CS5070/IITHYD

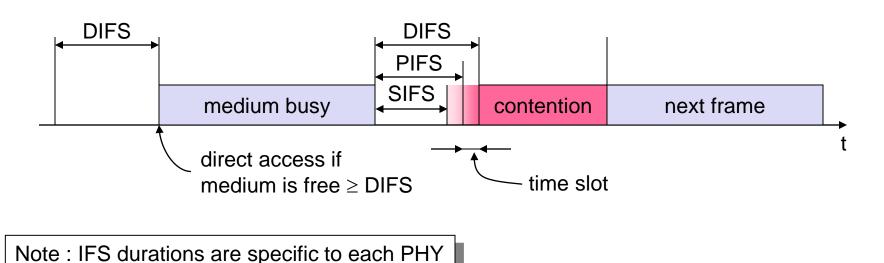
IEEE 802.11 MAC

Bheemarjuna Reddy Tamma

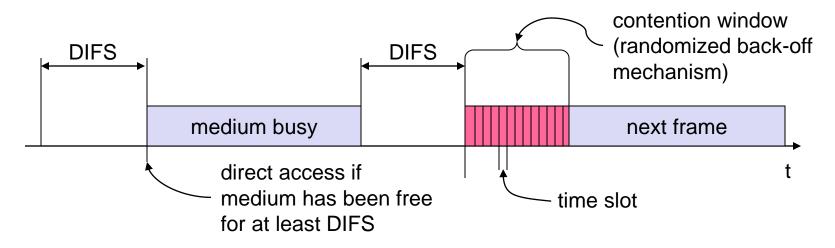
Adapted from Schiller's textbook on Mobile Communications and other sources

802.11 - MAC layer principles (1/2)

Traffic services


- □ Asynchronous Data Service (mandatory)
 - exchange of data packets based on "best-effort"
 - support of broadcast and multicast
- □ Time-Bounded Service (optional)
 - implemented using PCF (Point Coordination Function)
- Access methods (called DFWMAC: Distributed Foundation Wireless MAC)
 - DCF CSMA/CA (mandatory)
 - collision avoidance via randomized "back-off" mechanism
 - minimum distance between consecutive packets
 - ACK packet for acknowledgements (not for broadcasts)
 - □ DCF with RTS/CTS (optional)
 - avoids hidden terminal problem
 - □ PCF (optional)
 - access point polls terminals according to a list

DCF: Distributed Coordination Function PCF: Point Coordination Function


802.11 - MAC layer principles (2/2)

Priorities

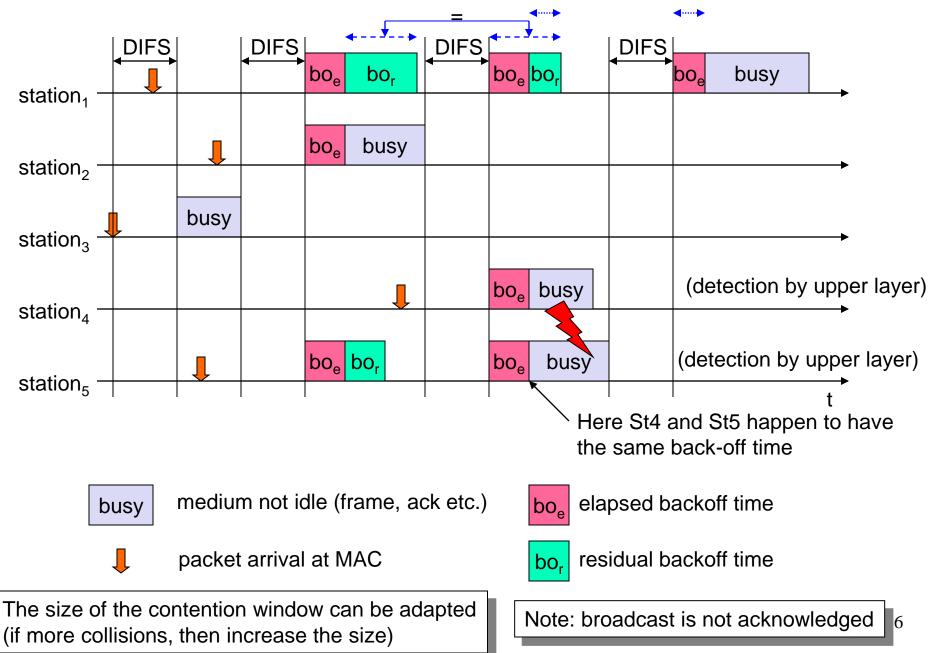
- defined through different inter frame spaces
- no guaranteed, hard priorities
- □ SIFS (Short Inter Frame Spacing)
 - highest priority, for ACK, CTS, polling response
- □ PIFS (PCF IFS)
 - medium priority, for time-bounded service using PCF
- DIFS (DCF, Distributed Coordination Function IFS)
 - lowest priority, for asynchronous data service

