Adolescent Sevual Health
- Shuhita Bhattacharjee; Adolescent Sexual Health 8. Education through Picture Books: Designing and Disseminating Picture Books on Sexual Health-Taking the Conversation to Children, Doctors, Teachers [ONGOIN]; 18.00 L. [ICSSR/RPD/MJ/2023-24/G/157].

Awards & Recognitions:

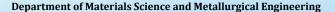
- 1. Rishab Prasad Soni, a full-time research Scholar working under the supervision of Dr M P Ganesh, received the Best Methodology Award for the Presentation of his paper titled "Beyond the Buzz: Exploring the Effectiveness of Moment Marketing for Consumer Engagement" in the 8th International Marketing Strategy and Policy Conference, organized at the Goa Institute of Management.
- 2. Vineet Gairola, PhD Scholar, working under the supervision of Dr Shubha Ranganathan, was selected by the International Relations Committee (IRC) of the Society for Psychoanalysis and Psychoanalytic Psychology (Div. 39) of APA to receive the 2025-2026 IRC Scholar Award. As part of this, he received a cash award, a waiver of registration for the annual meeting, and other benefits related to free membership, subscription, etc.

Research Highlights:

Highlights of the Department

- National Conference entitled "Vulnerable Bodies in Literature and Culture"
- International seminar called 'Lifestyles in Conflict: Chronicity and Healing in Contemporary India'
- Demographic Shifts and Reproductive Futures: Entanglements of Science, Technology, Medicine, and Society
- Lifestyles in Conflict: Chronicity and Healing in Contemporary India
- International Conference on Circadian Rhythms in Health and Diseases: From Discovery to Function
- · Workshop: Rethinking Neurodiversity, Intellectual Disability, and Care
- Development Economics Virtual Workshop
- Critical Interrogations of The Digital Urban in India: A Pedagogic Approach
- Gender and Economics Virtual Workshop
- Early Warning Systems for Financial Crisis: Theory and Evidence
- SPARC Writing Workshop in Science and Technology Studies (STS) for Early Career Researchers
- Inaugural Workshop of the Science and Technology Studies India Network
- Ethnography and Writing: Some Reflections Golden Jubilee Academic Writing Workshops
- Global Initiative for Academic Networks (GIAN) Course
- Four-Week Masterclass on Impact Evaluation
- · Workshop on Early Warning Mechanisms

Department of Materials Science & Metallurgical Engineering


The Department of Materials Science and Metallurgical Engineering (MSME) at IIT Hyderabad continued to strengthen its teaching and research ecosystem during the financial year April 2024 – March 2025. Our philosophy emphasizes the interplay between composition, structure, processing, characterization, and properties of materials, preparing students to innovate in areas ranging from nanomaterials, biomaterials, and energy materials to thin films, devices, thermomechanical processing, and computational materials science.

A major infrastructure milestone was the establishment of the Sophisticated Analytical and Technical Help Institute – Centre for In-Situ and Correlative Microscopy (SATHI-CISCOM) at IIT Hyderabad, supported by DST. MSME faculty played a key role in conceptualizing and driving this centre, which is now equipped with state-of-the-art electron microscopy facilities and Atom Probe Tomography (APT) — one of only a handful in the world. These capabilities enable atomic-scale resolution and in-situ characterization of complex materials, positioning IIT Hyderabad as a national hub for advanced characterization accessible to academia, industry, and national labs.

In parallel, the department successfully secured a DST-FIST project, through which we are procuring a Gleeble Thermomechanical Simulator. This facility will provide unique capabilities for simulating and studying thermo-mechanical processing routes, advanced deformation behaviour, and alloy development under controlled thermal and mechanical loading conditions. Together, the SATHI-CISCOM centre and the FIST-funded Gleeble simulator mark a step-change in our experimental infrastructure, complementing MSME's established strength in computational modeling and GPU-accelerated simulations.

The department also inaugurated the ASM Hyderabad Chapter, attracted major sponsored projects from DST, SERB, DRDO, and industry (Tata Steel, Eaton), and launched new programs such as the M.Tech in Semiconductor Materials & Devices, while continuing successful online offerings in Industrial Metallurgy and interdisciplinary modules like Integrated Computational Materials Engineering (ICME). Faculty recruitment in emerging areas further diversified our expertise, ensuring that MSME remains at the forefront of both foundational teaching and cutting-edge research.

For more information, please visit: https://msme.iith.ac.in/

Faculty

Head of the Department

Saswata Bhattacharya
Professor
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/msme/saswata

Professor

Bharat Bhooshan Panigrahi
PhD - IIT Kharagpur
Profile page:
https://iith.ac.in/msme/bharat/

Janaki Ram G D
PhD - IIT Madras
Profile page:
https://iith.ac.in/msme/jram/

Murty B S
PhD - IISc Banglore
Profile page:
https://iith.ac.in/msme/bsm/

Pinaki Prasad Bhattacharjee
PhD - IIT Kanpur
Profile page:
https://iith.ac.in/msme/pinakib

Ranjith Ramadurai
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/msme/ranjith/

Suhash Ranjan Dey
PhD - University Paul-Verlaine - Metz, France
Professor
Profile page:
https://iith.ac.in/msme/suhash/

Associate Professor

Atul Suresh Deshpande
PhD - Max-Planck Institute of Colloids and
Interfaces - Potsdam, Germany
Profile page:
https://iith.ac.in/msme/atuldeshpande/

Chandrasekhar Murapaka
PhD - Nanyang Technological University (NTU),
Singapore
Profile page:
https://iith.ac.in/msme/mchandrasekhar/

Mudrika Khandelwal
PhD - University of Cambridge, UK
Profile page:
https://iith.ac.in/msme/mudrika/

Rajesh Korla
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/msme/rajeshk/

Shourya Dutta Gupta
PhD - Swiss Federal Institute of
Technology Lausanne
Profile page:
https://iith.ac.in/msme/shourya/

Subhradeep Chatterjee
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/msme/subhradeep

Assistant Professor

Anuj Goyal
PhD - University of Florida
Profile page:
https://iith.ac.in/msme/anujgoyal/

Ashok Kamaraj
PhD - AcSIR, CSIR-NML
Profile page:
https://iith.ac.in/msme/ashokk/

Deepu J Babu PhD - TU Darmstadt, Germany Profile page: https://iith.ac.in/msme/deepu.babu/

Hemam Rachna Devi PhD - IISc, Bengaluru Profile page: https://www.iith.ac.in/msme/rachnahemam/

Mayur Vaidya PhD - IIT Madras Profile page: https://iith.ac.in/msme/vaidyam/

Sai Rama Krishna Malladi PhD - Delft University of Technology, The Netherlands Profile page: https://iith.ac.in/msme/srkm/

Suresh Perumal PhD - IISc Bangalore Profile page: https://www.iith.ac.in/msme/suresh/

Suresh Kumar Garlapati PhD - Technische Universität Darmstadt, Germany Profile page: https://iith.ac.in/msme/gsuresh/

Professor of Practice

K Bhanu Sankara Rao Pratt & Whitney Chair Professor, University of Hyderabad Profile page: https://www.researchgate.net/profil e/Kota-Bhanu-Sankara-Rao

Adjunct Professor

Komal Kapoor Chairman and Chief Executive, Nuclear Fuel Complex, Hyderabad Profile page: https://www.nfc.gov.in/organization

-setup.html

Seiji Mitani Managing Researcher, Research Center for Magnetic and Spintronic Materials, NIMS, Japan Profile page: https://www.nims.go.jp/spintronics/ smitani.html

Tata Narasinga Rao Director, International Advanced Research Centre for Power Metallurgy & New Materials (ARCI) Profile page: https://www.arci.res.in/peoplepages/1674039028_tn-rao-cv.pdf

Patents:

Published:

- Chandrasekhar Murapaka; A Skymiron Based Counter; 202441071776.
- Chandrasekhar Murapaka; A Skyrmion-Based Tsetlin Machine Inference System; 202441086334.
- Mudrika Khandelwal; Packaging System for Extending Shelf-Life of Post-Harvest Fresh Produce and Method Thereof; 202241063104.
- 4. Mudrika Khandelwal; An In-Vitro Glomerular Filtration Barrier (GFB) Membrane and A Method of Preparation Thereof; 202441071348.
- Sai Rama Krishna Malladi; A Method of Preparing Substrate with Tunable Optical Resonance; 202441086828.
- 6. Sai Rama Krishna Malladi; A System for Collecting a Reflective Light Beam Spectrum; 202441086736.
- Sai Rama Krishna Malladi; An Optical Apparatus for Real-Time Monitoring of an Ongoing Chemical Reaction in A Sample Solution; 202441084007.
- 8. Shourya Dutta Gupta; A Method of Preparing Substrate with Tunable Optical Resonance; 202441086828.
- 9. Shourya Dutta Gupta; A System for Collecting a Reflective Light Beam Spectrum; 202441086736.
- Shourya Dutta Gupta; An Optical Apparatus for Real-Time Monitoring of an Ongoing Chemical Reaction in A Sample Solution; 202441084007.
- 11. Shourya Dutta Gupta; A System and Method for Detection of Molecules; 202441085374.

Granted:

- Chandrasekhar Murapaka; Domain Wall Tunnelling and Logic Operations in Ferromagnetic Nanostructures; 201941048936.
- Chandrasekhar Murapaka; System and Method for Skyrmion-Based 3D Low-Complex Runtime Reconfigurable Architecture Design Methodology of Universal Logic Gate; 202341039644.
- 3. Ranjith Ramadurai; BCZT/CFO Polycrystalline Superlattice Structures with Optimum Strain Gradient for Strong Electro-Mechanical Coupling; 202111048321.

Publications:

- Regier C E, Goyal A, et al. (2024). Interlayer Ions Control Spin Canting in Low-Dimensional Manganese Trimers in 12R-Ba4MMn3012 (M = Ce, Pr) Layered Perovskites. In Inorganic Chemistry (Vol. 63, Issue 51, pp. 24176-24186). https://doi.org/10.1021/acs.inorgchem.4c03915
- Murugaiyan P, Kamaraj A, et al. (2024). Influence of Tensile Stress Annealing on Soft Magnetic and Core Loss Properties of Nanocrystalline Fe83Si2B9P4Nb1Cu1 Alloy. In Journal of Superconductivity and Novel Magnetism (Vol. 37, Issues 8-10, pp. 1635-1646). https://doi.org/10.1007/s10948-024-06789-4
- Prasad D S, Kamaraj A, et al. (2024). A novel approach for the efficient recovery of lead from End-of-Life Silicon Photovoltaic modules. In Solar Energy Materials and Solar Cells (Vol. 266). https://doi.org/10.1016/j.solmat.2023.112672
- Sripushpa K, Kamaraj A, et al. (2024). Analysis of Vortex Stability During the BOF Tapping Process. In Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science (Vol. 55, Issue 5, pp. 3894–3911). https://doi.org/10.1007/s11663-024-03221-z
- 5. Hu Y, Deshpande A S, et al. (2024). High-temperature elemental segregation induced structure degradation in high-entropy fluorite oxide. In Journal of Advanced Ceramics (Vol. 13, Issue 3, pp. 310–322). https://doi.org/10.26599/JAC.2024.9220854

- Kumar S, Deshpande A S, et al. (2024). Quantum capacitance: The large but hidden capacitance in supercapacitors. In Carbon Trends (Vol. 16). https://doi.org/10.1016/j.cartre.2024.100385
- 7. Garlapati K K, Panigrahi B B, et al. (2024). VOx anchored Ti3C2Tx MXene heterostructures for high-performance 2.2 V supercapacitors. In Journal of Power Sources (Vol. 605).
- https://doi.org/10.1016/j.jpowsour.2024.234503
- 8. Garlapati K K, Panigrahi B B, et al. (2024a). AlCoCrFeNi HEA reinforced Al–Si–Mg alloy composite through hotpress sintering. In Bulletin of Materials Science (Vol. 47, Issue 4). https://doi.org/10.1007/s12034-024-033582
- Garlapati K K, Panigrahi B B, et al. (2024b). FeS2@Ti3C2Tx Pseudocapacitive Anode for Supercapacitors: Effect of Counter-Electrode Electrochemical Behavior on Supercapacitor Metrics. In ACS Applied Energy Materials (Vol. 7, Issue 16, pp. 6950–6960). https://doi.org/10.1021/acsaem.4c00962
- Ishtiaq M, Panigrahi B B, et al. (2024). Neural Network-Based Modeling of the Interplay between Composition, Service Temperature, and Thermal Conductivity in Steels for Engineering Applications. In International Journal of Thermophysics (Vol. 45, Issue 10). https://doi.org/10.1007/s10765-024-03434-z
- Murthy S S N, Pate M, & Panigrahi B B, (2024). Processing of Continuous Carbon Fibre Reinforced ZrB2-SiC Composite Through In-Situ Matrix Development. In Transactions of the Indian Institute of Metals (Vol. 77, Issue 9, pp. 2461–2469). https://doi.org/10.1007/s12666-024-03329-5
- 12. Naskar S, Suryakumar S, & Panigrahi B B, (2024a). Heat treatments effects on Wear performance of Laser based Powder Bed Fusion fabricated Inconel 718 alloy. In Wear (Vols. 556–557). https://doi.org/10.1016/j.wear.2024.205526
- 13. Naskar S, Suryakumar S & Panigrahi B B, (2024b). Heat treatments-induced wear resistance of Inconel 718 superalloy fabricated via Laser based Powder Bed Fusion. In Materials Today Communications (Vol. 41). https://doi.org/10.1016/j.mtcomm.2024.110789
- https://doi.org/10.1016/j.mtcomm.2024.110789

 14. Haragopal V, Murapaka C, et al. (2024). Current-Induced Domain Wall NOT Gate Logic Operation via Chirality Flipping by Exploiting Walker Breakdown. In Journal of Superconductivity and Novel Magnetism (Vol. 37, Issue 3, pp. 565–571). https://doi.org/10.1007/s10948-023-06686-2
- Haragopal V, Murapaka C, et al. (2024). Field-Induced Multistate Magnetization Switching in Ferromagnetic Nanowire with Parallel Anti-dots for Memristor Applications. In Journal of Superconductivity and Novel Magnetism (Vol. 37, Issues 11–12, pp. 1793–1800). https://doi.org/10.1007/s10948-024-06821-7
- Manoj T, Murapaka C, et al. (2024). Spin-Orbit Torque Modulated by Interface Chemistry in Topological BiSb/NiFe Bilayers with Titanium Insertion. In ACS Applied Electronic Materials (Vol. 6, Issue 6, pp. 4269– 4276). https://doi.org/10.1021/acsaelm.4c00357
- 17. Mondal R, Murapaka C, et al. (2024). Effect of growth rate on structural, magnetic and spin dynamic properties of Co2FeAl thin films. In Thin Solid Films (Vol. 792). https://doi.org/10.1016/j.tsf.2024.140268
- 18. Panigrahi B, Murapaka C, et al. (2024). Spin-to-charge conversion via dual-mode ferromagnetic resonance in Ta/NiFe/FeMn/CoFeB multilayer. In Journal of Magnetism and Magnetic Materials (Vol. 608). https://doi.org/10.1016/j.jmmm.2024.172420
- 19. Panigrahi B, Murapaka C, et al. (2024). Dual mode spin to charge conversion using inverse spin Hall effect in NiFe/FeMn/NiFe multilayer thin films. In Journal of Physics D: Applied Physics (Vol. 57, Issue 30). https://doi.org/10.1088/1361-6463/ad42aa
- 20. Pradhan J, Murapaka C, et al. (2024). Ultra-low Gilbert damping and self-induced inverse spin Hall effect in

- GdFeCo thin films. In Journal of Applied Physics (Vol. 136, Issue 20). https://doi.org/10.1063/5.0231132
 Sivasubramani S, Murapaka, C, et al. (2024). Area Efficient Skyrmion Logic based Approximate Adder Architecture Design Methodology. In IEEE Transactions on Emerging Topics in Computing (pp. 1–12). https://doi.org/10.1109/TETC.2024.3434723
- 22. Sriram K, Murapaka C, et al. (2024). Deposition Pressure Dependence on Spin Hall Angle of W Thin Films Grown on NiFe. In SPIN (Vol. 14, Issue 2). https://doi.org/10.1142/S2010324723400271
- Sriram K, Murapaka C, et al. (2024). Deposition pressure-controlled phase tailoring and stability of β-W for spintronic applications. In Journal of Applied Physics (Vol. 136, Issue 4). https://doi.org/10.1063/5.0202304
- Ingle D S, Babu D J, et al. (2024). Postsynthetic Imidation of Conjugated Porous Polymers: Enhanced CO2 Capture and Selectivity. In ACS Applied Polymer Materials (Vol. 6, Issue 19, pp. 11743–11749). https://doi.org/10.1021/acsapm.4c01726
- 25. Paidi H K, Babu D J, et al. (2024). Exploring MoS2 Growth: A Comparative Study of Atmospheric and Low-Pressure CVD. In Langmuir (Vol. 40, Issue 48, pp. 25648–25656). https://doi.org/10.1021/acs.langmuir.4c03567
- Nandha Kumar E, Janaki Ram G D. et al. (2024). A critical understanding on the microstructure and creep failure of Super304H/T92 dissimilar multilayer welds. In Welding in the World (Vol. 68, Issue 2, pp. 227–246). https://doi.org/10.1007/s40194-023-01645-w
- 27. Dikonda S M, Vaidya, M.et al. (2024). Oxidation Behaviour of Mechanically Alloyed High-Entropy Alloys: A Review. In Advanced Engineering Materials. https://doi.org/10.1002/adem.202401102
- 28. Sen S, Vaidya M, et al. (2024). Grain boundary self- and Mn impurity diffusion in equiatomic CoCrFeNi multiprincipal element alloy. In Acta Materialia (Vol. 264). https://doi.org/10.1016/j.actamat.2023.119588
- Yadav B, Vaidya M, et al. (2024). Grain size effect on the phase growth in CoNi/Sn sandwich diffusion couples. In Materialia (Vol. 33). https://doi.org/10.1016/j.mtla.2024.102011
- Adepu S, Siju Khandelwal M, et al. (2024). Review on need for designing sustainable and biodegradable face masks: Opportunities for nanofibrous cellulosic filters. In International Journal of Biological Macromolecules (Vol. 283). https://doi.org/10.1016/j.ijbiomac.2024.137627
- Alam A, Khan A & Khandelwal M. (2024). Concentration-dependent bacterial cellulose patches: A strategy for modulating the drug release beyond the modifications of the native cellulose hydrogel. In Proceedings of the Indian National Science Academy. https://doi.org/10.1007/s43538-024-00317-7
- 32. Alam A, Khandelwal M, et al. (2024). Tailoring the Wettability of Bacterial Cellulose Magnetobots via the Assembly of In Situ Synthesized and Surfactant-Coated Magnetic Nanoparticles. In Langmuir (Vol. 40, Issue 42, pp. 22433–22445). https://doi.org/10.1021/acs.langmuir.4c03330
- 33. Bharti V K, Khandelwal M, et al. (2024). Bacterial cellulose-derived carbon as a self-supported and flexible anode for stable-performance lithium-ion batteries. In Journal of Electroanalytical Chemistry (Vol. 957). https://doi.org/10.1016/j.jelechem.2024.118142
- 34. Goswami A P, Khandelwal M, et al. (2024). In-situ banana fiber-modified carbonized bacterial cellulose as a free-standing and binder-free cathode host for potassium-sulfur batteries. In Carbon Trends (Vol. 16). https://doi.org/10.1016/j.cartre.2024.100391
- 35. Kalyani P, Das P P & Khandelwal M. (2024). Utilization of natural fiber-derived active agents for shelf life extension of broccoli (Brassica oleracea L.) and guava

- (Psidium guajava). In Biomass Conversion and Biorefinery (Vol. 14, Issue 19, pp. 24753–24764). https://doi.org/10.1007/s13399-023-04889-0
- Kalyani P & Khandelwal M. (2024). Drug release kinetics from in-situ modulated agar/chitosan-bacterial cellulose patches for differently soluble drugs. In International Journal of Biological Macromolecules (Vol. 283). https://doi.org/10.1016/j.ijbiomac.2024.137602
- 37. Kiranmai G, Khandelwal M, et al. (2024). Engineering a Biomimetic Glomerular Filtration Barrier: Coculturing Endothelial Podocytes on Kidney ECM-Bacterial Cellulose Membrane Hybrid. In ACS Applied Materials and Interfaces (Vol. 16, Issue 39, pp. 52008–52022). https://doi.org/10.1021/acsami.4c09505
- 38. Kumar S, Khandelwal M, et al. (2024). Quantum capacitance: The large but hidden capacitance in supercapacitors. In Carbon Trends (Vol. 16). https://doi.org/10.1016/j.cartre.2024.100385
- Kumar S, Yu S & Khandelwal M. (2024). Analyzing the structural behavior of conducting polymer actuators and its interdependence with the electrochemical phenomenon. In Smart Materials and Structures (Vol. 33, Issue 4). https://doi.org/10.1088/1361-665X/ad3005
- 40. Hariharan V S, Murty B S, et al. (2024). Effect of laser scan rotation on the microstructure and mechanical properties of laser powder bed fused Haynes 282. In Materialia (Vol. 33). https://doi.org/10.1016/j.mtla.2023.101992
- 41. Hariharan V S, Murty B S, et al. (2024). Interface Response Functions for multicomponent alloy solidification—An application to additive manufacturing. In Computational Materials Science (Vol. 231). https://doi.org/10.1016/j.commatsci.2023.112565
- John R, Murty B S, et al. (2024). High-temperature deformation behaviour and processing map of near eutectic Al-Co-Cr-Fe-Ni alloy. In Intermetallics (Vol. 166). https://doi.org/10.1016/j.intermet.2023.108163
- 43. Kulkarni R, Murty B S, et al. (2024). Effect of Alloying Elements on the Microstructure and Magnetic Properties of Mechanically Alloyed AlNiCo-Based High-Entropy Alloys. In Physica Status Solidi (B) Basic Research (Vol. 261, Issue 5). https://doi.org/10.1002/pssb.202300560
- 44. Kulkarni R, Murty B S, et al. (2024). Observation of itinerant ferromagnetic behaviour in equiatomic medium entropy AlNiCo alloy. In Materials Science and Engineering: B (Vol. 299).
- 45. https://doi.org/10.1016/j.mseb.2023.116927
 Kuruva H, Murty B S, et al. (2024a). Enhancing photocatalytic efficiency and durability: Ag-modified CNS-TiO2 thin films for sustainable industrial wastewater treatment. In Optical Materials (Vol. 150). https://doi.org/10.1016/j.optmat.2024.115180
- https://doi.org/10.1016/j.optmat.2024.115180

 46. Kuruva H, Murty B S, et al. (2024b). Solar-photocatalytic treatment of industrial wastewater using mechanically doped CNS-TiO2 and synergistic TiO2 incorporation: A promising cost-effective approach for industrial wastewater treatment. In Materials Research Bulletin (Vol. 177). https://doi.org/10.1016/j.materresbull.2024.112825
- 47. Mundhra G, Murty B S, et al. (2024). Entropy-Engineered Aluminum-Based Superalloys with Superior High-Temperature Mechanical Properties. In Advanced Engineering Materials (Vol. 26, Issue 22). https://doi.org/10.1002/adem.202401535
- Mundhra G, Murty B S, et al. (2024). CALPHAD-guided design and experimental study on a novel Al-Ti-Nb alloy. In Journal of Alloys and Compounds (Vol. 990). https://doi.org/10.1016/j.jallcom.2024.174288
- 49. Mundhra G, Murty B S, et al. (2024a). Coupling CALPHAD Method and Entropy-Driven Design for the

- Development of an Advanced Lightweight High-Temperature Al-Ti-Ta Alloy. In Materials (Vol. 17, Issue 21). https://doi.org/10.3390/ma17215373
- 50. Mundhra G, Yeh J -W & Murty B S. (2024b). Development of an Al-Ti-Hf Composite Alloy Strengthened with High Volume Fraction of In-situ formed Al3(Ti, Hf)-Type Trialuminide Intermetallic Phase. In Transactions of the Indian Institute of Metals (Vol. 77, Issue 10, pp. 3121-3132). https://doi.org/10.1007/s12666-024-03324-w
- 51. Murty B S. (2024). Foreword II. In Lecture Notes in Civil Engineering: Vol. 318 LNCE (pp. vii–viii).
- Paremmal P, Murty B S, et al. (2024). Effect of Zr content on the strain rate sensitivity of nanohardness of Ti-Zr-Cu-Ni-Al thin film metallic glass. In Surface and Coatings Technology (Vol. 478). https://doi.org/10.1016/j.surfcoat.2023.130370
- 53. Ravi K R, Murty B S, et al. (2024). Preface for the Trans IIM Special Issue on Solidification Science and Processing. In Transactions of the Indian Institute of Metals (Vol. 77, Issue 10, p. 2919). https://doi.org/10.1007/s12666-024-03463-0
- 54. Talluri G, Murty B S, & Maurya R S. (2024). The eutectic compositional space in Al-Cr-Fe-Ni system utilizing the high-throughput Calphad approach. In Scripta Materialia (Vol. 249). https://doi.org/10.1016/j.scriptamat.2024.116178
- Talluri G, Murty B S, et al. (2024). Designing a eutectic multi-principal element alloy for strength-ductility synergy. In Journal of Alloys and Compounds (Vol. 976). https://doi.org/10.1016/j.jallcom.2023.173278
- 56. Bhattacharjee P P, et al. (2024). Annealing textures of low stacking fault energy (SFE) FCC materials: Traversing binary to high entropy alloys (HEAs). In Journal of Alloys and Metallurgical Systems (Vol. 8). https://doi.org/10.1016/j.jalmes.2024.100130
- 57. Gor M, Bhattacharjee P P, et al. (2024). Additive friction stir deposition of super duplex stainless steel: Microstructure and mechanical properties. In Additive Manufacturing Letters (Vol. 9). https://doi.org/10.1016/j.addlet.2024.100204
- 58. Ojha P K, Bhattacharjee P P, et al. (2024). Microstructure and mechanical properties of a severely cold-rolled and annealed dual-phase compositionally complex alloy (CCA) with an exceptionally deformable Laves phase. In Intermetallics (Vol. 174). https://doi.org/10.1016/j.intermet.2024.108461
- Ojha P K, Bhattacharjee P. P, et al. (2024). Highly deformable Laves phase in a high entropy alloy. In Scripta Materialia (Vol. 240). https://doi.org/10.1016/j.scriptamat.2023.115828
- 60. Paul S & Bhattacharjee P P. (2024). Superior strength-ductility balance of an extremely low stacking fault energy (SFE) high-entropy alloy (HEA) processed by novel hybrid-rolling. In Materials Today Communications (Vol. 38). https://doi.org/10.1016/j.mtcomm.2023.107678
- 61. Reddy S R, Bhattacharjee P P, et al. (2024). High Strain Rate Superplastic Flow and Fracture Characteristics of a Fine-Grained Eutectic High Entropy Alloy. In Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science (Vol. 55, Issue 1, pp. 173–182). https://doi.org/10.1007/s11661-023-07240-4
- 62. Dudala S, Krishna S C & Korla R. (2024). Macrostructure, Microstructure, and Mechanical Properties of Al0.2CoCrFeNi High-Entropy Alloy Produced by Vacuum Induction Melting. In Transactions of the Indian Institute of Metals (Vol. 77, Issue 6, pp. 1489–1497). https://doi.org/10.1007/s12666-023-03245-0
- 63. Krishna S C, Korla R, et al. (2024). Recrystallization Behavior of Cold-Rolled Cu-Cr-Nb-Zr Alloy Investigated by Differential Scanning Calorimetry. In Journal of

- Materials Engineering and Performance (Vol. 33, Issue 1, pp. 136–143). https://doi.org/10.1007/s11665-023-07981-8
- 64. Krishna S C, Korla R, et al. (2024). Dynamic Recrystallization Behavior of Cu–Cr–Nb–Zr Alloy. In Metallography, Microstructure, and Analysis (Vol. 13, Issue 4, pp. 764–778). https://doi.org/10.1007/s13632-024-01119-5
- 65. Palguna Y & Korla R. (2024). Superplastic-like flow behavior in Al0.2CoCrFeNiMo0.5 high entropy alloy. In Materials Letters (Vol. 358). https://doi.org/10.1016/j.matlet.2023.135789
- 66. Palguna Y, Korla R. et al. (2024). Effect of post weld heat treatment on the microstructure and mechanical properties of gas tungsten arc welded Al0.3CoCrFeNi high entropy alloy. In Scripta Materialia (Vol. 241). https://doi.org/10.1016/j.scriptamat.2023.115887
- 67. Sairam K, Korla R, et al. (2024). The Role of Molybdenum on Room Temperature Tensile Behavior of Recrystallized Fe30Mn5Al1CxMo Lightweight Austenitic Steels. In Transactions of the Indian Institute of Metals (Vol. 77, Issue 9, pp. 2431–2437). https://doi.org/10.1007/s12666-024-03310-2
- 68. Talluri G, Korla R et al. (2024). Designing a eutectic multi-principal element alloy for strength-ductility synergy. In Journal of Alloys and Compounds (Vol. 976). https://doi.org/10.1016/j.jallcom.2023.173278
- 69. Bhat A P, Ramadurai R, et al. (2024). Magnetic Field-Induced Polarization Rotation in Strain-Engineered 0.94(Na0.5Bi0.5TiO3)-0.06BaTiO3/CoFe2O4 Magnetoelectric Nanocomposites for Energy Harvesting. In ACS Applied Electronic Materials (Vol. 6, Issue 4, pp. 2188–2196). https://doi.org/10.1021/acsaelm.3c01635
- Jaiswal R, Ramadurai R. et al. (2024). Structural and electrical conductivity studies of Polyaniline—W03hybrid nanocomposites for gas sensing applications. In Journal of Physics: Conference Series (Vol. 2778, Issue 1). https://doi.org/10.1088/1742-6596/2778/1/012002
- 71. Joshi M C, Ramadurai R. et al. (2024). Role of Oxygen Vacancy Migration in Pyroelectric Currents of Nd2Ti2O7Ceramics as High Temperature Sensors. In IEEE Sensors Journal (Vol. 24, Issue 7, pp. 9472–9479). https://doi.org/10.1109/JSEN.2024.3369327
- 72. Bandla B K, Malladi S R K, et al. (2024). Influence of deposition pressure on the microstructure and mechanical properties of sputter-deposited MoNbTaW refractory multi-principal element alloy thin films. In Surface and Coatings Technology (Vol. 481). https://doi.org/10.1016/j.surfcoat.2024.130672
- 73. Paremmal P, Malladi S R K, et al. (2024). Effect of Zr content on the strain rate sensitivity of nanohardness of Ti-Zr-Cu-Ni-Al thin film metallic glass. In Surface and Coatings Technology (Vol. 478). https://doi.org/10.1016/j.surfcoat.2023.130370
 74. Ummethala G, Malladi S R K, et al. (2024). A study of the
- Ummethala G, Malladi S R K, et al. (2024). A study of the spinodal decomposition of AgC-u alloy films using in situ transmission electron microscopy. In Materials Characterization (Vol. 216). https://doi.org/10.1016/j.matchar.2024.114297
- Paremmal P, Dutta-Gupta S, et al. (2024). Effect of Zr content on the strain rate sensitivity of nanohardness of Ti-Zr-Cu-Ni-Al thin film metallic glass. In Surface and Coatings Technology (Vol. 478). https://doi.org/10.1016/j.surfcoat.2023.130370
- 76. Peddiraju V C, Bandaru P, Dutta-Gupta S, & Chatterjee S. (2024). Substrate interaction mediated control of phase separation in FIB milled Ag-Cu thin films. In APL Materials (Vol. 12, Issue 1). https://doi.org/10.1063/5.0181879
- 77. Pillanagrovi J, & Dutta-Gupta S. (2024). Controlling and monitoring laser-mediated localized synthesis of silver nanoparticles within gold nanoapertures. In Nano

- Futures (Vol. 8, Issue https://doi.org/10.1088/2399-1984/ad7b90 4).
- 78 Roy T R, Dutta-Gupta S, et al. (2024). Deformation induced evolution of plasmonic responses in polymer grafted nanoparticle thin films. In Nanoscale (Vol. 16, Issue 24, pp. 11705–11715). https://doi.org/10.1039/d4nr00789a
- 79. Ummethala G, Dutta-Gupta S, et al. (2024). A study of the spinodal decomposition of AgC-u alloy films using in situ transmission electron microscopy. In Materials Characterization (Vol. 216). https://doi.org/10.1016/j.matchar.2024.114297
- 80. Vijay A, Dutta-Gupta S, et al. (2024). Label-free detection and characterization of secondary microplastics from tea bags. In Optical Engineering (Vol. 63, Issue 1). https://doi.org/10.1117/1.0E.63.1.013101
- 81. Athira K S, & Chatterjee S. (2024a). Effect of Keyhole Gas Tungsten Arc Welding and Post-welding Heat Treatment on Microstructure and Hardness of Inconel 740H. In Journal of Materials Engineering and Performance (Vol. 33, Issue 22, pp. 12452–12466). https://doi.org/10.1007/s11665-023-08831-3
- 82. Athira K S, & Chatterjee S. (2024b). High-current gas tungsten arc welding of Ni-base superalloy Haynes 282: Correlating heat input with weld microstructure, hardness and indentation size effect. In Materials Science and Technology (United Kingdom) (Vol. 40. Issue 1128-1136). 15, pp. https://doi.org/10.1177/02670836241240245
- Baler N, Chatterjee S, et al. (2024). Microstructural Evolution and Room Temperature Mechanical Properties of Additively Manufactured XH67 Nickel-Based Superalloy. In Minerals, Metals and Materials Series (pp. 918–927). https://doi.org/10.1007/978-3-031-63937-1 85
- 84. Kulkarni A, Chatterjee S, et al. (2024). Effect of Build Geometry and Porosity in Additively Manufactured CuCrZr. In Journal of Engineering Materials and Technology (Vol. 146, Issue 3). https://doi.org/10.1115/1.4064003
- 85. Peddiraju V C, Chatterjee S, et al. (2024). Substrate interaction mediated control of phase separation in FIB milled Ag-Cu thin films. In APL Materials (Vol. 12, Issue 1). https://doi.org/10.1063/5.0181879
- 86. Ummethala G, Chatterjee S, et al. (2024). A study of the spinodal decomposition of AgC-u alloy films using in situ transmission electron microscopy. In Materials Characterization (Vol. 216). https://doi.org/10.1016/j.matchar.2024.114297
- 87. Dhanabal R, Dey S R, et al. (2024). Perovskite solar cells: Lead and lead-freebased photoabsorber materials for energy conversion application. In Novel Materials for Energy Translation and Storage. https://www.scopus.com/inward/record.uri?eid=2-s2.085205567425&partnerID=40&md5=4daf6439b294cc7a8f2e7965b525536f
- 88. Mishra N, Dey S R, et al. (2024). Novel high-entropy materials for hydrogen production. In Novel Materials for Energy Translation and Storage. https://www.scopus.com/inward/record.uri?eid=2-s2.085205531468&partnerID=40&md5=c35102f81e20 bb48b0d1c3611454749b
- 89. Saka A, Dey S R, et al. (2024). Investigating antibacterial activity of biosynthesized silver oxide nanoparticles using Phragmanthera Macrosolen L. leaf extract. In Scientific reports (Vol. 14, Issue 1, p. 26850). https://doi.org/10.1038/s41598-024-75254-y
- 90. V G Dey, S R, et al. (2024). Nanoindentation and isothermal compression behaviour of Al-4Cu-Ni composites. In Vacuum (Vol. 225). https://doi.org/10.1016/j.vacuum.2024.113251
- 91. Perumal S, et al. (2024). Thermoelectric, mechanical and electrochemical properties of pure single-phase

- FeSb. In Ceramics International (Vol. 50, Issue 15, pp. 26760–26769).
- https://doi.org/10.1016/j.ceramint.2024.04.403
- 92. Acharya A, Perumal S, et al. (2024). Influence of metal organic framework glasses on thermoelectric properties of AgSb0.96Zn0.04Te2 alloy. In Journal of Non-Crystalline Solids (Vol. 627). https://doi.org/10.1016/j.jnoncrysol.2023.122816
- Moorthy M, Perumal S, et al. (2024). Sulfur Vacancy-Driven Band Splitting and Phonon Anharmonicity Enhance the Thermoelectric Performance in n-Type CuFeS2. In ACS Applied Energy Materials (Vol. 7, Issue 5, pp. 2008–2020). https://doi.org/10.1021/acsaem.3c03176
- 94. Palraj J, Perumal S, et al. (2024). High thermoelectric performance in p-type ZnSb upon increasing Zn vacancies: An experimental and theoretical study. In Journal of Materials Chemistry A (Vol. 12, Issue 23, pp. 13860–13875). https://doi.org/10.1039/d3ta07605a
- 95. Ramesh T, Perumal S, et al. (2024). Realizing high electrochemical performance in layered polycrystalline Ca3Co4O9 oxide. In Emergent Materials. https://doi.org/10.1007/s42247-024-00918-4
- Saminathan M, Perumal S, et al. (2024). Realizing low thermal conductivity in Cr-doped nanostructured higher manganese silicide. In Ceramics International (Vol. 50, Issue 18, pp. 33599–33606). https://doi.org/10.1016/j.ceramint.2024.06.176
- Sankar G, Perumal S, et al. (2024). Thermoelectric properties of aliovalent Zn doped Cu1.8S polycrystalline materials. In Ceramics International (Vol. 50, Issue 8, pp. 13400–13411). https://doi.org/10.1016/j.ceramint.2024.01.252
- Sankar G, Perumal S, et al. (2024). Enhanced thermoelectric properties of Cu1.8S via the introduction of ZnS nanostructures. In Sustainable Energy and Fuels (Vol. 8, Issue 23, pp. 5514–5523). https://doi.org/10.1039/d4se01275e
- Subathra B S, Perumal S, et al. (2024). Thermoelectric properties of iso-valent Bi substituted n-type Ti2NiCoSnSb high entropy alloys. In Intermetallics (Vol. 167). https://doi.org/10.1016/j.intermet.2024.108233
- 100. Vikraman H K, Perumal S, et al. (2024). Unprecedented Multifunctionality in Novel Monophase Micro/Nanostructured Ti-Zn Alloy. In Small (Vol. 20,
- 101. Issue 5). https://doi.org/10.1002/smll.202305126
 Rodney J D, Perumal S, et al. (2024). Electrocatalytic synergies of melt-quenched Ni-Sn-Se-Te nanoalloy for direct seawater electrolysis. Chemical Engineering Journal, 499, 155775. https://doi.org/10.1016/j.cej.2024.155775
- 102. Chowdhury S, Garlapati S K, et al. (2024). Low-Cost Desktop Printed Sensors for Therapeutic Ultrasound Applications. In IEEE Sensors Journal (Vol. 24, Issue 23, pp. 39719–39726). https://doi.org/10.1109/JSEN.2024.3470223
- 103. Garlapati S K, Garlapati S K, et al. (2024). Compliancefree, analog RRAM devices based on SnOx. In Scientific Reports (Vol. 14, Issue 1). https://doi.org/10.1038/s41598-024-64662-9
- 104. Rao K T, Garlapati S K. et al. (2024). Development and Characterization of Biocompatible Cellulose Acetate Substrate for Flexible Electrochemical Biosensors. In IEEE Journal on Flexible Electronics (Vol. 3, Issue 7, pp. 312–319). https://doi.org/10.1109/JFLEX.2024.3435809

Funded Research Projects:

- Anuj Goyal; Accelerated Design of High-performance Materials for Piezoelectric Energy Harvesting using Multiscale Modeling; 0.00 L. [DST/NPNST/AM/2025/1918 - Not Granted].
- 2. Ashok K; Investigation on direct reduction using Ammonia: A Novel Green Alternate Ironmaking

- Process; 25.00 L. [G668A].
- 3. Ashok K; Investigation on direct reduction using Ammonia and Electric Furnace Steelmaking: A Novel
- 4. Green Steelmaking Route; 53.00 L. [G668B]. Ashok K; Characterization and valorization of silica and lime slidge from Alufluoride industry; 36.58 L. [S358].
- Atul Suresh Deshpande; Coal energy & Net Zero (CLEANZ) center of excellence Collaborative effort by IITH and Coal India Ltd; 9800.00 L. [G795].
- B S Murty; Synergising Excellence: Fostering a Bilateral Critical Minerals Research Hub between India and Australia; 634.00 L. [G708].
- 7. B S Murty; AICMRH; 17.00 L. [G708A].
- 8. Deepu J. Babu; Cleanz CoE, PI for two projects and Co-PO for one; 753.00 L. [G795].
- Deepu J. Babu; Electric Swing Adsorption for Carbon Capture and Lithium Recovery; 100.00 L. [GSS/IITH/02/2024-25/05].
- Deepu J. Babu; Development of low-cost organic porous solids for CO 2capture" Greenko School of Sustainability (Role: Co-PI); 100.00 L. [GSS/IITH/02/2024-25/06].
- Hemam Rachna Devi; From Nanoscale to Single-Atom Catalysts: Sustainable Green Hydrogen Generation via Solar Water Splitting; 69.72 L. [ANRF/ECRG/2024/005438/ENS].
- Hemam Rachna Devi; Rational design of single- and dual atom catalysts for efficient and durable overall water splitting.; 30.00 L. [SG/IITH/F366/2024-25/SG-199].
- Janaki Ram G D; Electron beam powder bed fusion of nickel-base superalloys CM247LC and BZL12Y; 1830.00 L. [DRDO/MSME/F234/2023-24/G678].
- 14. Mayur Vaidya; Quantitative Assessment of Grain Size and Temperature Effects on Diffusion in Medium Entropy alloys; 47.81 L. [G721].
- 15. Mayur Vaidya; Computational design and development of new Ti-Al-Nb based alloys with rare earth metal additions for AM and PM applications; 14.75 L. [G794].
- 16. Mayur Vaidya; Fabrication and Characterisation of high entropy shape memory alloys; 45.31 L. [S323].
- 17. Mudrika Khandelwal; Biodegradable self-sanitising bacterial nano cellulose fabric for air and water filtration; 58.00 L. [G638].
- 18. Mudrika Khandelwal; Bacterial Cellulose based Microfluidic Point-of-Care Device for Antibiotic Susceptibility Testing; 52.65 L. [G692].
- 19. Mudrika Khandelwal; Circular Agrotech for nutritional security, agricultural waste-derived materials for active and innovative fresh food packaging for enhanced shelf life; 78.00 L. [G820].
- 20. Mudrika Khandelwal; Dual action antimicrobial and analgesic- patches for wound dressing based on bacterial nanocellulose for extended use; 6.00 L. [G475].
- 21. Pinaki Prasad Bhattacharjee; (PI) Microstructures of selected steels (CSR Grant); 16.80 L. [CSR 3].
- 22. Pinaki Prasad Bhattacharjee; Recycled High Entropy Alloys (HEAs) for Bolstering Circular Economy; 20.00 L. [JICA].
- Pinaki Prasad Bhattacharjee; (Implementation team)
 Establishment of thermomechanical processing simulator; 700.00 L. [DST-FIST].
- 24. Rajesh Korla; Optimisation of Electron Beam AM

- Process of Ti-6Al-4V to minimise the anisotropy in, high temperature mechanical properties, creep, fatigue and fatigue crack growth and demonstrate printing of real-time component with optimised process parameters; 552.50 L. [G679].
- 25. Sai Rama Krishna Malladi; Study of Microstructural Evolution of high-strength steels and super alloys for defence applications at multiple length scales in real-time; 250.52 L. [G793].
- 26. Sai Rama Krishna Malladi; Study of Microstructural evolution of high-strength steels and super alloys for defence applications at multiple length scales in real-time; 250.52 L. [G753].
- 27. Sai Rama Krishna Malladi; Geometrical shaping of organic crystals via Ion Beam milling for industrial scale production of photonic integrated circuit components; 7.06 L. [G739].
- 28. Saswata Bhattacharya; Level C FIST Establishment of thermomechanical physical simulator with accessories Gleeble 3800; 707.00 L. [SR/FST/ET-II/2024/1353].
- 29. Shourya Dutta Gupta; Development of Transmission Electron Microscopy Holder and laser integrated Electron Microscopy platforms for In-Situ Experiments; 120.00 L. [DST/MSME/F190/2025-26/G828].
- 30. Shourya Dutta Gupta; SATHI-Centre for In-situ and correlative microscopy; 8000.00 L. [G650].
- 31. Shourya Dutta Gupta; Development of online optical platform with an integrated microfluidic chip for monitoring and control of nanostructure synthesis; 34.97 L. [TDG/IITH/F199/2024-25/TDG-08].
- 32. Shourya Dutta Gupta; (Momentive Pvt Ltd) Surface analysis of Hair samples treated with different chemicals; 27.47 L. [S288].
- 33. Subhradeep Chatterjee; National Centre for Clean Coal Research and Development; 6.71 L. [G158].
- 34. Suhash Ranjan Dey; Exploring ancient Indian panchadhatuasthadhatu-making with new compositions and combinations for modern age applications; 90.45 L. [G783].
- 35. Suresh Perumal; Microstructural Engineering in Higher Manganese Silicide: Novel Approaches for Ecofriendly and Higher Performance Thermoelectric Power Generation (MEET); 80.74 L. [G735].

