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SUMMARY

Randomness is an invaluable resource in theoretical computer science. How-

ever, pure random bits are hard to obtain. Quasi-randomness is a tool that has been

widely used in eliminating/reducing the randomness from randomized algorithms. In

this thesis, we study some aspects of quasi-randomness in graphs. Specifically, we

provide an algorithm and a lower bound for two different kinds of regularity lem-

mas. Our algorithm for FK-regularity is derived using a spectral characterization of

quasi-randomness. We also use a similar spectral connection to also answer an open

question about quasi-random tournaments. We then provide a “Wowzer” type lower

bound (for the number of parts required) for the strong regularity lemma. Finally, we

study the derandomization of complexity classes using Turing machine simulations.

Connections between quasi-randomness and graph spectra. Quasi-random

(or pseudo-random) objects are deterministic objects that behave almost like truly

random objects. These objects have been widely studied in various settings (graphs,

hypergraphs, directed graphs, set systems etc.) [65]. In many cases, quasi-randomness

is very closely related to the spectral properties of the combinatorial object that is

under study [3, 4, 19, 26, 61]. In this thesis, we discover the spectral characterizations

of quasi-randomness in two different cases to solve open problems.

A Deterministic Algorithm for Frieze-Kannan Regularity. The Frieze-Kannan

regularity lemma is a powerful tool in combinatorics. The lemma asserts that any

given graph of large enough size can be partitioned into a number of parts such that,

across parts, the graph is quasi-random. The algorithmic applications of this lemma

require one to efficiently construct a partition satisfying the conditions of the lemma.

Williams [104] had asked if one can construct a partition satisfying the conditions of
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the Frieze-Kannan regularity lemma in deterministic sub-cubic time. In this thesis,

we answer this question by designing an Õ(nω) time algorithm for constructing such

a partition, where ω < 2.376 is the exponent of fast matrix multiplication. The algo-

rithm relies on a spectral characterization of vertex partitions satisfying the properties

of the Frieze-Kannan regularity lemma.

Even Cycles and Quasi-Random Tournaments. Chung and Graham in [22] had

provided several equivalent characterizations of quasi-randomness in tournaments.

One of them is about the number of even cycles, where even is defined in the following

sense. A cycle C = {v1, v2, . . . , v1} in a tournament T is said to be even, if when

walking along C, an even number of edges point in the wrong direction, that is, they

are directed from vi+1 to vi. Chung and Graham [22] showed that if close to half of

the 4-cycles in a tournament T are even, then T is quasi-random. They asked if the

same statement is true if instead of 4-cycles, we consider k-cycles, for an even k. We

resolve this open question by showing that for every fixed even integer k ≥ 4, if close

to half of the k-cycles in a tournament T are even, then T must be quasi-random.

A Wowzer type lower bound for the strong regularity lemma. The regularity

lemma of Szemerédi asserts that one can partition every graph into a bounded number

of quasi-random bipartite graphs. In some applications however, one would like to

have a strong control on how quasi-random these bipartite graphs are. Alon, Fischer,

Krivelevich and Szegedy [6] obtained a variant of the regularity lemma, that allows

one to have an arbitrary control on this measure of quasi-randomness. However, their

proof only guaranteed to produce a partition where the number of parts is given by

the Wowzer function, which is the iterated version of the Tower function. We show

here that a bound of this type is unavoidable by constructing a graph H, with the

property that even if one wants a very mild control on the quasi-randomness of a

regular partition, then any such partition of H must have a number of parts given by

a Wowzer-type function.
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How fast can we deterministically simulate nondeterminism? We study an

approach towards derandomizing complexity classes using Turing machine simula-

tions. We look at the problem of deterministically counting the exact number of

accepting computation paths of a given nondeterministic Turing machine. We pro-

vide a deterministic algorithm, which runs in time roughly Õ(
√
S), where S is the

size of the configuration graph. The best of the previously known methods required

time linear in S. Our result implies a simulation of probabilistic time classes like PP,

BPP and BQP in the same running time. This is an improvement over the currently

best known simulation by van Melkebeek and Santhanam [103].
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CHAPTER I

INTRODUCTION

Randomness holds an important place in theoretical computer science (TCS). Ran-

domized algorithms, probabilistic analysis, probabilistic complexity classes, and prob-

abilistically checkable proofs are just a few of the areas where we make use of ran-

domness in a crucially important manner. Many of the recent major discoveries in

TCS could be attributed to the use of randomness.