802.11 - CSMA/CA principles

- station ready to send starts sensing the medium (Carrier Sense based on CCA, Clear Channel Assessment)
- if the medium is free for the duration of an Inter-Frame Space (IFS), the station can start sending (IFS depends on service type)
- if the medium is busy, the station has to wait for a free IFS (DIFS), then the station must additionally wait a random back-off time (collision avoidance, multiple of slot-time)
- if another station occupies the medium during the back-off time of the station, the back-off timer stops (to increase fairness)

802.11 - CSMA/CA principles

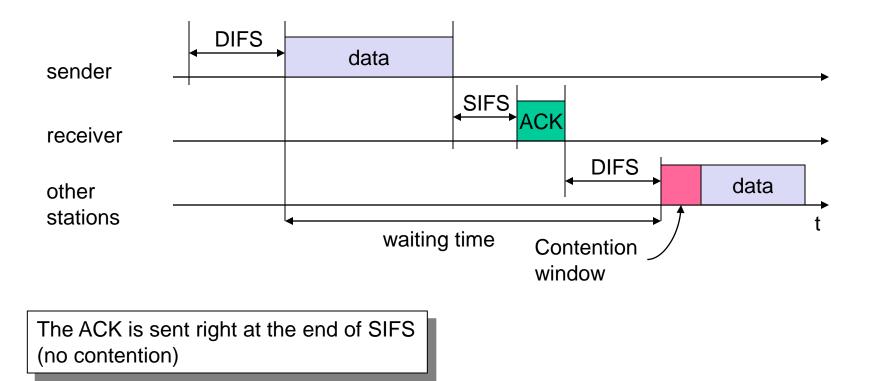
Backoff Time = random(0, CW) * *slottime*


 $CW_{min} \iff CW \iff CW_{max}$

slottime = Time needed for detecting a frame + Propagation delay + Time needed to switch from the Rx state to Tx state + Time to signal to the MAC layer the state of the channel