Awards & Recognitions:

- D Srinivasan, ICME student, under the guidance of Dr Ashok Kamraj, has won the World Championship title in the 18th version of Steel Challenge organized by the World Steel Association at London.
- Kiran Kumar Garlapati, PhD Scholar, Department of Materials Science & Metallurgical Engineering & Chemistry, received the Best Poster Award in the International Conference on Energy & Environmental Materials (E2M-2024) held at IIT Indore.
- Krishna Chaitanya Nuli, PhD Scholar, received the Best Poster Award during the NMD-ATM 2024 program held at GKVK, Bengaluru, in the theme of "Structure-Property Correlation."
- Mudrika Khandelwal was selected for the 3rd batch INSA-NCGG Leadership in Science & Technology (LEADS) Programme, aimed at training Scientists to become future leaders, to be held at INSA, New Delhi.

Research Highlights


During April 2024 – March 2025, the department published extensively in leading international journals, reflecting both depth and diversity of research:

In Acta Materialia, faculty reported advances in diffusion kinetics of multicomponent alloys, development of inverse modeling frameworks using physics-informed neural networks (PINNs) for tracer diffusivity extraction, and phase-field models of thermomigration, clarifying how thermal and compositional gradients drive microstructural evolution.

- 2. In Physical Review B, MSME contributed a rigorous thermodynamic analysis of isosymmetric transitions in ferroelectric solid solutions, resolving long-standing questions of phase stability.
 - Publications in Scripta Materialia and related outlets highlighted rapid communications in high-entropy alloys and advanced steels, while work in Small, IEEE sensors, Biosensors and Bioelectronics, and Journal of Materials Chemistry C showcased functional nanomaterials and thin-film devices, including real-time moisture sensing and flexible electronics.
- 3. A landmark article in Advanced Energy Materials presented a sustainable, low-temperature route to battery-grade graphite, integrating mechanistic insights, operando characterization, and techno-economic analysis underscoring MSME's impact in next-generation energy storage.
- 4. Our Computational Materials Science article on MicroSim 5.0 established one of the first indigenous GPU-accelerated solvers for large-scale phase-field modeling, demonstrating scalable CUDA-based performance and providing a national resource for mesoscale simulations.
- 5. We have demonstrated magnetic 2D layer Vanadium doped MoS2 layer as a spin-orbit torque layer with tunable spin Hall conductivity (Advanced Functional Materials). We have made significant breakthrough on the growth of Topological Insulators for spin-orbitronics applications. Demonstrated high spin Hall angle in BiSb grown on Saphire (epitxial) and Si substrate bringing it close to CMOS integration (ACS Appl. Electr. Mater. And J. Appl. Phys.). Using skyrmion motion in magnetic networks, we have proposed and demonstrated spintronic computing architectures (Full adder and Half adder) (Nanoscale, Indian Patent Granted).
- 9. Complementary breakthroughs in spintronics (Journal of Magnetism and Magnetic Materials), bio-derived materials (Journal of Drug Delivery Science and Technology), and operando electron microscopy (Communications Chemistry, Nature Research) further demonstrate the department's expanding reach from structural alloys to functional and sustainable materials.

Together, these outputs position MSME at IIT Hyderabad as a hub where computational innovation, advanced characterization, and experimental discovery converge — addressing challenges in energy storage, microelectronics reliability, alloy design, and quantum-enabled device materials.

A few Research Facilities

Department of Mathematics

The Department of Mathematics of the Indian Institute of Technology Hyderabad has been in existence since the inception of the institute. The department shares the common vision of the institute in striving for excellence, and aims at becoming a center for applicable, theoretical, and interdisciplinary research.

Department Vision: To foster eclecticism and excellence in mathematical education and research, which is well poised between abstraction and application.

Long-term goal: To evolve into an internationally acclaimed centre for theoretical, interdisciplinary, and applicable mathematical research, supporting and complementing expertise extant in and around Hyderabad.

The Department of Mathematics, IIT Hyderabad, is equipped with modern infrastructure to support academic, research, and administrative activities. The department is housed in the AD3 Building, with facilities distributed across multiple floors. The department provides state-of-the-art infrastructure for teaching, research, collaboration, and administration, ensuring an environment conducive to academic excellence and innovation.

For more information, please visit: https://math.iith.ac.in/

Faculty

Head of the Department

Ramesh G PhD - IIT Madras Profile page: https://iith.ac.in/math/rameshg/

Professor

Balasubramaniam Jayaram PhD - Sri Satyasai Institute of Higher Learning Profile page: https://iith.ac.in/math/jbala/

Subrahmanya Sastry Challa PhD - IIT Kanpur Profile page: https://iith.ac.in/math/csastry/

Lakshmi Narayana P A PhD - IIT Kharagpur Professor Profile page: https://iith.ac.in/math/ananth/

Sukumar D PhD - IIT Madras Profile page: https://iith.ac.in/math/suku/

Venkata Ganapathi Narasimha Kumar Ch PhD - TIFR, Bombay Profile https://iith.ac.in/math/narasimha/

Venku Naidu Dogga PhD - IIT Madras Profile page: https://iith.ac.in/math/venku/

Associate Professor

Bhakti Bhusan Manna
PhD - TIFR CAM, Bangalore
Profile page:
https://iith.ac.in/math/bbmanna/

Neeraj Kumar
PhD - University of Genova, Italy
Profile page:
https://iith.ac.in/math/neeraj/

Pradipto Banerjee
PhD - University of South Carolina
Profile page:
https://iith.ac.in/math/pradipto/

Tanmoy Paul
PhD - ISI Calcutta
Profile page:
https://iith.ac.in/math/tanmoy/

Assistant Professor

Aiyappan S
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/math/aiyappan/

Amit Tripathi
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/math/amittr/

Arunabha Majumdar
PhD - Indian Statistical Institute, Kolkata
Profile page:
https://iith.ac.in/math/arun.majum/

Deepak Kumar Pradhan
PhD - IIT Kanpur
Profile page:
https://iith.ac.in/math/dkpradhan/

Dhriti Sundar Patra
PhD - Jadavpur University
Profile page:
https://iith.ac.in/math/dhriti/

Jyotirmoy Rana
PhD - IIT Kharagpur
Profile page:
https://iith.ac.in/math/jrana/

Mrinmoy Datta
PhD - IIT Bombay
Profile page:
https://iith.ac.in/math/mrinmoy.datta/

Rajesh Kannan
PhD - IIT Madras
Profile page:
https://www.iith.ac.in/math/rajeshkannan/

Sameen Naqvi
PhD - IIT Kanpur
Profile page:
https://iith.ac.in/math/sameen/

Sayantee Jana
PhD - McMaster University
Profile page:
https://iith.ac.in/math/sayantee.jana/

Vikas Krishnamurthy PhD - Imperial College London Profile page: https://iith.ac.in/math/vikas.sk/

Publications:

- Aiyappan S, Cardone G, & Perugia C. (2024). Optimal control problem stated in a locally periodic rough domain: A homogenization study. In Applicable Analysis (Vol. 103. Issue 10, 1757-1768). pp. https://doi.org/10.1080/00036811.2023.2265967
- Aiyappan S, Griso G, & Orlik J. (2024). Homogenization of Helmholtz equation in a periodic layer to study Faraday cage-like shielding effects. In Complex Variables and Elliptic Equations (Vol. 69, Issue 4, pp. 607-625). https://doi.org/10.1080/17476933.2022.2155637
- Dinku T, Aiyappan S, et al. (2024). A Mathematical Model of Tumor-Immune and Host Cells Interactions with Chemotherapy and Optimal Control. In Journal of Mathematics (Vol. https://doi.org/10.1155/2024/3395825
- Sinha S R & Tripathi A. (2024). On Auslander's depth formula. In Journal of Algebra (Vol. 642, pp. 49-59). https://doi.org/10.1016/j.jalgebra.2023.12.009
- Kundal K, Majumdar A, et al. (2024). Comprehensive benchmarking of CNN-based tumor segmentation methods using multimodal MRI data. In Computers in Biology and Medicine (Vol. 178). https://doi.org/10.1016/j.compbiomed.2024.108799
- Aguiló I Jayaram B et al. (2024). Generating methods of some classes of fuzzy implications obtained by unary functions and algebraic structures. In Fuzzy Sets and (Vol. https://doi.org/10.1016/j.fss.2024.108948
- Massanet S Jayaram B et al. (2024). On valuable and troubling practices in the research on classes of fuzzy implication functions. In Fuzzy Sets and Systems (Vol. 476) https://doi.org/10.1016/j.fss.2023.108786
- Nanavati K, Jayaram B, et al. (2024a). Distance functions from fuzzy logic connectives: A state-of-the-art survey. Fuzzy Sets and Systems (Vol. 490). https://doi.org/10.1016/j.fss.2024.109040
- Nanavati K, Jayaram B, et al. (2024b). Fuzzy (dis)similarity implications—A perspective. International Journal of Approximate Reasoning (Vol. 168). https://doi.org/10.1016/j.ijar.2024.109145
- 10. Nanavati K, Gupta M & Jayaram B. (2024c). Metrics from Fuzzy Implications and Their Application. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 13102 LNCS (pp. 289–296). https://doi.org/10.1007/978-3-031-12700-7_30
- 11. Singh A & Jayaram B. (2024). Minkowski-type distances in approximate query searches. In Computational and Applied Mathematics Issue (Vol. 43. https://doi.org/10.1007/s40314-024-02704-8
- 12. Debnath R, Pradhan D K & Sarkar J. (2024). Pairs of inner projections and two applications. In Journal of Functional Analysis (Vol. 286, Issue https://doi.org/10.1016/j.jfa.2023.110216
- 13. Nayak S & Patra D S. (2024). Contact GRA Solitons and Applications to General Relativity. In Mediterranean Journal of Mathematics (Vol. 21, Issue https://doi.org/10.1007/s00009-024-02703-3
- 14. Patra D S. (2024). Certain paracontact metrics satisfying the critical point equation. In Communications in Mathematics (Vol. 32, Issue 1, pp. 1–11). https://doi.org/10.46298/cm.10549

- 15. Patra D S, Mofarreh F, & Ali A. (2024). Geometry of almost contact metrics as almost *-Ricci solitons. In International Journal of Geometric Methods in Modern Physics (Vol. 21, Issue https://doi.org/10.1142/S0219887824500956
- 16. Patra D S & Rovenski V. (2024). Weak β-Kenmotsu Manifolds and η-Ricci Solitons. In Springer Proceedings in Mathematics and Statistics (Vol. 440, pp. 53-72). https://doi.org/10.1007/978-3-031-50586-7_3
- 17. Ahmed S, Rana J, et al. (2024). Mixing of a Solute in a Micropolar Blood Flow Model Through a Capillary Tube with an Absorptive Wall. In Springer Proceedings in 315 Physics: Vol. SPP (pp. https://doi.org/10.1007/978-3-031-69134-8_31
- 18. Das S, Rana J, et al. (2024). Unsteady solute dispersion in large arteries under periodic body acceleration. In Fluids (Vol. 36, Physics of https://doi.org/10.1063/5.0227338
- 19. Dinku T, Rana J, et al. (2024). A Mathematical Model of Tumor-Immune and Host Cells Interactions with Chemotherapy and Optimal Control. In Journal of Mathematics (Vol. 2024). https://doi.org/10.1155/2024/3395825
- 20. Rana J, Rana J, et al. (2024). Dispersion of a non-uniform solute slug in pulsatile viscoelastic fluid flow. In Physics Fluids (Vol. 36. https://doi.org/10.1063/5.0228723
- 21. Mourya P K, Deepika N, & Narayana P A L. (2024). Onset of double-diffusive convection in a Poiseuille flow with a uniform internal heat source. In Physics of Fluids (Vol. 36, Issue 10). https://doi.org/10.1063/5.0226230
- 22. Mourya P K, Kumar G, & Narayana P A L. (2024). On viscous stratified Darcy-Forchheimer flow in a horizontal porous layer with thermal anisotropy and variable permeability. In Physics of Fluids (Vol. 36, Issue 4). https://doi.org/10.1063/5.0191953
- Sen R, Roy S, Narayana P A L & Kairi R R. (2024). Instability of Jeffrey Fluid Throughflow in a Porous Layer Induced by Heat Source and Soret Effect. In ASME Journal of Heat and Mass Transfer (Vol. 146, Issue 7). https://doi.org/10.1115/1.4065116
- 24. Datta M, & Manna S. (2024). Maximum number of points on an intersection of a cubic threefold and a nondegenerate Hermitian threefold. In Finite Fields and their **Applications** (Vol. https://doi.org/10.1016/j.ffa.2024.102462
- 25. Amalore Nambi M & Kumar N. (2024). Regularity of powers of d-sequence (parity) binomial edge ideals of unicycle graphs. In Communications in Algebra (Vol. 52, 2598-2615). Issue https://doi.org/10.1080/00927872.2024.2302101
- 26. Kumar N & Venugopal C. (2024). Rees algebra of maximal order Pfaffians and its diagonal subalgebras. In Communications in Algebra (Vol. 52, Issue 4, pp. 1374
 - https://doi.org/10.1080/00927872.2023.2262579
- 27. Nambi M A & Kumar N. (2024). D-Sequence edge binomials, and regularity of powers of binomial edge ideals of trees. In Journal of Algebra and its Applications Issue 23.

https://doi.org/10.1142/S0219498824501548

- 28. Banerjee P. (2024a). An unsolved question surrounding the Generalized Laguerre Polynomial Ln(n)(x). In Ramanujan Journal (Vol. 65, Issue 3, pp. 1147–1158). https://doi.org/10.1007/s11139-024-00932-4
- 29. Banerjee P. (2024b). Variations on a theorem of Capelli. In International Journal of Number Theory (Vol. 20, Issue 03, pp. 893–913). https://doi.org/10.1142/S1793042124500465
- Banerjee P & Kundu A. (2024a). Factorization of composition of reciprocal polynomials with monomials.
 In Journal of Number Theory (Vol. 256, pp. 79–96). https://doi.org/10.1016/j.jnt.2023.09.001
- 31. Banerjee P & Kundu A. (2024b). The Brun-Hooley sieve for 2 [X] and squarefree shifts of integer polynomials. In Proceedings of the Edinburgh Mathematical Society (Vol. 67, Issue 4, pp. 1171–1195). https://doi.org/10.1017/S0013091524000464
- 32. Banerjee P & Kundu A. (2024c). Towards Turán's polynomial conjecture. In Bulletin of the London Mathematical Society (Vol. 56, Issue 10, pp. 3164–3173). https://doi.org/10.1112/blms.13123
- Kannan M R, Pragada S & Wankhede H. (2024). Constructing cospectral graphs by unfolding non-bipartite graphs. In Discrete Applied Mathematics (Vol. 357, pp. 264–273). https://doi.org/10.1016/j.dam.2024.06.016
- 34. Samanta A & Kannan M R. (2024). On the spectrum of complex unit gain graphs. In Journal of the Ramanujan Mathematical Society (Vol. 39, Issue 2, pp. 131–142).
- 35. Samanta A & Rajesh Kannan M. (2024). Bounds and extremal graphs for the energy of complex unit gain graphs. In Linear Algebra and Its Applications. https://doi.org/10.1016/j.laa.2024.03.028
- 36. Kannan M, Rajesh. (2024). On the spectrum of complex unit gain graphs. Journal of the Ramanujan Mathematical Society, 39(2). https://drive.google.com/file/d/13adVKBgY7KjaoQ654
 ZxtC0X cZnu4opy/preview?usp=embed facebook
- 37. Amin B & Golla R. (2024). Completely positive maps: Pro-C*-algebras and Hilbert modules over pro-C*-algebras. In Positivity (Vol. 28, Issue 5). https://doi.org/10.1007/s11117-024-01085-w
- Ramesh G & Sequeira S S. (2024). Representation and normality of hyponormal operators in the closure of AN-operators. In Acta Mathematica Hungarica (Vol. 174, Issue 2, pp. 341–359). https://doi.org/10.1007/s10474-024-01493-0
- Rao T V & Naqvi S. (2024a). Comparisons of coherent systems with two types of heterogeneous components having proportional reversed hazard rates. In Applied Stochastic Models in Business and Industry (Vol. 40, Issue 2, pp. 483-511). https://doi.org/10.1002/asmb.2826
 Rao T V & Naqvi S. (2024b). Preservation of mean
- 40. Rao T V & Naqvi S. (2024b). Preservation of mean inactivity time ordering for coherent systems. In Advances in Applied Probability (Vol. 56, Issue 2, pp. 666–692). https://doi.org/10.1017/apr.2023.41
 41. Srujana B, Verma D & Naqvi S. (2024). Machine
- Srujana B, Verma D & Naqvi S. (2024). Machine Learning vs. Survival Analysis Models: A study on right censored heart failure data. In Communications in Statistics: Simulation and Computation (Vol. 53, Issue 4, pp. 1899–1916). https://doi.org/10.1080/03610918.2022.2060510
- 42. Mukherjee A, Jana S & Coad S. (2024). Covariate-adjusted response-adaptive designs for semiparametric survival models. In Statistical Methods in Medical Research. https://doi.org/10.1177/09622802241287704
- 43. Gulati S, Jampana P & Sastry C S. (2024a). A Comparative Study on Performances of Adaptive and Nonadaptive Sparse Solvers for Electrical Impedance Tomography. In Communications in Computer and Information Science: Vol. 2011 CCIS (pp. 458–467). https://doi.org/10.1007/978-3-031-58535-7 38

- 44. Gulati S, Jampana P & Sastry C S. (2024b). Series solution and sensitivity analysis of central disc-shaped objects in electrical impedance tomography. In Physica Scripta (Vol. 99, Issue 11). https://doi.org/10.1088/1402-4896/ad72a5
- 45. Najiya K Z & Sastry C S. (2024a). AdaTL1: An adaptive non-convex sparse solver with applications to CT reconstruction and image denoising. In Inverse Problems (Vol. 40, Issue 11). https://doi.org/10.1088/1361-6420/ad7f81
- 46. Najiya K Z & Sastry C S. (2024b). Magnetic Resonance Imaging via Weighted ℓ 1-p Minimization. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 13102 LNCS (pp. 263–270). https://doi.org/10.1007/978-3-031-12700-7 27
- 47. Ghosh A & Daniel S. (2024). NON-COMMUTATIVITY OF CONDITION SPECTRUM. In Palestine Journal of Mathematics (Vol. 13, Issue Special Issue III, pp. 63–69). https://mathscinet.ams.org/mathscinet/serials/profile 2journalId=7744
- 48. Nandan M R & Daniel S. (2024). Kowalski–Słodkowski Theorem for Reproducing Kernel Hilbert Spaces. In Bulletin of the Malaysian Mathematical Sciences Society (Vol. 47, Issue 5). https://doi.org/10.1007/s40840-024-01755-8
- 49. Das S & Paul T. (2024a). A study on various generalizations of generalized centers (GC) in Banach spaces. In Optimization. https://doi.org/10.1080/02331934.2024.2410253
- 50. Das S & Paul T. (2024b). On property-(R1) and relative Chebyshev centers in Banach spaces-II. In Quaestiones Mathematicae (Vol. 47, Issue 2, pp. 461-476). https://doi.org/10.2989/16073606.2023.2229557
 51. Das S & Paul T. (2024c). Various aspects of
- 51. Das S & Paul T. (2024c). Various aspects of approximative τ-compactness in Banach spaces. In Indian Journal of Pure and Applied Mathematics. https://doi.org/10.1007/s13226-024-00711-3
- 52. Kumar N & Sahoo S. (2024a). Lehmer-type bounds and counting rational points of bounded heights on Abelian varieties. In International Journal of Number Theory (Vol. 20, Issue 8, pp. 2125–2138). https://doi.org/10.1142/S1793042124501045
- 53. Kumar N & Sahoo S. (2024b). On the solutions of x2=Byp+Czp and 2x2=Byp+Czp over totally real fields. In Ramanujan Journal (Vol. 65, Issue 1, pp. 27-43). https://doi.org/10.1007/s11139-024-00881-y
- D Venku N. (2024). Integral representation of angular operators on the Bergman space over the upper halfplane. NEW YORK JOURNAL OF MATHEMATICS, 30, 42– 57
- 55. Mohan Pinlodi; Venku Naidu D. von Neumann algebras of analytic functions on the unit ball. J. Math. Anal. Appl. 539 (2024), no. 2, Paper No. 128558, 18 pp. https://mathscinet.ams.org/mathscinet/author?authorId=1584511
- 56. Patra, Partha Sarathi; Bais, Shubham R.; Venku Naidu, D. Application of Bargmann transform in the study of affine heat kernel transform. J. Pseudo-Differ. Oper. Appl. 15 (2024), no. 2, Paper No. 38, 17 pp. https://mathscinet.ams.org/mathscinet/author?authorId=1264432
- 57. Bais, Shubham R.; Mohan, Pinlodi; Venku Naidu, D. A characterization of translation and modulation invariant Hilbert space of tempered distributions. Arch. Math. (Basel) 122 (2024), no. 4, 429–436. https://mathscinet.ams.org/mathscinet/author?authorld=1264432
- 58. Mohan, P.; Venku Naidu, D. Integral representation of radial operators on the Bergman space over the unit disc. J. Math. Anal. Appl. 531 (2024), no. 1, part 2, Paper No. 127885, 13 pp. https://mathscinet.ams.org/mathscinet/author? authorId=864022

Krishnamurthy V S & Llewellyn Smith S G. (2024). Steady translating hollow vortex pair in weakly compressible flow. In Physica D: Nonlinear Phenomena (Vol. 457).

https://doi.org/10.1016/j.physd.2023.133943

Funded Research Projects

- Bhakti Bhusan Manna; Existence and Qualitative behaviour for solutions for nonlinear elliptic systems;
 6.60 L. [G703].
- Dhriti Sundar Patra; Weak contact structure and Einstein-type manifolds; 15.00 L. [G655].
- Jyotirmay Rana; "Magnetic drug delivery in cancer treatment", Project Number: G635, 15.76 Lakhs.
- 4. M Rajesh Kannan; Spectral theory of signed graphs; 32.22 L. [G758].
- 5. Neeraj Kumar; Sequences and bigraded Betti numbers of symmetric and Rees Algebra: Theoretical, Algorithmic and coding aspects; 21.36 L. [G759]. Pradipto Banerjee; Investigations into algebraic

- properties of integer polynomials; 0.00 L. [SERB/MA/F147/2021-22/G443].
- Sayantee Jana; Data mining and Machine Learning modelling to reduce Unclaimed deposits in banks under private sector Banks Category; 10.00 L. [S320].
- 7. Subrahmanya Sastry Challa; SPARSE APPROXIMATIONS WITH PRIOR SUPPORT CONSTRAINT AND APPLICATION TO INTERIOR TOMOGRAPHY; 3.76 L. [G404, (25(0309)/20/EMR-I)].
- 8. Sukumar D; A study on the exponential spectrum; 6.60 L. [G701].
- 9. Venkata Ganapathi Narasimha Kumar Ch; On the structure of Drinfeld modular forms of arbitrary level and the Atkin- Lehner Theory; 35.49 L. [G760].
- 10. Venku Naidu Dogga; Boundedness of integral operators on Reproducing Kernel Hilbert Spaces; 6.60 L. [G702].
- 11. Vikas Krishnamurthy; A study of vortex sheets as limiting cases of point vortex equilibria; 12.68 L. [G732].

Research Highlights

Research Activities & Training Programs:

- Applied Mathematics Day, LHC-3 @ IITH, 2024 was held on 25-07-2024.
- Advanced Functional Analysis and its Applications 2024 was held from 09-12-2024 to 13-12-2024.
- AFS-I Annual Foundation School I (2024) IIT Hyderabad was held on 03-12-2024 to 28-12-2024.
- National Mathematics Day 2024, MA01 @ IITH held on 22-12-2024.
- Short-Term Program on Theory of Differential Equations was held on 03-03-2025 to 08-03-2025.

Highlights:

- Advanced the study of the structure of Drinfeld modular forms for non-trivial levels, extending the foundational works of Gekeler (1973) and Vincent (2000) on trivial level.
- Proved the existence of hyperinvariant subspaces for Schatten class perturbations of particular partial isometries.
- Developed an algorithm to construct coherent systems using combinatorial signatures, with applications in representation theory and symmetric functions.
- Successfully solved Sarason's problem in twisted Fock spaces—the first such resolution in spaces with non-radial weights.
- Investigated analogues of algebraic connectivity under various norms, uncovering their combinatorial significance in graph theory and network analysis.

National Mathematics Day Celebrations

Inventing and Innovating in Technology for Humanity (IITH) | 148

Department of Mechanical and Aerospace Engineering

The Mechanical and Aerospace Engineering (MAE) Department at IIT Hyderabad has been focusing on many basic and applied areas under Mechanics and Design (MAD), Thermo-Fluid Engineering (TFE), Integrated Design and Manufacturing (IDM), and Aerospace Engineering (AE) streams with the support of 38 faculty members, 15 staff, and more than 520 students.

During the year, the department hosted several key events aimed at fostering academic and industry collaboration. These included the MAE Industry–Academia Connect 2024 event and the student-centric MAE Department Day 2025, held on 18th January 2025. Additionally, the department organized a one-day symposium titled "Advanced Measurement Techniques in Dynamics, Vibration, and Robotics" in 2025, and a Workshop on AI for Research to strengthen interdisciplinary skill development.

A major milestone was the launch of a new MTech program in Robotics and Intelligent Systems, reflecting the department's focus on emerging technologies and research-driven education. Faculty achievements included the promotion of Dr Gangadharan Raju, Dr Harish Nagaraj Dixit, Dr Pankaj Kolhe, and Dr Saravanan B to the rank of Professor, and Dr Sayak Banerjee to Associate Professor. Further strengthening the department's academic capabilities, four new faculty members—Dr Ankush Kumar Jaiswal, Dr Himabindu Allaka, Dr Neetu Tiwari, and Dr Thulsiram G—joined as Assistant Professors.

The department also witnessed notable student and faculty accomplishments. MAE students secured 2nd place in the CIEDS-DRDO Swarm Rescue Challenge held in France. PhD scholars were recognised with Prime Minister's Research Fellowships, and several research works received national and international recognition, including publications highlighted as Editor's Suggestions in reputed journals.

Through new programs, impactful research, and strong outreach initiatives, MAE continues to contribute significantly to IIT Hyderabad's vision of innovation, excellence, and leadership in engineering education and research.

For more information, please visit: https://mae.iith.ac.in/

Faculty Head of the Department

Ashok Kumar Pandey
Professor
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/mae/ashok/

Professor

Chandrika Prakash Vyasarayani
PhD - University of Waterloo, Canada
Profile page:
https://iith.ac.in/mae/vcprakash/

Gangadharan Raju
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/~gangadharanr/

N Venkata Reddy PhD - IIT Kanpur Profile page: https://iith.ac.in/mae/nvr/

Pankaj Sharadchandra Kolhe
PhD - The University of Alabama,
Tuscaloosa
Profile page:
https://iith.ac.in/mae/psk/

Prasanth Kumar R
PhD - IIT Kharagpur
Profile page:
https://iith.ac.in/mae/rpkumar/

Raja Banerjee
PhD - University of Missouri Rolla - USA
Profile page:
https://iith.ac.in/mae/rajabanerjee/

Ramji M PhD - IIT Madras Profile page: https://iith.ac.in/mae/ramji_mano/

Saravanan B
PhD - I'Institut National des Sciences
Appliquees de Rouen, Francef
Profile page:
https://iith.ac.in/mae/saravananb/

Surya kumar S
PhD - IIT Bombay
Profile page:
https://iith.ac.in/mae/ssurya/

Venkatasubbaiah K PhD - IIT Kanpur Profile page: https://iith.ac.in/mae/kvenkat/

B Venkatesham
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/mae/venkatesham/

Associate Professor

Harish Nagaraj Dixit
PhD - JNCASR, Bangalore
Profile page:
https://iith.ac.in/mae/hdixit/

Karri Badarinath
PhD - National University of Singapore
Profile page:
https://iith.ac.in/mae/badarinath/

Mahesh M S
PhD - University of Illinois, Urbana-Champaign, USA
Profile page:
https://iith.ac.in/mae/mahesh/

Nishanth Dongari
PhD - University of Strathclyde,
Glasgow, UK
Profile page:
https://iith.ac.in/mae/nishanth/

Sayak Banerjee
PhD - Stanford University, USA
Profile page:
https://iith.ac.in/mae/sayakb/

Syed Nizamuddin Khaderi
PhD - University of Groingen,
Netherlands
Profile page:
https://iith.ac.in/mae/snk/

Viswanath R R S R Chinthapenta
PhD - Brown University, USA
Profile page:
https://iith.ac.in/mae/viswanath/

Assistant Professor

Anirban Naskar
PhD - IIT Kharagpur
Profile page:
https://iith.ac.in/mae/anaskar/

Ankush Kumar Jaiswal
PhD - IIT Kanpur
Profile page:
https://www.iith.ac.in/mae/ankush/

Anurup Datta
PhD - Purdue University, USA
Profile page:
https://iith.ac.in/mae/anurup.datta/

Chandra Prakash
PhD - Purdue University
Profile page:
https://iith.ac.in/mae/cprakashj/

G Thulsiram
PhD - IIT Madras
Profile page:
https://www.iith.ac.in/mae/thulsiramg/

Gnanaprakash K
PhD - IIT Madras
Profile page:
https://iith.ac.in/mae/gnan/

Himabindu Allaka
PhD - University of Haifa
Profile page:
https://www.iith.ac.in/mae/himabindu.allaka/

Kuchibhatla Sai Aditya Raman
PhD - Georgia Tech, Atlanta, USA
Profile page:
https://www.iith.ac.in/mae/sarkuchi/

Lakshmana Dora Chandrala
PhD - IIT Kanpur
Profile page:
https://iith.ac.in/mae/lchandrala/

Muvvala Gopinath
PhD - IIT Kharagpur
Profile page:
https://iith.ac.in/mae/mgopinath/

Niranjan Shrinivas Ghaisas
PhD - Purdue University
Profile page:
https://iith.ac.in/mae/nghaisas/

Prabhat Kumar
PhD - IIT Kanpur
Profile page:
https://iith.ac.in/mae/pkumar/

Prakhar Gupta
PhD - IIT Delhi
Profile page:
https://iith.ac.in/mae/prakharg/

Ranabir Dey
PhD - IIT Kharagpur
Profile page:
https://iith.ac.in/mae/ranabir/

S K Karthick
PhD - IISc Bangalore
Profile page:
https://www.iith.ac.in/mae/skkarthick/

Sachidananda Behera
PhD - IIT Kanpur
Profile page:
https://iith.ac.in/mae/sbehera/

Safvan Palathingal
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/mae/safvan/

Sai Sidhardh
PhD - IIT Kharagpur
Profile page:
https://iith.ac.in/mae/sidhardh/

Vishnu R Unni PhD - IIT Madras Profile page: https://iith.ac.in/mae/vishnu.runni/

Adjunct Faculty

Brendan O'Flynn
Senior Head of Group, Human Centric
Systems-Wireless Sensor Networks,
Tyndall National Institute, University
College Cork, Ireland
Profile page:
https://www.tyndall.ie/people/bren

dan-oflynn/

Hideaki Ogawa
Associate Professor, Kuishu University,
Japan
Profile page:
https://kyushu-u.elsevierpure.com/en/persons/hideaki-ogawa

Manoj Kumar Buragohain
Scientist, Advanced Systems Laboratory,
DRDO, Kanchanbagh, Hyderabad
Profile page:
https://www.routledge.com/authors/i165
08-manoj-kumar-buragohain?
srsltid=AfmBOornoNE6PdsRsbappaTmguORhABg9d6pey1SRYQ2M

Michael John Brennan Emeritus Professor, University of Southampton, UK

Emeritus Professor

Vinayak Eswaran Profile page: https://www.iith.ac.in/mae/eswar/

Patents:

Published:

- Chandrika Prakash Vyasarayani; An Inertial Parameters Measurement System for a Rigid Object; 202441042132.
- Chandrika PrakashVyasarayani; A Method and an Apparatus for Measuring Inertial Parameters of a Rigid Object; 202441040592.
- Chandrika Prakash Vyasarayani; An Apparatus to Measure a Load at a Fixed Joint; 202441041974.
- Lakshmana Dora Chandrala; An Apparatus to Measure a Load at a Fixed Joint; 202441041974.
- Lakshmana Dora Chandrala; An Inertial Parameters Measurement System for a Rigid Object; 202441042132.
- Lakshmana Dora Chandrala; A Method and an Apparatus for Measuring Inertial Parameters of a Rigid Object; 202441040592.
- Nallagundla Venkata Reddy; System for Roll Forming and Process Thereof; 202331022121.
- Nallagundla Venkata Reddy; Method and System Thereof to Fabricate Parts Using Metal Additive Manufacturing and Double-Sided Incremental Forming; 202241046376.
- 8. Nallagundla Venkata Reddy; A Multiple Tool Assembly to Improve Productivity and Energy Efficiency During Double-Sided Incremental forming; 202441022735.
- 9. Nizamuddin Khaderi Syed; An Apparatus to Measure a Load at a Fixed Joint; 202441041974.
- 10. Surya Kumar Simhambhatla; Method and System Thereof to Fabricate Parts Using Metal Additive
- 11. Manufacturing and Double-Sided Incremental Forming; 202241046376.
- Surya Kumar Simhambhatla; A Fluid Collection Device for Collecting Fluids; 202341005050.
- 13. Surya Kumar Simhambhatla; A Device for Preparing Honeycomb Structure for Acoustic Applications; 202441043639.
- 14. Surya Kumar Simhambhatla; A System for forming Fabricated Polymer Panels for Sound Absorption; 202441042518.
- 15. Venkatesham B; A Device for Preparing Honeycomb Structure for Acoustic Applications; 202441043639.
- 16. Venkatesham B; A System for forming Fabricated Polymer Panels for Sound Absorption; 202441042518.
- 17. Venkatesham B; A Mechanical Array to Facilitate Mounting of Sensors or Emitters for Uniform Directivity; 202441037091.

Granted:

- Surya Kumar Simhambhatla; Detection Kit for Diagnosis of Cervical Cancer by Quantification of Visual Inspection of Acetic Acid; 201841016604.
- Nallagundla Venkata Reddy; A System for Sheet Metal Working and a Process Thereof; 201941008005.
- Nallagundla Venkata Reddy; A System for Sheet Metalworking and a Process Thereof; US 17/434,688.
- 4. Venkatesham B; Extendable Socket Apparatus to Accommodate Oversized Adaptors; 202341039785.

Books:

- Mahesh M S, Sucheendran and Lokanna Hoskoti. Introduction to Aerospace Vehicles. White Falcon Publishing, ISBN: 978-8119510450(2024).
- 2. Venkatesham Balide & M L Munjal. Noise and Vibration Control, Second Edition, ISBN 978-9811283147.

Book Chapters

- Niranjan Shrinivas Ghaisas, U D Tiwari, K Mitra. Understanding Wind Farm Performance Factors: SOWFA Solver Mechanics and Yaw Misalignment Case Study", Chapter 5 in Optimization, Uncertainty and Machine Learning in Wind Energy Conversion Systems.
- Niranjan Shrinivas Ghaisas, N N Kethavath, J Patel, K Mondal. Wake Models, Chapter 4 in Optimisation, Uncertainty and Machine Learning in Wind Energy Conversion Systems. Springer, 2024. ISBN: 978-981-97-7909-3.
- 3. Prakash C. (2024). Overview of impact performance of polymer composites using finite element analysis. In Finite Element Analysis of Polymers and Composites. https://doi.org/10.1016/B978-0-443-14087-7.000045.
- 4. Sai Sidhardh, Ding W, Sidhardh S, et al. (2024). Displacement-driven approach to nonlocal elasticity. In Nanomechanics of Structures and Materials: Modeling and Analysis. https://doi.org/10.1016/B978-0-443-21949-8.00016-4.
- 5. Suryakumar S, Padhy C, et al. (2024). Determining Impact Strength of Extrusion-Based 3D-Printed PEEK Using Multi-criteria Decision-Making (MCDM). In Springer Proceedings in Materials (Vol. 53, pp. 33–52). https://doi.org/10.1007/978-981-97-5963-7 3.
- 6. Syed Nizamuddin Khaderi, Dixit T, et al. (2024). Understanding the Dynamic Compression Behavior of Boron Modified As-Cast Ti-6Al-4V Alloy. In Springer Proceedings in Materials (Vol. 35, pp. 365–376). https://doi.org/10.1007/978-981-99-6255-6 31.