One of the most compelling reasons that randomness has been so useful in TCS

is the existence of several problems that have an efficient randomized polynomial

time algorithm, but not a deterministic one. What would have been a good example

10 years ago is not anymore – PRIMES. This is the problem of testing if a given

integer is prime. The randomized Miller-Rabin primality test [81] was discovered in

the seventies, and for more than two decades that followed, there was no deterministic

test that ran in polynomial time. The deterministic algorithm [1] for PRIMES was

discovered only in 2002. Examples of problems where randomness is helpful in getting

an efficient algorithm are the DeMillo-Lipton-Schwartz-Zippel polynomial identity

testing [32, 90, 106] (in fact, there is strong evidence that it is hard to hope for a

deterministic polynomial identity testing algorithm [54]) and volume estimation by

Dyer-Frieze-Kannan [34] as well as several approximate counting problems. The P

vs. NP question is the foremost open question in TCS and tries to characterize which

problems can or cannot be solved efficiently. While P vs. NP remains open, one can

never rule out the possibility of deterministic polynomial time algorithms for these

problems, but for now randomness seems to be helpful.

Theoretical computer scientists have been attempting to understand the necessity
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of randomness. Randomness is considered expensive because it is hard to find a

real source of randomness. Moreover, one can “boost” the probability of success of

randomized algorithms by repeating it with independent random choices. For these

boosting applications, being able to find independent random bits is helpful. There

is a huge body of literature that tries to minimize the amount of randomness used

(see the surveys [71, 72]). Ideally, one would like to derandomize a given randomized

algorithm, i.e., to completely eliminate the need for randomness from the algorithm.

If this is hard to achieve, then one would like to make do with as little randomness

as possible. One successful approach for reducing the randomness is to use a string

of bits that have some dependence between them. For example, an algorithm might

require only pairwise independent (or k-wise independent) random bits instead of

fully independent random variables.

Quasi-random sequences of bits are not random, in fact they are deterministic,

but they possess statistical properties that make them usable, instead of pure random

bits, in randomized algorithms. Certain statistical properties of quasi-random bits

are identical to that of pure random bits. For instance, the area of quasi-Monte Carlo

methods [75] makes use of quasi-random bits instead of random ones, thereby saving

in randomness. Expander graphs have been very useful in generating quasi-random

sequences of bits, which could be used to derandomize an algorithm. This application

of expander graphs has been widely studied starting with the work of Ajtai, Komlos

and Szemerédi [2] (see [51] for more details on the applications of expanders).

In this thesis, we shall study some aspects of quasi-randomness in combinatorial

structures. This introductory chapter is organized as follows. In the next section,

we discuss quasi-random graphs as introduced by Chung, Graham and Wilson [26]

and quasi-randomness in other combinatorial objects. In several of these cases, quasi-

randomness of a combinatorial object is also captured by a spectral characterization.

We study these in the Section 1.1.3. The Regularity Lemma, proved by Szemerédi
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[93], is a powerful tool that helps decompose graphs into components that are quasi-

random. We discuss the regularity lemma and its variants in Section 1.2. Finally, in

Section 1.3, we give an overview of our contributions in this thesis and explain the

organization of the rest of the thesis.

1.1 Quasi-randomness in Graphs and other Combinatorial
Objects

In this section, we study quasi-randomness in graphs and other combinatorial objects

like groups, hypergraphs, directed graphs, etc. The main motivation is to study

objects that are deterministic but have random-like properties. This is an informal

notion that we shall formalize in this section.

1.1.1 Quasi-randomness in Graphs

There is a natural way to define a random graph on a vertex set of size n. Of the
(
n
2

)
pairs of vertices, each pair of vertices is connected by an edge independently with a

probability p for a given constant 0 < p < 1. The family of graphs obtained in this

manner is the Erdős-Rényi model of random graphs [35]. This family of graphs is

denoted G(n, p).

A quasi-random graph is one that behaves like a random graph from the family

G(n, p). To formalize this statement, we shall identify a set of properties that are

all equivalent to one another and are shared by the random graph family G(n, p).

We shall term these properties as quasi-random and we shall call the graphs that

satisfy any (and therefore, all) of these properties quasi-random graphs. Quasi-random

graphs were first studied by Thomason [97, 98] (he called them jumbled graphs) and

these notions were made more concrete by Chung, Graham and Wilson [26].

Thomason noted that one of the most important characteristics of a truly random

graph is its edge-density. For a graph G = (V,E), let U ⊆ V . Then let e(U) denote
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the number of edges with both endpoints in U . The edge density of U is given by

e(U)/

(
|U |
2

)
.

One characterization of quasi-random graphs is that the edge density of any large

enough set U is close to p. We make this concrete using the following definition.

Definition 1.1 (Quasi-random graphs). A graph G = (V,E) is quasi-random if for

all subsets U ⊆ V , we have ∣∣∣∣e(U)− p
(
|U |
2

)∣∣∣∣ = o(n2) , (1)

where n = |V | and e(U) denotes the number of edges that are contained in U .