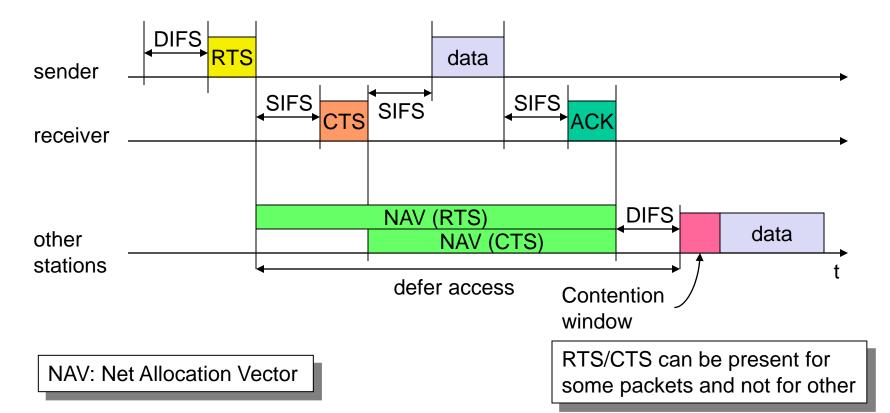
Parameter	802.11	802.11	802.11b	802.11a					
	(FHSS)	(DSSS)	(HR/DSSS)	(OFDM)					
slotime	50 μ sec	20 $\mu extsf{sec}$	20 μ sec	9 μ sec					
SIFS	28 μ sec	10 μ sec	10 μ sec	16 μ sec					
PIFS	$SIFS + t_{slot}$								
DIFS	$SIFS+(2 \times t_{slot})$								
Operating Frequency	2.4 GHz	2.4 GHz	2.4 GHz	5 GHz					
Maximum Data Rate	2 Mbps	2 Mbps	11 Mbps	54 Mbps					
CW_{min}	15	31	31	15					
CW_{max}	1,023	1,023	1,023	1,023					

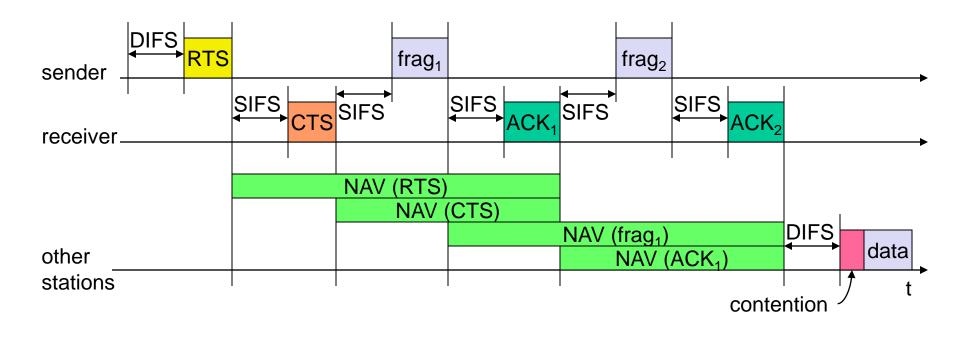
IEEE 802.11 parameters


802.11 – CSMA/CA broadcast

802.11 - CSMA/CA unicast

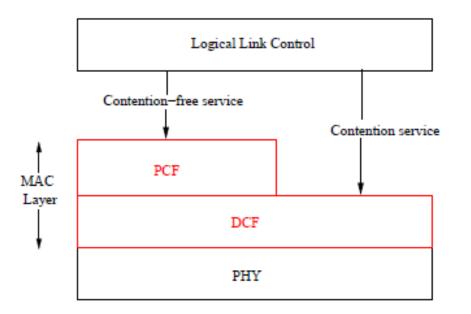
Sending unicast packets


- □ station has to wait for DIFS before sending data
- receiver acknowledges at once (after waiting for SIFS) if the packet was received correctly (CRC)
- automatic retransmission of data packets in case of transmission errors


802.11 – DCF with RTS/CTS

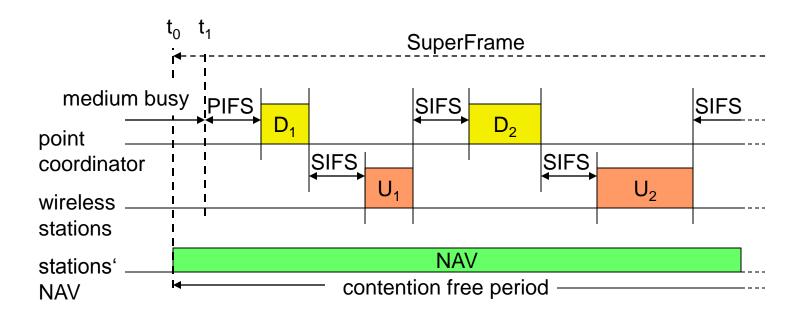
Sending unicast packets

- station can send RTS with reservation parameter after waiting for DIFS (reservation determines amount of time the data packet needs the medium)
- □ acknowledgement via CTS after SIFS by receiver (if ready to receive)
- □ sender can now send data at once, acknowledgement via ACK
- □ other stations store medium reservations distributed via RTS and CTS