Publications:

- Jaiswal A K, et al. (2024). Evaporative cooling and sensible heat recovery enable practical waste-heat driven water purification. In Desalination (Vol. 586). https://doi.org/10.1016/j.desal.2024.117839
- Devsoth L, & Pandey A K. (2024a). Hydrodynamic forces in array of uniform and non-uniform cantilever beams. In Journal of Fluids and Structures (Vol. 124). https://doi.org/10.1016/j.jfluidstructs.2023.104036
- Devsoth L, & Pandey A K. (2024b). Hydrodynamic forces in higher modes of a thin cantilever beam resonator. In Physics of Fluids (Vol. 36, Issue 3). https://doi.org/10.1063/5.0188088
- Dwivedi N, Jujjuvarapu S K, & Pandey A K. (2024). Thermoelastic Damping in a Perforated MEMS Resonators. In Lecture Notes in Mechanical Engineering (pp. 321–327). https://doi.org/10.1007/978-981-97-5423-6 24
- Dwivedi V D, Pandey A K, et al. (2024). Closed Loop Sense Feedback Control for a Dual Proof Mass MEMS Vibratory Gyroscope. In 2024 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, DTIP 2024
 - https://doi.org/10.1109/DTIP62575.2024.10613252
- Dwivedi V D, Pandey A K et al. (2024). HEAT TRANSFER ANALYSIS IN PHASE CHANGING MATERIAL HEAT EXCHANGER BY HYBRID FINITE DIFFERENCE METHOD. In Proceedings of the Thermal and Fluids Engineering Summer Conference (pp. 1469–1478). https://doi.org/10.1615/TFEC2024.mpf.050725
- 7. Jani N, Pandey A K, et al. (2024). Force-Amplifying Compliant Mechanism for Closed-Loop MEMS Accelerometer. In IEEE Sensors Letters (Vol. 8, Issue 12). https://doi.org/10.1109/LSENS.2024.3484527
- Jani N, Pandey A K, et al. (2024). Optimization and analysis of a closed-loop MEMS accelerometer with enhanced bandwidth. In APSCON 2024—2024 IEEE Applied Sensing Conference, Proceedings. https://doi.org/10.1109/APSCON60364.2024.1046584
- 9. Jani N, Pandey A K, et al. (2024). Modelling and optimization of compound lever-based displacement amplifier in a MEMS accelerometer. In Microsystem Technologies. https://doi.org/10.1007/s00542-024-05757-1
- Jujjuvarapu S K, Pandey A K, et al. (2024). Design and fabrication of leaf-based microcantilever beams. In Microsystem Technologies. https://doi.org/10.1007/s00542-024-05838-1
- 11. Jujjuvarapu S K, Pandey A K, et al. (2024). Frequency and damping analysis of hexagonal microcantilever beams. In Sensors and Actuators A: Physical (Vol. 375). https://doi.org/10.1016/j.sn A2024.115542
- Jujjuvarapu S K, & Pandey A K. (2024a). Design and modeling of curved beam based differential capacitive MEMS accelerometer. In APSCON 2024—2024 IEEE Applied Sensing Conference, Proceedings. https://doi.org/10.1109/APSCON60364.2024.1046576
- Jujjuvarapu S K, & Pandey A K. (2024b). Design and Modeling of Differential Capacitive Hexagonal Beam Based MEMS Accelerometer. In 2024 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, DTIP 2024. https://doi.org/10.1109/DTIP62575.2024.10613242
- 14. Purohit S, Pandey A K, et al. (2024). Design and Simulation of Stepped Microcantilevers for Energy Harvesting Applications. In Springer Proceedings in Physics (Vol. 306, pp. 205–211). https://doi.org/10.1007/978-981-97-1571-8_23
- Vivek E K, Pandey A K, et al. (2024). Dynamic Characterization of an Elastomer Pad for Vibration Isolation. In Lecture Notes in Mechanical Engineering (pp. 165–176). https://doi.org/10.1007/978-981-99-5919-8 15

- Prakash C. (2024). Overview of impact performance of polymer composites using finite element analysis. In Finite Element Analysis of Polymers and Composites. https://doi.org/10.1016/B978-0-443-14087-7.00004-5
- 17. Balaji A, Vyasarayani C P, et.al. (2024). Time delayed piecewise linear Mathieu equation: An analytical and numerical study. In Nonlinear Dynamics (Vol. 112, Issue 11, pp. 9245–9260). https://doi.org/10.1007/s11071-024-09529-4
- 18. Manthena D V, Vyasarayani C P, et al. (2024). Open-Loop Centering of a Point Mass on a Horizontally Vibrating Frictional Table. In Journal of Computational and Nonlinear Dynamics (Vol. 19, Issue 3). https://doi.org/10.1115/1.4064552
- 19. Tiwari S, Shaik J, & Vyasarayani C P. (2024). Data Driven Approach to Determine Linear Stability of Delay Differential Equations Using Orthonormal History Functions. In Journal of Computational and Nonlinear Dynamics (Vol. 19, Issue 2). https://doi.org/10.1115/1.4064251
- 20. Gopikrishna R, Raju G, et al. (2024). FORCE STIFFNESS TECHNIQUE FOR NON-DESTRUCTIVE EVALUATION OF BUCKLING LOAD OF OBLATE ELLIPSOIDAL SHELLS. In Proceedings of ASME 2024 Aerospace Structures, Structural Dynamics, and Materials Conference, SSDM 2024. https://doi.org/10.1115/SSDM2024-120842
- Mahesh P, Raju G, et al. (2024a). Classification of damage modes in scaled open-hole composite laminates under combined tension-shear loading using acoustic emission technique. In Engineering Fracture Mechanics (Vol. 308). https://doi.org/10.1016/j.engfracmech.2024.110390
- 22. Mahesh P, Raju G, et al. (2024b). Experimental investigation on open-hole CFRP laminate under combined loading using acoustic emission and digital image correlation. In Theoretical and Applied Fracture Mechanics (Vol. 130). https://doi.org/10.1016/j.tafmec.2024.104300
- Ravulapalli V, Raju G, et.al. (2024). Buckling and Post-Buckling Response of 3D Printed Cylindrical Shell with Circular Cutout under Axial Compression. In SAE Technical Papers. https://doi.org/10.4271/2024-26-0418
- 24. Ravulapalli V, Raju G, & Narayanamurthy V. (2024). Experimental studies on snaking in 3D-printed cylindrical shells under axial compression using photogrammetry. In Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences (Vol. 480, Issue 2282). https://doi.org/10.1098/rsp-A2023.0631
- 25. Ravulapalli V, Raju G, et al. (2024). Experimental studies on the snaking phenomenon of cylindrical shells under axial compression using a multi-3D DIC setup. In AIAA SciTech Forum and Exposition, 2024. https://doi.org/10.2514/6.2024-0033
- 26. Sai Krishna Y, Raju G, & Desarkar M S. (2024). Damage mode classification in CFRP laminates using convolutional autoencoder and convolutional neural network on acoustic emission waveforms. In Structural Health Monitoring. https://doi.org/10.1177/14759217241298403
- 27. Arunachalam S, Dixit H N, & Samavedi S. (2024). Establishment of Unique Cone Shapes and Universal Shape Parameters toward Predicting Fiber Diameter in Polymer Electrospinning. In Industrial and Engineering Chemistry Research (Vol. 63, Issue 30, pp. 13238–13251). https://doi.org/10.1021/acs.iecr.4c01534
- 28. Ghosh S, Dixit H N, et al. (2024). LiF/ LixPOy/ LixPOyFz-based artificial interface on graphitic cathode for improving the cycle life of dual ion batteries. In Journal of Power Sources (Vol. 623). https://doi.org/10.1016/j.jpowsour.2024.235440

- Gupta C, Chandrala L D, & Dixi H N. (2024). An experimental investigation of flow fields near a liquid-liquid moving contact line. In European Physical Journal: Special Topics (Vol. 233, Issues 8–9, pp. 1653–1663). https://doi.org/10.1140/epjs/s11734-024-01170-x
- Gupta C, Dixit H N, et.al. (2024). An experimental study of flow near an advancing contact line: A rigorous test of theoretical models. In Journal of Fluid Mechanics (Vol. 1000). https://doi.org/10.1017/jfm.2024.486
- 31. Gupta C, Dixit H N, et al. (2024). A Study of Flow Patterns Near Moving Contact Lines Over Hydrophobic Surfaces. In Lecture Notes in Mechanical Engineering (pp. 339–349). https://doi.org/10.1007/978-981-99-6074-3 32
- 32. Vivek A S, Dey R, & Dixit H N. (2024). Rupture of a surfactant-laden draining thin film. In Physical Review Fluids (Vol. 9, Issue 7). https://doi.org/10.1103/PhysRevFluids.9.074004
- 33. Ade S S, Chandrala L D, et al. (2024). Application of deep learning and inline holography to estimate the droplet size distribution. In International Journal of Multiphase Flow (Vol. 177). https://doi.org/10.1016/j.ijmultiphaseflow.2024.1048
- 34. Ade S S, Chandrala L D, et al. (2024). Droplet breakup and size distribution in an airstream: Effect of inerti A In Physical Review Fluids (Vol. 9, Issue 8). https://doi.org/10.1103/PhysRevFluids.9.084004
- Gupta C, Chandrala L D, & Dixit H N. (2024). An experimental investigation of flow fields near a liquid-liquid moving contact line. In European Physical Journal: Special Topics (Vol. 233, Issues 8–9, pp. 1653–1663). https://doi.org/10.1140/epjs/s11734-024-01170-x
- 36. Gupta C, Chandrala L D, et.al. (2024). An experimental study of flow near an advancing contact line: A rigorous test of theoretical models. In Journal of Fluid Mechanics (Vol. 1000). https://doi.org/10.1017/jfm.2024.486
- Gupta C, Chandrala L D, et.al. (2024). A Study of Flow Patterns Near Moving Contact Lines Over Hydrophobic Surfaces. In Lecture Notes in Mechanical Engineering (pp. 339–349). https://doi.org/10.1007/978-981-99-6074-3 32
- 38. Vinod, V., Chandrala, L. D., et.al. (2024). Predicting pressure buildup behind perforated plates under blast wave impact: A simplified approach. In Physics of Fluids (Vol. 36, Issue 11). https://doi.org/10.1063/5.0234451
- 39. Vinod V, Chandrala L D, et al. (2024). A Study of Shock-Induced Transient Jets: The Impact of Exit Conditions on Mach Disk and Vortex Ring. In Journal of Fluids Engineering, Transactions of the ASME (Vol. 146, Issue 8). https://doi.org/10.1115/1.4064184
- Kandukuri K R, Sucheendran M M, & Jampana P. (2024).
 Detailed Study of Cavity Features and Air Entrainment Due to the Initial Impact of Plunging Jet Flows. In Industrial and Engineering Chemistry Research (Vol. 63, Issue 43, pp. 18586–18598). https://doi.org/10.1021/acs.iecr.4c01232
- 41. Sakthi Prakash M, Hoskoti L, Joshi G, & Sucheendran M M. (2024). Study of Various Aerodynamic Theories for Flutter Prediction for an Airfoil in Incompressible Flow. In Lecture Notes in Mechanical Engineering (pp. 237–246). https://doi.org/10.1007/978-981-99-5922-8-22
- 246). https://doi.org/10.1007/978-981-99-5922-8 22
 42. Chattopadhyay A, Muvvala G, et al. (2024). Improvement in Mechanical and Corrosion Properties of Laser and electron Beam Welded AISI 304 Stainless Steel Joints by Laser Shock Peening. In Lasers in Manufacturing and Materials Processing (Vol. 11, Issue 4, pp. 946-983). https://doi.org/10.1007/s40516-024-00271-8
- 43. Dash B K, Muvvala G, et al. (2024). Effect of ultrasonic vibration on microstructural evolution, clad defects, and surface properties in laser direct energy deposition

- of Inconel 625. In Journal of Laser Applications (Vol. 36, Issue 2). https://doi.org/10.2351/7.0001258
- 44. Khan A U, Muvvala G, et al. (2024). Continuous and Pulse TIG Arc Treatment for Surface Hardening of WAAM-MIG Parts. In Transactions of the Indian Institute of Metals (Vol. 77, Issue 8, pp. 2163–2172). https://doi.org/10.1007/s12666-024-03294-z
- 45. Khandai B K, Shukla S, & Muvvala G. (2024a). Investigating the effect of laser modulation and input energy on bending mechanism and bending angle in the multi-pass laser forming process through real-time monitoring. In Optics and Laser Technology (Vol. 169). https://doi.org/10.1016/j.optlastec.2023.110100
- 46. Khandai B K, Shukla S, & Muvvala G. (2024b). Real-time monitoring of temperature gradients and bending mechanism in multi-scan laser forming process. In Journal of Manufacturing Processes (Vol. 119, pp. 975–986). https://doi.org/10.1016/j.jmapro.2024.04.012
- 47. Rapaka R, Muvvala G, et al. (2024). Understanding inprocess responses in multi-layer friction stir additive manufacturing: Temperature, viscosity, tool torque, and mechanical properties. In Journal of Materials Processing Technology (Vol. 330). https://doi.org/10.1016/j.jmatprotec.2024.118491
- 48. Cherukupally S, & Reddy N V. (2024). Component-specific cushion design for stretch forming to enhance accuracy: Considering space between pins in reconfigurable tools. In International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-024-14525-4
- 49. Shivaprasad C, Reddy N V, et al. (2024). BRIEF PAPER: JUDICIOUS HYBRIDIZATION OF INCREMENTAL FORMING AND ADDITIVE MANUFACTURING TO ENHANCE PRODUCT COMPLEXITY THROUGH NON-PLANAR SUBSTRATE/DEPOSITION. In Proceedings of ASME 2024 19th International Manufacturing Science and Engineering Conference, MSEC 2024 (Vol. 1). https://doi.org/10.1115/MSEC2024-130324
- 50. Adabala S, Konka P, & Nallagundla V R. (2024). Electroplastic effect in Ti-6Al-4V: An experimental and numerical study. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 238(3), 430-441. https://doi.org/10.1177/09544054231193784
- 51. Kota A, Nallagundla V R, Susana A Assuad C, Martinsen K, & Simhambhatla S. (2024). Parametric investigation, formulation, and benchmarking of energy consumption for the powder bed fusion process. Cleaner and Responsible Consumption, 14, 100205. https://doi.org/10.1016/j.clrc.2024.100205
- 52. Shivaprasad C, Praveen K, & Venkata Reddy N. (2024). Component specific elastic cushion design to enhance the accuracy with the usage of reconfigurable tools in stretch forming. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 238(3), 406–418. https://doi.org/10.1177/09544054221140985
- 53. Tiwari N. (2024). Time resolution improvement of ultrasonic velocity profiler for flow over cylinder using EPOD method with optimally placed time-resolved sensors. In Experiments in Fluids (Vol. 65, Issue 11). https://doi.org/10.1007/s00348-024-03903-z
- 54. Kethavath N N & Ghaisas N S. (2024a). Effect of an abrupt rough-to-smooth surface roughness transition on wind farm wakes: An LES and analytical modeling study. In Journal of Renewable and Sustainable Energy (Vol. 16, Issue 3). https://doi.org/10.1063/5.0202733
- 55. Kethavath N N, & Ghaisas N S. (2024b). Evaluation of wind farm performance over heterogeneously rough terrain using large eddy simulation. In Journal of Physics: Conference Series (Vol. 2767, Issue 9). https://doi.org/10.1088/1742-6596/2767/9/092016
- 56. Kethavath N N, Mondal K, & Ghaisas N S. (2024). Surface Roughness Heterogeneity Effects on Five

- Turbine Wind Farm Evaluated Using Large Eddy Simulation. In Lecture Notes in Mechanical Engineering (pp. 253–262). https://doi.org/10.1007/978-981-99-5752-1 21
- 57. Patel JA, Maity A, & Ghaisas N S. (2024a). A coupled immersed boundary method and wall modelling framework for high-Reynolds number flows over complex terrain. In Computers and Fluids (Vol. 285). https://doi.org/10.1016/j.compfluid.2024.106457
- 58. Patel J A, Maity A, &Ghaisas N S. (2024b). The Influence of Topographical Variations on Wind Turbine Wake Characteristics Using LES. In Journal of Physics: Conference Series (Vol. 2767, Issue 9). https://doi.org/10.1088/1742-6596/2767/9/092086
- Abinash B, Kolhe P S, et al. (2024). Experimental Study on GDI In-Cylinder Combustion Quality of Ethanol and Lemon Peel Oil. In Lecture Notes in Mechanical Engineering (pp. 171–183). https://doi.org/10.1007/978-981-99-7177-0.15
- Biswal Y, Kolhe P S, et al. (2024). Characterization of Flame Morphology for Twin Fluid Atomizer-based Swirl Stabilized Combustor. In AIAA SciTech Forum and Exposition, 2024. https://doi.org/10.2514/6.2024-0595
- 61. Biswal Y, Kolhe P S, et al. (2024). Measurements and Diagnostics of a Gas Extraction Probe. In Lecture Notes in Mechanical Engineering (pp. 231–242). https://doi.org/10.1007/978-981-99-7047-6 17
- 62. Kirar P K, Kolhe P S, et al. (2024). An Experimental Investigation of an Effect of Swirl Flow Field and the Aerodynamic Force on the Droplet Breakup Morphology. In Lecture Notes in Mechanical Engineering (pp. 351–360). https://doi.org/10.1007/978-981-99-6074-3_33
- 63. Nayak G M, Kolhe P S, et al. (2024). An Experimental Investigation into the GDI Spray Characteristics of Ethanol and Lemon Peel Oil. In Lecture Notes in Mechanical Engineering (pp. 67–79). https://doi.org/10.1007/978-981-99-7177-0 7
- 64. Sharma S, Kolhe P S, et.al. (2024). EFFECT OF FLOW FIELD ON GLYCEROL COMBUSTION IN A SWIRL STABILIZED COMBUSTOR EMPLOYING FLOW BLURRING ATOMIZER. In Proceedings of the Thermal and Fluids Engineering Summer Conference (pp. 345–352). https://doi.org/10.1615/TFEC2024.cbf.050975
- 65. Soni S K, & Kolhe P S. (2024). Drop Size and Velocity Distributions of Bio-Oil Spray Produced by Airblast Atomizer. In Lecture Notes in Mechanical Engineering (pp. 487-498). https://doi.org/10.1007/978-981-99-6074-3 45
- 66. Warghat K V, Kolhe P S, et al. (2024). Availability Analysis of Diesel-Powered CI Engines with Single and Multiple Injection Strategies. In Lecture Notes in Mechanical Engineering (pp. 27–40). https://doi.org/10.1007/978-981-99-7177-0 4
- 67. Kumar P. (2024a). SoRoTop: A hitchhiker's guide to topology optimization MATLAB code for design-dependent pneumatic-driven soft robots. In Optimization and Engineering (Vol. 25, Issue 4, pp. 2473–2507). https://doi.org/10.1007/s11081-023-09865-1
- 68. Kumar P. (2024b). TOPress3D: 3D topology optimization with design-dependent pressure loads in MATLAB. In Optimization and Engineering. https://doi.org/10.1007/s11081-024-09931-2
- Pinskier J, Kumar P, et al. (2024). Diversity-Based Topology Optimization of Soft Robotic Grippers. In Advanced Intelligent Systems (Vol. 6, Issue 4). https://doi.org/10.1002/aisy.202300505
- 70. Singh N, Kumar P, et al. (2024). Three-Dimensional Material Mask Overlay Topology Optimization Approach With Truncated Octahedron Elements. In Journal of Mechanical Design (Vol. 146, Issue 1). https://doi.org/10.1115/1.4063361

- 71. Yadav V K, & Gupta P. (2024). A strain-gradient elastic theory for special Cosserat rods. In International Journal of Solids and Structures (Vol. 291). https://doi.org/10.1016/j.ijsolstr.2024.112696
- 72. Sahu A, & Kumar R P. (2024). Design and Implementation of Hexacopter Drone with Integrated Suction and Lift Mechanism with Real-Time Depth Sensing for Precision Object Handling. In 2024 9th International Conference on Robotics and Automation Engineering, ICRAE 2024 (pp. 6–11). https://doi.org/10.1109/ICRAE64368.2024.10851574
- 73. Dwivedi V D, Banerjee R et al. (2024). HEAT TRANSFER ANALYSIS IN PHASE CHANGING MATERIAL HEAT EXCHANGER BY HYBRID FINITE DIFFERENCE METHOD. In Proceedings of the Thermal and Fluids Engineering Summer Conference (pp. 1469–1478). https://doi.org/10.1615/TFEC2024.mpf.050725
- 74. Mittal A, Mangadoddy N, & Banerjee R. (2024). Advances in granular flow modeling: GPU-based multisphere DEM approach and tumbling mill dynamics. In Powder Technology (Vol. 444). https://doi.org/10.1016/j.powtec.2024.120024
- 75. Gururani H, Ramji M, et al. (2024). Collagen imaging reveals synergistic effects of sutures and host-donor misalignment on topographical irregularities in penetrating keratoplasty. In PLoS ONE (Vol. 19, Issue 8). https://doi.org/10.1371/journal.pone.0308204
- 76. Mahesh P, Ramji M, et al. (2024a). Classification of damage modes in scaled open-hole composite laminates under combined tension-shear loading using acoustic emission technique. In Engineering Fracture Mechanics (Vol. 308). https://doi.org/10.1016/j.engfracmech.2024.110390
- Mahesh P, Ramji M, et al. (2024b). Experimental investigation on open-hole CFRP laminate under combined loading using acoustic emission and digital image correlation. In Theoretical and Applied Fracture Mechanics (Vol. 130). https://doi.org/10.1016/j.tafmec.2024.104300
- 78. Mohapatra R, Ramji M, et al. (2024a). Investigating the influence of pre-tightening on radial-type flight intersection joints using a spring-mass model. In Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. https://doi.org/10.1177/09544100241308964
- 79. Mohapatra R, Ramji M, et al. (2024b). Modeling of counter-bore and counter-sink screw lap joints. In Mechanics-Based Design of Structures and Machines (Vol. 52, Issue 1, pp. 289–314). https://doi.org/10.1080/15397734.2022.2107540
- 80. Mohapatra R, Ramji M, et al. (2024c). Modeling the joint rotational stiffness of a radial-type flight intersection joint: An analytical approach, numerical simulation, and experimental validation. In Thin-Walled Structures (Vol. 196). https://doi.org/10.1016/j.tws.2023.111473
- 81. Mohapatra R, Ramji M, et al. (2024d). Modeling the mechanical behavior of torque-tightened screw lap joints. In Engineering Structures (Vol. 298). https://doi.org/10.1016/j.engstruct.2023.117071
- 82. Mohapatra R, Ramji M, et al. (2024). An energy-based 2D model for predicting mechanical behavior of adhesively bonded CFRP laminates. In Engineering Failure Analysis (Vol. 163). https://doi.org/10.1016/j.engfailanal.2024.108589
- 83. Patil SA, Ramji M, et al. (2024). Experimental and numerical estimation of complex stress intensity factor for the completely debonded anti-crack embedded into a weak matrix using domain integral method. In Theoretical and Applied Fracture Mechanics (Vol. 133). https://doi.org/10.1016/j.tafmec.2024.104642
- 84. Ravulapalli V, Ramji M, et al. (2024). Experimental studies on the snaking phenomenon of cylindrical shells under axial compression using a multi-3D DIC setup. In AIAA SciTech Forum and Exposition, 2024.

- 85. Sangani P, Ramji M, et al. (2024). Material properties of YSt 310 steel tubular columns under extreme loading conditions. In Journal of Constructional Steel Research (Vol. 223). https://doi.org/10.1016/j.jcsr.2024.109076
- 86. Sonwani H, Ramji M, & Sidhardh S. (2024). An energy-based analytical model for adhesively bonded stepped and simple-lap joined CFRP laminates. In International Journal of Fracture (Vol. 247, Issue 2, pp. 225–252). https://doi.org/10.1007/s10704-024-00780-9
- 87. N Radhakrishnan, B Dey R, et al. (2024). Confinement induced three-dimensional trajectories of microswimmers in rectangular channels. In Physical Review Fluids (Vol. 9, Issue 8). https://doi.org/10.1103/PhysRevFluids.9.083302
- 88. Buness, C M, Dey R, et al. (2024). Electrotaxis of Self-Propelling Artificial Swimmers in Microchannels. In Physical Review Letters (Vol. 133, Issue 15). https://doi.org/10.1103/PhysRevLett.133.158301
- 89. Vivek, A S, Dey R, & Dixit, H N. (2024). Rupture of a surfactant-laden draining thin film. In Physical Review Fluids (Vol. 9, Issue 7). https://doi.org/10.1103/PhysRevFluids.9.074404
- 90. Bharathwaj M, Karthick S K, et al. (2024). On the unsteady flow dynamics of a planar-plug nozzle with a semi-extended cowl. In Physics of Fluids (Vol. 36, Issue 11). https://doi.org/10.1063/5.0237453
- 91. Anirudh N V, Behera S, & Sahu K C. (2024). Coalescence of non-spherical drops with a liquid surface. In International Journal of Multiphase Flow (Vol. 175). https://doi.org/10.1016/j.ijmultiphaseflow.2024.1048
- 92. Mohapatra R, Palathingal S, et al. (2024a). Investigating the influence of pre-tightening on radial-type flight intersection joints using a spring-mass model. In Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. https://doi.org/10.1177/09544100241308964
- 93. Mohapatra R, Palathingal S, et al. (2024b). Modeling of counter-bore and counter-sink screw lap joints. In Mechanics Based Design of Structures and Machines (Vol. 52, Issue 1, pp. 289–314). https://doi.org/10.1080/15397734.2022.2107540
- 94. Mohapatra R, Palathingal S, et al. (2024c). Modeling the joint rotational stiffness of a radial-type flight intersection joint: An analytical approach, numerical simulation, and experimental validation. In Thin-Walled Structures (Vol. 196). https://doi.org/10.1016/j.tws.2023.111473
- 95. Mohapatra R, Palathingal S, et al. (2024d). Modeling the mechanical behavior of torque-tightened screw lap joints. In Engineering Structures (Vol. 298). https://doi.org/10.1016/j.engstruct.2023.117071
- 96. Srivastava M, Palathingal S, et al. (2024). Design of an Engaging-Disengaging Compliant Mechanism by Using Bistable Arches. In Lecture Notes in Mechanical Engineering (pp. 193-203). https://doi.org/10.1007/978-981-97-5423-6-14
- 97. Ding W, Sidhardh S, et al. (2024). Displacement-driven approach to nonlocal elasticity. In Nanomechanics of Structures and Materials: Modeling and Analysis. https://doi.org/10.1016/B978-0-443-21949-8.00016-4
- 98. Mohapatra R, Sidhardh S, et al. (2024). An energy-based 2D model for predicting mechanical behavior of adhesively bonded CFRP laminates. In Engineering Failure Analysis (Vol. 163). https://doi.org/10.1016/j.engfailanal.2024.108589
- 99. Rajan A, Desai S, & Sidhardh S. (2024). Element-free Galerkin method for a fractional-order boundary value problem. In International Journal for Numerical Methods in Engineering (Vol. 125, Issue 8). https://doi.org/10.1002/nme.7429
- 100. Sonwani H, Ramji M, & Sidhardh S. (2024). An energybased analytical model for adhesively bonded stepped

- and simple-lap joined CFRP laminates. In International Journal of Fracture (Vol. 247, Issue 2, pp. 225–252). https://doi.org/10.1007/s10704-024-00780-9
- 101. Abinash B, Saravanan B, et al. (2024). Experimental Study on GDI In-Cylinder Combustion Quality of Ethanol and Lemon Peel Oil. In Lecture Notes in Mechanical Engineering (pp. 171–183). https://doi.org/10.1007/978-981-99-7177-0_15
- 102. Biswal Y, Saravanan, B et al. (2024). Measurements and Diagnostics of a Gas Extraction Probe. In Lecture Notes in Mechanical Engineering (pp. 231–242). https://doi.org/10.1007/978-981-99-7047-6-17
- 103. Hari Govindha, A, Saravanan B, et al. (2024). Intricate Evaporation Dynamics in Different Multidroplet Configurations. In Langmuir (Vol. 40, Issue 35, pp. 18555–18567). https://doi.org/10.1021/acs.langmuir.4c01929
- 104. Nayak G M, Saravanan B, et al. (2024). An Experimental Investigation into the GDI Spray Characteristics of Ethanol and Lemon Peel Oil. In Lecture Notes in Mechanical Engineering (pp. 67–79). https://doi.org/10.1007/978-981-99-7177-0_7
- 105. Sellan D, Saravanan B et al. (2024). BLENDING HYDROGEN WITH LPG AND METHANE IN PREMIXED AND STRATIFIED FLAMES: AN EXPERIMENTAL STUDY. In Journal of Flow Visualization and Image Processing (Vol. 31, Issue 3, pp. 21–36). https://doi.org/10.1615/JFlowVisImageProc.2024049 252
- 106. Srikrishnan G, Saravanan B, et al. (2024). Alcohol fuels in SI engines: A comprehensive state-of-the-art review on combustion, performance, and environmental impacts. In Journal of Thermal Analysis and Calorimetry (Vol. 149, Issue 21, pp. 12141–12203). https://doi.org/10.1007/s10973-024-13544-3
- 107. Warghat K V, Saravanan, B et al. (2024). Availability Analysis of Diesel-Powered CI Engines with Single and Multiple Injection Strategies. In Lecture Notes in Mechanical Engineering (pp. 27–40). https://doi.org/10.1007/978-981-99-7177-0-4
- 108. Hari Govindha, A Banerjee S, et.al. (2024). Intricate Evaporation Dynamics in Different Multidroplet Configurations. In Langmuir (Vol. 40, Issue 35, pp. 18555–18567). https://doi.org/10.1021/acs.langmuir.4c01929
- 109. Kota A, Simhambhatla S, et.al. (2024). Parametric investigation, formulation, and benchmarking of energy consumption for the powder bed fusion process. In Cleaner and Responsible Consumption (Vol. 14). https://doi.org/10.1016/j.clrc.2024.100205
- 110. Mudakavi D, Simhambhatla S, et al. (2024). Sequential hybridisation of wire and powder-based additive manufacturing of Inconel 718: Mechanical and microstructural characterization. In Materials Science and Engineering: A (Vol. 903). https://doi.org/10.1016/j.mse.A2024.146639
- 111. Naskar S, Simhambhatla S, et al. (2024a). Heat treatments effects on Wear performance of Laser based Powder Bed Fusion fabricated Inconel 718 alloy. In Wear (Vols. 556–557). https://doi.org/10.1016/j.wear.2024.205526
- 112. Naskar S, Simhambhatla S, et.al. (2024b). Heat treatments-induced wear resistance of Inconel 718 superalloy fabricated via Laser based Powder Bed Fusion. In Materials Today Communications (Vol. 41). https://doi.org/10.1016/j.mtcomm.2024.110789
- 113. Padhy C P, Simhambhatla S, et al. (2024). Ensembled surrogate-assisted material extrusion additive manufacturing for enhanced mechanical properties of PEEK. In World Journal of Engineering. https://doi.org/10.1108/WJE-05-2024-0322
- 114. Padhy C, Simhambhatla S, et al. (2024). Determining Impact Strength of Extrusion-Based 3D-Printed PEEK Using Multi-criteria Decision-Making (MCDM). In

- Springer Proceedings in Materials (Vol. 53, pp. 33–52). $\underline{\text{https://doi.org/}10.1007/978-981-97-5963-7_3}$
- 115.Padhy C, Simhambhatla S, et al. (2024). Parametric analysis of 3D printing (FDM) process parameters on mechanical behaviour of PEEK A high-grade polymer. In AIP Conference Proceedings (Vol. 3031, Issue 1). https://doi.org/10.1063/5.0193840
- 116.Piercy N L, Simhambhatla S, et al. (2024). Rapid thermal modeling of wire arc additive manufacturing process using a mesh-free spectral graph theory approach. In International Journal of Advanced Manufacturing Technology (Vol. 133, Issues 11–12, pp. 5271–5298). https://doi.org/10.1007/s00170-024-13994-x
- 117. Shivaprasad C, Simhambhatla S, et al. (2024). BRIEF PAPER: JUDICIOUS HYBRIDIZATION OF INCREMENTAL FORMING AND ADDITIVE MANUFACTURING TO ENHANCE PRODUCT COMPLEXITY THROUGH NON-PLANAR SUBSTRATE/DEPOSITION. In Proceedings of ASME 2024 19th International Manufacturing Science and Engineering Conference, MSEC 2024 (Vol. 1). https://doi.org/10.1115/MSEC2024-130324
- 118.Vishwanath N, Simhambhatla S. (2024). Residual stress and distortion control in wire-arc additive manufacturing process through novel modular substrate. In Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering (Vol. 238, Issue 4, pp. 1570–1579). https://doi.org/10.1177/09544089231207430
- 119.Dixit T, Khaderi S N, et al. (2024). Understanding the Dynamic Compression Behavior of Boron Modified As-Cast Ti-6Al-4V Alloy. In Springer Proceedings in Materials (Vol. 35, pp. 365-376). https://doi.org/10.1007/978-981-99-6255-6-31
- 120.Gopinath K, Khaderi S N, et al. (2024). Determination of Parameters for Johnson-Cook Dynamic Constitutive and Damage Models for E250 Structural Steel and Experimental Validations. In Journal of Materials Engineering and Performance (Vol. 33, Issue 20, pp. 10940–10960). https://doi.org/10.1007/s11665-023-08733-4
- 121. Muthuraja M, Khaderi S N, et al. (2024). High-Strain-Rate Compression Behavior of Ultrahigh-Performance Concrete at Different Ages. In Journal of Materials in Civil Engineering (Vol. 36, Issue 11).
- 122. https://doi.org/10.1061/jMCEE7.MTENG-18062
 Patil S A, Khaderi S N, et al. (2024). Experimental and numerical estimation of complex stress intensity factor for the completely debonded anti-crack embedded into a weak matrix using domain integral method. In Theoretical and Applied Fracture Mechanics (Vol. 133). https://doi.org/10.1016/j.tafmec.2024.104642
- 123.Ranjithkumar S, Khaderi S N, et al. (2024). Compression behaviour of self-compacting concrete under dynamic loading at different ages. In Magazine of Concrete Research (Vol. 76, Issue 19, pp. 1137–1149). https://doi.org/10.1680/jmacr.24.00012
- 124.Sangani P, Khaderi S N, et al. (2024). Numerical Analysis of Low-Velocity Deformable Projectile Impact on Steel Columns. In Lecture Notes in Civil Engineering (Vol. 52, pp. 601–609). https://doi.org/10.1007/978-981-99-9625-4-57
- 125. Sangani, P., Khaderi S N, et al. (2024). Material properties of YSt 310 steel tubular columns under extreme loading conditions. In Journal of Constructional Steel Research (Vol. 223). https://doi.org/10.1016/j.jcsr.2024.109076
- 126.Koneti, L., & Venkatasubbaiah, K. (2024). Numerical investigation of natural convection flow inside a square enclosure filled with different nanofluids by using two-phase Eulerian–Eulerian model: A new correlation for Nusselt number. In Numerical Heat Transfer; Part A: Applications.
 - https://doi.org/10.1080/10407782.2024.2316209

- 127. Golla S T, & Venkatesham B. (2024). Prediction of splash noise in a rectangular tank under longitudinal periodic excitation. In Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering.
 - https://doi.org/10.1177/09544070241292853
- 128. Sanabathula D, & Venkatesham B. (2024). DESIGN OF SPHERICAL ACOUSTIC ARRAY RADIATORS INSPIRED FROM THE CACTUS. In Proceedings of the International Congress on Sound and Vibration. https://www.scopus.com/inward/record.uri?eid=2-s2.0-
 - 85205368014&partnerID=40&md5=a421fea3736d360 e29d3ab8165f5231d
- 129. Chopra G, Unni V R, et al. (2024). Community structure of tropics emerging from spatio-temporal variations in the Intertropical Convergence Zone dynamics. In Scientific Reports (Vol. 14, Issue 1). https://doi.org/10.1038/s41598-024-73872-0
- 130. Weng Y, Unni V R, et al. (2024). Assessing Local Statistics of a Premixed Turbulent Bunsen Flame. AIAA Journal, 62(9), 3305–3313. https://doi.org/10.2514/1.J063916
- 131. Chelimilla N, Chinthapenta V, & Korla S. (2024a). Addressing data scarcity using audio signal augmentation and deep learning for bolt looseness prediction. In Smart Materials and Structures (Vol. 33, Issue 8). https://doi.org/10.1088/1361-665X/ad5c24
- 132. Chelimilla N, Chinthapenta V, & Korla S. (2024b). Audio feature augmentation for bolt looseness classification in data-deficient scenarios using machine learning. In Nondestructive Testing and Evaluation. https://doi.org/10.1080/10589759.2024.2405884
- 133. Chinthapenta V, Joshi S, & Chandrasekar S. (2024). Introduction to the special issue on structural integrity. In International Journal of Fracture (Vol. 247, Issue 2, pp. 133–134). https://doi.org/10.1007/s10704-024-00804-4
- 134. Chittajallu S N S H, Chinthapenta V. et.al. (2024). Investigation of mechanical strength and structure of corneal graft-host junction. In Heliyon (Vol. 10, Issue 10). https://doi.org/10.1016/j.heliyon.2024.e30871
- 135. Dhiman S, Chinthapenta V. et al. (2024). Microstructure control in additively manufactured Ti-6Al-4V during high-power laser powder bed fusion. In Additive Manufacturing (Vol. 96). https://doi.org/10.1016/j.addm A2024.104573
- 136. Gururani H, Chinthapenta V, et al. (2024). Collagen imaging reveals synergistic effects of sutures and host-donor misalignment on topographical irregularities in penetrating keratoplasty. In PLoS ONE (Vol. 19, Issue 8) https://doi.org/10.1371/journal.none.0308204
- 8). https://doi.org/10.1371/journal.pone.0308204
 137. Gururani H, Chinthapenta V, et al. (2024). Intraoperative collagen imaging of sutured cornea: A way towards managing post-penetrating keratoplasty astigmatism. In Medical Engineering and Physics (Vol. 123).
 - https://doi.org/10.1016/j.medengphy.2023.104076
- 138. Khalad A, Chinthapenta V, et al. (2024). A generalized machine learning framework for data-driven prediction of relative density in laser powder bed fusion parts. In International Journal of Advanced Manufacturing Technology (Vol. 135, Issues 9–10, pp. 4147–4167). https://doi.org/10.1007/s00170-024-14735-w
- https://doi.org/10.1007/s00170-024-14735-w
 139. Krishna S H, Chinthapenta V, et al. (2024). Finite element modelling of an anatomically accurate human spinal cord. In Proceedings of the World Congress on Electrical Engineering and Computer Systems and Science. https://doi.org/10.11159/icbes24.110
- 140. Mahesh P, Chinthapenta V, Raju G, & Ramji M. (2024a). Classification of damage modes in scaled open-hole composite laminates under combined tension-shear loading using acoustic emission technique. In Engineering Fracture Mechanics (Vol. 308).

- https://doi.org/10.1016/j.engfracmech.2024.110390
- 141.Mahesh P, Chinthapenta V. et.al. (2024b). Experimental investigation on open-hole CFRP laminate under combined loading using acoustic emission and digital image correlation. In Theoretical and Applied Fracture Mechanics (Vol. 130). https://doi.org/10.1016/j.tafmec.2024.104300
- 142.Patil S A, Chinthapenta V, et al. (2024). Experimental and numerical estimation of complex stress intensity factor for the completely debonded anti-crack embedded into a weak matrix using domain integral method. In Theoretical and Applied Fracture Mechanics (Vol. 133). https://doi.org/10.1016/j.tafmec.2024.104642
- 143. Sabale A, Chinthapenta V, et al. (2024). Ultrasound Wave Propagation and Shear Stress through Tissues for Intercostal Focused Ultrasound Therapy. In SAUS 2024—IEEE South Asian Ultrasonics Symposium, Proceedings. https://doi.org/10.1109/SAUS61785.2024.10563729
- 144. Singh A, Chinthapenta V, & Mylavarapu P. (2024). Efficacy of Laser Shock Peening Post-milling: A Seminumerical Study. In Journal of Materials Engineering and Performance (Vol. 33, Issue 8, pp. 4106–4113). https://doi.org/10.1007/s11665-024-09241-9

Funded Research Projects:

- Allaka Himabindu; Development of a Sensor Suite for Enhanced Situational Awareness and GNSS-Denied Navigation in Multi-Domain Manned and Unmanned Systems; 70.63 L. [ANRF/ECRG/2024/005592/ENS].
- 2. Anirban Naskar; Exploring Advanced Strategies through Mechanistic Understanding of Machining Processes in Cold-spray Deposits Using a Coupled Computational and Experimental Approach; 64.91 L. [G806].
- Anirban Naskar; Experimentally validated multi-scale modelling framework for grinding-induced subsurface deformation of single-crystal Ni-base Superalloy (CMSX-4); 48.24 L. [G723].
- Ankush Kumar Jaiswal; Advanced Evaporative Cooling Vest for Mitigating Human Thermal Stress in Extreme Heat; 49.14 L. [ANRF/ECRG/2024/000113/ENS].
- Anurup Datta; A proof-of-concept study on laser additive manufacturing of single crystal superalloys through spatio-temporally tailored laser beam; 18.22 L. IG7301.
- Chandra Prakash; Development pf design/analysis criterion for aerospace structures subjected to shock loads of varying intensities and duration; 27.25 L. [G763].
- 7. Chandra Prakash; Damage Modeling of Machining Induced Damage in C-Sic Composites; 38.00 L. [G780].
- 8. G Thulsiram; Development of Studies on the Interaction of EM Waves with Disbond Delamination Defects in Multilayered CFRP Pressure Vessel using reflection Microwave NDE Technique; 26.77 L. [G792].
- 9. G Thulsiram; Design and Development of a self-powered inline inspection tool (SPILIT) for long-length pipeline using AI-NDE techniques; 59.52 L. [G804].
- 10. Gangadharan R; Experimental investigation and Numerical simulation of warpage and spring in behaviour of hybrid carbon and glass epoxy composite; 34.98 L. [G742].
- 11. Gnanaprakash; Investigation on coal-biomass blends as reductant and fuel in rotary kiln DRI making towards CO2 mitigation; 161.44 L. [G789].
- 12. Gnanaprakash; Investigation on metallized hydroreactive propellants and propulsive performance of water-breathing ramjet engines; 145.64 L. [G831].
- 13. Gnanaprakash; Investigation of combustion characteristics and flame dynamics of recyclable metal fuels for sustainable clean energy applications; 64.32 L. [G826].

