Almost multiplicative functions
on a class of Banach algebras

D. Sukumar

Department of Mathematics
Indian Institute of Science, Bangalore

International Conference on Functional Analysis and its Applications,
Scott Christian College, Nagercoil
Almost multiplicative function

A linear map \(\phi : A \rightarrow \mathbb{C} \) is said to be **multiplicative** if

\[
\phi(ab) = \phi(a)\phi(b) \quad \text{for all} \quad a, b \in A.
\]

Definition (almost multiplicative function)

A linear map \(\phi : A \rightarrow \mathbb{C} \) is said to be **amf** if there exists a \(\delta > 0 \) such that

\[
|\phi(ab) - \phi(a)\phi(b)| \leq \delta \|a\| \|b\| \quad \text{for all} \quad a, b \in A.
\]

- Originated from perturbation theory.
- **amf** are continuous.
- AMNM Algebra
Condition spectrum

\[\sigma(a) := \{ \lambda \in \mathbb{C} : \lambda - a \in Sing(A) \} , \]

Definition (\(\varepsilon \)-Condition spectrum (0 < \(\varepsilon \) < 1))

\[\sigma_\varepsilon(a) := \left\{ \lambda \in \mathbb{C} : \|\lambda - a\| \| (\lambda - a)^{-1} \| \geq \frac{1}{\varepsilon} \right\} \]

1. \(\sigma(a) \subseteq \sigma_\varepsilon(a) \), for every \(a \in A \) and for every \(\varepsilon > 0 \). The two spectrum coincides if and only if \(a \) is a scalar multiple of identity.

2. If \(\lambda \in \sigma_\varepsilon(a) \) then \(|\lambda| \leq \frac{1 + \varepsilon}{1 - \varepsilon} \|a\| \).

3. If \(\lambda \in \sigma_\varepsilon(a) \) then there exists a \(b \in Sing(A) \) such that

\[\|b\| \leq \varepsilon \|\lambda - a\| , \quad \lambda \in \sigma(a + b) . \]
Theorem

Let A be complex commutative Banach algebra with unit 1 and let ϕ be a δ-amf on A and $\phi(1) = 1$. Then

$$\phi(a) \in \sigma_\delta(a) \quad \forall a \in A.$$
Assumption: The class of complex commutative Banach algebras with this property

\[(*) \quad \forall a \in \text{Inv}(A), \exists b \in \text{Sing}(A) \text{ such that } \|a - b\| = \frac{1}{\|a^{-1}\|}. \]

Example: Function algebras

Lemma

Let A be a complex commutative Banach algebra satisfying $(*)$ and let $\lambda \in \sigma_\varepsilon(a)$. Then,

\[d(\lambda, \sigma(a)) \leq \frac{2\varepsilon}{1 - \varepsilon} \|a\|. \]
Theorem

Let A be a complex commutative unital Banach algebra with the property given in (\ast). Let $a \in A$ and $\lambda \in \sigma_\epsilon(a)$. Then, there exists an almost δ-amf ψ such that $\psi(1) = 1$ and $\lambda = \psi(a)$, where

$$\delta = \alpha(3 + \alpha), \quad \alpha = \frac{2\epsilon^2 \| a \|}{(1 - \epsilon)m}, \quad m = \inf \{ \| z - a \| : z \in \mathbb{C} \}. $$
Theorem

Let A be a function algebra and $\phi : A \to \mathbb{C}$ be a linear function. If $\phi(a) \in \sigma_\epsilon(a)$ for every a in A. Then ϕ is δ-amf, where

$$\delta = \log \left(\kappa^{-1} \right)^{-1} 2(2\kappa + 1) \quad \text{with} \quad \kappa = \frac{2\epsilon}{1 - \epsilon}.$$

Theorem (GKŽ Theorem)

Let A be complex Banach algebra and $\phi : A \to \mathbb{C}$ be a linear map with $\phi(1) = 1$. If, for every $a \in A$,

$$\phi(a) \in \sigma(a)$$

then ϕ is multiplicative.
Conclusion

1. If \(\phi \) is \(\delta \)-amf, then \(\phi(a) \in \sigma_\delta(a) \) for all \(a \) in \(A \).
2. If \(\lambda \in \sigma_\epsilon(a) \), then \(\lambda = \phi(a) \) for some \(\delta(\epsilon) \)-amf \(\phi \).
3. If \(\phi \) is linear and
\[\phi(a) \in \sigma_\epsilon(a) \quad \forall a \in A, \]
then \(\phi \) is \(\delta \)-amf for some \(\delta(\epsilon) \).
References