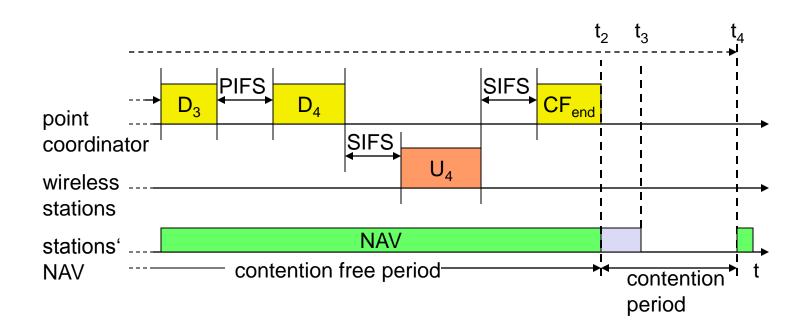


Fragmentation mode

- Fragmentation is used in case the size of the packets sent has to be reduced (e.g., to diminish the probability of erroneous frames)
- Each frag_i (except the last one) also contains a duration (as RTS does), which determines the duration of the NAV
- By this mechanism, fragments are sent in a row
- In this example, there are only 2 fragments


802.11 – Point Coordination Function (1/3)

IEEE 802.11 Protocol Architecture.


- PCF Provides a time-bounded service in WLANs
- But optional access method implemented on top of the DCF
- It requires a centralized controller (i.e., Point Coordinator) to coordinate the activity of stations
- Not usable for ad hoc networks

802.11 – Point Coordination Function (2/3)

- D_i represents the polling of station i
- U_i represents transmission of data from station i

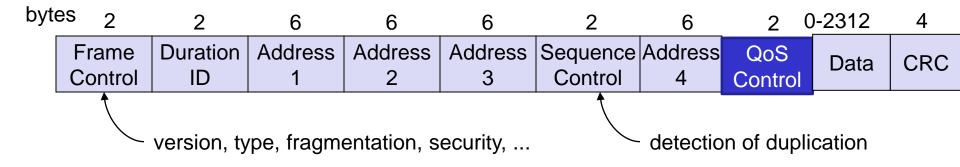
802.11 – Point Coordination Function (3/3)