Consider U,W ⊆ V , and let e(U,W ) denote the number of edges having one

endpoint in each of U and W , counting the edges contained in U ∩ W twice. In

fact, the above definition is equivalent to the following: In a quasi-random graph

G = (V,E), for all sets U,W ⊆ V , we have

|e(U,W )− p|U ||W || = o(n2) . (2)

If (2) is true for all U,W ⊆ V , then G is quasi-random because we can set U = W .

If G is quasi-random by Definition 1.1, then one can break down (2) and derive that

(2) should be true for all U,W ⊆ V .

In [26], Chung, Graham and Wilson showed that many other properties of different

natures were equivalent to the above property. Before stating their main theorem,

let us introduce some notation. Let G = (V,E) be a graph on n vertices. For a fixed

graph L, let N∗G(L) denote the number of labeled induced copies of L in G, and let

NG(L) denote the number of labeled but not necessarily induced copies of L in G. For

a pair of vertices x, y ∈ V (G), let s(x, y) denote the number of vertices of G joined

to x and y in the same way; either to both or to none. Let codeg(x, y) denote the

number of common neighbors of x and y in G. Finally let λi denote the eigenvalues
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of the adjacency matrix A(G) of G ordered such that |λ1| ≥ |λ2| ≥ . . . |λn|. The main

theorem of [26] is the following:

Theorem 1.2 ([26]). The following properties are equivalent:

• P1(l): For a fixed graph L on l ≥ 4 vertices,

N∗G(L) = (1 + o(1))nlp|E(L)|(1− p)(
l
2)−|E(L)| .

• P2(t): Let Ct denote the cycle of length t. Let t ≥ 4 be even. Then,

e(G) =

(
n2p

2
+ o(n2)

)
and NG(Ct) ≤ (np)t + o(nt) .

• P3 : e(G) ≥ n2p
2

+ o(n2), λ1 = (1 + o(1))np, |λ2| = o(n).

• P4: For each subset U ⊆ V (G), e(U) = p
2
|U |2 + o(n2).

• P5: For each subset U ⊆ V (G) such that |U | = bn/2c, we have e(U) =(
p
8

+ o(1)
)
n2.

• P6 :
∑

x,y∈V |s(x, y)− (p2 + (1− p)2)n| = o(n3) .

• P7 :
∑

x,y∈V |codeg(x, y)− p2n| = o(n3) .

Notice that the properties P1 through P7 form a very diverse set, yet all of them

could be easily verified to hold true for truly random graphs chosen from G(n, p).

The property P1(t) requires that the number of induced labeled copies of a given

graph of size t occurs roughly the expected number of times in G. Property P4 is just

a restatement of Definition 1.1 and so we can immediately conclude that all of the

above properties are equivalent definitions/characterizations of quasi-random graphs.

As we observed in (2), we can add one more equivalent property to the above list.

• P ′4: For each pair of subsets U,W ⊆ V (G), e(U,W ) = p|U ||W |+ o(n2).

5



It is important to note that each of these properties are not only implied by the

graph being quasi-random but that each of them form a characterization of quasi-

randomness. That is, to check if a graph is quasi-random it is enough to test the

graph for any one of these properties, whichever one turns out to be convenient to

test.

It is notable that the property P2(4) only requires that the total number of edges

in the graph and the total number of labeled copies of 4-cycles are roughly what we

expect to see in a member of G(n, p). It is a seemingly weak condition, but is still

powerful enough to capture the notion of quasi-randomness. The property P3 is a

condition on the eigenvalues of the adjacency matrix of G. We note that this is a

very interesting connection. This is representative of the spectral characterization of

quasi-randomness in several combinatorial objects. We shall see this in greater detail

in Section 1.1.3, and this is a key tool that we shall be using in this thesis.

Until now, we have seen different properties of quasi-random graphs. It can be

easily verified that these properties are true (with high probability) for a member

of G(n, p). To distinguish a truly random graph and a quasi-random graph, we

provide an example from [26]. The example is a deterministic graph called Paley

graph, denoted by Qn. It is defined for a prime n ≡ 1 (mod 4), and has n vertices.

Vertices i and j form an edge of Qn if and only if i − j is a quadratic residue of

n. Using basic modular arithmetic and quadratic reciprocity, it can be verified that

Qn is a (n − 1)/2 regular graph. We can also check that for distinct x, y, we have

s(x, y) = (n− 3)/2, hence Qn satisfies property P6. Hence Qn is quasi-random, with

the probability p = 1/2.