- 14. Gnanaprakash; Combustion Response Measurements of Composite Solid Propellants using T-Burner and Pulsed BEM; 153.02 L. [G814].
- 15. Gnanaprakash; In situ Measurements of Aluminium Agglomerate Size, Velocity and Temperature using simultaneous digital inline Holography and Imaging Pyrometry; 165.24 L. [G799].
- 16. Harish Nagaraj Dixit; Modelling and establishment of various process parameters for PCS fibers and modelling of PCS-SiC conversion process; 341.98 L. [G781].
- 17. Karthick S K; Investigation of end-wall acoustic loading on a deep duct present ahead of a recirulation bubble for a wide range of Mach numbers; 37.30 L. [G741].
- 18. Karthick S K; Design and Development of Arc Jet Plasma setup for Erosion Testing; 82.30 L. [G711].
- 19. Lakshmana Dora Chandrala; Simulation of Aero-Optical Effects; 9.95 L. [S343].
- Mahesh M S; Development of a Numerical tool for predicting the internal ballistics of a gun; 35.00 L. [G646].
- 21. Muvvala Gopinath; Services towards residual stress measurement in rotor blades; 1.91 L. [G761].
- 22. Muvvala Gopinath; Real-time monitoring and in-situ defect control in laser and resistance spot welding of Haynes 25 alloy for impingement tube of aero engine; 50.50 L. [G743].
- 23. Niranjan Shrinivas Ghaisas; Investigation of end-wall acoustic loading on a deep duct present ahead of a recirculation bubble for a wide range of Mach numbers PI: S. K. Karthick. My Role: Co-PI; 37.30 L. [G741].
- 24. Niranjan Shrinivas Ghaisas; Development of an unsteady wind tunnel for simulating flight relevant flow conditions for nano-ornithopter, fixed-wing drones, and their swarms PI: Vishnu R. Unni. My Role: Co-PI; 270.10 L. [G771].
- 25. Niranjan Shrinivas Ghaisas; Machine learning models for predicting airflow hotspots in urban settings. PI: Sumohana S. Channappayya. My Role: Co-PI; 9.20 L. [S???].
- 26. Niranjan Shrinivas Ghaisas; Optimal sampling points on performance maps with prior map patternsP.O.No: 5500010087 & Dt: 02-AUG-2024; 8.79 L. [S330].
- 27. Pankaj Sharadchandra Kolhe; Fuel Flexible Novel Flow Burring Injector Based Swirl Stabilized Burner; 43.84 L. [G713].
- 28. Prabhat Kumar; Topology optimization of pneumatically activated soft grippers; 2.20 L. [G689].
- 29. Prabhat Kumar; IITH Racing Club; 8.00 L. [S351].
- 30. Prakhar Gupta; Design of next-generation flexoelectric-based piezoelectric fabrics; 11.00 L. [G768].
- 31. Prakhar Gupta; Constitutive and damage model of materials under high strain rates; 20.54 L. [G801].
- 32. Prakhar Gupta; Modelling and establishment of various process parameters for PCS fibers and modelling of PCS-SiC conversion process (Co-PI); 341.98 L. [G781].
- 33. Prakhar Gupta; Design and Fabrication of Lightweight Metamaterial Structures for Flapping Wing Systems; 60.22 L. [G764].
- 34. Prakhar Gupta; Development of design/analysis criterion for aerospace structures subjected to shock loads of varying intensities and duration; 27.25 L. [G763].
- 35. Raja Banerjee; Development and Application of a Multiscale Dual Grid Eulerian-Lagrangian Solver to Study Atomization of a Simplex Atomizer; 74.04 L. [G765].
- 36. Ramji M; Novel neck screw design with miniplate for fixation of mandibular condylar neck fractures- An evaluation using 3-Dimensional finite element analysis/ 3D-Digital Image Correlation; 32.90 L. [G785].
 37. Ranabir Dey; Ultrasound Triggered Active Drug
- 37. Ranabir Dey; Ultrasound Triggered Active Drug Delivery System for Triple Negative Breast Cancer Therapy; 34.94 L. [G698].

- 38. "Sachidananda Behera; Aerodynamic breakup of nonspherical droplets; 57.70 L. [G802]."
- 39. Safvan Palathingal; Design and Fabrication of Lightweight Metamaterial Structures for Flapping Wing Systems; 60.22 L. [G764].
- 40. Sai Sidhardh; Stiffness tailoring via curvilinear fiberreinforcements of flapping wings for enhanced model performance in ornithopters; 43.18 L. [G776].
- 41. Saravanan Balusamy; Thermoacoustic characteristics of 3D printed LPG/H, fueled triple- swirl turbulent burners using optical diagnostics; 45.94 L. [G716].
- 42. Sayak Banerjee.; Experimental and Modelling Study on the Feasibility and Optimization of CI Engine Operation using Ammonia-Methane-Diesel Ternary Fuel Blends; 58.12 L. [G754].
- 43. Suryakumar S; Large Area Additive Manufacturing(IAAM): Design and Development of Powder-based Directed Energy Deposition System for Direct Fabrication of Rocket Components; 0.00 L. [G364].
- 44. Suryakumar S; 3D Printing of Energetic Materials: Design & Development of 3D Printer Accompanied by Feasibilty Studies; 493971.00 L. [S181].
- Syed Nizamuddin Khaderi; Impact Test Development for MRF Tyre (S.O.No: 2400316892 & Dt:21.01.2025); 27.62 L. [S364].
- 46. Venkata Reddy N; Integrated product and process design for hybrid incremental sheet forming and non-planar metal additive manufacturing; 0.00 L. [G605].
- 47. Venkata Reddy N; Circular Manufacturing research and educational collaboration between Norway, India, and Japan, Norwegian Research Council; 43.16 L. [S228].
- 48. Vishnu Rajasekharan Unni; Development of a platform that would aid a nano-ornithopter to learn to fly; 95.82 L. [G782].
- 49. Vishnu Rajasekharan Unni; Development of an unsteady wind tunnel for simulating flight-relevant flow conditions for a minor or nano UAV; 270.13 L. [G771].
- 50. Viswanath Chinthapenta; Novel neck screw design with miniplate for fixation of mandibular condylar neck fractures- An evaluation using 3-Dimensional finite element analysis/ 3D-Digital Image Correlation; 25.33 L. IG7851
- 51. Viswanath Chinthapenta; A device based on digital photoelasticity for in-vivo characterization of corneal birefringence; 146.16 L. [G733].

Awards and Recognitions:

- Anjishnu Choudhury (Alumnus BTech 2011, then converted to MTech and later earned his PhD in 2021) was selected as an Assistant Professor in the Department of Mechanical Engineering at IIT Bombay.
- 2. Atul S Vivek, an external PhD student, jointly supervised by Dr Ranabir Dey and Dr Harish N Dixit, has been selected as Editor's Suggestion in Physical Review Fluids (PRF). PRF is the flagship journal in fluid mechanics by the American Physical Society (APS).
- 3. Cherishma Mallavarapu, MTech student, received the Best Presentation Award in 8th National Symposium on Shock Waves at IIT Kanpur
- Gangadharan Raju has been invited to join the Editorial Board Member of the ISSS Journal of Micro and Smart Systems.
- 5. Muvvala Gopinath, Assistant Professor, has been selected as INAE Young Associate (2024).
- 6. Neeraj Balachandar, Shriram Hari & A Padmaprabhan, and Kevin D'Souza, who worked under the guidance of Dr Ashok Kumar Pandey, and Dr Vishnu R Unni, secured second place among Indian teams at the CIEDS-DRDO Swarm Rescue Challenge, held at École Polytechnique de Paris.
- 7. Sahil Dhiman, IITH-Deakin JDP student, affiliated with the Centre of Interdisciplinary Programs at IITH and with the School of Engineering at Deakin, received the Best Poster Award in 30th International Conference on Processing of Advanced Materials and Fabrication of Products. He is working under the supervision of Dr Viswanath Chinthapenta.
- 8. Vinod V, PhD Scholar, received the Best Presentation Award in the 8th National Symposium on Shock Waves at IIT Kanpur.
- Vishnu K, a joint MTech student, working under the supervision of Dr Sachidananda Behera & Dr Anirban Naskar, received the Best Oral Presentation Award at the International Conference on Laser and Other Deposition Techniques (iCOLD25), jointly organized by IIT Hyderabad and IIT Madras.

Research Highlights:

Faculty members of the MAE department continued to produce high-impact research across diverse domains, including advanced materials, robotics, AI for fluid dynamics, additive manufacturing, combustion, and structural mechanics. Several faculty members received sponsored research grants from DRDO, ISRO, DST, and international collaborators. Noteworthy projects include the development of autonomous aerial vehicles, experimental investigations on supersonic jet impingement, and AI-driven topology optimization for lightweight structures.

To support this growing research activity, new laboratories have been established. Notably, the Nondestructive Xploration (NDX) Lab has been set up for advanced nondestructive evaluation (NDE) of metals and non-metals, enabling critical diagnostics for aerospace and structural materials. These facilities expand the department's experimental capabilities and provide hands-on exposure to students in emerging technologies.

MAE researchers published over 100 peer-reviewed articles in reputed international journals, with several receiving Editor's Picks and high citation impact. The department has active participation in national missions like IMPRINT, TDF, and I-STEM and is forging collaborations with both academia and industry.

Department of Physics

Physics@IITH continues its pursuit of excellence in physics education, frontier research, and societal engagement. With a vibrant team of 33 core faculty and dedicated technical staff, the department blends foundational training with cutting-edge applications across astrophysics & cosmology, condensed matter (theory and experiment), high-energy physics, and optics/lasers. Our flexible, project-based BTech (Engineering Physics), MSc, MTech, and PhD programs emphasize interdisciplinary learning and hands-on work in state-of-the-art facilities—ranging from a 14-inch observatory telescope to India's first Brillouin Light Scattering microscopy setup for nanomagnetism.

The year saw impactful research across pillars. In high-energy theory and cosmology, Dr Narendra Sahu and collaborators unified neutrino masses, baryogenesis, dark matter, and gravitational-wave signatures through type-I/III seesaw frameworks; Dr Priyotosh Bandyopadhyay's group advanced searches for extended scalar sectors, long-lived particles, and leptoquarks; Dr Divya Sachdeva contributed to SND@LHC (neutrino NSI); and Dr Saranya Ghosh's work with the CMS Collaboration featured in the 2025 Breakthrough Prize in Fundamental Physics. In astrophysics, Dr Mayukh Pahari reported new results on X-ray binaries and black-hole accretion, while Dr Shantanu Desai and the Indian Pulsar Timing Array released a precise uGMRT data set enabling nano-Hz gravitational-wave searches. In gravity & holography, Dr Shubho Roy proposed a novel extension of gauge–gravity duality to asymptotically Minkowski space.

In condensed matter, Dr Arabinda Haldar's group leveraged the new BLS microscopy facility to reveal nonlinear magnonics, low-damping ferrimagnet dynamics, and skyrmion-logic (with a granted Indian patent); Dr Jyoti Ranjan Mohanty advanced perpendicular magnetic anisotropy and temperature-tunable MoS_2 optoelectronics; Dr Suryanarayana Jammalamadaka demonstrated multi-bit memristive storage and neuromorphic synapses; Dr Archak Purkayastha established deep links between dissipative non-reciprocal systems and solid-state band structures; Dr. Bhuvanesh Ramakrishna co-pioneered micronozzle laser-plasma acceleration of GeV protons; and Dr Yogesh Kumar Srivastava reported a YBCO metasurface high-Tc device and perovskite memory physics, while securing a DRDO/DIA-COE project (\sim ₹1.8925 crores) on ferroelectric tunable filters. Together, these advances—spanning quantum nonlocality (Dr Alok Kumar Pan), dark matter phenomenology, gravitational waves, spintronics, neuromorphic electronics, and plasma acceleration—underscore Physics@IITH's growing national and international footprint, strong placements, and vibrant ecosystem of workshops, conferences, and mission-mode collaborations with DRDO, ISRO, and global partners.

For more information, please visit: https://physics.iith.ac.in/

Faculty

Head of the Department

Manish K Niranjan
Professor
PhD - University of Texas at Austin,
USA
Profile page:
https://iith.ac.in/phy/manish/

Professor

Anjan Kumar Giri
PhD - Utkal University
Profile page:
https://iith.ac.in/phy/giria/

Bhuvanesh Ramakrishna
PhD - The Queens University of Belfast,
UK
Profile page:
https://iith.ac.in/phy/bhuvan/

Jyoti Ranjan Mohanty
PhD - Paul Drude Institute / Humboldt
University, Germany
Profile page:
https://iith.ac.in/phy/jmohanty/

Kanchana V
PhD - Anna University
Profile page:
https://iith.ac.in/phy/kanchana/

Narendra Sahu PhD - IIT Bombay Profile page: https://iith.ac.in/phy/nsahu/

Prem Pal
PhD - IIT Delhi
Profile Page:
https://iith.ac.in/phy/prem/

Sai Santosh Kumar Raavi
PhD - University of Hyderabad
Profile page:
https://iith.ac.in/phy/sskraavi/

Saket Asthana
PhD - IIT Bombay
Profile page:
https://iith.ac.in/phy/asthanas/

Shantanu Desai
PhD - Boston University, USA
Profile page:
https://iith.ac.in/phy/shantanud/

Suryanarayana Jammalamadaka PhD - IIT Madras Profile page: https://iith.ac.in/phy/surya/

Vandana Sharma
PhD - Physical Research Laboratory,
Ahmedabad
Profile page:
https://iith.ac.in/phy/vsharma/

Associate Professor

Alok Kumar Pan
PhD - Bose Institute, Kolkata
Profile page:
https://iith.ac.in/phy/akp/

Anurag Tripathi
PhD - Harish-Chandra Research
Institute
Profile page:
https://iith.ac.in/phy/tripathi/

Arabinda Haldar PhD - IIT Bombay Profile page: https://iith.ac.in/phy/arabinda/

Priyotosh Bandyopadhyay
PhD -Harish-Chandra Research
Institute, Allahabad
Profile page:
https://iith.ac.in/phy/bpriyo/

Raghavendra Srikanth Hundi PhD - Harish Chandra Research Institute Profile page: https://iith.ac.in/phy/rshundi/

Shubho Ranjan Roy
PhD - Brown University, USA
Profile page:
https://iith.ac.in/phy/sroy/

Assistant Professor

Anupam Gupta
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/phy/agupta/

Archak Purkayastha
PhD - ICTS-TIFR, Bengaluru
Profile page:
https://iith.ac.in/phy/archak.p/

Atanu Rajak
PhD - SINP Kolkata
Profile page:
https://www.iith.ac.in/phy/atanu/

Divya Sachdeva
PhD - University of Delhi
Profile page:
https://www.iith.ac.in/phy/divyasa
chdeva/

Kirit Makwana
PhD - University of Wisconsin-Madison,
WI, USA
Profile page:
https://iith.ac.in/phy/kdmakwana/

Mahesh Peddigari
PhD - IIT Guwahati
Profile page:
https://iith.ac.in/phy/mahesh.p/

Manisha Thakurathi PhD - IISc, Bengaluru Profile page: https://www.iith.ac.in/phy/mthakurathi/

Mayukh Pahari
PhD - Pt. Ravishankar Sukla University,
Raipur
Profile page:
https://iith.ac.in/phy/mayukh/

Nithyanandan Kanagaraj
PhD - Pondicherry Central University,
Puducherry
Profile page:
https://iith.ac.in/phy/nithyan/

Saranya Ghosh
PhD - Tata Institute of Fundamental Research
Profile page:
https://iith.ac.in/phy/saranya.ghosh/

Satish Laxman Shinde
PhD - IISc Bangalore
Profile page:
https://iith.ac.in/phy/shindesl/

Saurabh Sandilya
PhD - Tata Institute of Fundamental
Research, Mumbai
Profile page:
https://iith.ac.in/phy/saurabh/

Srabani Kar PhD - Srabani Kar Profile page: https://www.iith.ac.in/phy/srabani/

Yogesh Kumar Srivastava
PhD - NTU Singapore
Profile page:
https://iith.ac.in/phy/yogesh.srivastava/

Karim Trabelsi
IJCLab, France
Profile page:
https://www.linkedin.com/in/karim-trabelsi-0a789534/

Soumya Mohanty
University of Texas Rio Grande Valley
Profile page:
https://www.utrgv.edu/physics/peop
le/faculty/soumyamohanty/index.htm

Patents:

Filed:

- Suryanarayana Jammalamadaka; A Spintronic Memory Device and a Method of Manufacturing the Same; 202441102812.
- Suryanarayana Jammalamadaka; A Memristor Device Having 5-Bit Conductance Quantisation and 6-Bit Memory Capacity and a Method of Manufacturing the Same; 202441102895.

Published:

- Arabinda Haldar; A Skymiron-Based Counter; 202441071776.
- 2. Arabinda Haldar; A Skyrmion-Based Tsetlin Machine Inference System; 202441086334.
- Nithyanandan Kanagaraj; An Artificial Intelligence (AI) Driven Non-Contact Stress Detection System; 202441036963.
- Nithyanandan Kanagaraj; An Image Processing System and Method to Classify Eye Condition; 202441038983.
- Nithyanandan Kanagaraj; A Non-Invasive Device for Real-Time Screening and Assessment of Keratoconus; 202441097171.

Granted:

- Arabinda Haldar; System and Method for Skyrmion-Based 3D Low-Complex Runtime Reconfigurable Architecture Design Methodology of Universal Logic Gate; 202341039644.
- Suryanarayana Jammalamadaka; Domain Wall Tunnelling and Logic Operations in Ferromagnetic

- Nanostructures; 201941048936.
- Suryanarayana Jammalamadaka; An Antiferromagnetic (AFM)/Ferromagnetic (FM) Device to Facilitate Electric Field Driven Giant Vertical Magnetisation Shift; 202441036469.

Book Chapters:

 S Desai. Astrophysical and Cosmological Searches for Lorentz Invariance Violation in Recent Progress on Gravity Tests. Challenges and Future Perspectives, Edited by C. Bambi and A. Cárdenas-Avendaño. ISBN: 978-981-97-2871-8.

Publications:

- Bhowmick S, Pan A K, et al. (2024). Necessary and sufficient state condition for violation of a Bell inequality with multiple measurement settings. In Physical Review A (Vol. 110, Issue 5). https://doi.org/10.1103/PhysRevA.110.052432
- Mukherjee S & Pan A K. (2024). Constrained measurement incompatibility from generalised contextuality of steered preparation. In New Journal of Physics (Vol. 26, Issue 12). https://doi.org/10.1088/1367-2630/ad96d8
- 3. Paul R, Sasmal S & Pan A K. (2024). Self-testing of multiple unsharpness parameters through sequential violations of a noncontextual inequality. In Physical Review A (Vol. 110, Issue 1). https://doi.org/10.1103/PhysRevA.110.012444
 - . Roy P, & Pan A K. (2024). Generalized parity-oblivious

- communication games powered by quantum preparation contextuality. In Journal of Physics A: Mathematical and Theoretical (Vol. 57, Issue 37). https://doi.org/10.1088/1751-8121/ad7108
- Sasmal S, Kanjilal S & Pan A K. (2024). Unbounded Sharing of Nonlocality Using Qubit Projective Measurements. In Physical Review Letters (Vol. 133, Issue 17). https://doi.org/10.1103/PhysRevLett.133.170201
- Abed Abud A, Giri A K, et al. (2024a). Doping liquid argon with xenon in ProtoDUNE Single-Phase: Effects on scintillation light. In Journal of Instrumentation (Vol. 19, Issue 8). https://doi.org/10.1088/1748-0221/19/08/P08005
- Abed Abud, A, Giri A K, et al. (2024b). The DUNE far detector vertical drift technology Technical design report. In Journal of Instrumentation (Vol. 19, Issue 8). https://doi.org/10.1088/1748-0221/19/08/T08004
- 8. Abed Abud A, Giri A K, et al. (2024c). Performance of a Modular Ton-Scale Pixel-Readout Liquid Argon Time Projection Chamber. In Instruments (Vol. 8, Issue 3). https://doi.org/10.3390/instruments8030041
- Abed Abud A, Giri A K, et al. (2024d). DUNE Phase II: scientific opportunities, detector concepts, technological solutions. In Journal of Instrumentation (Vol. 19, Issue 12). https://doi.org/10.1088/1748-0221/19/12/P12005
- Abud A A, Giri A K, et al. (2024). First measurement of the total inelastic cross section of positively charged kaons on argon at energies between 5.0 and 7.5 GeV. In Physical Review D (Vol. 110, Issue 9). https://doi.org/10.1103/PhysRevD.110.092011
- Acero M A, Giri A K, et al. (2024). Search for CP Violating Neutrino Nonstandard Interactions with the NOvA Experiment. In Physical Review Letters (Vol. 133, Issue 20). https://doi.org/10.1103/PhysRevLett.133.201802
- 13. Adachi I, Giri A K, et al. (2024). Test of lepton flavor universality with a measurement of R (D*) using hadronic B tagging at the Belle II experiment. In Physical Review D (Vol. 110, Issue 7). https://doi.org/10.1103/PhysRevD.110.072020
- 14. Adachi I, Giri A K, et al. (2024). Evidence for $B+\rightarrow k+\nu \nu^-$ decays. In Physical Review D (Vol. 109, Issue 11). https://doi.org/10.1103/PhysRevD.109.112006
- 15. Adachi I, Giri A K, et al. (2024). Search for a μ+μ-resonance in four-muon final states at Belle II. In Physical Review D (Vol. 109, Issue 11). https://doi.org/10.1103/PhysRevD.109.112015
- 16. Adachi I, Giri A K, et al. (2024). First Measurement of R (Xτ/ℓ) as an Inclusive Test of the b →cτν Anomaly. In Physical Review Letters (Vol. 132, Issue 21). https://doi.org/10.1103/PhysRevLett.132.211804
- Adachi I, Giri A K, et al. (2024). Test of light-lepton universality in τ decays with the Belle II experiment. In Journal of High Energy Physics (Vol. 2024, Issue 8). https://doi.org/10.1007/JHEP08(2024)205
- 18. Adachi I, Giri A K, et al. (2024a). Measurement of the energy dependence of the e+e−→BB⁻, BB⁻*, and B*B⁻* cross sections at Belle II. In Journal of High Energy Physics (Vol. 2024, Issue 10). https://doi.org/10.1007/JHEP10(2024)114
- 19. Adachi I, Giri A K, et al. (2024a). Measurement of CP asymmetries in B0 → KS0 KS0 KS0 decays at Belle II. In Physical Review D (Vol. 109, Issue 11). https://doi.org/10.1103/PhysRevD.109.112020
- Adachi I, Giri A K, et al. (2024b). New graph-neuralnetwork flavor tagger for Belle II and measurement of sin 2φ1 in B0 →J/ψ K S0 decays. In Physical Review D

- (Vol. 110, Issue 1). https://doi.org/10.1103/PhysRevD.110.012001
- 21. Adachi I, Giri A K, et al. (2024b). Study of Y(10753) decays to $\pi+\pi-Y(nS)$ final states at Belle II. In Journal of High Energy Physics (Vol. 2024, Issue 7). https://doi.org/10.1007/JHEP07(2024)116
- 22. Adachi I, Giri A K, et al. (2024c). Measurement of branching fractions and direct CP asymmetries for B → Kπ and B → ππ decays at Belle II. In Physical Review D (Vol. 109, Issue 1). https://doi.org/10.1103/PhysRevD.109.012001
- 23. Adachi I, Giri A K, et al. (2024c). Measurement of CP asymmetries in B0 $\rightarrow \eta'$ KS0 decays at Belle II. In Physical Review D (Vol. 110, Issue 11). https://doi.org/10.1103/PhysRevD.110.112002
- 24. Adachi I, Giri A K, et al. (2024d). Search for the e+e \rightarrow ηb (1S) ω and e+e- \rightarrow χb0 (1P) ω processes at s =10.745 GeV. In Physical Review D (Vol. 109, Issue 7). https://doi.org/10.1103/PhysRevD.109.072013
- 25. Adachi I, Giri A K, et al. (2024a). Search for the decay B0

 →γγ using Belle and Belle II data. In Physical Review D

 (Vol. 110, Issue 3).

 https://doi.org/10.1103/PhysRevD.110.L031106
- 26. Adachi, I., Giri, A. K., et al. (2024b). Determination of the CKM angle φ3 from a combination of Belle and Belle II results. In Journal of High Energy Physics (Vol. 2024, Issue 10). https://doi.org/10.1007/JHEP10(2024)143
- Adachi I, Giri A K, et al. (2024c). Search for Rare b →dℓ+ ℓ- Transitions at Belle. In Physical Review Letters (Vol. 133, Issue 10). https://doi.org/10.1103/PhysRevLett.133.101804
- 28. Adachi I, Giri A K, et al. (2024d). Measurement of the branching fractions of B⁻ → D(*)K-KS*0 and B⁻ → D(*)Ds- decays at Belle II. In Journal of High Energy Physics (Vol. 2024, Issue 8). https://doi.org/10.1007/JHEP08(2024)206
- 29. Adachi I, Giri A K, et al. (2024e). Measurements of the branching fractions of Ξc0→Ξ0π0, Ξc0→Ξ0η, and Ξc0→Ξ0η' and asymmetry parameter of Ξc0→Ξ0π0. In Journal of High Energy Physics (Vol. 2024, Issue 10). https://doi.org/10.1007/JHEP10(2024)045
- 30. Adachi I, Giri A K, et al. (2024f). Search for lepton-flavor-violating $\tau \rightarrow \mu \mu + \mu \text{decays}$ at Belle II. In Journal of High Energy Physics (Vol. 2024, Issue 9). https://doi.org/10.1007/JHEP09(2024)062
- 31. Adachi I, Giri A K, et al. (2024g). Measurement of branching-fraction ratios and CP asymmetries in B± → DCP±K± decays at Belle and Belle II. In Journal of High Energy Physics (Vol. 2024, Issue 5). https://doi.org/10.1007/JHEP05(2024)212
- 32. Adachi I, Giri A K, et al. (2024h). Measurement of the branching fraction of the decay B- →d0ρ (770)- at Belle II. In Physical Review D (Vol. 109, Issue 11). https://doi.org/10.1103/PhysRevD.109.L111103
- 33. Adachi I, Giri A K, et.al. (2024i). Measurement of the $e+e-\rightarrow \pi+\pi-\pi 0$ cross section in the energy range 0.62–3.50 GeV at Belle II. In Physical Review D(Vol. 110, Issue11). https://doi.org/10.1103/PhysRevD.110.11205
- 34. Biswas D, Giri A K, et al. (2024). Search for a dark leptophilic scalar produced in association with τ+τ-pair in e+e- annihilation at center-of-mass energies near 10.58 GeV. In Physical Review D (Vol. 109, Issue 3). https://doi.org/10.1103/PhysRevD.109.032002
- 85. Brahma B, Mu W, Himmel A & Giri A. (2024). Light Dark Matter Analysis Using NOvA Near Detector. In Proceedings of Science (Vol. 449). https://www.scopus.com/inward/record.uri?eid=2-s2.085189242723&partnerID=40&md5=bf932fdece8135282aba57faa915d053
- 36. Cui J X, Giri A K, et al. (2024). Search for the semileptonic decays $\Xi c0 \rightarrow \Xi 0\ell + \ell$ at Belle. In Physical Review D (Vol. 109, Issue 5). https://doi.org/10.1103/PhysRevD.109.052003

- 37. Dhamija R, Nishida S & Giri A. (2024). Search for cLFV in $\Upsilon(2S) \rightarrow \ell \mp \tau \pm (\ell = e, \mu)$ Decays at Belle. In Springer Proceedings in Physics: Vol. 304 SPPHY (pp. 857–859). https://doi.org/10.1007/978-981-97-0289-3_220
- 38. Dhamija R, Giri A K, et al. (2024). Search for charged-lepton flavor violation in Υ(2S) → ℓ∓τ± (ℓ = e, μ) decays at Belle. In Journal of High Energy Physics (Vol. 2024, Issue 2). https://doi.org/10.1007/JHEP02(2024)187
- 39. Ferlewicz D, Giri A K, et al. (2024). Angular analysis of B
 →k*e+e- in the low- q2 region with new electron
 identification at Belle. In Physical Review D (Vol. 110,
 Issue 7).
 https://doi.org/10.1103/PhysRevD.110.072005
- 40. Gu T, Giri A K, et al. (2024). Search for Baryon-Number-Violating Processes in B- Decays to the Ξ ¯ c0 Λ ¯ c- Final State. In Physical Review Letters (Vol. 133, Issue 7). https://doi.org/10.1103/PhysRevLett.133.071802
- 41. Guan Y, Giri A K, et al. (2024). Measurements of the Branching Fraction, Polarization, and CP Asymmetry for the Decay B0 →ωω. In Physical Review Letters (Vol. 133, Issue 8). https://doi.org/10.1103/PhysRevLett.133.081801
- Ipsita N S, Bhardwaj V & Giri A. (2024a). Search for Radiative Ds Decays in Belle. In Springer Proceedings in Physics: Vol. 304 SPPHY (pp. 922–924). https://doi.org/10.1007/978-981-97-0289-3_241
- 43. Ipsita N S, Bhardwaj V & Giri A. (2024b). The Study of Radiative Ds Decays. In Proceedings of Science (Vol. 462). https://www.scopus.com/inward/record.uri?eid=2s2.085201953962&partnerID=40&md5=73635c9511d184bd39634ca83e851ae0
- 44. Kovalenko E, Giri A K, et al. (2024). Evidence of hb(2P)→(1S)η Decay and Search for hb(1P,2P)→(1S)π0 with the Belle Detector. In Physical Review Letters (Vol. 133, Issue 26). https://doi.org/10.1103/PhysRevLett.133.261901
- 45. Kumar D, Giri A K, et al. (2024). Search for the decay Bs0 →j/ψπ0 at Belle experiment. In Physical Review D (Vol. 109, Issue 3). https://doi.org/10.1103/PhysRevD.109.032007
- Lalnuntluanga R & Giri A. (2024). Pion Production in DUNE Near Detector with Argon Target. In Springer Proceedings in Physics: Vol. 304 SPPHY (pp. 1135– 1137). https://doi.org/10.1007/978-981-97-0289-3314
- Lalnuntluanga R, Pradhan R K & Giri A. (2024). Probing neutrino-nucleus interaction in DUNE and MicroBooNE. In Nuclear Physics B (Vol. 1008). https://doi.org/10.1016/j.nuclphysb.2024.116703
- 48. Maity S, Giri A K, et al. (2024). Search for baryon and lepton number violating decays D →p ℓ. In Physical Review D (Vol. 109, Issue 3). https://doi.org/10.1103/PhysRevD.109.L031101
- Nayak L, Brahma B & Giri A. (2024). Studying lepton flavor violating μ decays with vector leptoquark. In Journal of Physics G: Nuclear and Particle Physics (Vol. 51, Issue 5). https://doi.org/10.1088/1361-6471/ad2471
- 50. Nayak L, Nishida S & Giri A. (2024). Search for $Bs0 \rightarrow \ell \ \mp \tau \pm \ (\ell = e, \mu)$ with the Semi-leptonic Tagging Method at Belle. In Springer Proceedings in Physics: Vol. 304 SPPHY (pp. 196–199). https://doi.org/10.1007/978-981-97-0289-3_42
- 51. Nayak M, Giri A K, et al. (2024). Search for a heavy neutral lepton that mixes predominantly with the tau neutrino. In Physical Review D (Vol. 109, Issue 11). https://doi.org/10.1103/PhysRevD.109.L111102
- 52. Prim M T, Giri A K, et al. (2024). Measurement of Angular Coefficients of B → d*ℓν ℓ: Implications for |Vcb | and Tests of Lepton Flavor Universality. In Physical Review Letters (Vol. 133, Issue 13). https://doi.org/10.1103/PhysRevLett.133.131801
- 53. Savinov V, Giri A K, et al. (2024). Search for two-body B meson decays to $\Lambda 0$ and ωc (*)0. In Physical Review D

- (Vol. 110, Issue 3). https://doi.org/10.1103/PhysRevD.110.L031102
- 54. Kumari A, Gupta A, et al. (2024). Single-Molecule Tracking dataset for histone H3 (hht1) from live and fixed cells of Schizosaccharomyces pombe. In Scientific Data (Vol. 11, Issue 1). https://doi.org/10.1038/s41597-024-04258-0
- 55. Nerger B A, Gupta A, et al. (2024). Tuning porosity of macroporous hydrogels enables rapid rates of stress relaxation and promotes cell expansion and migration. In Proceedings of the National Academy of Sciences of the United States of America (Vol. 121, Issue 45). https://doi.org/10.1073/pnas.2410806121
- 56. Yerasi S R, Gupta A, et al. (2024). Preserving large-scale features in simulations of elastic turbulence. In Journal of Fluid Mechanics (Vol. 1000). https://doi.org/10.1017/jfm.2024.858
- 57. Agarwal N, Tripathi A, et al. (2024). Soft Anomalous Dimension Structure at Five Loops. In Springer Proceedings in Physics: Vol. 304 SPPHY (pp. 1117–1119). https://doi.org/10.1007/978-981-97-0289-3
- Agarwal N, Tripathi A. et al. (2024). Next-to-leading power corrections to event-shape variables. In Pramana—Journal of Physics (Vol. 98, Issue 2). https://doi.org/10.1007/s12043-024-02743-0
- Danish A, Tripathi A. et al. (2024). Next-to-eikonal Webs in Multiparton Amplitude. In Springer Proceedings in Physics: Vol. 304 SPPHY (pp. 1114– 1116). https://doi.org/10.1007/978-981-97-0289-3307
- 61. Mishra S, Tripathi A. et al. (2024). Multiparton Cwebs at five loops. In Journal of High Energy Physics (Vol. 2024, Issue 7). https://doi.org/10.1007/JHEP07(2024)078
- Pal S, Tripathi A, et al. (2024). EDGE: A Simple Way to Obtain Power Corrections for Event Shape Variables. In Springer Proceedings in Physics: Vol. 304 SPPHY (pp. 789–791). https://doi.org/10.1007/978-981-97-0289-3
 196
- Srivastav A, Tripathi A. et al. (2024). A Novel Approach to Understand the Color Structure of Multiparton Scattering Amplitudes. In Springer Proceedings in Physics: Vol. 304 SPPHY (pp. 492-496). https://doi.org/10.1007/978-981-97-0289-3_109
- 64. Van Beekveld M, Tripathi A. et al. (2024). Next-to-soft radiation from a different angle. In Physical Review D (Vol. 109, Issue 7). https://doi.org/10.1103/PhysRevD.109.074005
- Devapriya M S, Haldar A. et al. (2024). Effect of width and thickness on propagating spin waves in permalloy microstripe waveguides. In Journal of Applied Physics (Vol. 136, Issue 9). https://doi.org/10.1063/5.0223672
- 66. Devapriya M S, Haldar A. et al (2024). Spin Textures in High-Aspect-Ratio Ni80Fe20 Nanodisk Arrays: Implications for Next-Generation Spintronic Devices. In ACS Applied Nano Materials (Vol. 7, Issue 13, pp. 15096–15103). https://doi.org/10.1021/acsanm.4c01857
- 67. Kuchibhotla M, Haldar A. et al. (2024a). Investigation of magnetization dynamics in trilayer width-modulated nanowires. In Journal of Applied Physics (Vol. 135, Issue 10). https://doi.org/10.1063/5.0191447
- Kuchibhotla M, Haldar A & Adeyeye A O. (2024b). Magnetization dynamics in single and trilayer nanowires. In Journal of Physics Condensed Matter (Vol. 36, Issue 45). https://doi.org/10.1088/1361-648X/ad6c9a
- Mondal R, Haldar A. et al. (2024). Effect of growth rate on structural, magnetic and spin dynamic properties of

- Co2FeAl thin films. In Thin Solid Films (Vol. 792). $\underline{\text{https://doi.org/10.1016/j.tsf.2024.140268}}$
- Panigrahi B, Haldar A. et al. (2024). Spin-to-charge conversion via dual-mode ferromagnetic resonance in Ta/NiFe/FeMn/CoFeB multilayer. In Journal of Magnetism and Magnetic Materials (Vol. 608). https://doi.org/10.1016/j.jmmm.2024.172420
- 71. Panigrahi B, Haldar A. et al. (2024). Dual mode spin to charge conversion using inverse spin Hall effect in NiFe/FeMn/NiFe multilayer thin films. In Journal of Physics D: Applied Physics (Vol. 57, Issue 30). https://doi.org/10.1088/1361-6463/ad42aa
- 72. Pradhan J, Haldar A. et al. (2024). Ultra-low Gilbert damping and self-induced inverse spin Hall effect in GdFeCo thin films. In Journal of Applied Physics (Vol. 136, Issue 20). https://doi.org/10.1063/5.0231132
- 73. Singh R, Haldar A. et al. (2024). Effect of an external/internal magnetic field on the photocurrent in Py-topological insulator heterojunction Ni80Fe20/TI (Bi2Te3/Bi2Se3/Bi2Te2Se)/p-Si devices. In Physical Chemistry Chemical Physics (Vol. 26, Issue 23, pp. 16708–16718). https://doi.org/10.1039/d4cp01557f
- 74. Singh S, Haldar A. et al. (2024). Microstructural and Magnetic Properties of Nanocrystalline Nd-Fe-B Rare Earth Magnet Prepared by Spark Plasma Sintering Technique. In Journal of Superconductivity and Novel Magnetism (Vol. 37, Issues 8–10, pp. 1689–1700). https://doi.org/10.1007/s10948-024-06806-6
- 75. Sivasubramani S, Haldar A. et al. (2024). Area Efficient Skyrmion Logic based Approximate Adder Architecture Design Methodology. In IEEE Transactions on Emerging Topics in Computing (pp. 1–12). https://doi.org/10.1109/TETC.2024.3434723
- Sriram K, Haldar A. et al. (2024). Deposition Pressure Dependence on Spin Hall Angle of W Thin Films Grown on NiFe. In SPIN (Vol. 14, Issue 2). https://doi.org/10.1142/S2010324723400271
- 77. Sriram K, Haldar A. et al. (2024). Deposition pressure-controlled phase tailoring and stability of β-W for spintronic applications. In Journal of Applied Physics (Vol. 136, Issue 4). https://doi.org/10.1063/5.0202304
- Purkayastha A, & Imparato A. (2024). Interaction-induced transition in quantum many-body detection probability. In Physical Review A (Vol. 109, Issue 2). https://doi.org/10.1103/PhysRevA.109.L020202
- 79. Strachan D J, Purkayastha A & Clark S R. (2024). Extracting dynamical maps of non-Markovian open quantum systems. In Journal of Chemical Physics (Vol. 161, Issue 15). https://doi.org/10.1063/5.0228428
- 80. Rajak A & Chakrabarti B K. (2024). Quantum annealing in Sherrington–Kirkpatrick spin glass in presence of time-dependent longitudinal field. In Indian Journal of Physics (Vol. 98, Issue 11, pp. 3769–3775). https://doi.org/10.1007/s12648-023-03041-y
- 81. Sharma S, Nag T, Rajak A, et al. (2024). Unquenched—A memoir on non-equilibrium dynamics of quantum many-body systems: Honoring Amit Dutta. In European Physical Journal B (Vol. 97, Issue 7). https://doi.org/10.1140/epjb/s10051-024-00740-1
- 82. Balusu D, Ramakrishna B. et al. (2024). Ion acceleration from aluminum foil coated with a gold nanolayer irradiated by ultrashort laser pulses. In Physics of Plasmas (Vol. 31, Issue 1). https://doi.org/10.1063/5.0185875
- 83. Chintalwad S, Ramakrishna B. et al. (2024). Enhanced positron acceleration driven by femto-second laser pulses irradiating structured targets. In Journal of Physics B: Atomic, Molecular and Optical Physics (Vol. 57, Issue 8). https://doi.org/10.1088/1361-6455/ad31b1
- 84. Chintalwad S, Ramakrishna B. et al. (2024). Simulation studies of γ-ray radiation in laser-plasma interactions with structured targets. In Fundamental Plasma Physics (Vol. 10). https://doi.org/10.1016/j.fpp.2024.100038