• In this example, station 3 has no data to send

802.11 - MAC Data frame format

Types

control frames, management frames, data frames


Sequence numbers

□ important against duplicated frames due to lost ACKs

Addresses

receiver, transmitter (physical), BSS identifier, sender (logical)
Miscellaneous

□ sending time, checksum, frame control, data

802.11 Frame Format

Fran	ne Control
Pame Duction Address 1 Address 2 Address 3 Seq Address 4 Frame Body Sec	Protocol Type Subtype To From DS MF Retry Pwr MD Prot Grder
Duration/ID Field	Protocol Field = 00
Depending on bits 14-15 (most significant) this field is defined one of three ways:	Type & Subtype Fleid
bit 0 bit 15.	00 = Management 01 = Control
Network Allocation Vector (Duration)	0000-Association Request 1000-Block Acknowledgement 0001-Association Response Request (used for OoS) 0100-Null Data
	0001-Association Response Request (used for QoS) 0100-Null Data 0010-Reassociation Request 1001-Block Acknowledgement 0101-CF-ACK
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1	0011_Reassociation Response (used for QoS) 0110_CE_Poll*
Connection Free Period (CFP) Frames	Otop Probe Request 1010-Power Save (PS) Poll 0110-CF-ACK + CF-Poll* 0100 - Probe Request 1011-Request to Send (RTS) 0111-CF-ACK + CF-Poll*
AID (Range: 1-2007) 1 1	0101-Probe Response 1100 Clear to Send (CTS) 1000-005 Data
Power Save-Poll Frames	1000-Beacon 1001-Announcement Traffic 1101-Acknowledgment (ACK) 1001-QoS Data + CF-ACK 1010-OoS Data + CF-Poll
Address 1 Field	Indication Message (ATIM) 1110-Contention Free (CF) End 1011-OoS Data + CF-ACK
Used by the receiver.	1010-Disassociation 1111-CF-end + CF-ACK 1011-0010-0010-0010-0010-0010-0010-001
Address 2 Field	1011-Authentication 10 = Data 1100-QoS Null* 1100-Deauthentication 0000-Data 1110-OoS CF-Poll*
Used by the transmitter.	1101-Action (used for 802.11h 0001-Data + CF-ACK 1111-0oS CF-ACK + CF-Poll*
Address 3 Field	& QoS) 0010-Data + CF-Poll 11 = Reserved
Used by the receiver for filtering.	To DS & From DS Fields
	To DS = 0 To DS = 1
Sequence Number (Seq No) Fleid	From DS = 0 All Management and Control frames. Data frames transmitted
Fragment Number Sequence Number	Data frames within IBSS (never from a wireless station in an Infrastructure data frames). Infrastructure network to the DS.
Address 4 Fleid	From DS = 1 Data frames received from the DS for a Vireless station in an Infrastructure network. Frames within a distribution system.
Additional addressing used to traverse the Distribution System.	All Other Frame Control Fleids
Frame Body Fleid	More Fragments (MF) More Data (MD)
This is also known as the data body or packet payload. Higher level protocols and/or user application data reside in this field (length can be 0-2312 bytes).	1 = additional fragments to follow 1 = Indicates to the stations the AP has at
	0 = last frame least one frame buffered for the station
Frame Check Sequence (FCS) Field The FCS is often referred to as the cyclic redundancy check (CRC). It allows stations and APs to check the	Retry 0 = no buffered packets in the AP for the station 1 = this packet is a retransmission Order
integrity of received frames.	0 = this packet is not a retransmission 1 = strict ordering supported
QoS: Quality of Service	Protected Frame (Prot Frame) 0 = strict ordering not supported
IBSS: Independent Basic Service Set	1 = the frame is protected with link layer security such as WEP or WPA/2 1 = station is in power save mode
802.11h: Defines dynamic frequency selection (DFS) for spectrum management and transmit power control (TPC) for power management in the 5GHz band.	0 = the frame is transmitted as clear text 0 = station is active (out of power save mode)
IOI DOWEI IIIdiideenielii ili ule OGMZ Dallu.	

Dearen Control

MAC address format

scenario	to DS	from DS	address 1	address 2	address 3	address 4
ad-hoc network	0	0	DA	SA	BSSID	-
infrastructure network, from AP	0	1	DA	BSSID	SA	-
infrastructure network, to AP	1	0	BSSID	SA	DA	-
infrastructure network, within DS	1	1	RA	ТА	DA	SA