However, the size of the largest clique of Qn has been found to be as large as

c log n log log log n for infinitely many primes n. But the expected size of the largest

clique of a graph from G(n, 1/2) is (1 + o(1)) logn
log 2

[17]. Thus we note that Qn deviates

from the random graph family G(n, 1/2) in this aspect.

6



What we have not described yet is the case when p is sub-constant, when the

graph G is sparse. Quasi-randomness in sparse graphs was studied in [25]. Three

of the equivalent characterizations of a sparse quasi-random graph are given in the

following theorem:

Theorem 1.3 (Sparse Quasi-Random Graphs[25]). Suppose for some constant c > 0,

p(n) > cn−1+ 1
t−1 , where t ≥ 2. For any family of graphs G = (V,E), |E(G)| =

(1+o(1))p
(
n
2

)
, then subject to a technical condition1, the following equivalent properties

capture quasi-randomness in G.

1. The number of labeled 2t-cycles is given by (1 + o(1))(np)t.

2. The eigenvalues λi of A(G) satisfy λ1 = (1 + o(1))np and |λ2| = o(np).

3. For all U,W ⊆ V , |e(U,W )− p|U ||W || = o(pn2).

In Theorem 1.2, we saw properties that characterize quasi-random graphs when

p is a constant. We note that the properties in Theorem 1.3 are generalizations of

properties in Theorem 1.2. The property 1 in Theorem 1.3 is the property P2(t) in

Theorem 1.2 adapted to the case when G maybe sparse, that is when p maybe sub-

constant. Similarly, properties 2 and 3 in Theorem 1.3 are modifications of P3 and

P ′4 respectively. So even though not all of the properties of Theorem 1.2 generalize

to the case when p maybe sub-constant, some of the properties indeed do. For more

details on quasi-random graphs, we refer the reader to the survey of Krivelevich and

Sudakov [65].

1.1.2 Quasi-randomness in other Combinatorial Objects

Consider a combinatorial object, for example a k-uniform hypergraph. A k-uniform

hypergraph G = (V,E) is a set of vertices V and a set of k-tuples E ⊆ {(v1, . . . , vk) :

1For the sake of simplicity, we omit the technical condition.
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v1, . . . , vk ∈ V }. Notice that when k = 2, this is the definition of graphs. Like we saw

in the case of graphs, there is a natural way to define a random k-uniform hypergraph

– each possible k-tuple (v1, . . . , vk) is selected to be in E with probability p.

For a random 3-uniform hypergraph G on n vertices, the expected number of

induced labeled copies of a given k-uniform hypergraph L of size l is nlp|E(L)|(1 −

p)(
l
k)−|E(L)|. So with high probability, there would be (1+o(1))nlp|E(L)|(1−p)(

l
k)−|E(L)|

induced labeled copies of L in G. As in the case of graphs, this turns out to be one

of the several equivalent characterizations of quasi-random k-uniform hypergraphs

[23, 24]. The other characterizations of quasi-random hypergraphs are generalizations

of the characterizations in Theorem 1.2. For further details and discussions, we refer

the reader to the excellent surveys by Gowers [43] and Trevisan [100].

In a similar manner, quasi-randomness has been defined and studied for several

other combinatorial objects. Some of the studied objects are set systems [21], tourna-

ments [22], groups [45] and directed graphs [48]. In Chapter 2, we shall study quasi-

random tournaments in some detail, and provide new characterizations for them,

including a spectral characterization.

1.1.3 Expander Graphs and Spectral Characterizations of Quasi-randomness

Let us recall the properties based on eigenvalues from Theorems 1.2 and 1.3. These

state that λ1 = (1 + o(1))np and |λ2| = o(np). The condition requires that the

first eigenvalue λ1 is close to np and the rest of the eigenvalues are small. This is

a spectral characterization of quasi-randomness in graphs. We shall see that the

spectrum captures the quasi-random properties of several combinatorial objects.

Expander graphs are a very good example for a class of sparse quasi-random

graphs. They are typically d-regular graphs for a constant d, which means that they

have O(n) edges. However, they are very well connected, which is a consequence of

their definition.
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Definition 1.4 (Expander Graphs). For a graph G, we define edge expansion, de-

noted by h(G), as follows:

h(G) = min
0<|S|≤n

2

|e(S, S̄)|
|S|

, (3)

where e(S, S̄) denotes the number of edges from S to its complement S̄.

G is an expander graph if h(G) ≥ ε for a fixed constant ε > 0.

Every set S of less than n/2 vertices is connected to at least h(G)|S| more vertices.

This ensures that the graph is well connected, despite being sparse. A consequence of

this is that the diameter of an expander is O(log n). Random walks on an expander

graph require much less random bits, because of the low degree. Hence expanders are

used in derandomization.