- 85. Chintalwad S, Ramakrishna B & Van Dao L. (2024). Investigating the influence of ionization on high-harmonic generation in Ar–Ne and Ar–Kr gas mixtures driven by kHz laser pulses. In European Physical Journal D (Vol. 78, Issue 10). https://doi.org/10.1140/epjd/s10053-024-00924-5
- 86. Sankaranarayanan S A, Ramakrishna B. et al. (2024). Understanding the Role of NIR Laser Power and Wavelength in Tuning the Photothermal Transduction Efficiency of Gold Nanosystems in Biomedical Applications. In Indian Journal of Pure and Applied Physics (Vol. 62, Issue 2, pp. 87–92). https://doi.org/10.56042/jjpap.v62i2.7420
- Anagha G, Mohanty J. et al. (2024). Effect of NM (B, C, N, O and F) doping and Fe-NM co-doping on structure, electronic and magnetic properties of monolayer 2H-MoTe2: A first principle investigation. In Physica E: Low-Dimensional Systems and Nanostructures (Vol. 156). https://doi.org/10.1016/j.physe.2023.115846
- 88. Kumar Mishra S, Mohanty J. et al. (2024). Engineering perpendicular magnetic anisotropy and Dzyaloshinskii-Moriya interaction in Gd-Fe thin films for spintronics applications. In Journal of Applied Physics (Vol. 136, Issue 24). https://doi.org/10.1063/5.0244024
- Mishra S K, Mohanty J. et al. (2024). Investigation of magnetic domain interactions and switching mechanism in sputter deposited Fe-Co-Al thin film. In Journal of Magnetism and Magnetic Materials (Vol. 610). https://doi.org/10.1016/j.jmmm.2024.172535
 Parappurath S P & Mohanty J R. (2024). Non-
- Parappurath S P & Mohanty J R. (2024). Non-equillibrium ultrafast optical excitation as a stimulus for ultra-small field-free magnetic skyrmions in ferrimagnetic GdFeCo. In Journal of Applied Physics (Vol. 136, Issue 12). https://doi.org/10.1063/5.0223860
- 91. Pradhan S, Mohanty J. et al. (2024). Magneto-optical Kerr effect (MOKE) and magnetic force microscopy (MFM) studies on Cr/Ni nanodot arrays deposited using innovative nano-stencil method. In Journal of Materials Science: Materials in Electronics (Vol. 35, Issue 33). https://doi.org/10.1007/s10854-024-13829-1
- Prasad S P & Mohanty J R. (2024). Ultrafast optical pumping induced polarity and chirality reversal of Neel skyrmions in amorphous GdFeCo ferrimagnet. In Applied Physics Letters (Vol. 125, Issue 7). https://doi.org/10.1063/5.0209772
- 93. Aiswarya T, Kanchana V, et al. (2024). Insights into electron and phonon topology: Multi-fold fermions and Dirac nodal-line net bosons in SiX2 (X=P and As). In Physica Scripta (Vol. 99, Issue 9). https://doi.org/10.1088/1402-4896/ad6c86
- 94. Anusree C V, Kanchana V, et al. (2024). Coexistence of electron and phonon topology in conjunction with quantum transport device modeling. In Journal of Physics Condensed Matter (Vol. 36, Issue 15). https://doi.org/10.1088/1361-648X/ad1a5b
- 95. Mondal S, Kanchana V, et al. (2024). Exploring magnetism, topology, and magnetoresistance in rareearth-based compound GdAuSn: Ab initio study. In Journal of Applied Physics (Vol. 136, Issue 24). https://doi.org/10.1063/5.0243956
- 96. Raj Natarajan A, Kanchana V, et al. (2024). Investigation of cathode properties of two-dimensional NbS2Cl2 for Li and Na-ion batteries using density functional theory. In Electronic Structure (Vol. 6, Issue 2). https://doi.org/10.1088/2516-1075/ad46b5
- 97. Ram D, Kanchana V, et al. (2024). Magnetotransport and electronic structure of EuAuSb: A candidate antiferromagnetic Dirac semimetal. In Physical Review B (Vol. 109, Issue 15). https://doi.org/10.1103/PhysRevB.109.155152
- 98. Sahoo S S, Kanchana V, et al. (2024). Fermi surface nesting and topological and magnetoresistance

- properties of ThX2 (X=As,Sb,Bi). In Physical Review B (Vol. 109, Issue 3). https://doi.org/10.1103/PhysRevB.109.035151
- 99. Sahoo S S, Kanchan V, et al. (2024). Magnetic and Thermoelectric Properties of Mn2CoGe and Mn2CoSb. In Journal of Superconductivity and Novel Magnetism (Vol. 37, Issues 5–7, pp. 1199–1205). https://doi.org/10.1007/s10948-024-06751-4
- 100.Sau S, Kanchana V, et al. (2024). Ferroelectric polymorphic phenomena in the layered antiferromagnet Cu(OH)2. In Journal of Physics Condensed Matter (Vol. 36, Issue 31). https://doi.org/10.1088/1361-648X/ad4224
- 101. Sau S, Kanchana V, et al. (2024). A Comprehensive Analysis of Topological Features in Electronic Structure of GdAgMg. In Journal of Superconductivity and Novel Magnetism (Vol. 37, Issues 8–10, pp. 1669–1675). https://doi.org/10.1007/s10948-024-06798-3
- 102. Singh J, Kanchana V, et al. (2024a). Deep Earth Chronicles: High-Pressure Investigation of Phenakite Mineral Be2SiO4. In ChemPhysChem (Vol. 25, Issue 9). https://doi.org/10.1002/cphc.202300901
- 103.Singh J, Kanchana V, et al. (2024b). Pressure-Driven Responses in Cd2SiO4 and Hg2GeO4 Minerals: A Comparative Study. In Crystals (Vol. 14, Issue 6). https://doi.org/10.3390/cryst14060538
- 104. Kanchana V. (2024). Computational advances for energy conversion: Unleashing the potential of thermoelectric materials. In Solid State Sciences (Vol. 157). https://doi.org/10.1016/j.solidstatesciences.2024. 107707
- 105. Satyasmita S, Das P & Makwana K D. (2024). Identifying kinetic scale magnetic discontinuity structures in turbulent solar wind. In Astrophysics and Space Science (Vol. 369, Issue 1). https://doi.org/10.1007/s10509-024-04266-x
- Sharma J & Makwana K D. (2024). Kinetic Alfvén wave 106.cascade in sub-ion range plasma turbulence. In Frontiers in Astronomy and Space Sciences (Vol. 11). https://doi.org/10.3389/fspas.2024.1423642
- 107. Dewangan P, Peddigari M, et al. (2024). Fabrication of the microfluidic channels in silicon wafers using isotropic wet etching method: The impact of the composition of HNA solution on etching. In Microsystem Technologies. https://doi.org/10.1007/s00542-024-05688-x
- 108.Park S, Peddigari M, et al. (2024). Strategic design of emerging (K,Na)NbO3-based perovskites for high-performance piezocatalysis and photo-piezocatalysis. In Nanoscale (Vol. 17, Issue 6, pp. 2931–2960). https://doi.org/10.1039/d4nr04415k
- 109. Pattipaka S, Peddigari M, et al. (2024). Improving the Energy Storage Performance in Bi0.5Na0.5Ti03-Based Ceramics by Combining Relaxor and Antiferroelectric Properties. In Materials (Vol. 17, Issue 20). https://doi.org/10.3390/ma17205044
- 110.Pattipaka S, Peddigari M, et al. (2024). Ceramic-Based Dielectric Materials for Energy Storage Capacitor Applications. In Materials (Vol. 17, Issue 10). https://doi.org/10.3390/ma17102277
 111.Ye J, Peddigari M, et al. (2024). Highly flexible
- 111.Ye J, Peddigari M, et al. (2024). Highly flexible ferroelectric PZT thick films on Cu/PI foil for flexible energy storage devices. In Journal of Energy Storage (Vol. 93). https://doi.org/10.1016/j.est.2024.112321
- 112.Barman S, Niranjan M K, et al. (2024). Sr3Zr2Cu4Q9 (Q = S and Se): Two novel layered quaternary mixed transition metal chalcogenides. In Dalton Transactions (Vol. 54, Issue 5, pp. 1871–1883). https://doi.org/10.1039/d4dt02928c
- 113.Bhavani G, Niranjan M K, et al. (2024). Structural, magnetic, optical and electronic properties of Gd2NiIrO6. In Physica B: Condensed Matter (Vol. 695). https://doi.org/10.1016/j.physb.2024.416477
- 114. Ghosh A, Niranjan M K, et al. (2024). Accurate and

- efficient prediction of the band gaps and optical spectra of chalcopyrite semiconductors from a nonempirical range-separated dielectric-dependent hybrid: Comparison with many-body perturbation theory. In Physical Review B (Vol. 109, Issue 4). https://doi.org/10.1103/PhysRevB.109.045133
- 115. Mamindla R & Niranjan M K. (2024a). Influence of temperature on bandgap shifts, optical properties and photovoltaic parameters of GaAs/AlAs and GaAs/AlSb p-n heterojunctions: Insights from ab-initio DFT + NEGF studies. In Journal of Physics Condensed Matter (Vol. 36, Issue 20). https://doi.org/10.1088/1361-648X/ad2793
- 116. Mamindla R & Niranjan M K. (2024b). Temperature-dependent electronic, optical, and solar cell device properties of AlAs and AlSb semiconductors and their p-n homojunctions. In Journal of Physics and Chemistry of Solids (Vol. 189). https://doi.org/10.1016/j.jpcs.2024.111971
- 117. Rani D, Jana S K Niranjan, M & Samal P. (2024). First-principle investigation of structural, electronic, and phase stabilities in chalcopyrite semiconductors: Insights from Meta-GGA functionals. In Journal of Physics Condensed Matter (Vol. 36, Issue 16). https://doi.org/10.1088/1361-648X/ad1ca3
- 118. Saha M, Niranjan M K & Asthana S. (2024). Polarized Raman, infrared and dielectric spectra of lead-free K0.5Na0.5NbO3 piezoelectric system: Insights from abinitio theoretical and experimental studies. In Journal of Physics Condensed Matter (Vol. 36, Issue 42). https://doi.org/10.1088/1361-648X/ad61aa
- 119. Shahid O, Niranjan M K & Prakash J. (2024). Structure and physical properties of a new telluride Mg1.2(1)In1.2(1)Si2Te6. In Solid State Sciences (Vol. 156).https://doi.org/10.1016/j.solidstatesciences.2024.107677
- 120. Shahid O, Niranjan M K, et al. (2024). Syntheses, crystal structures, and physical properties of noncentrosymmetric MgIn2Te4 and MnIn2Te4. In Solid State Sciences (Vol. 152). https://doi.org/10.1016/j.solidstatesciences.2024.107
- 121. Srivastava K, Niranjan M K, et al. (2024). Thermoelectric and photovoltaic properties of 12-BaBi2S4. In Journal of Physics and Chemistry of Solids (Vol. 192). https://doi.org/10.1016/j.jpcs.2024.112085
- 122. Yadav S, Niranjan M K & Prakash J. (2024). Ba15Zr14Te42: A new complex ternary telluride structure with low thermal conductivity. In Dalton Transactions (Vol. 53, Issue 35, pp. 14848–14857). https://doi.org/10.1039/d4dt01878h
- Yadav S, Niranjan M K, et al. (2024). CsY2M3Se5: The 123. first quaternary chalcogenides of the A-Y-M-Q (A = Rb/Cs; M = Cu/Ag; Q = S/Se) system. In Journal of Solid State Chemistry (Vol. 331). https://doi.org/10.1016/j.jssc.2023.124535
 - Bhattacharya M, Pahari M, et al. (2024). Relativistic X-ray reflection from the accreting millisecond X-ray
- 124. pulsar IGR J17498-2921. In Monthly Notices of the Royal Astronomical Society (Vol. 534, Issue 1, pp. 634-644). https://doi.org/10.1093/mnras/stae2135
- 125. Dutta T, Pahari M, et al. (2024). Probing the origin of the extended flaring branch of Z-type X-ray binaries GX 340+0 and GX 5-1 using AstroSat. In Monthly Notices of the Royal Astronomical Society (Vol. 535, Issue 4, pp. 3383–3395). https://doi.org/10.1093/mnras/stae2529
- 126. Pahari M, et al. (2024). AstroSat and NICER timing view of the Z-Type neutron star X-ray binary GX 340 + 0. In Monthly Notices of the Royal Astronomical Society (Vol. 528, Issue 3, pp. 4125-4138). https://doi.org/10.1093/mnras/stae309
- 127. Abed Abud A, Sahu N. et al. (2024a). Doping liquid

- argon with xenon in ProtoDUNE Single-Phase: Effects on scintillation light. In Journal of Instrumentation (Vol. 19, Issue 8). https://doi.org/10.1088/1748-0221/19/08/P08005
- 128. Abed Abud A, Sahu N. et al. (2024b). The DUNE far detector vertical drift technology Technical design report. In Journal of Instrumentation (Vol. 19, Issue 8). https://doi.org/10.1088/1748-0221/19/08/T08004
- 129. Abed Abud A, Sahu N. et al. (2024c). Performance of a Modular Ton-Scale Pixel-Readout Liquid Argon Time Projection Chamber. In Instruments (Vol. 8, Issue 3). https://doi.org/10.3390/instruments8030041
- 130. Abed Abud A, Sahu N. et al. (2024d). DUNE Phase II: scientific opportunities, detector concepts, technological solutions. In Journal of Instrumentation (Vol. 19, Issue 12). https://doi.org/10.1088/1748-0221/19/12/P12005
- 131. Abud A A, Sahu N. et al. (2024). First measurement of the total inelastic cross section of positively charged kaons on argon at energies between 5.0 and 7.5 GeV. In Physical Review D (Vol. 110, Issue 9). https://doi.org/10.1103/PhysRevD.110.092011
- 132. Adhikary A, Sahu N. et al. (2024). New realisation of light thermal dark matter with enhanced detection prospects. In Journal of Cosmology and Astroparticle Physics (Vol. 2024, Issue 12). https://doi.org/10.1088/1475-7516/2024/12/043
- 133. Borah D, Sahu N. et al. (2024). Singlet-doublet fermion Dark Matter with Dirac neutrino mass, (g 2)μ and ΔNeff. In Journal of High Energy Physics (Vol. 2024, Issue 5). https://doi.org/10.1007/JHEP05(2024)096
- 134. Borah D, Sahu N. et al. (2024). Scotogenic U (1)Lμ-Lτ origin of (g-2)μ, W -mass anomaly and 95 GeV excess. In Physical Review D (Vol. 109, Issue 5). https://doi.org/10.1103/PhysRevD.109.055021
- 135. Borah D, Sahu N. et al. (2024). Asymmetric self-interacting dark matter with a canonical seesaw model. In Physical Review D (Vol. 110, Issue 3). https://doi.org/10.1103/PhysRevD.110.035033
- 136. Dutta M, Sahu N. et al. (2024). Dirac Leptogenesis Assisted Asymmetric Self-interacting Dark Matter. In Springer Proceedings in Physics: Vol. 304 SPPHY (pp. 1086–1088). https://doi.org/10.1007/978-981-97-0289-3-297
- 137. Mahapatra S, Sahu N. et al. (2024). Self-interacting dark matter and Dirac neutrinos via lepton quarticity. In Physical Review D (Vol. 109, Issue 5). https://doi.org/10.1103/PhysRevD.109.055036
- 138. Nithyanandan K. (2024). Soliton physics in India: A tribute to the late K. Porsezian. In Optics Communications (Vol. 553). https://doi.org/10.1016/j.optcom.2023.130078
- 139. Dewangan P Pal P. et al. (2024). Fabrication of the microfluidic channels in silicon wafers using isotropic wet etching method: The impact of the composition of HNA solution on etching. In Microsystem Technologies. https://doi.org/10.1007/s00542-024-05688-x
- 140. Jujjuvarapu S K, Pal P. et al. (2024). Design and fabrication of leaf-based microcantilever beams. In Microsystem Technologies. https://doi.org/10.1007/s00542-024-05838-1
- 141. Jujjuvarapu S K, Pal P. et al. (2024). Frequency and damping analysis of hexagonal microcantilever beams. In Sensors and Actuators A: Physical (Vol. 375). https://doi.org/10.1016/j.sna.2024.115542
- 142. Purohit S, Pal P. et al. (2024). Design and Simulation of Stepped Microcantilevers for Energy Harvesting Applications. In Springer Proceedings in Physics (Vol. 306, pp. 205–211). https://doi.org/10.1007/978-981-97-1571-8 23
- 143. Purohit S, Pal P. et al. (2024). High Speed Etching of Silicon in NaOH-Based Solution. In Springer Proceedings in Physics (Vol. 306, pp. 243–249). https://doi.org/10.1007/978-981-97-1571-8 28

- 144. Sahu V, Pal P. et al. (2024). Fabrication of microchannels and through-holes in Borofloat glass using Cr thin film with positive photoresist as the masking layer through wet etching. In Materials Today Communications (Vol. 41). https://doi.org/10.1016/j.mtcomm.2024.110352
- 145. Sahu V, Pal P. et al. (2024). A study on chromium thin film with positive photoresist as a masking layer towards the wet bulk micromachining of Borofloat glass. In Micro and Nano Systems Letters (Vol. 12, Issue 1). https://doi.org/10.1186/s40486-024-00201-5
- 146. Bandyopadhyay P, et al. (2024). Interplay of inert doublet and vector-like lepton triplet with displaced vertices at the LHC/FCC and MATHUSLA. In Journal of High Energy Physics (Vol. 2024, Issue 3). https://doi.org/10.1007/JHEP03(2024)109
- 147. Bandyopadhyay P & Jangid S. (2024). On the Fate of Electroweak Vacuum and Order of Phase Transition in Beyond Standard Model Scenarios. In Springer Proceedings in Physics: Vol. 304 SPPHY (pp. 263–268). https://doi.org/10.1007/978-981-97-0289-3 57
- 148. Bandyopadhyay P & Parashar S. (2024). Probing a scalar singlet-triplet extension of the standard model via vector boson fusion at a muon collider. In Physical Review D (Vol. 110, Issue 11). https://doi.org/10.1103/PhysRevD.110.115032
- 149. Bandyopadhyay P, et al. (2024). Probing Inert Triplet Model at a multi-TeV muon collider via vector boson fusion with forward muon tagging. In Journal of High Energy Physics (Vol. 2024, Issue 7). https://doi.org/10.1007/JHEP07(2024)253
- 150. Bandyopadhyay P, et al. (2024a). Phenomenology of Scalar Leptoquarks: Neutrino Mass, g-2, and B-Anomalies. In Springer Proceedings in Physics: Vol. 304 SPPHY (pp. 919–921). https://doi.org/10.1007/978-981-97-0289-3_240
- 151. Bandyopadhyay P, et al.(2024b). Searching for Scalar Leptoquarks at the LHC/FCC and a Muon Collider. In Proceedings of Science (Vol. 450). https://www.scopus.com/inward/record.uri?eid=2-s2.085199800810&partnerID=40&md5=1cbb39d2188 0e810a8c48875e681d710
- 152. Ahmed M S, Raavi S S K, et al. (2024a). Desensitizing Self-trapped Excitonic Emission in Bi-Ho Co-doped Cs2AgInCl6 Nanocrystals. In CLEO: Science and Innovations, CLEO: S and I 2024 in Proceedings CLEO 2024, Part of Conference on Lasers and Electro-Optics. https://doi.org/10.1364/cleo_si.2024.sm10.6
- 153. Ahmed M S, Raavi S S K, et al. (2024b). Desensitizing Self-trapped Excitonic Emission in Bi-Ho Co-doped Cs2AgInCl6 Nanocrystals. In 2024 Conference on Lasers and Electro-Optics, CLEO 2024. https://doi.org/10.1364/cleo_si.2024.sm10.6
- 154. Ahmed M S, Raavi S S K, et al. (2024). Hot carrier dynamics in metalated porphyrin-naphthalimide thin films. In Physical Chemistry Chemical Physics (Vol. 26, Issue 21, pp. 15681–15692). https://doi.org/10.1039/d4cp00359d
- 155. Biswas C, Raavi S S K, et al. (2024). Charge-Transfer State Formation and Recombination Dynamics in Deep Absorbing Porphyrin-PCBM Blends. In ACS Applied Energy Materials (Vol. 7, Issue 11, pp. 4677–4689). https://doi.org/10.1021/acsaem.4c00123
- 156. Chappidi V R, Raavi S S K, et al. (2024). Elucidating the improved properties of defect engineered lanthanum-doped nickel oxide as hole-transport layer in triple-cation perovskite solar cells. In Solar Energy (Vol. 281). https://doi.org/10.1016/j.solener.2024.112888
- 157. Chappidi V R, Raavi S S K, et al. (2024). Rare-earth-doped TiO2 photoanode DSSCs for indoor photovoltaics: A comparative study. In Journal of Materials Science: Materials in Electronics (Vol. 35, Issue 7). https://doi.org/10.1007/s10854-024-12261-9

- 158. Joshi M C, Raavi S S K, et al. (2024). Role of Oxygen Vacancy Migration in Pyroelectric Currents of Nd2Ti2O7Ceramics as High Temperature Sensors. In IEEE Sensors Journal (Vol. 24, Issue 7, pp. 9472–9479). https://doi.org/10.1109/JSEN.2024.3369327
- 159. Lavadiya S, Raavi S S K, et al. (2024). Temperature-Dependent Structure-Property Relationship of Mn-Doped Cs2AgInCl6 Thin Films Impacts Its Application as a Self-Powered UV Photodetector. In ACS Applied Electronic Materials (Vol. 6, Issue 4, pp. 2749–2758). https://doi.org/10.1021/acsaelm.4c00284
- 160. Murali R, Raavi S S K, et al. (2024). Influence of a diketopyrrolopyrrole spacer on the ultrafast nonlinear optical properties and excited state dynamics of dimeric zinc porphyrin molecules. In Journal of Materials Chemistry C (Vol. 13, Issue 2, pp. 691–708). https://doi.org/10.1039/d4tc03281k
- 161. Nayak S K, Raavi S S K, et al. (2024). Harnessing Coherent Light-Matter Interactions for All-Optical Switching and Logic Gate Applications with Macrocyclic Phthalocyanines. In ACS Applied Optical Materials (Vol. 2, Issue 3, pp. 453–465). https://doi.org/10.1021/acsaom.3c00463
- 162. Nayak S K, Raavi S S K, et al. (2024). All-optical modulation and photonic diode based on spatial self-phase modulation in porphyrin-napthalimide molecules. In Journal of Materials Chemistry C (Vol. 12, Issue 26, pp. 9841–9852). https://doi.org/10.1039/d4tc00600c
- 163. Nayak S K, Raavi S S K, et al. (2024). Exotic femtosecond nonlinear optical properties of laser ablated MoS2 quantum dots. In Optical Materials (Vol. 147). https://doi.org/10.1016/j.optmat.2023.114630
- 164. Vemula S K, Raavi S S K, et al. (2024). Adsorption and electron injection studies in N719 sensitized Ag-, Auimplanted and O2 annealed titania films. In Optical Materials (Vol. 154). https://doi.org/10.1016/j.optmat.2024.115633
- 165. Vemula S K, Raavi S S K, et al. (2024). A study on the Raman response of TiO2 upon ion-implantation and annealing in O2 atmosphere. In Optical Materials (Vol. 148). https://doi.org/10.1016/j.optmat.2024.114947
- 166. Banerjee K, Asthana S, et al. (2024). Enhanced recoverable energy storage density and breakdown strength in cation-site modified K0·5Bi0·5Ti03-based ergodic relaxor ferroelectric. In Journal of Physics and Chemistry of Solids (Vol. 190). https://doi.org/10.1016/j.jpcs.2024.111981
- 167. Komala Lakshmi Ch, Asthana S, et al. (2024). Systematic investigation of the influence of magnetic and non-magnetic ion substitutions in BiFeO3 under similar internal chemical pressure. In Journal of Solid State Chemistry (Vol. 340). https://doi.org/10.1016/j.jssc.2024.125019
- 168. Kumar Sahu R & Asthana S. (2024). Effect of k-ion-rich substitution on structural, thermally assisted relaxation processes in Na0.5Bi0.5Ti03 relaxor ferroelectric. In Materials Science and Engineering: B (Vol. 299). https://doi.org/10.1016/j.mseb.2023.117038
- 169. Lakshmi Ch K, Asthana S, et al. (2024). Study of structural, magnetic, and optical properties of la and Sc co-substituted BiFeO3. In AIP Conference Proceedings (Vol. 3160, Issue 1). https://doi.org/10.1063/5.0224426
- 170. Mev S K, Banerjee K & Asthana S. (2024). Investigations of energy storage and thermal stability properties in eco-friendly B-site substituted Na0.5Bi0.5Ti03. In Journal of Alloys and Compounds (Vol. 999). https://doi.org/10.1016/j.jallcom.2024.174966
- 171. Pal M, Asthana S, et al. (2024). Evidence of self-biased magnetoelectric coupling in eco-friendly (Na0.41K0.09Bi0.5TiO3-Ba0.85Ca0.15Zr0.1Ti0.903)-(CoFe2O4) particulate composites. In Journal of Magnetism and Magnetic Materials (Vol. 598). https://doi.org/10.1016/j.jmmm.2024.172060

- 172. Saha M, Niranjan M K & Asthana S. (2024). Polarized Raman, infrared and dielectric spectra of lead-free K0.5Na0.5NbO3 piezoelectric system: Insights from abinitio theoretical and experimental studies. In Journal of Physics Condensed Matter (Vol. 36, Issue 42). https://doi.org/10.1088/1361-648X/ad61aa
- 173. Sahu R K & Asthana S. (2024a). Enhanced energy storage performance, breakdown strength, and thermal stability in compositionally designed relaxor Eu3+substituted Na0.2K0.3Bi0.5Ti03. In Journal of Energy Storage (Vol. 91). https://doi.org/10.1016/j.est.2024.112020
- 174. Sahu R K & Asthana S. (2024b). Enhancement of Electromechanical and Piezoelectric Charge Coefficient in Lead-Free Na0.2K0.3Bi0.5Ti03 Ceramic through Poling Effect. In IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium, UFFC-JS 2024—Proceedings. https://doi.org/10.1109/UFFC-JS60046.2024.10793639
- 175. Sudhadhar M, Asthana S, et al. (2024). Structural, optical and multiferroic properties of (1-x)BiFeO3-xNa0.5Bi0.5TiO3, x = 0.00, 0.05, 0.10 and 0.15. In Applied Physics A: Materials Science and Processing (Vol. 130, Issue 6). https://doi.org/10.1007/s00339-024-07568-7
- 176. Vadnala S, Asthana S, et al. (2024). Investigation of Magnetocaloric Effect and Critical Field Analysis of Nd0.7–xLaxSr0.3MnO3 (x = 0.0–0.3) Manganites. In ECS Journal of Solid State Science and Technology (Vol. 13, Issue 4). https://doi.org/10.1149/2162-8777/ad3fe7
- 177. Yatsyk I, Asthana S, et al. (2024). EPR Studies of Rare-Earth Manganites La0.7–xEuxSr0.3MnO3 (x = 0.1–0.7). In Applied Magnetic Resonance (Vol. 55, Issue 9, pp. 1199–1219). https://doi.org/10.1007/s00723-024-01694-4
- 178. Aamir M, Ghosh S. et al. (2024). Using graph neural networks to reconstruct charged pion showers in the CMS High Granularity Calorimeter. In Journal of Instrumentation (Vol. 19, Issue 11). https://doi.org/10.1088/1748-0221/19/11/P11025
- 179. Li L, Shinde S L, et al. (2024). Ball-milled MoS2 with graphene shows enhanced catalytic activity for hydrogen evolution reaction. In Science and Technology of Advanced Materials (Vol. 25, Issue 1). https://doi.org/10.1080/14686996.2024.2359360
- 180. Adachi I,Sandilya, S, et al. (2024). Test of lepton flavor universality with a measurement of R (D*) using hadronic B tagging at the Belle II experiment. In Physical Review D (Vol. 110, Issue 7). https://doi.org/10.1103/PhysRevD.110.072020
- 181. Adachi I, Sandilya S, et al. (2024). Evidence for B+ →k+ν ν ¯ decays. In Physical Review D (Vol. 109, Issue 11). https://doi.org/10.1103/PhysRevD.109.112006
- 182. Adachi I, Sandilya S, et al. (2024). Search for a μ+μ-resonance in four-muon final states at Belle II. In Physical Review D (Vol. 109, Issue 11). https://doi.org/10.1103/PhysRevD.109.112015
- 183. Adachi, I., Sandilya, S, et al. (2024). First Measurement of R $(X\tau/\ell)$ as an Inclusive Test of the b \rightarrow c $\tau\nu$ Anomaly. In Physical Review Letters (Vol. 132, Issue 21). https://doi.org/10.1103/PhysRevLett.132.211804
- 184. Adachi I, Sandilya S, et al. (2024). Test of light-lepton universality in τ decays with the Belle II experiment. In Journal of High Energy Physics (Vol. 2024, Issue 8). https://doi.org/10.1007/JHEP08(2024)205
- 185. Adachi I, Sandilya S, et al. (2024a). Measurement of the energy dependence of the e+e−→BB⁻, BB⁻*, and B*B⁻* cross sections at Belle II. In Journal of High Energy Physics (Vol. 2024, Issue 10). https://doi.org/10.1007/JHEP10(2024)114
- 186. Adachi I, Sandilya S, et al. (2024b). Search for the baryon number and lepton number violating decays $\tau \to \Lambda \pi$ and $\tau \to \Lambda^- \pi$ Belle II. In Physical Review D (Vol. 110,Issue11). https://doi.org/10.1103/PhysRevD.110.1 12003

- 187. Adachi I, Sandilya S, et al. (2024a). Measurement of CP asymmetries in B0 → KS0 KS0 KS0 decays at Belle II. In Physical Review D (Vol. 109, Issue 11). https://doi.org/10.1103/PhysRevD.109.112020
- 188. Adachi I, Sandilya S, et al. (2024c). New graph-neural-network flavor tagger for Belle II and measurement of $\sin 2\varphi 1$ in B0 \rightarrow J/ ψ K S0 decays. In Physical Review D (Vol. 110, Issue 1). https://doi.org/10.1103/PhysRevD.110.012001
- 189. Adachi I, Sandilya S, et al. (2024b). Study of $\Upsilon(10753)$ decays to $\pi+\pi-\Upsilon(nS)$ final states at Belle II. In Journal of High Energy Physics (Vol. 2024, Issue 7). https://doi.org/10.1007/JHEP07(2024)116
- 190. Adachi I, Sandilya S, et al. (2024d). Measurement of branching fractions and direct CP asymmetries for B \rightarrow K π and B \rightarrow $\pi\pi$ decays at Belle II. In Physical Review D (Vol. 109, Issue 1). https://doi.org/10.1103/PhysRevD.109.012001
- 191. Adachi I, Sandilya S, et al. (2024c). Measurement of CP asymmetries in B0 $\rightarrow \eta'$ KS0 decays at Belle II. In Physical Review D (Vol. 110, Issue 11). https://doi.org/10.1103/PhysRevD.110.112002
- 192. Adachi I,Sandilya S, et al. (2024e). Search for the e+e \rightarrow ηb (1S) ω and e+e- \rightarrow χb0 (1P) ω processes at s =10.745 GeV. In Physical Review D (Vol. 109, Issue 7). https://doi.org/10.1103/PhysRevD.109.072013
- 193. Adachi I, Sandilya S, et al. (2024a). Search for the decay B0 →γγ using Belle and Belle II data. In Physical Review D (Vol. 110, Issue 3). https://doi.org/10.1103/PhysRevD.110.L031106
- 194. Adachi I, Sandilya S, et al. (2024b). Determination of the CKM angle φ3 from a combination of Belle and Belle II results. In Journal of High Energy Physics (Vol. 2024, Issue 10). https://doi.org/10.1007/JHEP10(2024)143
- 195. Adachi I, Sandilya S, et al. (2024c). Search for Rare b \rightarrow d ℓ + ℓ Transitions at Belle. In Physical Review Letters (Vol. 133, Issue 10). https://doi.org/10.1103/PhysRevLett.133.101804
- 196. Adachi I, Sandilya S, et al. (2024d). Measurement of the branching fractions of $B^- \rightarrow D(*)K-KS*0$ and $B^- \rightarrow D(*)Ds-$ decays at Belle II. In Journal of High Energy Physics (Vol. 2024, Issue 8). https://doi.org/10.1007/JHEP08(2024)206
- 197. Adachi I, Sandilya S, et al. (2024e). Measurements of the branching fractions of $\Xi c0 \rightarrow \Xi 0\pi 0$, $\Xi c0 \rightarrow \Xi 0\eta$, and $\Xi c0 \rightarrow \Xi 0\eta'$ and asymmetry parameter of $\Xi c0 \rightarrow \Xi 0\pi 0$. In Journal of High Energy Physics (Vol. 2024, Issue 10). https://doi.org/10.1007/JHEP10(2024)045
- 198. Adachi I, Sandilya S, et al. (2024f). Search for lepton-flavor-violating $\tau \rightarrow \mu \mu + \mu \text{decays}$ at Belle II. In Journal of High Energy Physics (Vol. 2024, Issue 9). https://doi.org/10.1007/JHEP09(2024)062
- 199. Adachi I, Sandilya S, et al. (2024g). Measurement of branching-fraction ratios and CP asymmetries in B± → DCP±K± decays at Belle and Belle II. In Journal of High Energy Physics (Vol. 2024, Issue 5). https://doi.org/10.1007/JHEP05(2024)212
- 200. Adachi I, Sandilya S, et al. (2024h). Measurement of the branching fraction of the decay B- →d0ρ (770)- at Belle II. In Physical Review D (Vol. 109, Issue 11). https://doi.org/10.1103/PhysRevD.109.L111103
- 201. Adachi I, Sandilya S. et al. (2024i). Measurement of the $e+e-\rightarrow \pi+\pi-\pi 0$ cross section in the energy range 0.62–3.50 GeV at Belle II. In Physical Review D (Vol. 110, Issue 11). https://doi.org/10.1103/PhysRevD.110.112005
- 202. Biswas D, Sandilya S, et al. (2024). Search for a dark leptophilic scalar produced in association with τ+τ-pair in e+e- annihilation at center-of-mass energies near 10.58 GeV. In Physical Review D (Vol. 109, Issue 3). https://doi.org/10.1103/PhysRevD.109.032002
- 203. Chetri H, Sandilya S, et al. (2024). GPU-based Track Finding in the J-PARC muon g-2/EDM experiment. In Proceedings of Science (Vol. 462).

- https://www.scopus.com/inward/record.uri?eid=2s2.085201928834&partnerID=40&md5=6135963905b 3cdce5f0b25b7a473f262
- 202. Cui J X, Sandilya S, et al. (2024). Search for the semileptonic decays $\Xi c0 \rightarrow \Xi 0\ell + \ell$ at Belle. In Physical Review D (Vol. 109, Issue 5). https://doi.org/10.1103/PhysRevD.109.052003
- 203. Dhamija R, Sandilya S, et al. (2024). Search for charged-lepton flavor violation in $\Upsilon(2S) \to \ell \mp \tau \pm (\ell = e, \mu)$ decays at Belle. In Journal of High Energy Physics (Vol. 2024, Issue 2). https://doi.org/10.1007/JHEP02(2024)187
- 204. Ferlewicz D, Sandilya S, et al. (2024). Angular analysis of B →k*e+e- in the low- q2 region with new electron identification at Belle. In Physical Review D (Vol. 110, Issue 7). https://doi.org/10.1103/PhysRevD.110.072005
- 205. Gu T, Sandilya S, et al. (2024). Search for Baryon-Number-Violating Processes in B- Decays to the Ξ ¯ c0 Λ ¯ c- Final State. In Physical Review Letters (Vol. 133, Issue 7). https://doi.org/10.1103/PhysRevLett.133.071802
- 206. Guan Y, Sandilya S, et al. (2024). Measurements of the Branching Fraction, Polarization, and CP Asymmetry for the Decay B0 →ωω. In Physical Review Letters (Vol. 133, Issue 8). https://doi.org/10.1103/PhysRevLett.133.081801
- 207. Halder S, Tiwary R, Sandilya, S & Mohanty G B. (2024). Measurement of Lepton Universality Ratio at Belle II. In Springer Proceedings in Physics: Vol. 304 SPPHY (pp. 418–421). https://doi.org/10.1007/978-981-97-0289-3
- 208. Kovalenko E, Sandilya S, et al. (2024). Evidence of hb(2P)→(1S)η Decay and Search for hb(1P,2P)→(1S)π0 with the Belle Detector. In Physical Review Letters (Vol. 133, Issue 26). https://doi.org/10.1103/PhysRevLett.133.261901
- 209. Kumar D, Sandilya S, et al. (2024). Search for the decay Bs0 \rightarrow j/ ψ \pi0 at Belle experiment. In Physical Review D (Vol. 109, Issue 3). https://doi.org/10.1103/PhysRevD.109.032007
- 210. Li S X, Sandilya S, et al. (2024). Search for charmed baryons in the $\Lambda c+\eta$ system and measurement of the branching fractions of Λc (2880)+ and Λc (2940)+ decaying to $\Lambda c+\eta$ and pD0 relative to ςc (2455) π . In Physical Review D (Vol. 110, Issue 3). https://doi.org/10.1103/PhysRevD.110.032021
- 211. Maharana S P, Sandilya S, et al. (2024). Measurement of the Absolute Branching Fractions of B+→D(*,**)0p+ Reconstruction with the Missing Mass Method. In Springer Proceedings in Physics: Vol. 304 SPPHY (pp. 1233–1235). https://doi.org/10.1007/978-981-97-0289-3-348
- 212. Maharana S P, Vimal Sukhida V & Sandilya S. (2024). Charged Particle Identification Performances in Belle II. In Springer Proceedings in Physics: Vol. 304 SPPHY (pp. 166–169). https://doi.org/10.1007/978-981-97-0289-3
- 213. Maharana S P, Sandilya S, et al. (2024). Study of B → XcΛ0KS/K with recoil mass approach. In Proceedings of Science (Vol. 462). https://www.scopus.com/inward/record.uri?eid=2-s2.085201950958&partnerID=40&md5=4a47c6b7d26157c3f85acf57dc030c22
- 214. Maity S, Sandilya S, et al. (2024). Search for baryon and lepton number violating decays $D \to p \ell$. In Physical Review D (Vol. 109, Issue 3). https://doi.org/10.1103/PhysRevD.109.L031101
- 215. Nandakumar S, Sandilya S, et al. (2024). GNN based track finding for J-PARC muon g-2/EDM experiment. In Proceedings of Science (Vol. 462). https://www.scopus.com/inward/record.uri?eid=2-s2.085201967998&partnerID=40&md5=b3239dd664ee638e11fa4abda1f26ddc
- 216. Nayak M, Sandilya S, et al. (2024). Search for a heavy

- neutral lepton that mixes predominantly with the tau neutrino. In Physical Review D (Vol. 109, Issue 11). https://doi.org/10.1103/PhysRevD.109.L111102
- 217. Prim M T, Sandilya S, et al. (2024). Measurement of Angular Coefficients of B → d*ℓν -ℓ: Implications for |Vcb | and Tests of Lepton Flavor Universality. In Physical Review Letters (Vol. 133, Issue 13). https://doi.org/10.1103/PhysRevLett.133.131801
- 218. Savinov V, Sandilya S, et al. (2024). Search for two-body B meson decays to $\Lambda 0$ and ωc (*)0. In Physical Review D (Vol. 110, Issue 3). https://doi.org/10.1103/PhysRevD.110.L031102
- 219. Sibidanov A, Sandilya S, et al. (2024). A new Monte Carlo generator for BSM physics in $B \to K^*\ell^+\ell^-$ decays with an application to lepton non-universality in angular distributions. In Journal of High Energy Physics (Vol. 2024, Issue 8). https://doi.org/10.1007/JHEP08(2024)151
- 220. Tiwary R, Halder S, Sandilya S & Mohanty G B. (2024).