DS: Distribution System

Address1: Physical recipient of frame

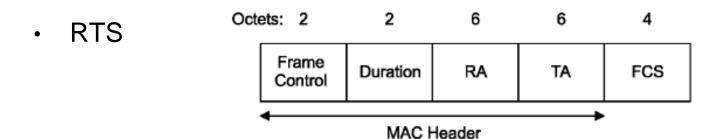
Address2: Physical transmitter of frame

AP: Access Point

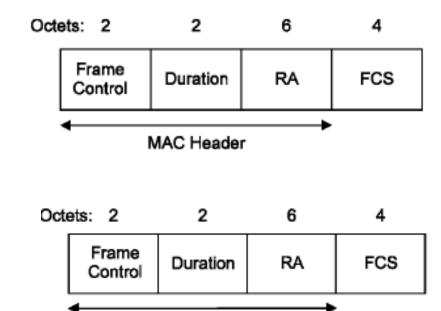
DA: Destination Address

SA: Source Address

BSSID: Basic Service Set Identifier


- infrastructure BSS : MAC address of the Access Point

- ad hoc BSS (IBSS): random number


RA: Receiver Address

TA: Transmitter Address

Control Frame Formats

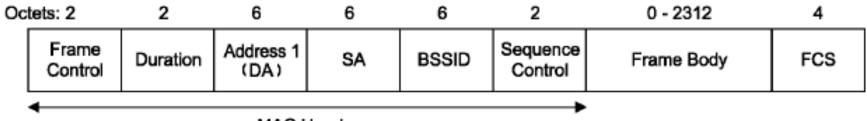
• CTS

• ACK

802.11 - MAC management

Synchronization

- D Purpose
 - for the physical layer (e.g., maintaining in sync the frequency hop sequence in the case of FHSS)
 - for power management
- □ Principle: beacons with time stamps


Power management

- □ sleep-mode without missing a message
- □ periodic sleep, frame buffering, traffic measurements

Association/Reassociation

- □ integration into a LAN
- □ roaming, i.e. change networks by changing access points
- □ scanning, i.e. active search for a network
- MIB Management Information Base
 - □ managing, read, write

Beacon Frame Format

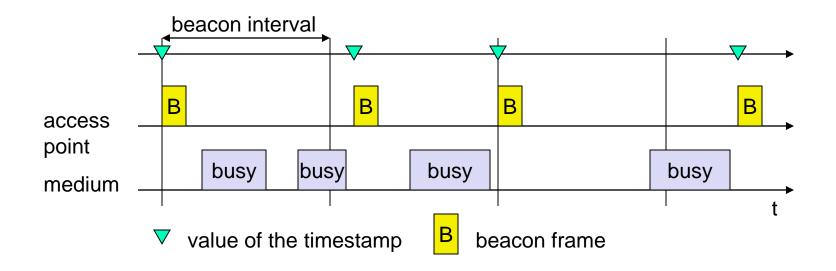
MAC Header

Frame Body contains:

Timestamp

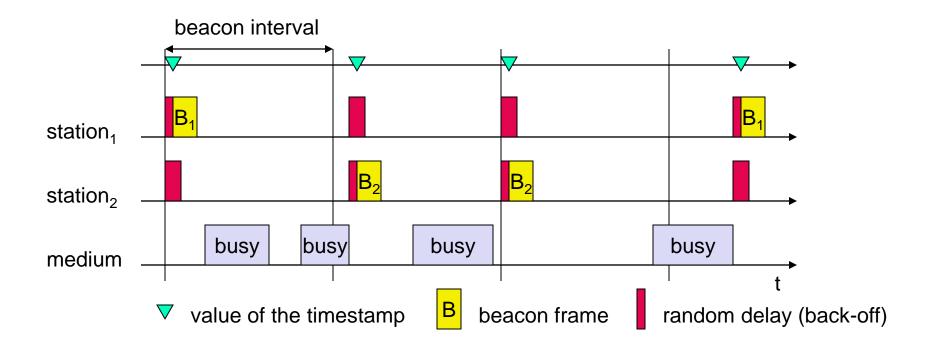
Beacon Interval

Cabability


SSID

Supported PHY Data Rates

FH/DS/CF/IBSS Parameter Set


TIM, Country, BSS Load, QoS Capability, Vendor specific, etc

Synchronization (infrastructure case)

- The access point transmits the (quasi) periodic beacon signal
- The beacon contains a timestamp and other management information used for power management and roaming
- All other wireless nodes adjust their local timers to the timestamp