The Cheeger’s inequality relates the expansion of a graph to its eigenvalues.

Theorem 1.5 (Cheeger’s Inequality [3, 20]). Let G be a d-regular graph with eigen-

values |λ1| ≥ |λ2| ≥ . . . ≥ |λn|. Then

d− |λ2|
2

≤ h(G) ≤
√

2d(d− |λ2|) . (4)

This helps us form a spectral characterization of expander graphs. For a d-regular

graph to be an expander, the gap d − |λ2| should be an absolute constant which is

strictly positive. This already gives us an indication that an expander graph is quasi-

random, by the eigenvalue characterization in Theorem 1.3. In fact, given two sets

U,W ⊆ V of a d-regular expander G = (V,E), the expander mixing lemma states

that ∣∣∣∣|E(U,W )| − d|U ||W |
n

∣∣∣∣ ≤ |λ2|
√
|U ||W | , (5)

thereby relating the edge density to the expansion as well. Thus when |λ2| is small,

the expander graph is quasi-random. Note that the two terms on the left hand side are

the actual number of edges from U to W and the expected number of edges from U to

W in a random graph. This connection is called the expander mixing lemma because
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this provides a direct connection between the spectrum of the graph, and how quickly

a random walk on the graph is likely to “mix”. For more details about expanders,

the reader is referred to the excellent survey by Hoory, Linial and Wigderson [51].

The spectral connection to quasi-randomness has been widely studied and used in

different combinatorial objects [4, 19, 61]. In fact, it is a technique that we use twice

in this thesis. In Chapter 2, we develop a spectral characterization of quasi-random

tournaments and use it to prove some new results. In Chapter 3, we develop a spec-

tral characterization of Frieze-Kannan regularity and use it towards a deterministic

algorithm for finding an FK-regular partition of a graph.

1.2 The Regularity Lemma

The regularity lemma of Szemerédi [93] is one of the most widely used tools in extremal

combinatorics. The lemma was originally devised as part of Szemerédi’s proof of

his (eponymous) theorem [92] on arithmetic progressions in dense sets of integers.

Since then it has turned into a fundamental tool in extremal combinatorics, with

applications in diverse areas such as theoretical computer science, additive number

theory, discrete geometry and of course graph theory. We refer the reader to the

survey by Komlos et. al. [64] and its references for more details on the rich history

and applications of the regularity lemma.

1.2.1 Szemerédi’s Regularity

Szemerédi’s regularity lemma roughly states that every dense graph can be approxi-

mated by a union of induced quasi-random bipartite graphs. The regularity lemma

helps us use quasi-randomness in analyzing an arbitrary dense graph. It also allows

us to use probabilistic intuition to problems that are deterministic in nature.

In order to describe the regularity lemma more formally, let us set up some nota-

tion. For a pair of subsets A,B ⊆ V (G) in a graph G = (V,E), let e(A,B) denote

the number of edges between A and B, counting each of the edges contained in A∩B
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twice. The density d(A,B) is defined to be d(A,B) = e(A,B)
|A||B| . We will frequently deal

with a partition of the vertex set P = {V1, V2, . . . , Vk}. The order of such a partition

is the number of sets Vi (k in the above partition). A partition is equitable if all sets

are of size bn/kc or dn/ke. We will make use of the shorthand notation for density

across parts, dij = d(Vi, Vj) whenever i 6= j. Also, we set dii = 0 for all i.

The key notion in Szemerédi’s regularity lemma [93] is the notion of ε-regularity,

as defined below:

Definition 1.6 (ε-regular). Let A,B be disjoint sets of vertices of G. We say that

(A,B) is ε-regular if |d(A,B)− d(A′, B′)| ≤ ε for all A′ ⊆ A and B′ ⊆ B satisfying

|A′| ≥ ε|A| and |B′| ≥ ε|B|.

A partition P = {V1, . . . , Vk} of V is called a ε-regular partition if it is equitable,

and all but εk2 of the pairs (i, j) are such that (Vi, Vj) is ε-regular.

It is not hard to see that ε-regular bipartite graphs are quasi-random. Szemerédi’s

Regularity Lemma states the following:

Theorem 1.7 (Szemerédi’s Regularity Lemma [93]). Given ε > 0 there is a constant

S(ε), such that the vertex set of any graph G = (V,E) can be partitioned into k ≤ S(ε)

sets P = {V1, . . . , Vk}, such that P is ε-FK-regular.

One of the useful aspects of an ε-regular partition of a graph is that it allows one

to estimate the number of edges in certain partitions of G. For example, given an

ε-regular partition, one can estimate the value of the Max-Cut in G within an error

of εn2, in time that depends only on the order of the partition (and independent of

the order of G!). Hence, one can think of Szemerédi’s regularity lemma as saying

that any graph can be approximated by a constant sized graph. This aspect of the

regularity lemma has turned out to be extremely useful for designing approximation

algorithms.