 Probing B→K*γ Decays at Belle II. In Springer Proceedings in Physics: Vol. 304 SPPHY (pp. 1231–1232).

 https://doi.org/10.1007/978-981-97-0289-3 347
- 221. Vimal Sukhida V, Nayak L & Sandilya S. (2024). Charged Particle Identification with the TOP Detector at Belle II. In Springer Proceedings in Physics: Vol. 304 SPPHY (pp. 735–737). https://doi.org/10.1007/978-981-97-0289-3 178
- 222. Vismaya V S, Sandilya S & Trabelsi K. (2024a). Search for the Decay B→D*ηπ in Belle II. In Springer Proceedings in Physics: Vol. 304 SPPHY (pp. 1236–1238). https://doi.org/10.1007/978-981-97-0289-3349
- 223. Vismaya V S, Sandilya S & Trabelsi K. (2024b). Search for the decay $B \rightarrow D*\eta\pi$ in Belle II. In Proceedings of Science (Vol. 462). https://www.scopus.com/inward/record.uri?eid=2-s2.085201976395&partnerID=40&md5=474c5892e73 47bddefe30dec04b234d7
- 224. Abbott T M C, Desai S, et al. (2024). The Dark Energy Survey: Cosmology Results with ~1500 New High-redshift Type Ia Supernovae Using the Full 5 yr Data Set. In Astrophysical Journal Letters (Vol. 973, Issue 1). https://doi.org/10.3847/2041-8213/ad6f9f
- 225. Abbott T M C, Desai S, et al. (2024). Dark Energy Survey: A 2.1% measurement of the angular baryonic acoustic oscillation scale at redshift zeff=0.85 from the final dataset. In Physical Review D (Vol. 110, Issue 6). https://doi.org/10.1103/PhysRevD.110.063515
- 226. Agazie G, Desai S, et al. (2024). Comparing Recent Pulsar Timing Array Results on the Nanohertz Stochastic Gravitational-wave Background. In Astrophysical Journal (Vol. 966, Issue 1). https://doi.org/10.3847/1538-4357/ad36be
- 227. Anbajagane D, Desai S, et al. (2024). Cosmological shocks around galaxy clusters: A coherent investigation with DES, SPT, and ACT. In Monthly Notices of the Royal Astronomical Society (Vol. 527, Issue 3, pp. 9378–9404). https://doi.org/10.1093/mnras/stad3726
- 228. Ansarinejad B, Desai S, et al. (2024). Mass calibration of DES Year-3 clusters via SPT-3G CMB cluster lensing. In Journal of Cosmology and Astroparticle Physics (Vol. 2024, Issue 7). https://doi.org/10.1088/1475-7516/2024/07/024
- 229. Antoniadis J, Desai S, et al. (2024). The second data release from the European Pulsar Timing Array: IV. Implications for massive black holes, dark matter, and the early Universe. In Astronomy and Astrophysics (Vol. 685). https://doi.org/10.1051/0004-6361/202347433
- 230. Antoniadis J, Desai S, et al. (2024). The second data release from the European Pulsar Timing Array V. Search for continuous gravitational wave signals. In Astronomy and Astrophysics (Vol. 690). https://doi.org/10.1051/0004-6361/202348568

- 231. Bhattacharyya J, Desai S, et al. (2024). Environmental Quenching of Low-surface-brightness Galaxies Near Hosts from Large Magellanic Cloud to Milky Way Mass Scales. In Astrophysical Journal (Vol. 975, Issue 2). https://doi.org/10.3847/1538-4357/ad79fe
- 232. Bhavanam S R, Desai S, et al. (2024). Enhanced astronomical source classification with integration of attention mechanisms and vision transformers. In Astrophysics and Space Science (Vol. 369, Issue 8). https://doi.org/10.1007/s10509-024-04357-9
- 233. Bigwood L, Desai S, et al. (2024). Weak lensing combined with the kinetic Sunyaev–Zel'dovich effect: A study of baryonic feedback. In Monthly Notices of the Royal Astronomical Society (Vol. 534, Issue 1, pp. 655–682). https://doi.org/10.1093/mnras/stae2100
- 234. Bleem L E, Desai S, et al. (2024). GALAXY CLUSTERS DISCOVERED VIA THE THERMAL SUNYAEV-ZEL'DOVICH EFFECT IN THE 500-SQUARE-DEGREE SPTPOL SURVEY. In Open Journal of Astrophysics (Vol. 7). https://doi.org/10.21105/astro.2311.07512
- 235. Bocquet S, Desai S, et al. (2024a). SPT clusters with des and HST weak lensing. I. Cluster lensing and Bayesian population modeling of multiwavelength cluster datasets. In Physical Review D (Vol. 110, Issue 8). https://doi.org/10.1103/PhysRevD.110.083509
- 236. Bocquet S, Desai S, et al.(2024b). SPT clusters with des and HST weak lensing. II. Cosmological constraints from the abundance of massive halos. In Physical Review D (Vol. 110, Issue 8). https://doi.org/10.1103/PhysRevD.110.083510
- 237. Bom C R, Desai S, et al. (2024). Designing an Optimal Kilonova Search Using DECam for Gravitational-wave Events. In Astrophysical Journal (Vol. 960, Issue 2). https://doi.org/10.3847/1538-4357/ad0462
- 238. Camilleri R, Desai S, et al. (2024). The dark energy survey supernova program: Investigating beyond-ACDM. In Monthly Notices of the Royal Astronomical Society (Vol. 533, Issue 3, pp. 2615–2639). https://doi.org/10.1093/mnras/stae1988
- 239. Carruba V, Desai S, et al. (2024). Main belt asteroids taxonomical information from dark energy survey data. In Monthly Notices of the Royal Astronomical Society (Vol. 527, Issue 3, pp. 6495–6505). https://doi.org/10.1093/mnras/stad3466
- 240. Cross D, Desai S, et al. (2024). Examining the self-interaction of dark matter through central cluster galaxy offsets. In Monthly Notices of the Royal Astronomical Society (Vol. 529, Issue 1, pp. 52–58). https://doi.org/10.1093/mnras/stae442
- 241. Dainotti M G, Desai S, et al. (2024). An optical gammaray burst catalogue with measured redshift I. Data release of 535 gamma-ray bursts and colour evolution. In Monthly Notices of the Royal Astronomical Society (Vol. 533, Issue 4, pp. 4023–4043). https://doi.org/10.1093/mnras/stae1484
- 242. Demirbozan U, Desai S, et al. (2024). The gravitational lensing imprints of des Y3 superstructures on the CMB: A matched filtering approach. In Monthly Notices of the Royal Astronomical Society (Vol. 534, Issue 3, pp. 2328–2343). https://doi.org/10.1093/mnras/stae2206
- 243. Gatti M, Desai S, et al. (2024). Detection of the significant impact of source clustering on higher order statistics with DES Year 3 weak gravitational lensing data. In Monthly Notices of the Royal Astronomical Society: Letters (Vol. 527, Issue 1, pp. L115–L121). https://doi.org/10.1093/mnrasl/slad143
- 244. Giannini G, Desai S, et al. (2024). Dark Energy Survey Year 3 results: Redshift calibration of the MagLim lens sample from the combination of SOMPZ and clustering and its impact on cosmology. In Monthly Notices of the Royal Astronomical Society (Vol. 527, Issue 2, pp. 2010–2036). https://doi.org/10.1093/mnras/stad2945
- 245. Govind A, & Desai S. (2024). A test of MOND and emergent gravity with SMACS J0723.3-7327 using

- eROSITA observations. In Journal of Cosmology and Astroparticle Physics (Vol. 2024, Issue 10). https://doi.org/10.1088/1475-7516/2024/10/030
- 246. Grandis S, Desai S, et al. (2024). The SRG/eROSITA All-Sky Survey Dark Energy Survey year 3 weak gravitational lensing by eRASS1 selected galaxy clusters. In Astronomy and Astrophysics (Vol. 687). https://doi.org/10.1051/0004-6361/202348615
- 247. Grover H, Desai S, et al. (2024). The ORT and the uGMRT pulsar monitoring program: Pulsar timing irregularities & the Gaussian process realisation. In Publications of the Astronomical Society of Australia (Vol. 41). https://doi.org/10.1017/pasa.2024.96
- 248. Kikunaga T, Desai S, et al. (2024). Low-frequency pulsejitter measurement with the uGMRT I: PSR J0437-4715. In Publications of the Astronomical Society of Australia (Vol. 41). https://doi.org/10.1017/pasa.2024.30
- 249. Klein M, Desai S, et al. (2024). SPT-SZ MCMF: an extension of the SPT-SZ catalogue over the DES region. In Monthly Notices of the Royal Astronomical Society (Vol. 531, Issue 4, pp. 3973–3990). https://doi.org/10.1093/mnras/stae1359
- 250. Manna S & Desai S. (2024a). A pilot search for MeV gamma-ray emission from five galaxy clusters using archival COMP TeL data. In Journal of Cosmology and Astroparticle Physics (Vol. 2024, Issue 5). https://doi.org/10.1088/1475-7516/2024/05/013
- 251. Manna S & Desai S. (2024b). A test for the redshift dependence of σ8 using fσ8 measurements. In European Physical Journal C (Vol. 84, Issue 7). https://doi.org/10.1140/epjc/s10052-024-13031-x
- 252. Manna S & Desai S. (2024c). Search for dark matter annihilation to gamma-rays from SPT-SZ selected galaxy clusters. In Journal of Cosmology and Astroparticle Physics (Vol. 2024, Issue 10). https://doi.org/10.1088/1475-7516/2024/10/023
- 253. Manna S & Desai S. (2024d). Search for GeV gamma-ray emission from SPT-CL J2012-5649 with six years of DAMPE data. In Journal of High Energy Astrophysics (Vol. 44, pp. 210-213). https://doi.org/10.1016/j.jheap.2024.10.001
- 254. Manna S & Desai S. (2024e). Search for GeV gamma-ray emission from SPT-SZ selected galaxy clusters with 15 years of Fermi-LAT data. In Journal of Cosmology and Astroparticle Physics (Vol. 2024, Issue 1). https://doi.org/10.1088/1475-7516/2024/01/017
- 255. Marques G,Desai S, et al. (2024). Cosmological constraints from the tomography of DES-Y3 galaxies with CMB lensing from ACT DR4. In Journal of Cosmology and Astroparticle Physics (Vol. 2024, Issue 1). https://doi.org/10.1088/1475-7516/2024/01/033
- 256. Mena-Fernández J, Desai S, et al. (2024). Dark Energy Survey: Galaxy sample for the baryonic acoustic oscillation measurement from the final dataset. In Physical Review D (Vol. 110, Issue 6). https://doi.org/10.1103/PhysRevD.110.063514
- 257. Möller A, Desai S, et al. (2024). The Dark Energy Survey 5-yr photometrically classified type Ia supernovae without host-galaxy redshifts. In Monthly Notices of the Royal Astronomical Society (Vol. 533, Issue 2, pp. 2073–2088). https://doi.org/10.1093/mnras/stae1953
- 258. Paladi A K, Desai S, et al. (2024). Multiband extension of the wideband timing technique. In Monthly Notices of the Royal Astronomical Society (Vol. 527, Issue 1, pp. 213–231). https://doi.org/10.1093/mnras/stad3122
- 259. Panchal K & Desai S. (2024). Comparison of ΛCDM and Rh = ct with updated galaxy cluster fgas measurements using Bayesian inference. In Journal of High Energy Astrophysics (Vol. 43, pp. 15–19). https://doi.org/10.1016/j.jheap.2024.06.003
- 260. Pasumarti V & Desai S. (2024a). A stacked search for spatial coincidences between IceCube neutrinos and radio pulsars. In Journal of Cosmology and Astroparticle Physics (Vol. 2024, Issue 4).

- https://doi.org/10.1088/1475-7516/2024/04/010
- 261. Pasumarti V & Desai S. (2024b). A STUDY OF GAMMA-RAY EMISSION FROM OJ 287 USING FERMI-LAT FROM 2015-2023. In Open Journal of Astrophysics (Vol. 7). https://doi.org/10.33232/001c.121908
- 262. Pasumarti V & Desai S. (2024c). Generalized Lomb-Scargle analysis of 22 years of super-Kamiokande solar 8B neutrino data. In European Physical Journal C (Vol. 84, Issue 5). https://doi.org/10.1140/epjc/s10052-024-12846-y
- 263. Popovic B, Desai S, et al. (2024). Modelling the impact of host galaxy dust on type Ia supernova distance measurements. In Monthly Notices of the Royal Astronomical Society (Vol. 534, Issue 3, pp. 2263– 2276). https://doi.org/10.1093/mnras/stae2164
- 264. Purohit S & Desai S. (2024). Calibration of Luminosity Correlations of Gamma-Ray Bursts Using Quasars. In Galaxies (Vol. 12, Issue 6). https://doi.org/10.3390/galaxies12060069
- 265. Sánchez B O, Desai S, et al. (2024). The Dark Energy Survey Supernova Program: Light Curves and 5 Yr Data Release. In Astrophysical Journal (Vol. 975, Issue 1). https://doi.org/10.3847/1538-4357/ad739a
- 266. Serrano S, Desai S, et al. (2024). Euclid preparation XLVIII. The pre-launch Science Ground Segment simulation framework. In Astronomy and Astrophysics (Vol. 690). https://doi.org/10.1051/0004-6361/202349128
- 267. Shaikh S, Desai S, et al. (2024). Cosmology from cross-correlation of ACT-DR4 CMB lensing and DES-Y3 cosmic shear. In Monthly Notices of the Royal Astronomical Society (Vol. 528, Issue 2, pp. 2112–2135). https://doi.org/10.1093/mnras/stad3987
- 268. Sharma G, Upadhyaya V, Salucci P & Desai S. (2024). Tully-Fisher relation of late-type galaxies at $0.6 \le z \le 2.5$. In Astronomy and Astrophysics (Vol. 689). https://doi.org/10.1051/0004-6361/202348667
- 269. Shrivastava N, Manna S & Desai S. (2024). Search for MeV gamma-ray emission from TeV bright red dwarfs with COMP Tel. . In Journal of Cosmology and Astroparticle Physics (Vol. 2024, Issue 9). https://doi.org/10.1088/1475-7516/2024/09/029
- 270. Singha J, Desai S, et al. (2024). Improving DM estimates using low-frequency scatter-broadening estimates. In Monthly Notices of the Royal Astronomical Society (Vol. 535, Issue 1, pp. 1184–1192). https://doi.org/10.1093/mnras/stae2405
- 271. Toribio San Cipriano, L Desai S, et al. (2024). Dark Energy Survey Deep Field photometric redshift performance and training incompleteness assessment. In Astronomy and Astrophysics (Vol. 686). https://doi.org/10.1051/0004-6361/202348956
- 272. Vincenzi M, Desai S, et al. (2024). The Dark Energy Survey Supernova Program: Cosmological Analysis and Systematic Uncertainties. In Astrophysical Journal (Vol. 975, Issue 1). https://doi.org/10.3847/1538-4357/ad5e6c
- 273. White R M T, Desai S, et al. (2024). The Dark Energy Survey Supernova Program: Slow supernovae show cosmological time dilation out to $z\sim1$. In Monthly Notices of the Royal Astronomical Society (Vol. 533, Issue 3, pp. 3365–3378). https://doi.org/10.1093/mnras/stae2008
- 274. Zhang Y, Desai S, et al. (2024). Dark Energy Survey Year 6 results: Intra-cluster light from redshift 0.2 to 0.5. In Monthly Notices of the Royal Astronomical Society (Vol. 531, Issue 1, pp. 510–529). https://doi.org/10.1093/mnras/stae1165
- 275. Jeffrey N, Desai S, et al. (2024). Dark energy survey year 3 results: Likelihood-free, simulation-based w CDM inference with neural compression of weak-lensing map statistics. Monthly Notices of the Royal Astronomical Society, 536(2), 1303–1322. https://doi.org/10.1093/mnras/stae2629

- 276. Shah P, Desai S, et al. (2024). Constraints on compact objects from the Dark Energy Survey 5-yr supernova sample. Monthly Notices of the Royal Astronomical Society, 536(1), 946–961. https://doi.org/10.1093/mnras/stae2614
- 277. Ajith P, Desai S, et al. (2024). Gravitational physics in the context of Indian astronomy: A vision document. Journal of Astrophysics and Astronomy, 46(1), 6. https://doi.org/10.1007/s12036-024-10031-x
- 278. Bhattacharyya A, Roy S R. et al. (2024). CFT reconstruction of local bulk operators in half-Minkowski space. In Physical Review D (Vol. 110, Issue 2). https://doi.org/10.1103/PhysRevD.110.026026
- 279. Padma, H H, Kar S, et al. (2024). Light-activated nanocomposite thin sheet for high throughput contactless biomolecular delivery into hard-to-transfect cells. In Analyst (Vol. 150, Issue 5, pp. 860–876). https://doi.org/10.1039/d4an01331j
- 280. Shinde A S, Kar S, et al. (2024). Infrared Light Activated Highly Efficient Cell Therapy Using Flower-Shaped Microstructure Device. In Advanced Therapeutics (Vol. 7, Issue 11). https://doi.org/10.1002/adtp.202400046
- 281. Husain A, Jetty P & Jammalamadaka S N. (2024). Electric field driven giant vertical magnetization shift through resistive switching in NiO/Fe bilayers. In Applied Physics A: Materials Science and Processing (Vol. 130, Issue 10). https://doi.org/10.1007/s00339-024-07914-9
- 282. Jetty P, Kannan U M & Jammalamadak, S. (2024). Aloe Vera-Inspired Cognitive Computing: Unveiling the Power of Pavlovian Conditioning and Pattern Recognition with a Synaptic RRAM Device. In ACS Applied Electronic Materials (Vol. 6, Issue 3, pp. 1992–2002). https://doi.org/10.1021/acsaelm.4c00023
- 283. Nayak B & Jammalamadaka S N. (2024). Remote detection of bovine serum albumin (BSA) using cantilever beam magnetometer. In Journal of Magnetism and Magnetic Materials (Vol. 589). https://doi.org/10.1016/j.jmmm.2023.171537
- 284. De S, Sharma V, et al. (2024). Observation of sequential three-body dissociation of camphor molecule—A native frame approach. In Journal of Physics B: Atomic, Molecular and Optical Physics (Vol. 57, Issue 23). https://doi.org/10.1088/1361-6455/ad8695
 285. Kumar R Y, Sharma V, et al. (2024). Tailored
- 285. Kumar R Y, Sharma V, et al. (2024). Tailored mesoscopic plasma accelerates electrons exploiting parametric instability. In New Journal of Physics (Vol. 26, Issue 3). https://doi.org/10.1088/1367-2630/ad2ffc
- 286. Mallick S P, Sharma V, et al. (2024a). Investigation of Light Propagation in Human Skin Using Zemax OpticStudio. In Conference on Lasers and Electro-Optics/Pacific Rim, CLEO-PR 2024 in Proceedings 2024 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR).
 - https://www.scopus.com/inward/record.uri?eid=2s2.085216118907&partnerID=40&md5=4667dc27b05 fc99019cd6e2aa6187f1c
- 287. Mallick S P, Sharma V, et al.(2024b). Investigation of Light Propagation in Human Skin Using Zemax OpticStudio. In 16th Pacific Rim Conference on Lasers andElectroOptics,CLEOPR2024.https://doi.org/10.1109/CLEOPR60912.2024.10676621
- 288. Mallick S P, Sharma V, et al. (2024a). Learning-Based Vein Image Segmentation under Variable Ambient Lighting Conditions and Sensor Noise. In Conference on Lasers and Electro-Optics/Pacific Rim, CLEO-PR 2024 in Proceedings 2024 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). https://www.scopus.com/inward/record.uri?eid=2-s2.085216099413&partnerID=40&md5=4f49fff67f0c76e17c8c5a2e7e0ea1f5
- 289. Mallick S P, Sharma V, et al.(2024b). Learning-Based Vein Image Segmentation under Variable Ambient

- Lighting Conditions and Sensor Noise. In 16th Pacific Rim Conference on Lasers and Electro-Optics, CLEO-PR 2024. https://doi.org/10.1109/CLEO-PR60912.2024.10676479
- 290. Sabui R, Sharma V, et al. (2024). Effects of prepulse on hot electron emission from mesoscopic particles. In Plasma Physics and Controlled Fusion (Vol. 66, Issue 8). https://doi.org/10.1088/1361-6587/ad5046
- 291. Sen S,Sharma V, et al. (2024). Electron and ion spectroscopy of camphor doped helium nanodroplets in the extreme UV and soft x-ray regime. In Journal of Physics B: Atomic, Molecular and Optical Physics (Vol. 57, Issue 1). https://doi.org/10.1088/1361-6455/ad1d37
- 292. Sinha A, Sharma V, et al. (2024). Photoelectron momentum distribution in structured strong fields. In Journal of Physics B: Atomic, Molecular and Optical Physics (Vol. 57, Issue 23). https://doi.org/10.1088/1361-6455/ad8a36
- 293. Sugumar R, Sharma V, et al. (2024). Focused particle streams for electron emission studies from intense laser-plasma interactions. In Applied Physics B: Lasers and Optics (Vol. 130, Issue 10). https://doi.org/10.1007/s00340-024-08324-8
- 294. Wang K, Srivastava Y K, et al. (2024). Nanometric Ge Films for Ultrafast Modulation of THz Waves with Flexible Metasurface. In Advanced Optical Materials (Vol. 12, Issue 36). https://doi.org/10.1002/adom.202402010

Funded Research Projects:

- Alok Kumar Pan; Information Theoretic Advantage from Indefinite Causal Order of Channels; 1.60 L. [G588].
- 2. Alok Kumar Pan; Device-independent randomness certification using nonprojective measurements; 2.20 L. [G548].
- 3. Alok Kumar Pan; Probing multipartite non-local correlations in network and randomness certification; 9.00 L. [G551].
- Anupam Gupta; Matrix inhomogeneity and degradation regulate tissue organization and morphogenesis; 34.60 L. [G720].
- 5. Atanu Rajak; Floquet Engineering and Simulating quantum many body systems out-of-equilibrium; 67.00 L. [SERB-ANRF/PHY/F337/2025-26/G811].
- Arabinda Haldar; Spin wave dispersions and nanoscale imaging of magnons using Brillouin light scattering spectro-microscopy; 4.50 L. [G540].
- 7. Arabinda Haldar; Development of self-biased magnetic materials for low-loss bias-filed-free passive microwave devices; 8.05 L. [G397].
- 8. Bhuvanesh Ramakrishna; Laser Driven Bright X-ray Sources for Imaging; 84.06 L. [G715].
- 9. Kanchana V; Exploring quantum materials from first principles for spintronic applications; 79.02 L. [G704].
- 10. Kiritkumar Makwana; Waves, Instabilities & Turbulence of the Heliosphere; 13.15 L. [G775].
- 11. Mahesh Peddigari; A feasible route towards designing high breakdown strength and high polarization dielectric ceramic thick films for energy storage applications; 2.00 L. [G631].
- 12. Nithyanandan Kanagaraj; KeraEyeFATE: Tensor-based Machine Learning For Early Detection of Keratoconus; 51.30 L. [G682].
- Nithyanandan Kanagaraj; Towards Multifunctional Two-micron Ultrafast Fiber Lasers for High-Precision Biomedical Application (TUFL); 84.30 L. [G699].
- 14. Nithyanandan Kanagaraj; Development of a Compact Handheld AI-driven Intelligent IR imaging system for the Early Detection of Keratoconus (CARE); 25.00 L. [TDG-01].
- 15. Nithyanandan Kanagaraj; A-proof-of concept study on

- Laser additive manufacturing of single crystal superalloys through spatio-temporally tailored laser beam; 18.20 L. [G730].
- 16. Nithyanandan Kanagaraj; Development of Proof-of-Concept Target-in-the-Loop Coherent Beam Combining System for Directed Energy Applications (DECODE); 84.47 L. [G800].
- 17. Nithyanandan Kanagaraj; Harnessing optical nonlinearity and Spatiotemporal dynamics to carve the higher-dimensional light bullets in multimode optical fiber systems; 36.96 L. [G757].
- 18. Nithyanandan Kanagaraj; Development of Dynamic Beam Engineering Technology for Laser-Assisted Advanced Manufacturing System (BEAM); 626.54 L. [G773].
- 19. Nithyanandan Kanagaraj; Development of Next Generation of Spatio-Temporal Multimode Broadband Amplifiers for Fiber Optic Communication; 44.28 L. [G751].
- 20. Priyotosh Bandyopadhyay; Phoenix 2025; 0.50 L. [IMSc:06/05/2025].
- 21. Priyotosh Bandyopadhyay; Phoenix 2025; 3.50 L. [SSY/2025/000420].
- 22. Saket Asthana; Investigation of the structure-property relationship in lead-free relaxor ferroelectric to optimize recoverable energy storage density; 0.45 L. [G465].
- 23. Saurabh Sandilya; Measurements related to Rare B-decays (and to set-up a High Energy Physics photo-detector laboratory); 3.50 L. [G517].
- 24. Shubho Ranjan Roy; MANY FACETS OF COMPLEXITY: FROM CHAOS TO THERMALIZATION; 10.16 L. [G750].
- 25. Shantanu Desai; Search for neutrinos from pulsars; 0.00 L. [G664].
- Shantanu Desai; Precise observation and statistical analysis of pulsars for pulsar timing array; 11.22 L. [G728].
- 27. Shinde Satish Laxman; Development of solar-driven plasmonic nanoheaters for on-board generation of clean water and hydrogen; 47.64 L. [G805].
- 28. Srabani Kar; Photoexcited carrier dynamics of low-dimensional materials followed by their applications in cellular therapy and analysis; 7.00 L. [DST/INSPIRE/04/2021/001032; IFA21-PH 274].

- 29. Vandana Sharma; Molecular Photoionization Dynamics with Ultrashort Orbital Angular Momentum Pulses; 12.88 L. [G803].
- 30. Yogesh Kumar Srivastava; Ultrafast Terahertz Super-Spintronics; 99.87 L. [G717].

Awards & Recognitions:

- Daideep Kumar Balusu, PhD Student, won the Best Poster Prize at the AAPPS-DPP conference (8th Asia-Pacific Conference on Plasma Physics) held in Malaysia.
- 2. Mr. Daideep has been working on his PhD thesis under the guidance of Dr Bhuvanesh Ramakrishna. Daideep Kumar, PhD Scholar, Department of Physics, received the Best Poster Prize at two International Conferences: (a) AAPPS-DPP 2024 plasma physics conference held in Malaysia in November and (b) The ASILS-13 conference held in Udaipur, Rajasthan in December. Mr Daideep Kumar is working under the guidance of Prof Bhuvanesh Ramakrishna, in the field of
- Nithyanandan Kanagaraj was awarded Senior Membership by the International Society for Optics and Photonics (SPIE).

particle acceleration with Intense lasers."

- Ranjan Kumar Sahu, PhD Scholar, received the Best Poster Award during the 68th DAE-Solid State Physics Symposium held at BARC, Mumbai.
- Ranjan Kumar Sahu, a PhD student, received the Best Poster Award at the 68th DAE Solid State Physics Symposium held at BARC, Mumbai, December 2024 IIT Hyderabad
- Sai Santosh Raavi was elected as a Fellow of the Telangana Academy of Sciences (FTAS) for the year 2023 under the category of Physical Sciences.
- Sai Santosh Kumar Raavi was selected for the prestigious JSPS Invitational Fellowship for FY 2025 to conduct research and collaborative work with Kyushu University, Japan.
- 8. Sandal Kotawala, MTech Ophthalmic Engineering student's Start-up 'Alfaleus', has been selected for the 2024 MedTech Innovator APAC accelerator.
- Suryanarayana Jammalamadaka & his Team received an IOP Publishing Top Cited Paper Award for India, in the Nanosciences category.

Research Highlights

The Department of Physics at IIT Hyderabad has made significant advances across diverse research domains this year, reflecting both fundamental discoveries and applied innovations.

Quantum Foundations & Information

Research from Dr. Alok Kumar Pan's group made major contributions to quantum nonlocality and quantum networks. Two high-impact papers were published in Physical Review Letters: one demonstrating device-independent full network nonlocality for arbitrary parties, and another on the unbounded sharing of nonlocality using qubit projective measurements. These results advance the theoretical framework for quantum communication and quantum networks.

Particle Physics & Cosmology

The High Energy Physics group led by Dr. Priyotosh Bandyopadhyay, Dr. Snehashis Parashar, and colleagues explored extended scalar sectors beyond the Standard Model. Their work proposed new strategies for probing inert triplet models, leptoquarks, and long-lived particles at the LHC, FCC, and future muon colliders. Multiple publications appeared in Physical Review D, JHEP, and international conference proceedings.

- **Dr. Narendra Sahu's group developed comprehensive models within the type-I and type-III seesaw frameworks**, unifying neutrino masses, baryogenesis, dark matter, and gravitational wave signatures. Their publications in Physical Review D and JCAP demonstrated constraints on dark matter properties and linked cosmological observations with particle physics. One notable highlight was their interpretation of the KM3-230213A ultrahigh energy neutrino event as a possible signal from the decay of super-heavy dark matter.
- **Dr. Saranya Ghosh contributed to the CMS Collaboration**, which was awarded the 2025 Breakthrough Prize in Fundamental Physics. She was officially listed as one of the laureates, recognizing Higgs boson studies and new particle searches.
- **Dr. Divya Sachdeva collaborated in the SND@LHC experiment**, reporting on neutrino nonstandard interactions with charm quarks (JHEP 2024). Dr. Shantanu Desai, with the Indian Pulsar Timing Array Consortium, released Data Release 2: the most precise pulsar timing dataset with 27 pulsars over 7 years, enabling sensitive searches for nano-Hz gravitational waves.

Dr. Shubho Roy and collaborators developed a novel extension of holography to asymptotically Minkowski space, published in Physical Review D, providing new insights into gauge–gravity duality.

Astrophysics & X-ray Astronomy:

Dr. Mayukh Pahari and collaborators published several significant studies using AstroSat, NuSTAR, and other observatories. These included investigations of Z-type X-ray binaries (MNRAS, 2024), radiatively inefficient accretion flows around black holes (Physical Review D, 2025), and a NuSTAR view of Galactic X-ray transients (Journal of High Energy Astrophysics, 2025). Dr. Pahari also joined the Editorial Board of Springer Nature's Discover Space and the Board of Studies of Osmania University's Astronomy Department.

Dr. Kirit Makwana demonstrated through first-principles simulations that kinetic Alfvén waves dominate solar wind turbulence at sub-ion scales, published in Frontiers in Astronomy and Space Sciences (2024).

Experimental Condensed Matter Physics:

- **Dr. Arabinda Haldar's** group established India's first Brillouin Light Scattering microscopy facility. Their research produced multiple breakthroughs in spintronics and nanomagnetism, including:
- Control of nonlinear dynamics via tailored magnonic bands (Physical Review Applied, 2025).
- Propagating spin waves in permalloy microstripes (Journal of Applied Physics, 2024).
- Spin textures in nanodisk arrays (ACS Applied Nano Materials, 2024).
- Ultra-low Gilbert damping and inverse spin Hall effect in GdFeCo thin films (Journal of Applied Physics, 2024).

Additionally, Dr. Haldar co-authored a patent on a skyrmion-based logic device (Granted Feb 2025).

Dr. Jyoti Ranjan Mohanty advanced research on perpendicular magnetic anisotropy in ferrimagnetic films (JAP, 2024; JMSE, 2025) and studied temperature-dependent band gap modulation in MoS₂ flakes (Physica E, 2025).

Dr. Suryanarayana Jammalamadaka's group reported key advances in memristors and neuromorphic devices, including:

- Resistive switching and data storage in Fe₂O₃/Fe and NiO/Fe bilayers.
- Pavlovian conditioning via Ag/Fe₂O₃ memristors (Physica Status Solidi A, 2025).
- High-density storage in Ta₂O₅-based devices (ACS Applied Electronic Materials, 2025).
- · Remote biosensing using cantilever magnetometers (Journal of Magnetism and Magnetic Materials, 2024).
- Theoretical Condensed Matter Physics

Dr. Archak Purkayastha and collaborators discovered a deep connection between dissipative non-reciprocal systems and band structures of solids, published in Physical Review B (2025), advancing fundamental understanding of non-Hermitian physics.

Dr. Yogesh Kumar Srivastava's group reported groundbreaking findings in functional materials:

- A high-Tc superconductor metasurface made of YBCO (Nature Materials, 2025).
- Lattice distortion-driven resistive switching in halide perovskites, with implications for neuromorphic computing (Nano Energy, 2025).

His group also secured a major DRDO-funded project worth ₹189.25 lakhs (≈ ₹1.89 crores) for developing S, C, and X Band ferroelectric tunable filters.

Dr. Satish Shinde contributed to catalysis research with work on ball-milled MoS₂-graphene hybrids for hydrogen evolution reactions (STAM, 2024) and filed a patent on biodegradable WS₂-based nanogenerators (2025). Optics, Spectroscopy & Plasma Physics

Dr. Bhuvanesh Ramakrishna, in collaboration with Osaka University, proposed a micronozzle acceleration scheme for generating GeV-scale proton beams, published in Scientific Reports (2025). This novel approach holds promise for laser-plasma acceleration.

Dr. Nithyanandan Kanagaraj's lab demonstrated the broadest thulium-doped fibre amplifier to date (Optics Communications), with a patent filed on a novel power-management scheme by Amala Jose. Through IFCPAR/CEFIPRA collaboration with ICB, we further realised a highly-dispersive soliton laser (Optics Letters), achieving a record 17 nJ soliton pulse energy at 2 μ m — a milestone for high-power ultrafast fibre lasers in communications, medicine, and spectroscopy." In ultrafast research, led by Subrata Manna, we reported the first experimental observation of unique dark soliton patterns and dark-bright soliton complex pairs in a passively mode-locked fibre laser operating in the anomalous dispersion regime. Presented at CLEO 2025 (France), this work provides new insights into coupled soliton dynamics with potential applications in advanced ultrafast photonic systems.

In high-power lasers, our group reported the first demonstration of on-demand beam engineering using coherent beam combining (CBC) for advanced laser manufacturing. Led by Khushboo, this patented approach enhances beam quality, minimises defects, and improves efficiency in next-generation laser systems.

In coherent beam combination (CBC) work led by Mukesh, we designed and demonstrated a compact table-top setup using 3D-printed models and stepper-motor control to validate SPGD algorithms. The in-house system also successfully demonstrated beam steering capabilities.

Bharathy's work on Diffractive Neural Networks (DNN) for image classification has been granted an Indian patent. Building on this, our lab demonstrated the first use of DNN for on-demand beam engineering in manufacturing, with a patent filed on this pioneering application. Our lab introduced a transformer-based encoder-decoder framework to model nonlinear pulse evolution in optical systems, with a focus on supercontinuum generation. This work was led by Dinesh, and it is the first-of-its-kind approach that effectively captures complex dynamics, offering accurate predictions at a fraction of the computational cost of traditional simulations, and holds promise for broader applications in nonlinear photonics."

Inventing & Innovating in Technology for Humanity

VIRTUAL DEPARTMENTS

Department of Climate Change

The Department of Climate Change at the IIT Hyderabad attempts to explore climate change, integrating academic knowledge with practical knowledge, bringing scientists, engineers, practitioners, and students together. The key is to foster an interdisciplinary space of inquiry that incorporates climate sciences, technology, engineering-based design approaches, and social and policy research. We, at IITH, plan to be a leading institute in the synergy among these three key areas. Recognizing the urgent need for interdisciplinary solutions, the department brings scientists, engineers, practitioners, and students together. The department offers a comprehensive curriculum that integrates climate sciences, technology, engineering, social policy research, and sustainable practices, supported by IITH's innovative fractal academics program. The department fosters a collaborative environment, enhanced knowledge, technological innovations, sustainable practices, and business opportunities.

For more information, please visit: https://cc.iith.ac.in/

Affiliated Faculty

Head of the Department

Asif Qureshi
Civil Engineering
Profile page:
https://iith.ac.in/ce/asif/

Professor

Debraj Bhattacharyya
Civil Engineering
Profile page:
https://iith.ac.in/ce/debrajb/

Raavi Sai Santosh Kumar
Physics
Profile page:
https://iith.ac.in/phy/sskraavi/

Suhash Ranjan Dey
Materials Science And Metallurgical
Engineering
Profile page:
https://iith.ac.in/msme/suhash/

Kishalay Mitra
Chemical Engineering
Profile page:
https://iith.ac.in/che/kishalay/

Sathya Peri
Computer Science & Engineering
Profile page:
https://iith.ac.in/cse/sathya p/

Aalok Khandekar Liberal Arts Profile page: https://iith.ac.in/la/aalok/

Haripriya Narasimhan Liberal Arts Profile page: https://iith.ac.in/la/haripriya/

Ganesh M P
Liberal Arts
Profile page:
https://iith.ac.in/la/mpganesh/

Kaushik Nayak
Electrical Engineering
Profile page:
https://iith.ac.in/ee/knayak/

Niranjan Shrinivas Ghaisas Mechanical & Aerospace Engineering Profile page: https://iith.ac.in/mae/nghaisas/

Pritha Chatterjee
Civil Engineering
Assistant Professor
Profile page:
https://iith.ac.in/ce/pritha/

Satish Kumar Regonda
Civil Engineering
Profile page:
https://iith.ac.in/ce/satishr/

Sayak Banerjee
Mechanical & Aerospace Engineering
Profile page:
https://iith.ac.in/mae/sayakb/

Shiva Ji
Design
Profile page:
https://iith.ac.in/des/shivaji/

Somnath Maji Chemistry Profile page: https://iith.ac.in/chy/smaji/

Ambika S
Civil Engineering
Profile page:
https://iith.ac.in/ce/ambika/

Deepu J Babu
Materials Science And Metallurgical
Engineering
Profile page:
https://iith.ac.in/msme/deepu.babu
https://iith.ac.in/msme/deepu.babu

Maheswaran R
Civil Engineering
Profile page:
https://iith.ac.in/ce/rmaheswaran/

Venkata Krishna Kumar UpadhyayulaSustainability Expert, Scania Technical
Center, Sodertalje Sweden

Rajib Shaw Keio University, Japan Profile page: https://rajibshaw.org/

Chetan Singh Solanki
IIT Bombay
Profile page:
https://www.ese.iitb.ac.in/faculty/ch
etan-singh-solanki

Research highlights:

1. Wind-AI @GOKUL (Global Optimization and Knowledge Unearthing Lab)

Wind energy has emerged as the second fastest-growing energy source globally. Efficiently capturing it requires strategic placement of turbines- forming a wind farm. However, optimizing wind farm layouts is a complex challenge: a multi-objective mixed-integer nonlinear programming (MINLP) problem that is NP-hard due to nonlinear objectives and constraints, along with both integral (number of turbines) and real-valued (location) decision variables. Wind-AI - a next-generation AI-powered solution, developed @ GOKUL, built to break past the outdated assumption of constant wind speeds. Instead, it embraces variability by learning the probabilistic distribution of wind speeds using advanced machine learning models. This platform tackles layout optimization under uncertainty using robust Bayesian Optimization.

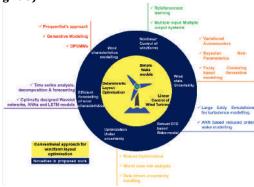
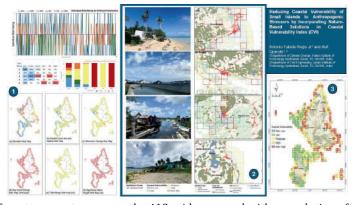


Figure. Wind-AI developed by researchers @ GOKUL (Prof. Kishalay Mitra's research lab)

Its cutting-edge components include:

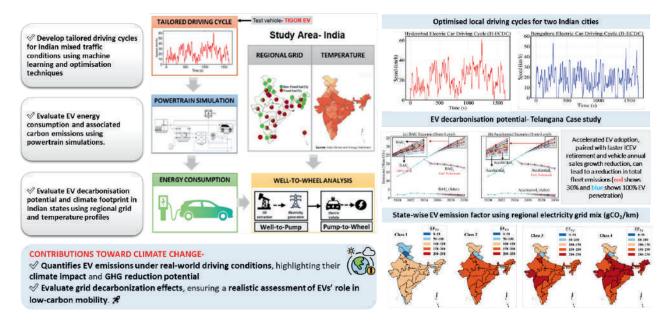

- Auto-tuned LSTM networks for dynamic wind forecasting.
- Hybrid wake modeling that blends physical wake dynamics with data-driven insights.
- Al-driven reformulation of robust wind farm layout optimization under uncertainty.
- Reinforcement learning-based intelligent control for wind farm performance enhancement.

Wind-AI isn't just an optimization tool—it's a leap forward in intelligent, adaptive, and uncertainty-resilient wind energy planning.

2. Reducing Coastal Vulnerability of Small Islands to Anthropogenic Stressors by Incorporating Nature-Based Solutions in Coastal Vulnerability Index (CVI)

Antonio Fabela Regis Jr and Asif Qureshi 1,2

- 1.Department of Climate Change, Indian Institute of Technology Hyderabad, Kandi, TS, 502285, India
- 2. Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, TS, 502285, India The research work delved into developing an assessment framework using open-access data and GIS and integrating dynamic parameters for rapid coastal vulnerability assessment. It described the coastal vulnerability for Siargao Island Protected Landscape and Seascape (SIPLAS), Philippines and recommended the incorporation of managed Nature-based Solutions for sustainable urban development and disaster risk management planning to reduce vulnerability.


Key findings include: (1) Individual risk rating of the different parameters across the 418 grids assessed with a resolution of 1km by 1km. Very high risks of sea level change and significant wave height were observed for all gridded coastal areas, whereas the tidal range risk was moderate. While some parameters (Elev, CLUH) showed significant variation across different grid points, others (ShCh, SLC, TR, SWH) remained constant or showed minimal variation. (2) Selected validation points for the CVI rating projects increased built-up areas from development and urban expansion. CVI and individual vulnerability maps with risk classifications of the different parameters, (3) 38.76% of the coastal areas were at very high and high risk, while 24.64% were at moderate and 36.61% at low and very low risk. Combined interaction between the evaluated parameters must consider multiple environmental factors in coastal risk assessments and adaptation strategies. This research supports evidence-based decision-making for climate adaptation strategies in small island environments.

3. Electric Vehicles as Low-Carbon Mobility in India: Representative Driving Cycle-Based Regional Climate Footprint Assessment

Aishree Boruah¹ and Pritha Chatterjee^{1,2}

- 1. Department of Climate Change, Indian Institute of Technology Hyderabad, Kandi, TS, 502285, India
- 2. Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, TS, 502285, India

This research work addresses a critical gap in electric vehicle (EV) energy assessment by focusing on real-world driving behaviour, which is often overlooked in conventional testing methods. Standardised driving cycles currently used for evaluating EV performance fail to capture the variability in traffic patterns and passenger demands, leading to inaccurate estimates of energy consumption and emissions. To bridge this gap, the study presents an AI-driven framework for the development of region-specific driving cycles that better represent actual urban driving conditions. Using a case study from Telangana, India, the methodology employs a combination of Hybrid K-means clustering and Support Vector Machine (SVM) techniques to analyze real driving data and generate a set of candidate driving cycles. These candidates are then refined using a Genetic Algorithm (GA) to derive an optimized driving profile, termed the Hyderabad Electric Car Driving Cycle (H-ECDC). The H-ECDC spans 1589 seconds and represents an average vehicle speed of 19.04 km/h, resulting in an estimated energy consumption of 0.144 kWh/km, a 42.6% deviation from manufacturer-stated data.

A comprehensive well-to-wheel emissions analysis combines this consumption data with Telangana's electricity grid mix to estimate an EV emission factor of 136 g CO_2/km in the baseline scenario. Furthermore, the study evaluates the environmental implications of increased EV penetration. Under a projected 2030 scenario with 30% EV adoption and a 64.26% non-fossil electricity share, overall fleet emissions may still increase by 22.72%, highlighting the need for synchronized efforts in both vehicle electrification and electricity grid decarbonization. By capturing true driving conditions and integrating them with grid emissions data, this research provides valuable insights for designing energy-efficient EV technologies, formulating targeted emission reduction policies, and supporting sustainable transportation strategies.