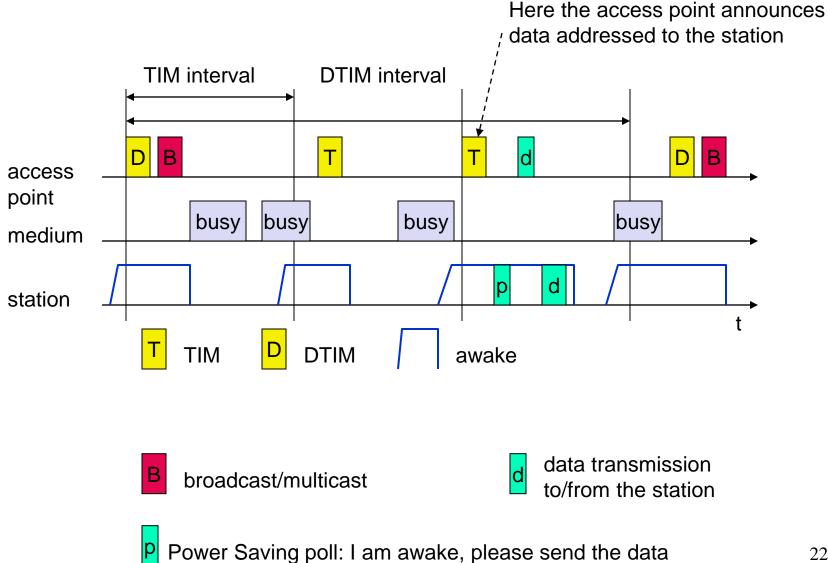
Synchronization (ad-hoc case)

- Each node maintains its own synchronization timer and starts the transmission of a beacon frame after the beacon interval
- Contention → back-off mechanism → only 1 beacon wins
- All other stations adjust their internal clock according to the received beacon and suppress their beacon for the current cycle

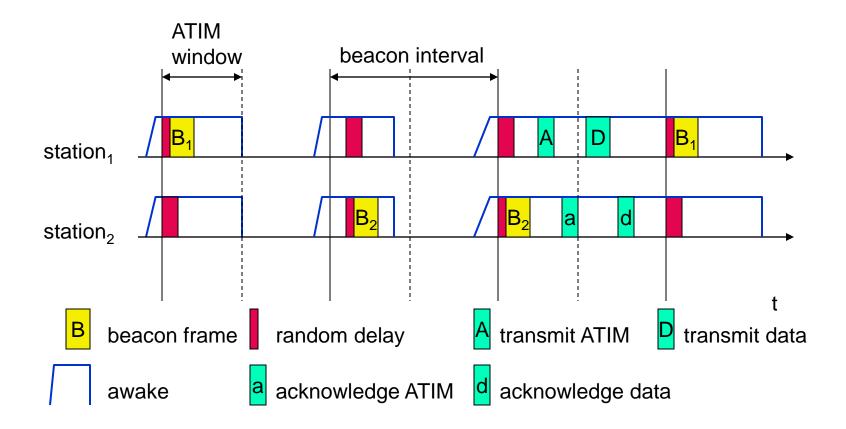
Power management

Idea: switch the transceiver off if not needed States of a station: sleep and awake Timing Synchronization Function (TSF)

□ stations wake up at the same time


Infrastructure case

- □ Traffic Indication Map (TIM)
 - list of unicast receivers transmitted by AP
- Delivery Traffic Indication Map (DTIM)
 - list of broadcast/multicast receivers transmitted by AP


Ad-hoc case

- □ Ad-hoc Traffic Indication Map (ATIM)
 - announcement of receivers by stations buffering frames
 - more complicated no central AP
 - collision of ATIMs possible (scalability?)