11



1.2.2 Frieze-Kannan Regularity

The main drawback of Szemerédi’s regularity lemma is that the constants involved

are huge; Gowers [42] proved that in some cases the number of parts in a Szemerédi

regular partition grows as a tower of exponents of height polynomial in 1/ε, where

ε is the parameter for regularity. It is thus natural to ask if one can find a slightly

weaker regularity lemma that would be applicable, while at the same time not involve

such huge constants. Such a lemma was indeed considered in [92] for bipartite graphs

and in [33] for arbitrary graphs. Subsequently, Frieze and Kannan [38, 39] devised

an elegant regularity lemma of this type. They formulated a slightly weaker notion

of regularity that we will refer to as FK-regularity. They proved that any graph has

an FK-regular partition involving drastically fewer parts compared to Szemerédi’s

lemma. They also showed that an FK-regular partition can still be used in some of

the cases where Szemerédi’s lemma was previously used. The notion of FK-regularity

has been investigated extensively in the past decade. For example, it is a key part

of the theory of graph limits developed in recent years, see the survey of Lovász

[67]. Finally, FK-regularity was a key tool in the recent breakthrough of Bansal and

Williams [12], where they obtained new bounds for combinatorial boolean matrix

multiplication.

While all variants of Szemerédi’s regularity lemma attempt to approximate a given

dense graph using a number of quasi-random bipartite graphs, they vary in the manner

in which they approximate the graph. We use the same notation that we used while

describing Szemerédi’s regularity.

Definition 1.8 (ε-FK-regular). Let P = {V1, V2, . . . , Vk} be a partition of V (G). For

subsets S, T ⊆ V and 1 ≤ i ≤ k, let Si = S ∩ Vi and Ti = T ∩ Vi. Define ∆(S, T ) for

subsets S, T ⊆ V as follows:

∆(S, T ) = e(S, T )−
∑
i 6=j

dij|Si||Tj|. (6)
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The partition P is said to be ε-FK-regular if it is equitable and

for all subsets S, T ⊆ V, |∆(S, T )| ≤ εn2. (7)

If |∆(S, T )| > εn2 then S, T are said to be witnesses to the fact that P is not ε-FK-

regular.

One can think of Szemerédi’s regularity as dividing the graph into parts such that

across most of the parts the graph looks like a random graph. In FK-regularity, we

just want to partition the graph so that any cut of the graph contains roughly the

expected number of edges as dictated by the densities dij. Another way to think

about FK-regularity is that we want the bipartite graphs to be ε-regular (in the sense

of Szemerédi) only on average.

Theorem 1.9 (Frieze-Kannan Regularity Lemma [38, 39]). Given ε > 0 there is a

constant SFK(ε), such that the vertex set of any graph G = (V,E) can be partitioned

into k ≤ SFK(ε) sets P = {V1, . . . , Vk}, such that P is ε-FK-regular.

Like we mentioned before, the main novelty in this (weaker2) notion of regularity is

that it allows one to compute useful statistics on the graph (such as estimating Max-

Cut) while at the same time having the property that any graph can be partitioned

into an ε-FK-regular partition of order 2100/ε2 , which is drastically smaller than the

tower-type order of a Szemerédi partition.

1.2.3 Strong Regularity

One feature of Szemerédi’s regularity is that the measure of quasi-randomness (i.e.,

ε) remains independent of the order of the partition considered. As we mentioned

before, in a breakthrough result, Gowers [42] proved that for any ε > 0, there exists

2It is not hard to see that an ε-regular partition (in the sense of Szemerédi’s lemma) is indeed
ε-FK-regular.
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a graph where any ε-regular partition must have size at least T (1/ε1/16), where T (x)

denotes a tower of twos of height x.

Gowers’ lower bound can be stated as saying that if one wants a regular partition

of order k, then the best quasi-randomness measure one can hope to obtain is merely

1/ log∗(k). Suppose however that for some f : N 7→ (0, 1), we would like to find

a partition of a graph of order k that will be “close” to being f(k)-regular. Alon,

Fischer, Krivelevich and Szegedy [6] formulated the following notion of being close to

f(k)-regular.

Definition 1.10 ((ε, f)-regular partition). Let f be a function f : N 7→ (0, 1). An

(ε, f)-regular partition of a graph G is a pair of partitions A = {Vi : 1 ≤ i ≤ k}

and B = {Ui,i′ : 1 ≤ i ≤ k, 1 ≤ i′ ≤ `} of G, where B is a refinement of A and the

following two conditions hold:

1. B is f(k)-regular (as in Definition 1.6).

2. Say that a pair (Vi, Vj) of clusters of A is good if all but at most εl2 of pairs

1 ≤ i′, j′ ≤ ` satisfy |d(Ui,i′ , Uj,j′) − d(Vi, Vj)| < ε. Then, at least (1 − ε)
(
k
2

)
of

the pairs are good.