Activities in the period 2024-25

- In financial year 2024-25, the department hosted many notable experts and visitors such as Dr. Nidhi Nagabhatla (United Nations University), Dr. Prasanth Prabhakaran (NOAA), Prof. Balaji Rajagopalan (University of Colorado at Boulder), Dr. Praveen Kumar Pothapakula (ETH Zurich), Dr. Ram Avtar (Hokkaido University), and Dr. Krishnan (exdirector, IITM, Pune). Notable industrial lectures included those by Dr. Kedar Otta (Moody's), Mr. Indrajit Shaw (CBRE), Mr. Vatsal Dusad (Avaana Capital), Mr Sudhakar Sagi (Thryve Earth), and Swastik Harish (Swastik Harish Associates).
- Department students visited the India Meteorological Department (IMD) and the Indian National Centre for Ocean Information Services (INCOIS), Hyderabad, to understand technologies for operational weather and ocean monitoring.
- The department also celebrated its annual department day event on March 24, 2025, hosting industry experts and entrepreneurs working in sustainability and technology solutions in climate resilience from Microsoft, Gait Global, and Vaayu Mitra Biogas firm. The guest speakers delivered expert talks followed by a panel discussion. The event was accompanied by cultural performances and sports day celebrations by students from the department.
- The department organized a national conclave on "Climate Manifesto for 2047", jointly organized by Environment Protection Training & Research Institute (EPTRI) and IIT Hyderabad, in collaboration with the Department of Science & Technology, Government of India. The conclave brought together experts, policymakers, and practitioners to envision an inclusive, technology-driven, and equitable pathway to India's Net-Zero by 2070 goal. The conclave included discussions across three working groups: inclusive approach in climate action, technology & innovation in climate action, and policy & research in climate action.
- Departmental students presented their research work at international conferences such as the American Geophysical Union (AGU) 2024, the European Geophysical Union (EGU) 2025, the International Workshop on Monsoon, and national gatherings such as Inventiv, IEEE India Geoscience and Remote Sensing Symposium.
- Students of the department have secured multiple awards, such as the best poster presentation award at the International Conference on Agrovoltaics and Sustainability in Farming held in Coimbatore to Mr. Rahul Sakshat, and the Best Poster Award at the Electric Vehicle Conference 2025 held in Germany to Ms Aishree Boruah. Ms Antara Roy secured 2nd place at the Climate Change Hackathon, organized by Gujarat National Law University (GNLU) Centre for Environment, Sustainability and Climate Justice (GCESCJ). Ms Sree Anusha Ganapathiraju was awarded a prestigious research grant for a binationally supervised PhD through DAAD (German Academic Exchange Service), Germany. Two of our students, Mrs. Shweta Gupta and Ms. B Sri Charitha, recently participated in the Sakura Science Research Exchange Program hosted by Shizuoka University, Hamamatsu City, Japan, completing the program and becoming alumni of the Sakura Science Club. Ms. Shrutee Jain attended the Blue Carbon Summer School 2025 at the University of St Andrews in Scotland, securing the World Wildlife Fund (WWF) Scholarship.

Department of Engineering Science

BTech in Engineering Science at IIT Hyderabad is a unique program being offered for the first time in India. It opens the doors to different specializations and provides a holistic engineering education. The basic structure is as follows: for the first 2 years (4 semesters) the student does basic courses in Mathematics, Physics, Chemistry, and different fields of engineering. In the last 2 years (4 semesters) the student then specializes in any field of his / her choice -- specialization is completely open: It could be any branch of engineering -- The final degree will read: B.Tech. in Engineering Science and Specialisation in the "Concerned Field".

"This program is in tune with what the industry is demanding today. They would like students to be educated with what they call as a 'T' education.."

Curriculum Development and Enhancement

We revised the curriculum with the help of faculty from each Department. Since this approach is interdisciplinary it requires regular updates corresponding to the changes by the regular Department. We have revised curriculums of ES-AI, ES-CS, ES-ES, ES-EP, ES-EE during the years 2021 and 2023. We are also planning to revise in 2024 as well. We worked closely with all faculty members to introduce new courses, update syllabi, and integrate interdisciplinary approaches, which enrich learning outcomes and equip students with modern, in-demand skills. We also took initiatives so that this ensures that the content remains relevant and aligns with current industry standards or academic advancements. We also now ensure that only 10% of the students are allowed for the branch change to each Department. This ensures the idea of the interdisciplinary approach of the ES Department.

Research and innovation support

IIT Hyderabad-born startup CRIOT™ strikes a collaboration with Technocorpus Inc., Japan the fully sponsored research collaboration is going to set the stage for the manufacturing of IoT-based smart home products. ES Department helped the students to build these startups.

Founders

Varun Perumalla - CEO & Co-founder - ES2021 Batch Sai Mahidhar - CEO & Co-founder - ES2021 Batch

Student Engagement and Support

We organize regular mentorship programs that the student can take advantage of for research internships. Many of our students have used the 6-month internship opportunity provided at IITH. The HoD ensures that students have access to the resources they need for academic and professional success, including scholarships, tutoring, and mental health support services. In my tenure, I have also made sure that we get an interaction space for students.

Collaborations and Partnerships

Building partnerships with industry, government bodies, and other academic institutions is an important initiative I have fostered during my tenure. These collaborations can lead to student internships, joint research projects, guest lectures, and curriculum input from industry professionals, all of which enrich the educational experience and make the department a hub for innovation and real-world relevance. We are in a plan to start a new MTech program in Systems Engineering under the aegis of DRDO labs.

In summary, the initiatives undertaken are crucial for fostering a dynamic and forward-thinking environment. Through curriculum updates, faculty and student support, research facilitation, and broader collaborations, I ensured in shaping the department's success. This is reflected in the opening JEE rank of the department.

For more information, please visit: https://es.iith.ac.in/

Affiliated Faculty

Head of the Department

Bhuvanesh Ramakrishna (Associate professor-Physics) Profile page: https://iith.ac.in/phy/bhuvan/

Professor

Abhinav Kumar
Electrical Engineering
Profile page:
https://iith.ac.in/ee/abhinavkumar/

Munwar B Basha
Civil Engineering
Profile page:
https://iith.ac.in/ce/basha/

Associate Professor

Aravind Kumar Rengan
Biomedical Engineering
Profile page:
https://iith.ac.in/bme/aravind/

Chandrasekhar Murapaka
Materials Science & Metallurgical
Engineering
Profile page:
https://iith.ac.in/msme/mchandrase
khar/

Digvijay S Pawar
Civil Engineering
Profile page:
https://iith.ac.in/ce/dspawar/

Kaushik Nayak
Electrical Engineering
Profile page:
https://iith.ac.in/ee/knayak/

Manish Singh
Computer Science & Engineering
Profile page:
https://iith.ac.in/cse/msingh/

Venkata Rao Kotagiri Chemistry Profile page: https://iith.ac.in/chy/kvrao/

Aiyappan S
Electrical Engineering
Profile page:
https://www.iith.ac.in/math/aiyapp
an/

Anurup Datta
Mechanical & Aerospace Engineering
Profile page:
https://iith.ac.in/mae/anurup.datta/

Himanshu Joshi
BioTechnology
Profile page:
https://iith.ac.in/bt/hjoshi/

Neeraj Kumar Liberal Arts Profile page: https://iith.ac.in/la/neeraj.kumar/

Prakhar Gupta
Mechanical and Aerospace
Engineering
Profile page:
https://sites.google.com/site/iitdpra
khargupta/

Department of Heritage Science and Technology

Department of HST is dedicated to the application of Science and Technology for conservation and development of tangible and intangible Heritage assets, with a specific focus on the Indian context. Heritage includes tangible heritage like monuments, archaeological sites, and intangible ones like knowledge systems, cuisine, medicine, dress, art, language, symbols, stories, and much more.

Our activities are centred around the use of Science and Technology for the development of Heritage assets, associated industries, technologists, scientists, entrepreneurs, and professionals.

Our goals include

- Research to define the state of the art in Heritage activities using science and technology
- Training of human resources engaged in Heritage areas
- Product development to help Heritage industries, entrepreneurs scale up and serve customers better

For more information, please visit: https://www.hst.iith.ac.in/

Affiliated Faculty

Head of the Department

Mohan Raghavan (Associate Professor-Biomedical Engineering) Profile page: https://iith.ac.in/bme/mohanr/

Associate Professor

Aravind Kumar Rengan
Biomedical Engineering
Profile page:
https://iith.ac.in/bme/aravind/

Manish Singh
Biomedical Engineering
Profile page:
https://iith.ac.in/cse/msingh/

Ramakrishna Upadrasta
Computer Science & Engineering
Profile page:
https://iith.ac.in/cse/ramakrishna
L

Surendra Nadh Somala
Civil Engineering
Profile page:
https://iith.ac.in/ce/surendra/

Prabusankar G
PhD - IIT Bombay
Profile page:
https://iith.ac.in/chy/prabu/

Subrahmanyam Ch
PhD - IIT Madras
Profile page:
https://iith.ac.in/chy/csubbu/

Assistant Professor

Gaurav Sharma
BioTechnology
Profile page:
https://www.iith.ac.in/bt/sharma
g/

Kousik Sarathy Sridharan
Biomedical Engineering
Profile page:
https://iith.ac.in/bme/kousiksarat
hy/

Nagarajan Ganapathy
Biomedical Engineering
Profile page:
https://www.iith.ac.in/bme/gnaga
rajan/

Shiva Ji
Design
Profile page:
https://iith.ac.in/des/shivaji/

Suhail Rizvi Mohd
Biomedical Engineering
Profile page:
https://iith.ac.in/bme/suhailr/

Suresh Perumal
PhD - IISc Bangalore
Profile page:
https://www.iith.ac.in/msme/su
resh/

Suhash Ranjan Dey
Materials Science And Metallurgical
Engineering
Profile page:
https://www.iith.ac.in/msme/suhash/

Adjunct Faculty

A G Ramakrishnan
Professor, Department of Electrical
Engineering, IISC.
Profile page:
http://mile.ee.iisc.ac.in/AGR/index.htm

Ajay Srinivasamurthy
Applied Science Manager,
Amazon
Profile page:
https://www.ajaysrinivasamurthy.in
/

K S Kannan Chair Professor, Dept. of HSS, IIT Madras Profile page: https://sites.google.com/view/kskanna n/home

Amba Kulkarni Professor, Dept. of Sanskrit Studies, University of Hyderabad.

Research Highlights

- Indic search engine Information retrieval and Data mining on Heritage Text corpus
- Handson Heritage Experience and Visualization gamification of Heritage Structures and associated knowledge, 3Dfy Maps, Digital Heritage Documentation and Reconstruction, Structural Health Monitoring, AI for Sculpture, Heritage Clay Structures
- NeuroBiomechanics of Yoga and Performing Arts
- Computationalsocial sciences Mathematical analysis of Indic society, life and culture
- Chemistry for Archaeology, Heritage Biomaterials Integrated Medicinal systems, Mechanical and Acoustic analysis of musical instruments
- Exploration of Panchadhatu/Ashtadhatu making, Foundational concepts in IKS

Workshops and Conferences:

Indic Heritage Champions Meet - 28,29th March 2025

A fantastic opportunity for studentsacross the countrywith a passion for preservation of Indic cultural heritage to showcase the rich heritage from their local areas and get exposed to the state of the art in IKS & Heritage Technology at the IITH's HST. In addition The young Champions will receive mentorship from IIT faculty on becoming Techno ambassadors for their local Heritage.

AI applications on Indian MusicWorkshop - 5th,6th April 2025

Organized on the heelsof ICASSP 2025 conference in Hyderabad, the workshop included talks by the invited experts, hands-on tutorials and a hackathon.

ITH CSU SummerSchool in IKS for SanskritStudents - 3rd to 21st June 2025 Central Sanskrit University, Delhiin collaboration with IIT Hyderabad launched a 21-Day Summer School Programto enhance the Composite & Exhaustive Pedagogy.

Major Facilities

- 3D clay printer and its shaker; classical musical instruments, Heritage compute clusters
- Digital Yoga Studios

Thrust Areas

- Neuro-biomechanics of Yoga and performing arts
- Indic languageprocessing
- Heritage conservation and reconstruction
- Integrated traditional medicinal systems
- Acoustics and mechanics of Indian musicalinstruments
- Archaeometry

BUILD Project

The BUILD (Bold and Unique Ideas Leading to Development) program provides a platform to all UG and PG students at IIT Hyderabad with financial support of up to Rs. 1 Lakh to enable their ideas into tangible prototypes. Various ideas that involved hardware, software, apps, etc, were supported. An internal faculty committee has thoroughly scrutinised all the applications received from students who have shown interest in the BUILD program, FY 2024-25. Depending on the title of the project, students are encouraged to either work solo or in groups with a mentor. Multiple review sessions were conducted to monitor the progress of projects. A budget of Rs. 18,76,150/-has been approved for the Shortlisted Projects. BUILD Projects for the Financial Year 2024-2025:

S. No.	Projects for the Financial Year 2024-2025: Title of Project	Team Leader
1	Breast Self-Examination Device	Atharva Patil
2	Revolutionising Maternal Care	Pradhyumn Bhardwaj
3	The Live Mandi	Pushpendra
4	System for monitoring in ambulance using healthcare-based multimodal flexible wearable band	Sruthy Krishna
5	Hotel Automation using AI/ML, techhotel.in	Ashish Kumar
6	OFFICE PODS	Abhijeet Dewangan
7	Vibe Learn	Utkarsh Kumar Verma
8	Replacing the Human Examiner: Vision-Based Automated Retinoscopy Solution	Mirza Sarfaraj
9	Smart bin for segregation of plastic waste	Sarang Kukade
10	RespiTrack - Real-Time Respiratory Monitoring	Anushka Agrawal
11	Smart Checkout using Computer Vision	Saran Konala
12	Comply	Narasimha Murthy
13	Differential Diagnosis	Abhishek Pravin Nahire
14	NEPTUNE:	Naresh D
15	Digital Mnemonic Device	Kochath Dayanandan Anusree
16	Divi set	Vijaivasudev M J
17	Swarm Robotics	Prajwal M
18	Building Bipropellants pressure fed rocket engine	Vivek Yadav
19	VISN- Visually Impaired Smart Navigator	Soham Bhar
20	Calibrated & Comprehensive Problem Set Generator	Pranjal Prajapati
21	Centralized Taxation Platform	SAFDER SHAKIL
22	Al-Based Emergency Response System	Dharmendra Singh Yadav
23	D-Delivery	Jaideep Nirmal A J
24	Horizon AR	Abhishek Kumar
25	Number Plate Detecting Boom Barrier	Abhijit Kashyap
26	Roof cleaning drone	Aryan Gandhi
27	FoldCubeBot	Kaushal Morankar
28	VR-VISIT	Adamya verma
29	ECG Smart Patch	Parth Dawar
30	Veduify Self Study Platform	Kanna Ruthwik
31	Coconut extractor	Viswajit
32	Portable Tea Dispenser	Shraavani
33	Flourescence Sensor for detection of PFOA in Aqueous Solution	Chitransh Borile
34	Real time tracking of improvement initiatives for driving ops excellence	Anadi Gautam
35	Smart gloves	Pratyusha Gudadoor
36	IgnilTe	Garvit Mehra
37	Cold recovery from E-waste using advanced hybrid process	Sri Nandhini S
38	Hemo Watch (wearable for cardiac assessment)	Sonit Nitin Patil
	Tejas: Dermal drug delivery patch	Jyothir Vishnu Bharadwaja Perugu

Neha Agarwal and Arsh Goyal

Orientation

As part of the orientation week for the incoming batch of 2024 at IIT Hyderabad, Tinkerers' Lab organized an inspiring session featuring Neha Agrawal, founder of Mathematically Inclined, and Arsh Goyal, a renowned software engineer and content creator. The event aimed to equip freshers with the right mindset, resources, and direction for their college journey. The speakers shared personal stories and offered practical advice on managing time, maintaining consistency in learning, and building a strong community. The session saw a turnout of over 400 freshers and encouraged active participation through Q&A. Neha Ma'am emphasized conceptual clarity and curiosity, while Arsh gave actionable tips on projects, placements, and networking. The orientation session set a positive tone for the year ahead.

TinkerFresh

TinkerFresh 2024 acted as a dynamic launchpad for freshers eager to explore hands-on learning and technology. Covering Python for Machine Learning, LaTeX, Arduino, Linux basics, 3D Modelling, data analysis, and Git/GitHub, the workshops provided beginner-friendly yet insightful introductions to multiple domains.

The program saw enthusiastic participation and cultivated a spirit of collaboration and curiosity. TinkerFresh successfully built a community of learners ready to experiment and innovate, reaffirming the lab's mission to make tech both accessible and empowering.

WTF Summit 2025

WTF – What's The Future, was a flagship visionary event aimed at exploring the next decade of technology and innovation. The summit brought together diverse voices—engineers, thought leaders, and academicians—to challenge conventional thinking and envision the future. A major highlight was the panel discussion on AI vs Developer, featuring Krish Naik and Hitesh Choudhary. They examined how AI is reshaping the developer role, emphasizing adaptability and the use of AI as an enabler. Another engaging session, Redefining the Digital Landscape, tackled issues of digital governance, autonomy, and interaction. Decentralising the Future featured Web3 experts Kamlesh Nagware, Punit Agarwal, and Prasanna Lohar, who discussed blockchain, DeFi, and open internet ecosystems.

Interactive QnA

The summit also included a session on ML research careers led by Sonu Mehta and Prof. Surendra Nadh.

Thrust 2025

Thrust 2025, the second edition of Tinkerers' Lab's flagship tech fest, built on the momentum of its previous success. The fest welcomed popular content creator Love Babbar, whose session inspired numerous attendees.

Kev events included:

- Rubik's Cube Competition showcasing problem-solving and speed.
- Qawwali Night by the legendary Warsi Brothers, celebrating cultural roots.
- Robo Expo which highlighted groundbreaking technologies, demonstrations and solutions for various industries
- Auto Expo featuring Lamborghini, BMW, and Royal Enfield bikes, drawing huge crowds and automotive enthusiasts.

Projects

Beyond events, 2024–25marked a year of significant student-led innovation at Tinkerers' Lab. These projects showcased practical applications and interdisciplinary approaches.

Software and ML Projects:

Real Estate ML Application: A deployed web platform for housing price prediction, trend visualization, and recommendations.

Traffic Optimizer and DDR Prototype: Integrated realtime systems with user-centric design.

Flappy Bird RL Agent and Conditional GAN Digit Generator: Fun and exploratory uses of machine learning. AutoPack Robot, AINexus, and BidBull: Large-scale, startup-potential systems in automation and AI.

Mechatronics and Hardware Projects

Autonomous Campus Delivery Robot and Voice- Controlled Robot: Real-world navigation and control systems.

Gait Analysis System using ESP32.

Pressure Sensing Gloves, Automated Vacuum Cleaner, and Environmental Monitoring Drone: Addressing health-tech, convenience, and sustainability.

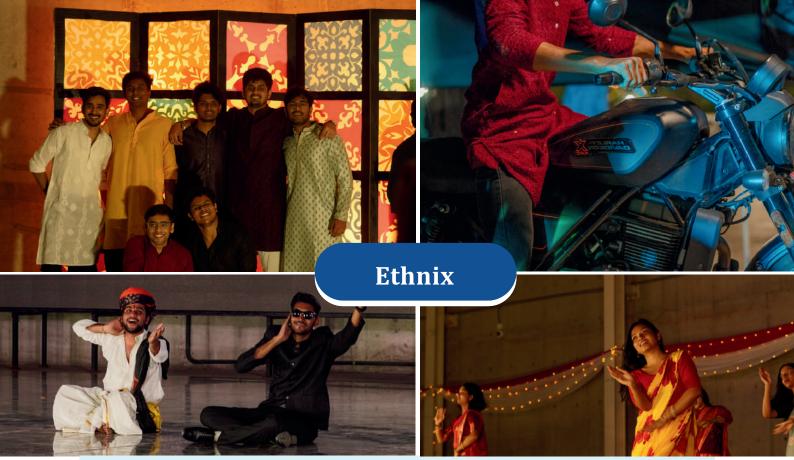
Tinkerers' Lab continues to be a thriving hub where ideas are not only encouraged but also built, tested, and implemented. With growing student involvement and increasingly diverse outcomes, the lab is shaping the next generation of innovators.

Students at IITH celebrated Onam with great enthusiasm through a variety of traditional and funfilled activities.

Highlights included Vadamvali (tug-of-war), Athapookalam floral displays, Sundarikku Pottuthodal, Origami boat making, Thiruvathirakali dance by the Shuffle group, and a lively Mini Uriyadi.

Each event brought a mix of excitement, nostalgia, and cultural richness, uniting everyone in the festive spirit. A themed photobooth added to the joy, giving participants a chance to capture memorable moments of the celebration.

- Students of IITH celebrated Diwali with creativity, joy, and cultural vibrance through a series of engaging activities.
- The festivities featured Night Diya Painting, Clay Modelling, Mehandi, and Lantern Making, with the sky lanterns lighting up the night sky beautifully.
- Garba Night, along with Shuffle's energetic performance, added rhythm and color to the celebrations.
- Fun games like Sweets on String, Musical Chairs, and Diwali Bingo filled the evening with laughter and togetherness.



- Students of IITH celebrated Makar Sankranthi with enthusiasm, blending tradition and fun.
- The festivities included kite flying, rangoli making, and traditional games that filled the campus with vibrant colors and cheer.
- Cultural performances and music added to the festive spirit, showcasing the joy of togetherness. The
 celebrations truly reflected the essence of Sankranthi, bringing students closer in a spirit of unity and
 festivity.

- The festival of colors was celebrated on March 8th with immense enthusiasm, creating a vibrant and joyful atmosphere across the campus.
- Skin-friendly colors in eight shades encouraged safe participation, while the lively rain dance added to the
 excitement as students danced through sprays of water.
- A high-energy DJ performance kept the spirit alive for hours, with everyone enjoying upbeat tracks and nonstop dancing.
- The blend of colors, music, dance, and water made the Holi celebration truly unforgettable.

- Ethnix was celebrated with vibrant cultural performances, where participants from different states showcased their traditions through dance, music, poetry, and storytelling in traditional attire.
- The evening was filled with fun activities like saree/dhoti draping, hopscotch, and paper boat races, while the OAT's festive decorations added to the cultural vibe.
- Free Polaroid prints, a Harley Davidson photo-op, gaming stalls, and anime/art corners brought an
 interactive touch, making the event even more lively. The day concluded with the screening of Wake Up
 Sid, offering a relaxing and cheerful end to the celebrations.

- Students of IITH marked Seva and Jan Jatiya Gaurav Diwas with a series of impactful activities promoting social responsibility, sustainability, and cultural respect.
- Highlights included the Swachhata Pledge, tree plantation, cleanliness drives, health camps, donation drives, and creative initiatives like Waste to Art and poster competitions.
- A lamp-lighting ceremony, awareness campaigns, and a special ragi halwa paid tribute to Birsa Munda and
 tribal traditions, while quizzes and essay contests on the Constitution encouraged reflection on citizenship and
 diversity. Together, the events fostered awareness, community spirit, and respect for heritage.

Orphanage Visit

The NSS Team at IITH conducted visit to Mahima Ministers NGO, engaging children through games, creative activities, and a clothes drive while also supporting the elderly. These visits fostered joy, comfort, and meaningful connections, making the experience impactful for all.

The NSS Team, in collaboration with the Green Office, organized plantation drives across the IITH campus, enhancing greenery and air quality. With active student participation, the initiative promoted sustainability for present and future generations.

Plantation Drive

Swachh Bharat

The NSS Team at IIT Hyderabad leads the Swachh Bharat initiative, a bimonthly campus-wide cleanliness drive. Volunteers clean high-footfall areas, focusing on non-biodegradable waste to promote a cleaner and healthier campus.

Walkathon

The NSS Team at IIT Hyderabad organized five walkathons during the academic year, encouraging a healthy lifestyle. Covering 3-6 km between hostels and the main gate, these events saw enthusiastic student participation, making fitness both fun and engaging.

Vidyadaan, an outreach initiative by the NSS Team at IIT Hyderabad, supports nearby government school students through interactive sessions in subjects like Math, Science, Social Studies, English, and Career Guidance. Using videos, PPTs, and visuals, volunteers make learning engaging while enjoying a meaningful experience.

Vidyadaan

Blood Donation Camp

The NSS Team at IIT Hyderabad organized two blood donation camps during the academic year at the IITH Hospital, partnering with Niloufer Government Blood Bank and the Thalassemia and Sickle Cell Society.

Donation Campaigns

The books and clothes that students, faculty & other staff were willing to donate were collected from their doorstep with the help of NSS volunteers.

The Weed Removal Program was conducted to support environmental sustainability and enhance campus greenery, where students, staff, and faculty volunteered to remove invasive weeds that hinder native plant growth. Volunteers worked, contributing to both the aesthetic and ecological wellbeing of the campus.

Weed Removal Drive

Vriksha Bandhan

The NSS Team at IITH organized Vriksha Bandhan, inspired by Raksha Bandhan to pledge protection for nature. Volunteers tied sacred threads around trees, symbolizing care and respect, and promoting environmental conservation and sustainable living.

National Youth Day Celebration

National Youth Day to honor the energy and potential of youth in shaping a better future. The event featured an inspiring address by Mrs. Uma Harathi, IAS officer and IIT alumna, and marked the launch of the first NSS IITH magazine, with enthusiastic participation making it a memorable occasion.

As part of the Margdarshan initiative, government school children visited IIT Hyderabad to explore campus landmarks like the Sports Complex and Lecture Hall Complex. The visit inspired them to dream big and motivated them to pursue higher education by experiencing the IIT environment firsthand.

Margdarshan

Lake Cleaning Drive

Lake Cleaning Drive at Barla Kunta Lake, Indira Nagar. The team collected waste and removed unwanted materials, promoting environmental awareness and the importance of preserving natural spaces.

Gram Sabha

A Grama Sabha in Kandi Thanda as part of the 'Swachhata Hi Seva' campaign. The event educated villagers on cleanliness, waste management, and segregation, featuring awareness sessions, demonstrations on disposal and composting, and active community discussions on improving sanitation.

A Safai Mitra Suraksha Shivir under the 'Swachhata Hi Seva' campaign, providing health check-ups and connecting Safai Mitras with government welfare schemes. Over 80 Safai Mitras received screenings for blood pressure, sugar levels, and general health, with NSS volunteers ensuring smooth execution and planning follow-up support.

Safai Mitra Health Camp

World Environment Day

IITH celebrated World Environment Day with the theme "Ecosystem Restoration." The event featured a hand-drawn poster competition, tree planting photo/video submissions, and a pledge-taking initiative, inspiring participants to adopt sustainable practices.

EML

"EML IIT Hyderabad: Pioneering the Future of Intellectual Discourse"

This year, Extra Mural Lectures (EML) at IIT Hyderabad has undergone a significant transformation, solidifying its presence as a premier platform for thought leadership, storytelling, and intellectual engagement. Through a carefully curated speaker lineup, an expanded digital footprint, and innovative initiatives, EML redefined its institutional footprint. Anchored by our new thematic vision—VENTURO: The Eternal Voyage—EML has elevated its discourse among the IITH community and set a new bar for the following year's team.

Key Initiatives and Milestones

- **Brochure Launch (check here):** For the first time, we unveiled a professionally designed brochure that not only encapsulated our new theme and strategic direction but also chronicled our past speaker milestones. The brochure served as a tangible testament to EML's journey toward cementing its professional presence.
- **Inaugural Orientation:** Marking a significant milestone, our first-ever orientation session for new members introduced a new era for the club. This initiative, where we screened the first-ever official video of EML, fostered a strong sense of belonging and enthusiasm with our operational temper.
- **Thematic Evolution VENTURO:** Under the banner of VENTURO: Navigating the Uncharted, we embraced the notion that "life is like a storm, bound in a chrysalis, and very few dare to explore it."
- **Team Revitalization**; Building a Cohesive and Inclusive EML The introduction of a new team structure, along with the issuance of updated ID cards, has instilled a heightened sense of professionalism and unity. More importantly, EML has fostered an inclusive culture where voices across demographics, genders, and experience levels are not only heard but valued.
- **Distinguished Speaker Series:** This year, EML had the privilege of hosting a lineup of eminent speakers, each a national awardee and a trailblazer in their respective fields. Our roster included Lt. Gen. KJS Dhillon, the strategist who played a pivotal role in maintaining stability during the abrogation of Article 370; Prof. HC Verma, the educator who revolutionized physics learning in India; and Dr. Kiran Seth, the founder of SPIC MACAY, whose efforts have preserved and promoted India's cultural heritage.
- **Institutional Recognition and Engagement:** EML's efforts have culminated in significant institutional recognition. By redefining our operational dynamics, we have transcended traditional engagement methods—transitioning from dependency on NSS hours to attracting an organically vibrant crowd, as evidenced by a near-capacity turnout at LHC5.
- **Innovative Initiatives:** We have laid the groundwork for multiple forward-thinking projects (will be in action next tenure) designed to extend our narrative beyond conventional confines:
- 1. Humans of IIT Hyderabad: Documenting the rich tapestry of untold stories within our IITH community.
- 2. <u>Beyond 64 Squares</u>: Capturing the remarkable journeys of India's chess prodigies.
- 3. Echos of Grit: Illuminating powerful, transformative stories from across the nation.
- 4. Ripple Effect: (Working title): A platform to celebrate impactful narratives that drive societal change.
- Strategic Partnerships and Collaborations: We piloted an inter-club collaboration with Sunshine during our second lecture by Dr. EV Swaminathan, a promising initiative that signals potential long-term partnerships. Concurrently, we cultivated promising dialogues with high-profile figures such as Vishwanathan Anand, setting the stage for future engagements.
- **Digital Footprint Expansion:** Our Instagram presence now boasts 1,115 followers, marking a significant and sustained growth over the past year—a clear indicator of our expanding influence.
- Website Overhaul (<u>check here</u>): The complete revamp of our website—with a coherent color scheme and streamlined presentation of our speaker series—now stands as an attractive and professional digital portal for all EML activities.
- To see all event visuals, please check EML Instagram: https://www.instagram.com/eml_iith/eml_iith

News & Future Initiatives: Expanding Horizons

Building on our momentum, EML is now poised to take even greater strides in the coming year:

- Media & Outreach Team
- Sponsorship Team
- Opening EML to External Audiences

A New Vertical for Unheard Stories: Creating a platform to collect, curate, and share powerful stories from individuals who may never set foot on our campus. This initiative serves three key purposes:

- Ensuring our social media remains active and engaging year-round, even in the absence of live speaker sessions.
- Bringing forward impactful narratives that might otherwise be overlooked.
- Building anticipation and sustained engagement leading up to a grand annual event—drawing inspiration from IIT Madras, home to the country's most influential EML series.

In Essence: A Year of Transformative Growth

This year, EML has redefined what it means to be a student-run initiative at IIT Hyderabad. We have:

- Hosted a stellar lineup of nationally acclaimed, Padma Shri-winning speakers.
- Strengthened our identity through a compelling new theme, a professional brochure, and an expanded digital footprint.
- Successfully shifted from inorganic audience-building tactics to organically packed lecture halls.
- Initiated a roadmap for groundbreaking projects that will shape the club's future and widen its reach.

With these foundational advancements, EML is not just evolving—it is leading the way, setting a benchmark for student-led intellectual engagement across IIT Hyderabad.

The 2024–25 academic year blended tradition with innovation, significantly enriching campus life at IIT Hyderabad. We began with the Freshers' Fiesta in July, engaging newcomers through interactive games and an orientation introducing the institute's structure and teams. A unique highlight followed in September with our first-ever movie promotion event, hosting the cast of Mathu Vadalara 2, strengthening IIT Hyderabad's visibility.

Our outreach continued with specialized technical workshops for non-IITH students and the launch of the School Olympiad in October, engaging grades 8–10 while creating additional revenue streams. In November, NEXUS' second edition brought four days of spirited competition with 55 teams, culminating in exciting prizes. The School Workshops initiative welcomed senior school students for hands-on engineering projects and campus tours, inspiring future aspirants.

Post-winter break, we introduced Orion's Theatre, the first open-to-all movie screening and stargazing event. Collaborating with Stardust, we hosted six stargazing sessions, with more planned, creating both engagement and revenue opportunities.

Our year culminated in Elan & nVision 2025 – "A Space Odyssey" (Feb 21–23), a landmark three-day fest attracting over 10,000 registrations and 4,500+ external visitors.

 Day 1 – Fusion Nite: Inauguration by Mr. Srinivas Taluka (T-HUB), classical music and dance competitions, and an open-air screening of Rockstar with vibrant games and stalls.

- Day 2 Indie Nite: Art workshops, tech competitions (Robosoccer, hackathons, e-sports), cultural events (Breakfree, Campus Idol), quizzes, social initiatives, drone exhibition, and live performances by Fluteboxers, Shreya Jain, and The Leading Drops.
- Day 3 Pop Nite: Sporting and robotics competitions, fashion shows, Battle of Bands, Cosplay events, Under 25 Summit, and a grand finale with Papon's concert and DJ Swattrex. Throughout, stalls, games, and informal activities created a carnival atmosphere.

Post-fest, we focused on documentation, fulfilling sponsorship commitments, and extended partnerships. Events like Cryptex, a 36-hour online puzzle, and a final movie promotion with Anupama Parmeswaran in March sustained engagement until year-end.

Closing Reflections:

This year's initiatives fostered vibrant campus life, expanded outreach, and strengthened institutional connections. Through strategic planning and collaboration, we created memorable experiences, setting a strong foundation for future events and enhancing IIT Hyderabad's cultural and social landscape.

Opening Ceremony

The 5th edition of Milan, IIT Hyderabad's General Championship, was held from 20–29 September, featuring 65 events (29 cultural, 17 sports, 14 sci-tech, and 5 collaborative), including 15 new additions. Five trophies were contested: Overall Championship, Men's & Women's Sports, Sci-Tech, and Cultural. Participation rose to 21 hostels from 18 previously.

The grand opening at the Open Air Theatre featured a historic hostel march-past and torch rally, with the esteemed presence of Director Prof. B.S. Murthy, Dean of Students Prof K Venkatasubbaiah, and other dignitaries. The ceremony began with an inspiring speech and traditional lamp-lighting, followed by a vibrant display of hostel spirit.

Sports Events

Milan'24 hosted 17 sports events, including the debut of 8-ball pool, alongside cricket, football, basketball, volleyball, hockey, chess, athletics, and more. Several events were mixed-gender, while some were exclusive to boys or girls. Hostel RAMAN clinched the Men's Overall Sports trophy, while ANANDI dominated Women's Sports. The championship witnessed fierce competition, camaraderie, and record enthusiasm.

Cultural Events

With 29 cultural events—the largest in Milan's history—cultural clubs showcased extraordinary talent. Highlights included dance (solo, duo/trio, group, street battle), singing, art competitions, cosplay, and quizzes. New additions like graffiti painting, clay modelling, and antakshari added fresh vibrancy. Cosplay and anime quizzes, organized by the Otaku Club, stood out for creativity and energy. Visvesvaraya Hostel emerged as Cultural Champions through spirited participation. Key cultural events included: Street Battle, Stage Play, Battle of the Bands, Solo Singing/Dance, Graffiti Painting, Cosplay Showdown, Quizzes, and more.

SCI-TECH EVENTS:

Sci-tech clubs hosted 14 challenging events plus 3 collaborative competitions covering robotics, coding, esports, and more. Notable events included: Astro Photography Challenge, Build the Circuit, E-sports tournaments (BGMI, COD Mobile, Valorant, Clash Royale), Hackathons, and Water Rocketry. Hostel RAMAN emerged victorious in Sci-Tech with exceptional performances across categories.

Pronites & Prom

The pronites brought unmatched entertainment:

- Stand-up comedy by Vivek Samtani
- · Aarohi Band live performance
- DJ Young and Broke electrified the audience with a DJ Night
- The Prom Night, held at unprecedented scale, was a dazzling celebration of style, music, and camaraderie.

Award Ceremony & Closing Note

The closing ceremony on 29 September celebrated outstanding performances. Visvesvaraya Hostel won the Overall Championship. Milan 2024 broke records in participation and social media engagement, growing followers from 1.7k to 2.5k—the highest ever. This year also saw the restyling of the mascot to "Pablo," adding flair to the celebrations.

Entrepreneurship Cell (E-Cell) at IITH is a student-driven body committed to fostering innovation, entrepreneurial spirit, and startup culture on campus. Through flagship events, mentorship sessions, and industry collaborations, it empowers students to transform ideas into impactful ventures. In 2024–25, E-Cell organized a series of high-impact events that brought together visionary leaders, aspiring entrepreneurs, and the student community to strengthen the entrepreneurial ecosystem

Fireside Chats

- **Dr Nachiket Bhatia:** Shared his journey from medical graduate to healthcare entrepreneur, discussing innovations in medical coaching and motivating students to adopt entrepreneurial thinking.
- Mr Sandal Kotawala: Discussed bridging research and market needs, sharing his story of founding Alphaleus and inspiring students to transform technical knowledge into impactful ventures.

Startup Fair 2025

One of the largest entrepreneurial showcases on campus, featuring 30+ startups in technology, sustainability, healthcare, and social innovation.

- **Virtual Investment Simulation:** Attendees invested virtual money in startups via a custom web app, gaining hands-on learning in investment strategies.
- Participation: 3,000-4,000 students & faculty.
- Prize: ₹30,000 for BUILD initiative winner.
- **Expenditure:** ₹80,000.

Founders Hive / Café Catchup:

Mentorship and networking sessions led by Akhil Gabbeta and Ojas Ulhas Dighe, focusing on idea validation, MVP development, and venture-building strategies.

Fetching Fortunes

A competitive startup pitch event integrated with the live investment simulation.

- Entrepreneurs delivered concise, impactful pitches to a panel of judges and virtual investors.
- Winners awarded ₹30,000.
- Enabled startups to gain visibility, mentorship, and investor interest.

NPCI Hackathon

A fintech innovation challenge aligned with NPCI's vision.

- Participants created solutions for real-world problems.
- Prize pool: ₹1.5 lakh.
- Provided industry exposure and networking opportunities.

Expert Talk & Panel Discussion

- **Dr Nishanth Dongari:** Insights on scaling deep-tech startups and commercializing research.
- Shark Tank Panel: Manoj Sanker, Saad Tramboo, Ravi Kaushik shared pitching strategies, growth tips, and lessons from their entrepreneurial journeys.

IIT Hyderabad, in collaboration with the Japan External Trade Organization (JETRO), successfully organized Japan Career Day 2025 on 30th & 31st August 2025, marking the 8th consecutive year of this flagship event. This year, around 17 leading Japanese companies from diverse sectors such as Manufacturing, Automotive, Sustainability, Energy Plants, and Transportation participated in the event.

The two-day program included an inaugural session and company presentations on Day 1, followed by one-on-one student-company interactions on Day 2, enabling students to explore career pathways and build connections with prospective employers. In addition to the Career Day, JETRO organized a Co-Research Day on 29th August 2025, where four Japanese companies participated.

JETRO facilitated matching sessions and meetings with several IITH laboratories based on the companies' research areas, strengthening industry-academia collaboration. Japan Career Day at IIT Hyderabad continues to serve as a vital platform for fostering Indo-Japanese academic, research, and industry partnerships, while opening global career opportunities for students.

Companies Participated:

- AWL Inc.: A market leader in AI and Deep Learningbased video analytics working to revolutionize the retail industry.
- **Green Carbon Inc.:** A sustainability-driven company that supports primary industries by
- generating carbon credits mainly through methane reduction in rice paddies and streamlining the process with its integrated Agreen platform.
- AGC Group: A Japanese manufacturer specializing in glass, chemicals, and electronics for industries such as construction, automotive, displays, and life sciences. The company is now embracing a digital transformation.
- Order Busters.Co: Order Busters.Co streamlines operations with smart order management solutions, helping businesses cut inefficiencies and deliver orders with speed and precision.
- Ishihara Sangyo Kaisha, Ltd.: As a pioneer in specialty chemicals, Ishihara Sangyo Kaisha, Ltd. creates products that enhance everyday life and industrial performance. Their focus on quality and responsible innovation defines their global presence.

gbl inc.: Game Based Learning, Inc., headquartered in Tokyo, uses interactive, game-based pedagogy to drive

- mastery of the Four Cs: communication, collaboration, creativity, and critical thinking.
- Sprix Inc.: A leading educational services provider from Japan that is set to launch a new company in India to deliver high-quality online personal coaching for secondary school students.
- MUFG Global Service Private Limited: MUFG Global Service Private Limited, part of MUFG, provides financial
- and technology solutions, supporting global operations with expertise in banking, digital transformation, and shared services.
- HIRAOKA HYPER TOOLS INC.: HIRAOKA HYPER TOOLS INC is a leader in industrial tool manufacturing,
- delivering precision solutions that optimize machining performance and support global manufacturing excellence.
- **DENSO:** A global Fortune 500 company with a broad product portfolio and focused
- on advanced mobility that positively changes how the world moves and contributes to greater well-being.
- Mitsubishi Electric Corporation: Mitsubishi Electric Corporation is a global leader in electrical and electronic equipment, driving innovation and sustainability with advanced solutions for energy, manufacturing, and infrastructure.
- **Hitachi High-Tech India Pvt Ltd.:** Hitachi High-Tech India Pvt. Ltd. provides advanced analytical instruments
- and technologies, combining global expertise with local insights to support healthcare, research, and manufacturing.
- Macromill, Inc.: Macromill, Inc. is a leading global market research firm, providing data driven
- insights and digital solutions that help businesses make smarter decisions and stay competitive.
- NIHON NOHYAKU CO.,LTD.: Nihon Nohyaku Co., Ltd. leverages decades of agrochemical expertise to deliver sustainable crop protection products that help farmers boost productivity and ensure healthier harvests.
- Nikko Co., Ltd.: A 100 year old leading plant manufacturer with core technologies that encompasses combustion, mixing, information technology, and belt conveyors.

Through this initiative, IIT Hyderabad reaffirms its commitment to global engagement and to creating meaningful career opportunities for its students in international markets.

The Finance & Consulting Club at IIT Hyderabad is a student-led community for those who wish to explore the world beyond engineering — into finance, consulting, and management. We learn by doing — solving real problems, exploring strategy, and acquiring real-world skills along the way. FCC helps shape some of IIT Hyderabad's brightest minds into future leaders in the space.