Power saving (infrastructure case)

Power saving (ad-hoc case)

• ATIM: Ad hoc Traffic Indication Map (a station announces the list of buffered frames)

• Potential problem: scalability (high number of collisions)

802.11 - Roaming

No or bad connection? Then perform:

Scanning

scan the environment, i.e., listen into the medium for beacon signals or send probes into the medium and wait for an answer

Reassociation Request

□ station sends a request to one or several AP(s)

Reassociation Response

□ success: AP has answered, station can now participate

□ failure: continue scanning

AP accepts Reassociation Request

□ signal the new station to the distribution system

□ the distribution system updates its data base (i.e., location information)

typically, the distribution system now informs the old AP so it can release resources

Inter-Access Point Protocol (802.11f)

- □ Compatible solution for Roaming between different vendors' APs
- □ Load-balancing between APs

How does a STA join an existing BSS?

□ STA needs to get synchronization info from the AP of BSS

- □ Active scanning (Probe-REQ/Probe-Response)
- □ Passive scanning (listen for beacons)
- Association with AP
 - □ Association REQ/Association Response
 - STA capabilities, PCF requirements, Power-saving mode, etc
- Authentication with AP
 - □ Authentication REQ/Authentication Response

IEEE 802.11 – Standardization efforts

IEEE 802.11b

- □ 2.4 GHz band
- DSSS (Direct-sequence spread spectrum)
- □ Bitrates 1 11 Mbit/s

IEEE 802.11a

- □ 5 GHz band
- □ Based on OFDM (orthogonal frequency-division multiplexing)
- □ transmission rates up to 54 Mbit/s
- □ Coverage is not as good as in 802.11b

IEEE 802.11g

- □ 2.4 GHz band (same as 802.11b)
- □ Based on OFDM
- □ Bitrates up to 54Mb/s

IEEE 802.11n

- □ MIMO (multiple-input multiple-output)
- □ 40MHz channel (instead of 20MHz)
- □ Can operate in the 5GHz or 2.4Ghz (risk of interference with other systems, however)
- □ Bitrates up to 600Mb/s
- IEEE 802.11i
 - □ Security, makes use of IEEE 802.1x

IEEE 802.11p

- □ For vehicular communications
- IEEE 802.11s
 - □ For mesh networks

IEEE 802.11 Channel Allocation

Channel Allocation

2.4GHz Channel Allocation

Channel	Frequency f _e (MHz)	U.S.	EU	Japan
1	2412	Х	Х	Х
2	2417	Х	Х	Х
3	2422	X	Х	X
4	2427	Х	Х	Х
5	2432	X	X	X
6	2437	Х	Х	Х
7	2442	X	Х	X
8	2447	Х	Х	X
9	2452	X	Х	X
10	2457	Х	Х	Х
11	2462	Х	Х	X
12	2467		Х	Х
13	2472		X	X
14	2484			Х

5GHz Channel Allocation

Channe	Frequency el f _e (MHz)	U.S.	EU	Japan	Channel	Frequency f, (MHz)	U.S.	EU	Japan	Channel	Frequency f, (MHz)	U.S.	EU	Japan
184	4920			Х	48	5240	Х	Х	Х	120	5600	X	Х	
188	4940			Х	52	5260	Х	Х	X	124	5620	Х	Х	
192	4960			Х	56	5280	Х	Х	X	128	5640	Х	Х	
196	4980			Х	60	5300	Х	Х	Х	132	5660	Х	Х	
208	5040			X	64	5320	Х	Х	X	136	5680	Х	Х	
212	5060			Х	100	5500	Х	Х		140	5700	Х	Х	
216	5080			Х	104	5520	Х	Х		149	5745	Х		
36	5180	Х	Х	Х	108	5540	Х	Х		153	5765	Х		
40	5200	Х	Х	X	112	5560	Х	Х		157	5785	Х		
44	5220	Х	Х	Х	116	5580	Х	Х		161	5805	Х		

Source: Xirrus Inc. Tutorial: 802.11a/b/g Demystified