One useful way of thinking about the above notion is to “forget” for a moment

about the partition B and just treat partition A as an f(k)-regular partition. One

then tries to extract some useful information from the assumption that A itself is

f(k)-regular. Finally, one uses the second property of Definition 1.10, which says

that the two partitions are similar, in order to show that the information deduced

from the assumption that A is f(k)-regular can actually be deduced from the fact

that B is f(k)-regular.

One of the main results of [6] was that given a graph G and any function f , one

can construct an (ε, f)-regular partition of G of bounded size. This version of the

regularity lemma is sometimes referred to as the strong regularity lemma.
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Theorem 1.11 (Strong Regularity Lemma [6]). For every ε > 0 and f : N 7→ (0, 1),

there is an integer S = SAFKS(ε, f) such that any graph G = (V,E) has an (ε, f)-

regular partition (A,B) where 1/ε ≤ |A|, |B| ≤ S.

Let us describe two cases where one needs to have a better control of the measure

of quasi-randomness of a regular partition. A first example is when proving certain

variant of the graph removal lemma [86]. In such a scenario we are given a regular

partition and would like to be able to say that since the partition behaves in a quasi-

random way, then we can find “small” subgraphs that we expect to find in a truly

random graph. The only problem is that as the “small” structure we are trying to

find becomes larger, we need the measure of quasi-randomness to decrease with it.

Some examples where Theorem 1.11 was used to overcome such difficulties can be

found in [6, 8, 10, 11, 62, 82]. We note that in some of these papers, Theorem 1.11

was used with functions f that go to zero extremely fast, so the ability to apply the

theorem with arbitrary functions was crucial.

Another example when one wants a better control of the measure of quasi-randomness

is when the graph we are trying to partition is very sparse. It is not hard to see that

for the notion of ε-regularity to make sense, the graph we are trying to partition

should have density at least ε. A well known case where one is faced with increas-

ingly sparse graphs is in the proofs of the hypergraph regularity lemma, that were

obtained independently by Gowers [43] and by Rödl et al. [37, 73, 84] and later also

by Tao [94]. In those proofs, one is partitioning not only the vertices of the hyper-

graph (as in Theorem 1.7) but also the pairs of vertices into quasi-random bipartite

graphs. However, in the process these bipartite graphs become sparser so one needs

to control their quasi-randomness as a function of their density. See the survey of

Gowers [43] for an excellent account of this issue.

We finally note that the strong regularity lemma is also related to the notion of

a limit of convergent graph sequences defined and studied in [18]. Without defining
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these notions explicitly, we just mention that many of the results mentioned above

that were proved using Theorem 1.11, were later reproved using graph limits, see e.g.

Lovász and Szegedy [70]. Furthermore, some of the important properties of the limit

of a convergent graph sequence, such as its uniqueness [68], also hold for (ε, f)-regular

partitions, see [10]. Hence, one can view an (ε, f)-regular partition as the discrete

analogue of the (analytic) limit of a convergent graph sequence.

1.2.4 Discussions about Regularity

The regularity lemmas are a fundamental tool in graph theory and combinatorics.

The proofs of the regularity lemmas follow the structure vs. randomness paradigm

[95]. The structure vs. randomness paradigm states that a given object (examples

are functions, sets, graphs, vectors etc.) can be decomposed into a structured com-

ponent and a component that is quasi-random, up to some error. A partition given

by the regularity lemma has a structured component, the underlying density graph

that is constant size, and a random component, the quasi-random bipartite graphs

connecting each of the parts.

The proofs of the regularity lemmas follow a similar path. They start off with

an arbitrary partition, which may or may not be regular. This partition, if it is

not regular, can be refined further to obtain a new partition. This refinement can

be viewed as adding to the structured component. This is repeated multiple times

to reach a regular partition. The evidence that we are indeed progressing towards a

desired decomposition is a potential function that increases by at least a fixed constant

on each iteration. Though there are different variants of the regularity lemma, as we

have already seen, the proofs of all of them follow the same pattern. For more details

on the variants and proofs of the regularity lemmas, we refer the reader to the survey

by Rödl and Schacht [83]. In addition to proving regularity lemmas in graphs, this

proof method has been used in proving regularity lemmas in other objects as well;
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the regularity lemmas on groups [47] and permutations [28] being notable examples.