Orientation

The year began with a high-energy orientation session featuring Mr Aakash Daswani, an IIT Hyderabad alumnus and an Investment Banker at Houlihan Lokey (Ex-Kotak Mahindra Bank IB, Microsoft PPO, Ex-President, Student Gymkhana IIT Hyderabad, Ex-Overall Coordinator, OCS, IIT Hyderabad). He engaged in a fireside chat, sharing valuable insights about careers in investment banking and finance. The event saw a footfall of 500+ students, marking a significant increase in engagement and outreach.

Skill Building Initiatives

- Case Nights & Consulting Summer School Weekly sessions and a structured summer program introduced students to consulting frameworks, case-solving, and structured thinking.
- Finance 101 Hands-on sessions covered topics like trading, stock markets, and financial analysis. These sessions were open to all years and branches.
- Resume Building Workshop Focused training on crafting industry-ready resumes tailored for consulting and product roles.

Hackathon - HACK4SDG

Conducted a 24-hour hackathon in collaboration with AIESEC on 26th-27th October 2024. Around 500 Participants form Colleges across Hyderabad took part in the hackathon. The hackathon aimed at tackling Sustainable Development Goals (SDGs) and brought together innovative minds to develop impactful solutions.

Pre-Horizon - Special Talk by Pranjal Kamra

Ahead of Horizon 2025, FCC hosted Pranjal Kamra, India's top influencer and CEO of Finology, for an engaging talk on personal finance and financial independence.

The evening featured:

- A themed treasure hunt
- Interactive finance games
- · A keynote session on investment basics

Horizon 2025

FCC's flagship annual fest, Horizon, attracting participants from across India, is a journey through the evolving world of business, finance, and innovation.

With high-impact events, visionary speakers, and hundreds of engaged participants, HORIZON is designed to guide students through the diverse world of strategy, leadership, and market dynamics.

Key Highlights:

- Fireside Chat with Ankur Warikoo (1000+ attendees)
- Talk by Dr. A. Velumani (800+ attendees)

Competitions:

- ProdX National-level product case challenge
- MnA Strategic merger and acquisition simulation
- EquityX Stock analysis challenge

Flagship Sessions:

- All About MBAs Featuring alumni from IIMs, ISB, and global B-schools: Sumit Singh Gandhi, Randhir Raj Singh, Roshni Pande, Tony Xavier
- Breaking Brands (Powered by The Product Folks)
 Branding deep dive with: Vaishnavi Devi (Swiggy), Yash
 Agrawal (BrowserStack, IITH alumnus)
- Million Dollar Deals Corporate finance insights from: Rohit Chawla, Virendra Kumar, Animesh Pandey
- National Competitions

ProdX

FCC's flagship product management competition, scaled nationally:

- 30,000+ impressions on Unstop
- 650+ registrations from IITs, IIMs, BITS, ISB, and corporates
- Offline finals judged by product managers from Microsoft and Ola

EquityX

A premier stock analysis challenge:

- 12,000+ impressions
- 250+ participants analyzing small-cap investment opportunities

M&A

A hybrid competition blending finance and consulting: Participants evaluated real-world M&A deals for strategic fit and financial synergy

Judged on clarity, depth, and data-backed conclusions

The 2024–25 tenure of TEDxIITHyderabad was marked by innovation, community engagement, and a bold reimagining of what student-led initiatives can achieve. From being recognized by TEDx official, creative orientation events and impactful outreach programs, each effort was rooted in the TEDx philosophy: "Ideas Worth Spreading." This report documents the year's major events, initiatives, and outcomes.

Freshers' Orientation 2024

The orientation for the incoming batch was reimagined as a TEDx-style immersive session. Freshers were introduced to the values of curiosity, courage, and collaboration through engaging activities, trivia, and showcases of past editions. The launch of Tedpool, a witty and humorous mascot, instantly became a highlight. With giveaways, energy activations, and enthusiasm, the event sparked early volunteer signups and strong social media traction.

X-Masterclass Initiative

Launched as a blend of learning and outreach, X-Masterclass connected IIT Hyderabad with schools and communities across the city. Students engaged in donation drives, welfare activities, and collaborative programs at Devnar School for the Blind. Networking sessions with mentors, alumni, and faculty enriched the experience further. The initiative empowered students to express confidently, setting a model that inspired six new TEDx chapters.

EthniX - Theme Reveal Night

EthniX was a vibrant cultural evening that celebrated India's ethnic richness while building anticipation for the year's theme. Attendees enjoyed traditional games, food, and performances, creating a lively community atmosphere. The highlight was the unveiling of the theme Tatv – Unfurling the Essence of Life, symbolizing the five elements as metaphors for human existence. This theme later became a guiding philosophy across all events of the tenure

X-MUN 2025 - Diplomacy in Action

This two-day UN-style conference brought together 100+delegates to simulate global diplomacy across committees like UNSC, UNHRC, and Historic UNSC. Participants debated pressing issues from Ukraine to indigenous rights, practicing negotiation and consensus-building. A dedicated Press Team added depth with newsletters, photography, and creative journalism. The event seamlessly combined intellectual rigor with storytelling, leaving behind strong institutional memory and digital presence.

TEDxIITHyderabad 9th Edition - Main Event

The flagship annual event carried forward the essence of Tatv through powerful stories and performances. Seven diverse speakers—including leaders, entrepreneurs, artists, and changemakers—shared journeys of resilience, identity, and purpose. With a packed audience, vibrant cultural performances, and emotional resonance, the event created an unforgettable atmosphere. The edition stood as a culmination of the year's journey and raised the benchmark for future TEDx chapters at IITH.

Conclusion

The 2024–25 tenure was a landmark cycle that combined creativity, culture, diplomacy, and community outreach under the spirit of Tatv. Each event went beyond being just an activity, serving as a platform for dialogue, growth, and shared experiences. From engaging freshers to hosting thought leaders, the team built bridges between ideas and action. TEDxIITHyderabad reaffirmed its role as a catalyst for change on campus and beyond.

Sunshine: The Counselling Cell

Since its inception on January 12, 2012, Sunshine-the counselling cell at lITH, has been committed to helping the student community. The dedicated team of Sunshine comprises a Faculty in Charge, three Psychological Counsellors, 19 faculty representatives, 18 student heads, 23 PG mentors, 28 PG buddies, 8 PhD dept representatives, 48 UG mentors, 41 UG buddies and 21 management team members.

For the year 2024-25, Sunshine has conducted:

- Heal out loud
- Stone Painting Competition
- Workshops by Counsellors
- Clay Therapy
- Art Therapy
- National Well-Being Conclave
- Sunshine Foundation day
- Funshine (Puzzle pals) event
- Happiness Workshop
- Sunshine Breathe and Bond
- Talk by Nida ma'am
- Happiness Carnival
- · Games stalls

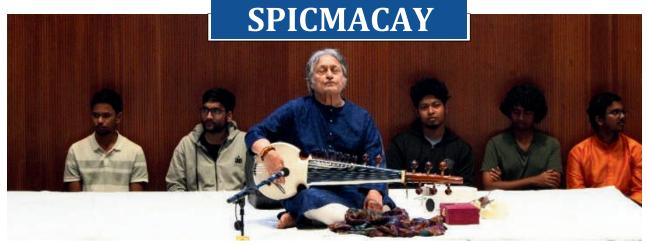
Student Arena

The General Council is an umbrella term for various bodies which not only perform representation tasks, but also cater to student welfare, societies, entertainments etc. The General council strives towards the general welfare of the students

For more details, visit: http://gymkhana.iith.ac.in/

The Cultural Council are a motivated group of individuals who believe that a college should have its equal share of fun & frolic along with the case studies. Clubs under Cultural Council are Infocus, Behind the lens, Vibes, Rang de manch, Gesture Shuffle, LitSoc.

IITH's sports is one of the more brilliant facets of this campus life. IITH offers plenty of sports facilities, which include a common football & cricket ground, a hockey ground, a well-equipped swimming pool, floodlit courts for basketball, badminton, tennis, and multiple courts for volleyball. Facilities for indoor games like table tennis, caroms, and chess are also available.


The media council of IITH was formed in May 2014 & is a student council that helps take IITH to every individual in & outside IITH. They are involved in publicizing our institute through social media, social events, etc. The Media Council is currently engaged in various newsletters of IITH like the academic newsletter, placement newsletter with the guidance of different faculties, and PR Office of IITH

The Sci-Tech council is headed by Science and Technology Secretary. It encompasses nine societies: AeroClub, Cepheid, Elektronica, Kludge, Infero, Lambda, Prakriti, Robotix and Torque which covers the diverse nature of science and technology. Various events are organised from time to time, starting from orientation of all these clubs.

Mess monitoring council, also known as MMC, assists in the robust functioning of mess in coordination with mess wardens & HCU. Headed by the mess secretary, it represents the students' voice. It also regularly inspects the operations to look for various faults & ensure that food quality is maintained at IITH. It strives to ensure that all the students have enjoyable and healthy meals at their second home.

The SPICMACAY (Society for the Promotion of Indian Classical Music and Culture Amongst Youth) Club at IIT Hyderabad has had impactful and dynamic 2024-2025 tenure thus far, successfully organizing several events that have captivated and engaged the campus community. Below is a detailed summary of the events organized in the first half of the tenure:

Film Screenings

The year began with screenings of The Great Dictator and The Making of Mahatma, in collaboration with NSS. Both films drew strong participation of 150–200 attendees, with Gandhi's journey especially resonating with students. The screenings established SPICMACAY's presence on campus and set the tone for a culture-driven year.

Clay Modelling during Diwali

In partnership with the EBSB Club, a clay modelling activity was held during the Diwali celebrations. Students enthusiastically engaged in this traditional craft, enjoying a hands-on cultural experience. The event was praised for its creativity and became a highlight of the festive celebrations, reinforcing SPICMACAY's role in cultural promotion.

Leather Puppetry Show

A traditional puppetry show from Telangana and Andhra Pradesh brought local heritage to life in November 2024. Attended by nearly 300 people, the performance received appreciation from faculty, staff, and students alike. It highlighted SPICMACAY's mission of preserving and celebrating India's diverse cultural art forms.

Meeting with Hon. Governor of Telangana

On 4th January 2025, SPICMACAY IIT Hyderabad representatives attended a prestigious meeting chaired by the Hon. Governor, Shri Jishnu Dev Verma. The event also marked the banner release of the 10th International Convention, with dignitaries including SPICMACAY Founder Dr. Kiran Seth and IIT Hyderabad leadership. This milestone showcased the Sub-Chapter's growing influence at the national level.

Ustad Amjad Ali Khan's Sarod Concert

On 6th January 2025, legendary maestro Ustad Amjad Ali Khan Ji, accompanied by tabla virtuosos, enthralled an audience of nearly 1,000. The LHC hall was filled beyond capacity, with listeners moved to tears by the soulful performance. This remains one of the most memorable cultural evenings in IIT Hyderabad's history.

Classical Evening

Held on 3rd February 2025, this event featured 15 performances ranging from tabla and flute to classical dance recitals. It served as a platform for students to showcase their talents while promoting traditional art. Certificates of appreciation were given to participants, reinforcing the spirit of cultural pride and recognition.

Ottanthullal - Kerala Folk Dance

On 15th February 2025, students experienced the humor, energy, and storytelling of Ottanthullal, performed by Kalamandalam Mohankrishnan and team. The event drew nearly 500 attendees and brought a vibrant taste of Kerala's folk traditions to campus. Its lively and interactive format made it especially enjoyable for the audience.

Pandvani - Folk Narrative of Chhattisgarh

On 20th March 2025, artist Ritu Verma presented a mesmerizing rendition of Draupadi Cheer Haran through Pandvani, a traditional storytelling art form. Attended by about 600, the performance left audiences deeply moved with its emotional power and cultural depth. It also served as a curtain-raiser for the upcoming 10th International Convention.

Conclusion

Through its diverse range of activities—films, crafts, music, dance, and traditional storytelling—SPICMACAY IIT Hyderabad has fostered a vibrant cultural spirit on campus. The events not only entertained but also educated, building awareness of India's heritage. With the International Convention ahead, the club is poised to further strengthen its cultural impact.

Collaborations

Strategic Collaborations Driving Innovation

IIT Hyderabad continues to strengthen its global footprint through impactful collaborations with leading academic institutions, research organizations, and industry partners. These alliances enable the exchange of knowledge, joint research initiatives, and opportunities for innovation that align with the institute's vision of fostering technology for humanity.

Academic Collaborations

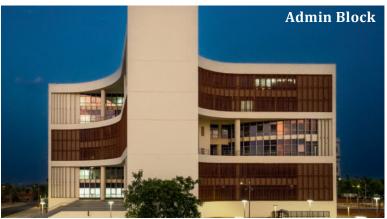
IITH has signed Memoranda of Understanding with prestigious universities across the globe, including Shibaura Institute of Technology, Ritsumeikan University, Nara Women's University, and Kyoto University in Japan, as well as Purdue University (USA) and Visvesvaraya National Institute of Technology, Nagpur and NIT Agartala in India. These partnerships promote student and faculty exchange, dual degree programs, and collaborative research across disciplines.

Research & Institutional Partnerships

In pursuit of cutting-edge research and technological advancement, IITH collaborates with prominent organizations such as RIKEN Center for

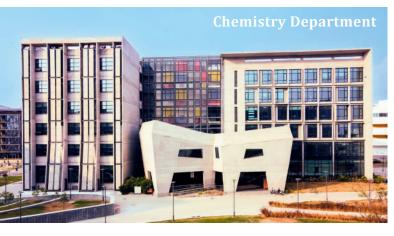
Advanced Intelligence Project RIKEN Center for Advanced Intelligence Project (Japan), AIIMS Bibinagar, C-DAC, AICPMU at IIT Jammu, and the Department of Higher Education, Ministry of Education, Government of India. These linkages drive interdisciplinary research, healthcare innovation, and national capacity-building in emerging domains.

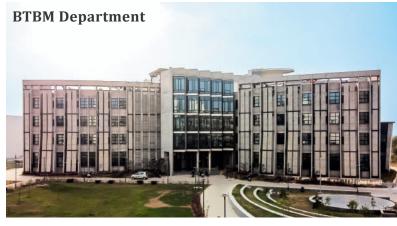
Industry Collaborations

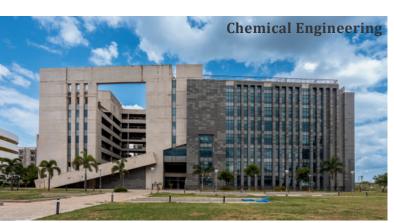

IITH's industry partnerships bridge academia with real-world applications through engagements with organizations such as Renesas Electronics India Pvt. Ltd., Nikon India, Indian Explosives Pvt. Ltd. (Orica), Aarvee Associates Architects Engineers and Consultants Pvt. Ltd., Spanda.ai, Devic Earth, Coal India Limited, and Energy Efficiency Services Limited (EESL). These collaborations facilitate technology development, industry-relevant projects, internships, and skill enhancement for students and researchers.

Through these diverse collaborations, IITH continues to nurture a vibrant ecosystem that integrates academic excellence, pioneering research, and industry innovation for a sustainable future.

Architectural Landmarks of IITH







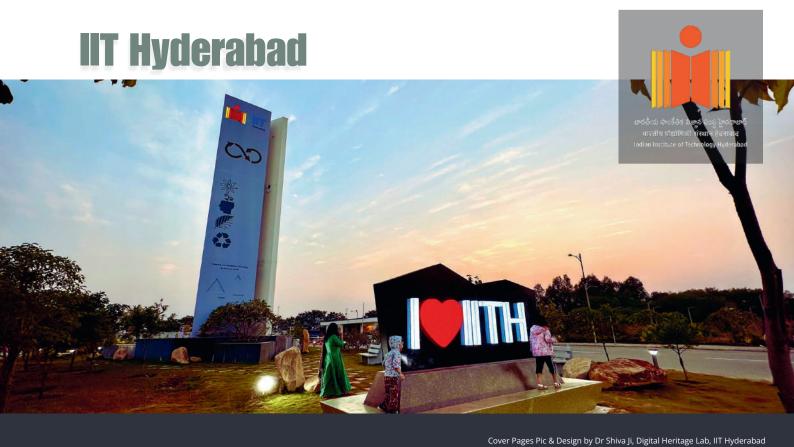
Non-Teaching Staff (FY 2024-2025)

S. No.	Name	Designation	Pay Level
		Academic Section	
	V S Sastry	Senior Assistant Registrar	11
	Suresh Narayanan Nair	Senior Assistant Registrar	11
	Archana Singh	Assistant Registrar	10
	S V Sree Devi	Senior Section Officer	9
	Rongala Lakshmi Prasanna S Hemalatha	Senior Section Officer Assistant Section Officer	9 7
7	Naveed MA	Assistant Section Officer Assistant Section Officer	7
	Mudavath Bahusingh	Executive Assistant	6
9	T Lavanya	Executive Assistant	6
10	Janardhankumar Tolana	Executive Assistant	6
11	K Sreenivasa Reddy	Senior Assistant	5
12	J Rebekah	Assistant	4
	S Samuel	Junior Assistant	3
	Bhimaraju Hemalatha Anapa Krishna Prasad	Junior Assistant Section Officer	3 8
		Academics/ Students	
1	Pawar Chandra Prakash	Junior Technician	3
		Administration	
1	V Venkat Rao	Registrar	14
	Alı	ımni and Corporate Relations	
1	Reddi Meena Kumari	Senior Section Officer	0
1			9 7
2 3	Vetrivel M L Neeraja	Assistant Section Officer Executive Assistant	6
	Akarapu Chittaranjan	Multi Skill Assistant 1	1
•	Treatupe Circuitation	Artificial Intelligence	
	D D: V		0
1 2	D Ravi Kumar Parimisetty Harinadha	Technical Superintendent Junior Technical Superintendent	8
	Artifi	cial Intelligence & Mathematics	
1	B Vinod Kumar Raju	Assistant	4
		Biomedical Engineering	
1	Chavan Sagar Babanrao	Veterinary Doctor	10
2	Anbumani D	Technical Officer	10
3	Saransh Khandelwal	Senior Technical Superintendent	9
4	Krushna Chandra Hembram	Senior Technical Superintendent	9
5	Sairam M	Senior Technical Superintendent	9
	Khandagale Sudarshan Baburao	Senior Technical Superintendent	9
	B Jayalakshmi Pulla Prashanth	Senior Technician Junior Technician	5 3
	J Manikyam	Junior Technician	3
	Bandari Pooja	Junior Technician	3
	Rebba Vinod Kumar	Multi Skill Assistant 1	1
		Biotechnology	
1	Pulala Raghuveer Yadav	Senior Technical Officer	11
2	N Ashwini	Senior Technician	5
3	K Velmurugan	Senior Assistant	5
	M Jayavardhana Reddy	Technician	4
5	Venkatakrishnaprasad SM	Technician	4
		Central Workshop	
	Malla Seetarami Naidu	Senior Technical Officer	11
2	Ajith Kanakambaran	Junior Technical Superintendent	6
3	Jeebanbandhu Mahanta	Junior Technical Superintendent	6
4	Vadla Brahma Chary A Praveen Kumar	Senior Technician Senior Technician	5
5	A Praveen Kumar M Srinivas	Technician	5 4
	M Srinivas Lohakare Pramod Maroti	Technician	4
6 7	ILVIIGNALE I IAIIIUU IVIALUU		4
7		Hechnician	
7 8	Lingamaiah B	Technician Technician	
7 8 9		Technician Technician Junior Technician	4 3

Centre for Continuing Education						
1	Priyanka Patheparapu	Section Officer	8			
2	D Sri Hari	Assistant	4			
	Chemical Enginering					
1	Nama Someshwar Rao	Senior Technical Superintendent	9			
2	P Gayathri	Senior Technical Superintendent	9			
3	V Bhadra Rao Koruprolu	Senior Technical Superintendent	9			
4	Ramireddi Hari Krishna	Senior Technical Superintendent	9			
5	P Nagarjuna	Senior Technician	5			
6	Ch Venkata Krishnaiah	Junior Technician	3			
7	Kavvampalli Srinivas	Junior Technician	3			
8 9	Parla Somasekhar Dasari Kirankumar	Junior Assistant Junior Technician	3 3			
<i>J</i>		& Materials Science and Metallurgical Engine	_			
1	Cheemakurthi M Subhani	Multi Skill Assistant 1	1			
		Chemistry				
1	MD Samiuddin	Senior Technical Officer	11			
2	Kota Venkata Satya Girish	Senior Technical Officer	11			
3	Ashok Yeligeti	Senior Technical Superintendent	9			
4	Gottapu Naga Satish	Executive Assistant	6			
5	Pentakota Sree Ramana Babu	Technician	4			
6	Poondla Vijaya kumar	Technician	4			
7	Patange Rooby Clarest Melody	Technician	4			
8	Surender B	Technician	4			
9	Srinivas Pulimamidi	Technician	4			
10	Singam Sampath	Junior Technician	3			
11	Papiya Sadhu	Junior Technician	3			
12	Chintha Anjali	Multi Skill Assistant 1	1			
		Civil Engineering				
1	Yaseen Sherief Mohammed	Senior Technical Superintendent	9			
2	Jitendriya Raul	Senior Technical Superintendent	9			
3	Bhukya Ramakrishna	Senior Technical Superintendent	9			
4	Srikanth K	Senior Technical Superintendent	9			
5	Gourav	Senior Technical Superintendent	9			
6	Kaleeswaran P	Senior Technical Superintendent	9			
7	Moganraj M	Technical Superintendent	8			
8	S Mani Kumar	Executive Assistant	6			
9	Kandhukuri Sandeep Kumar	Technician	4			
10 11	Vishwanath B J	Technician Technician	4			
	Rajesh Kumar	Junior Assistant	3			
12 13	Muthyalu Kumar Raviteja Gajawelly	Junior Technician	3			
13 14	Kallepelli Pranaya	Junior Technician	3			
1-7	Kanepeni i ranaya		3			
		Computer Center	10			
1	Imtiaz Ahmed	Technical Officer	10			
2	Manivel R	Technical Officer	9			
3	K Raguraman	Senior Technical Superintendent	9			
4	Bondla Jessy	Senior Technical Superintendent	9			
		Senior Technical Superintendent	9			
5	Sanju Kumar Chavan S	Conjon Tochnical Congrint - 1				
5 6	Mandlipalli Anil Kumar Reddy	Senior Technical Superintendent	9			
5 6 7	Mandlipalli Anil Kumar Reddy Karn Choudhary	Senior Technical Superintendent	6			
5 6 7 8	Mandlipalli Anil Kumar Reddy Karn Choudhary Manukonda Rahulteja	Senior Technical Superintendent Junior Technical Superintendent	6 4			
5 6 7 8 9	Mandlipalli Anil Kumar Reddy Karn Choudhary Manukonda Rahulteja Gandepalli Surya Prakash	Senior Technical Superintendent Junior Technical Superintendent Assistant	6 4 3			
5 6 7 8 9	Mandlipalli Anil Kumar Reddy Karn Choudhary Manukonda Rahulteja	Senior Technical Superintendent Junior Technical Superintendent	6 4			
5 6 7 8 9	Mandlipalli Anil Kumar Reddy Karn Choudhary Manukonda Rahulteja Gandepalli Surya Prakash Bandam Ganesh Ramavath Ashok	Senior Technical Superintendent Junior Technical Superintendent Assistant Junior Technician	6 4 3			
5 6 7 8 9 10 11	Mandlipalli Anil Kumar Reddy Karn Choudhary Manukonda Rahulteja Gandepalli Surya Prakash Bandam Ganesh Ramavath Ashok	Senior Technical Superintendent Junior Technical Superintendent Assistant Junior Technician Junior Technician mputer Science and Engineering	6 4 3 3			
5 6 7 8 9 10 11	Mandlipalli Anil Kumar Reddy Karn Choudhary Manukonda Rahulteja Gandepalli Surya Prakash Bandam Ganesh Ramavath Ashok Con	Senior Technical Superintendent Junior Technical Superintendent Assistant Junior Technician Junior Technician	6 4 3			
5 6 7 8 9 10 11	Mandlipalli Anil Kumar Reddy Karn Choudhary Manukonda Rahulteja Gandepalli Surya Prakash Bandam Ganesh Ramavath Ashok	Senior Technical Superintendent Junior Technical Superintendent Assistant Junior Technician Junior Technician mputer Science and Engineering Senior Technical Superintendent	6 4 3 3 3			
5 6 7 8 9 10 11 1 2 3	Mandlipalli Anil Kumar Reddy Karn Choudhary Manukonda Rahulteja Gandepalli Surya Prakash Bandam Ganesh Ramavath Ashok T Vijaya Chakravarthi Nakka Syamala Rao	Senior Technical Superintendent Junior Technical Superintendent Assistant Junior Technician Junior Technician mputer Science and Engineering Senior Technical Superintendent Senior Technical Superintendent	6 4 3 3 3			
5 6 7 8 9 10 11 1 2 3 4	Mandlipalli Anil Kumar Reddy Karn Choudhary Manukonda Rahulteja Gandepalli Surya Prakash Bandam Ganesh Ramavath Ashok T Vijaya Chakravarthi Nakka Syamala Rao Nikith Reddy Peddasheri	Senior Technical Superintendent Junior Technical Superintendent Assistant Junior Technician Junior Technician mputer Science and Engineering Senior Technical Superintendent Senior Technical Superintendent Technician	6 4 3 3 3			
5 6 7 8 9 10 11	Mandlipalli Anil Kumar Reddy Karn Choudhary Manukonda Rahulteja Gandepalli Surya Prakash Bandam Ganesh Ramavath Ashok T Vijaya Chakravarthi Nakka Syamala Rao Nikith Reddy Peddasheri Maloth Sunitha	Senior Technical Superintendent Junior Technical Superintendent Assistant Junior Technician Junior Technician mputer Science and Engineering Senior Technical Superintendent Senior Technical Superintendent Technician Technician	9 9 4 4			
5 6 7 8 9 10 11 1 2 3 4 5	Mandlipalli Anil Kumar Reddy Karn Choudhary Manukonda Rahulteja Gandepalli Surya Prakash Bandam Ganesh Ramavath Ashok T Vijaya Chakravarthi Nakka Syamala Rao Nikith Reddy Peddasheri Maloth Sunitha Praveenkumar Gaddam	Senior Technical Superintendent Junior Technical Superintendent Assistant Junior Technician Junior Technician mputer Science and Engineering Senior Technical Superintendent Senior Technical Superintendent Technician Technician Junior Technician	9 9 4 4 3			

_		ence and Engineering & Computer Centre	
1	Bollavaram Harshavardan Reddy	Multi Skill Assistant 1	1
		uction and Maintenance Division	
1	K S Ravindra Babu	Superintending Engineer	13A
2	Mahankali Sateesh	Executive Engineer (Civil)	12
3	Sushant Vatsa	Executive Engineer (Electrical)	11
4 5	P Srinivasulu Yadav S Pramod Kumar	Assistant Executive Engineer(Electrical)	10 10
5 6	Menda Chiranjeevi	Assistant Executive Engineer(Civil) Assistant Executive Engineer (Civil)	10
7	Datla Praveen Kumar	Assistant Executive Engineer (Civil) Assistant Executive Engineer (Civil)	10
8	Patibandla Srikanth	Senior Assistant Engineer (Civil)	9
9	Vinay Kumar Beesa	Senior Assistant Engineer (Civil)	9
10	Altaf Hussain	Senior Assistant Engineer (Electrical)	9
11	Nadiminti Nagaraju	Senior Assistant Engineer (Electrical)	9
12	Vanam Aneesh	Senior Assistant Engineer (Electrical)	9
3	Sivakrishna Reddy	Senior Assistant Engineer (Electrical)	9
4	Surender Banoth	Senior Assistant Engineer (Civil)	9
5	Ponna Satyanarayana	Section Officer	8
6	Viyyuri Raja Babu	Assistant Engineer(Civil)	8
7	T Srinivas	Assistant Section Officer	7
8	Narla Kalyan Kumar	Executive Assistant	6
9	M Yedukondalu	Executive Assistant	6
0.	Chityala Anand	Junior Engineer(Civil)	6
21	Gummadi Anil Kumar	Junior Engineer(Civil)	6
2	Amaraneni Sai Teja	Junior Engineer(Civil)	6
13	Saheli Saha	Junior Engineer(Civil)	6
24	Divakar Kumar	Junior Engineer(Electrical)	6
5	Rajana Sravanakumar	Junior Engineer(Electrical)	6
26 27	Tata Bapuji	Junior Engineer(Electrical)	6 6
8	Marmala Ranadeep Kumar Himanshu Tyagi	Junior Engineer(Civil) Junior Engineer(Electrical)	6
9	K Arun Kumar	Technician	4
0	Gosu Sreenivasu	Accountant	4
31	P Srinivas	Junior Assistant	3
32	Jakka Jagadish Kumar	Junior Technician(Civil Supervisor)	3
33	Muthyala Satheesh	Junior Technician(Civil Supervisor)	3
34	Chakali Papaiah	Multi Skill Assistant Gr.II	2
35	Bhoopal K	Multi Skill Assistant Gr.II (Plumber)	2
36	Nenavath Shiva Shankar	Multi Skill Assistant Gr.II	2
37	Begari Vinod	Multi Skill Assistant Gr.II (Carpenter)	2
38	Chinthala Satheesh	Multi Skill Assistant 1 (Electrical)	1
		Design	
1	Kumawat Vijay Prakashchand	Senior Technical Superintendent	9
2	Rajkumar B	Senior Technical Superintendent	9
3	Satyendra Rajendraprasad Nishad	Junior Technical Superintendent	6
4	B Vivekananda chary	Technician	4
5 5	Raj Priyadarshan Jee B	Technician	4
,	Gopal Manthuri	Junior Assistant	3
	lus su	Director Office	
1	M Eswar Reddy	Assistant Registrar	10
2	A Srinivas Rao	Section Officer	8
3	N Pradeep Kumar	Assistant Section Officer	7
	lo mi	Electrical Engineering	
1	R Thirumurugan	Senior Technical Officer	11
2	Chinmaya Panda	Technical Officer Gr I	10
3	Satheesh K Telagamsetti Aldhandi Suresh	Technical Officer Senior Technical Superintendent	10 9
1	Rajasekhar Jala	Senior Technical Superintendent Senior Technical Superintendent	9
5	Simhadri Hari Prasad	Senior Technical Superintendent Senior Technical Superintendent	9
6 7	Santhoshkumar S	Technical Superintendent	8
/ 3	Suchismita Banerjee	Executive Assistant	6
9	Manne Prahaseeth	Junior Technical Superintendent	6
0	S Velmurugan	Senior Technician	5
1	Kodavandlapalle N Rasool	Senior Technician	5
2	Nagaraju Naddi	Technician	4
3	Manikanta PLG	Technician	4
4	Anup Kumar Shahi	Junior Technician	3
	Y Prem Kumar	JuniorTechnician	3
15	Kalinga Chandra Mohan	Julior recinician)

	Engineeri	ing Science & Climate Change	
1	Palpanuri Madhu	Junior Assistant	3
	Entrepreneurship and Ma	nagement & Heritage Science and Technology	
1	Senivarapu A Archith Chandra	Junior Assistant	3
	F	Cinance and Accounts	
1	Jagadeswara Rao B	Deputy Registrar	12
2	Manchambhotla Phanindra Kumar	Senior Assistant Registrar	11
3	V S P Hanumantha Krishna	Senior Assistant Registrar	11
4 5	Potharlanka Sree Ramakrishna Bala Prakash T	Senior Section Officer Senior Section Officer	9 9
6	Rajashekhar Soudhari	Section Officer	8
7	Budeti Pradeep Babu	Assistant Section Officer	7
8	Sandolla Dasharath	Executive Assistant	6
9	Racha Praveen	Executive Assistant	6
10	Ramreddy Bharath Reddy	Assistant	4
11	Attaluri Jeevani	Accountant	4
12	Chetty Nikhil Kumar	Accountant	4
13	Chandrika Sai Teja	Accountant	4
14	Jithesh A	Accountant	4
15	Bolla Ramesh	Accountant	4
16	Lankalapalli Naga V Lakshmi Manikanta	Accountant	4
17	Chidhruppa Thimothi	Junior Assistant	3
		GATE & JEE Office	
1	Ankamwar Satish	Assistant Section Officer	7
		Green Office	
1	Mashetti Vamshi	Junior Horticulturist	3
2	Golla Vamsi Krishna	Multi Skill Assistant 1	1
	Greenl	ko School of Sustainability	
1	Attela Jagannatha	Junior Assistant	3
		Guest House	
1 2	Dhananjay K Kotamla Srikanth	Hospitality Management Assistant Multi Skill Assistant Gr.II	6 2
2	Rotalilla Stikalitii		2
	lar out	Hindi Cell	
1	Naveen Srivastava	Junior Hindi Translator	6
		Hospital	
1	Kanaparthi Anilkumar	Principal Medical Officer	12
2	T Raja Adharnath	Senior Medical Officer	11
3 4	Baishakhi Chandra Sonia Madhav Naik	Senior Medical Officer Medical Officer	11 10
5	Avvari Vedavani	Physiotherapist	6
6	Buddala Venkata Satya Ramanamma	Staff Nurse	6
7	Lakkoji Manikanta	Multi Skill Assistant Gr.II	2
8	Takkoli Sivakrishnareddy	Multi Skill Assistant 1	1
		Hostel Office	
1	Palle Mohan Kumar	Assistant Registrar	10
2	Nandyala Bheemeswara Reddy	Executive Assistant	6
3	Razia Begum	Executive Assistant	6
4	George K T	Hospitality Management Assistant	6
5	K Satheesh	Senior Assistant	5
6	G Shyamala Kumari	Senior Assistant	5
7	G Vasantha Kumari Banoth Deva	Senior Assistant	5
8 9	S Swapna	Accountant Junior Assistant	4 3
9 10	S Swapna Samiuddin MD	Junior Assistant Junior Assistant	3
11	CH Guru Prasad	Multi Skill Assistant Gr.II	2
12	Batti Raja Sekhar	Multi Skill Assistant Gr.II	2
	Н	ıman Resource Section	
1	Syed Ali Sabeer	Joint Registrar	13
2	Vayuvegula Surya Phani Kumari	Senior Assistant Registrar	11
3	Laxman Srigiri	Senior Assistant Registrar	11
9		1	_
4	Naresh Kandrathi Venkanna Bolagani	Section Officer Section Officer	8 8


6 7 8 9 10 11 12 13 14	MD. Mirza Raza Ali Baig Nagaraju Munganda Ramakesava Debarpita Parira M Sandeep G Komala Priya Velagandhula Karthik Kumar Venkatesh Betha Mubarakapuram Vyshnavi	Executive Assistant Executive Assistant Assistant Assistant Junior Assistant	6 6 4 4 3 3 3 3 3 3		
1 2	G Vijay Kumar Ramnaresh B	Executive Assistant Multi Skill Assistant Gr.II	6 2		
		national Relations			
1 2	A Pranitha Azmath Ali SK	Senior Section Officer Executive Assistant	9		
		Liberal Arts			
1 2 3	Abani Kumar Das Anjaneyulu Botta Maloth Harish Naik	Assistant Section Officer Technician Junior Technician	7 4 3		
		Library			
1 2 3 4 5 6 7 8	C Mallikarjuna Bhojaraju Gunjal Kimidi Siva Shankar Haseena V K K M Jayanta Kumar Sahu Gajanand Kumar Kaushik Sajan C S Suchita Sahoo	Deputy Librarian (NFS) Chief Library Officer Assistant Librarian Library Information Assistant Library Information Assistant Library Information Assistant Junior Library Information Assistant Junior Library Information Assistant	13 13 11 6 6 6 3 3		
	Managen	nent Services Section			
1 2 3 4 5 6 7 8 9	Muniganti Badrinath Md Jameel T Vijay Anand Nalla Srinivas Gogula S L Vanama Raju Guntur Vimala A Pushpalatha B Rajander Mohammed Faheem Khan	Joint Registrar Senior Assistant Registrar Senior Section Officer Assistant Section Officer Executive Assistant Junior Assistant Junior Assistant Junior Assistant Junior Assistant Junior Assistant Multi Skill Assistant 1	13 11 9 7 6 3 3 3		
	Materials Science	and Metallurgical Engineering			
1 2 3 4 5 6 7 8 9 10 11 12	B Balavandhi Raju Upender Sunkari Yarajani Sravani Muriki Laxminarayana Mohammad Abdul Junaid Paramita Maiti Harish Ramineni Manche Venkata Srinivas E Rangaiah Nalam Divakar Saimatha Gannabathula Mohammed Salman	Senior Technical Officer Senior Technical Officer Senior Technical Superintendent Senior Technical Superintendent Senior Technical Superintendent Technical Superintendent Technical Superintendent Executive Assistant Senior Technician Senior Technician Technician Technician Technician Junior Technician	11 11 9 9 9 8 6 5 5 4 4 3		
	N	Mathematics			
1 2 3	Anand V Katam Santhosh Reddy Dumpala Raju	Senior Technical Superintendent Junior Technical Superintendent Junior Assistant	9 6 3		
	Mechanical ar	nd Aerospace Engineering			
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Vootla Srikanth Raju P Ramu G Pandicheri Madhu Ajith A Rekhala Vikram Munugala Dakaiah Vallakonda Santhosh kumar S Jagadeesan Mohd. Abdulla Marepally Praveen Kumar Pillai Madhushankar Subramonia A Dinesh Chakrapani Darelli Pullarao Erry Srikanth Vikram Singh Kanawat	Senior Technical Officer Senior Technical Officer Senior Technical Officer Senior Technical Superintendent Senior Technical Superintendent Junior Technical Superintendent Junior Technical Superintendent Executive Assistant Senior Technician Senior Technician Technician Technician Junior Sechnician Junior Sechnician Multi Skill Assistant	11 11 9 9 6 6 6 5 5 4 4 3 3 3		
	Office of Career Services				
1 2	K Malini Lalit Kishor Sharma	Senior Section Officer Multi Skill Assistant 1	9 1		

		Office of the Dean (ITS)	
1	Anurag Pandey	Executive Assistant	6
		Physics	
1 2 3 4 5 6 7 8 9 10 11 12	T Naaraayanan T Chengappa Ranjit Kumar Kanchugantla Rameshyadav Vadla Anjaiah Samaresh Basani Shivaram Lakum Vasudevarao Pavuluri Guhan K Kuntla Reddy Sekhar Sunnam Goutham Raj Maatla Vishal	Senior Technical Officer Senior Technical Superintendent Senior Technical Superintendent Senior Technical Superintendent Technician Technician Technician Junior Technician Junior Technician Junior Technician Junior Sechnician Junior Technician Junior Technician Junior Assistant Multi Skill Assistant Gr.II	11 9 9 9 9 4 4 4 3 3 3 3 3
		Registrar Office	
1 2	Beera Suresh Kumar Samala Rajashekar	Executive Assistant Junior Assistant	6 3
		Safety Office	
1	Pyaram Purushotham	Security officer	12
		Security Office	
1 2	M Sreejith (Retd) Prasad Boppa	Chief Security Officer Multi Skill Assistant 1	13 1
	Spons	ored Research Consultancy Section	
1 2 3 4 5 6 7 8 9 10	Gajula Ashok N Srisailam Saikiran K Syed Sadique Ali Mahaboob Moonavath K Shiva Narayana Ramanjaneyulu Gollapalli Nagesh Santosh Kumar Sahoo Thakkar Nihit Deep Pradeep Kumar Jada	Deputy Registrar Senior Assistant Registrar Assistant Registrar Senior Section Officer Assistant Section Officer Executive Assistant Senior Assistant Accountant Accountant Accountant Multi Skill Assistant Gr.II	12 11 10 9 7 6 5 4 4 4 2
		Sports Department	
1 2 3 4 5 6 7 8 9	Vikram Pratap Singh Bundela Md. Akbar Baba Aditya Varma P Ruchi Yadav Hardeep Kherkar Purva Ganeshrao Anil Kumar Kushwaha Mallikarjun Rohit Pathariya Uppuleti Chandramouli	Sports Officer Gr I Physical Training Instructor Accountant	10 10 10 10 10 6 6 6 6 6 4
		Stores and Purchase	
1 2 3	Doddi Chanchala Devi M Venkatesh K Ramesh Kumar	Joint Registrar Senior Assistant Registrar Assistant Registrar	13 11 10
1 2 3 4 5 6 7 8 9	Sady Sarala Vijaya Lakshmi A Sonawane Gunavant Narayan Sankarreddy A Dinakar Pyla S Thirunavukkarasu N Aruna N Shivakumar Arun Kumar Chidruppa M Rajashekar	Senior Section Officer Assistant Section Officer Executive Assistant Executive Assistant Executive Assistant Assistant Assistant Assistant Junior Assistant Junior Assistant	9 7 6 6 6 4 4 4 3 3
		Students Office	
1 2	Mohsin Mohammed L Dinesh	Senior Section Officer Assistant	9 4
	Stud	ents Office & Academics Section	
1	Rajnesh MP	Rajnesh MP	12
		Sunshine	
1 2 3	Maria Josephine Susan Morris Yukti Rastogi Devatha Phani Bhushan	Senior Psychological Counselor Assistant Psychological Counselor Assistant Psychological Counselor	11 9 9

"May you be those heroes of science that a Viksit Bharat demands. May you bend your efforts towards ensuring that technology uplifts the masses, not divides them further", said by the Chief Guest Shri B.V.R. Subrahmanyam, IAS, CEO of NITI Aayog, on the 13th Convocation of IIT Hyderabad.

Designed & Published by **Public Relations Office** Room 301, Admin Block

Indian Institute of Technology Hyderabad

Kandi, Sangareddy - 502284, Telangana, India Contact: +91 40-2301 6099, +91 83310 36099

E-Mail: pro@iith.ac.in

Access previous annual Reports at: https://pr.iith.ac.in/reports/