It is not too hard to order the regularity lemmas covered in the previous sections

in the order of their strengths – the Frieze-Kannan regularity is weaker than the

Szemerédi regularity, which is in turn weaker than the strong regularity. However, it

is quite interesting to note that the Frieze-Kannan regularity lemma can be iterated

repeatedly to derive the Szemerédi regularity lemma (see [83]). Also the Szemerédi

regularity lemma can be iterated to obtain the strong regularity lemma.

Finally, we point out another connection between Szemerédi’s regularity and quasi-

randomness in graphs. Simonovits and Sós [91] noted that a graph G is quasi-random

with edge density p (as in Definition 1.1) if and only if almost all bipartite graphs

formed in the Szemerédi regularity partitions of G are quasi-random with density

p+ o(1).

1.3 Our Contributions and Thesis Organization

As we have already seen, quasi-randomness and regularity have been studied exten-

sively. It would be interesting to generalize the spectral connection towards quasi-

randomness and have universal properties that characterize quasi-randomness in the

case of different combinatorial objects. What one would require is, in the case of each

combinatorial object, a suitable model for quasi-randomness that would help obtain

the spectral characterization. As we saw in Section 1.1.3, there are several examples

of such a characterization already. In Chapter 2, we show progress in this direction

by providing a spectral characterization for quasi-random tournaments (as defined by

Chung and Graham [22]) and quasi-random directed graphs (as defined by Griffiths

[48]). Such a characterization turns out to be very useful because it helps us extend

one of the characterizations of quasi-random tournaments, thereby answering an open

question asked by Chung and Graham in [22]. This work is joint with Asaf Shapira,

and originally appeared in [57].
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The regularity lemmas are very useful and applicable in the area of combinatorics.

So it is quite relevant to see the limits of their usefulness. In order to apply a regu-

larity lemma in an algorithm, one needs to actually find the regular partition. So we

need an algorithmic version of the regularity lemma. In the case of Frieze-Kannan

regularity, we obtain a deterministic algorithm that runs in Õ(nω) time in Chapter

3 of this thesis. We develop a spectral characterization of FK-regularity and this

characterization is used in getting the deterministic algorithm. Our algorithm is the

first deterministic algorithm that runs in sub-cubic time, and the spectral character-

ization was hitherto unknown for FK-regularity. This is joint work with Domingos

Dellamonica, Daniel Martin, Vojtěch Rödl and Asaf Shapira. This appeared in the

Proceedings of APPROX/RANDOM 2011 [31]. The full version has been accepted

for publication in the SIAM Journal on Discrete Math and is yet to appear.

One important aspect of applying the regularity lemmas is the number of parts

required in a partition that satisfies the condition of the lemma. Several fundamental

results applied Szemerédi’s regularity lemma [85, 86] and the original proof indicated

that the number of parts required in a regularity partition might be a tower of ex-

ponents, where the height of the tower depends on the measure of regularity, usually

denoted by ε. As we have already mentioned, Gowers [42] proved that a tower type

dependence is unavoidable. In Chapter 4 of this thesis, we provide a lower bound for

the number of parts required by a partition that satisfies the conditions of the strong

regularity lemma by Alon, Fischer, Krivelevich and Szegedy (Theorem 1.11). The

bound that we provide is a Wowzer type bound, which is the tower function iterated

multiple times. Wowzer type functions are one level higher in the Ackermann hierar-

chy than the tower functions. Our result is the first3 such lower bound for the strong

regularity lemma. This is joint work with Asaf Shapira [58].

3After completing our work, we learned that Conlon and Fox [27] have independently (and si-
multaneously) obtained a result similar to ours.
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Finally, in Chapter 5 of this thesis, we study a different approach towards the

derandomization of complexity classes. Though it is not directly connected towards

quasi-randomness and regularity, we think it is relevant because it is a novel approach

that could potentially be helpful in other problems. We study the problem of deter-

ministically counting the number of accepting computations of a nondeterministic

Turing machine. We obtain an algorithm which is a square-root improvement over

what is currently known. This implies a faster deterministic simulation of the class

#P, and probabilistic classes PP, BPP and BQP. This chapter is a result of joint

work with Richard Lipton, Kenneth Regan and Farbod Shokrieh [55, 56]. Part of

the work [55] appeared in the journal Theoretical Computer Science. A preliminary

version appeared in MFCS 2010: Proceedings of the 35th International Symposium

on Mathematical Foundations of Computer Science.
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CHAPTER II

EVEN CYCLES AND QUASI-RANDOM TOURNAMENTS

2.1 Introduction

As we have already seen, quasi-random objects are deterministic objects that possess

the properties we expect truly random ones to have. One of the most surprising

phenomena in this area is the fact that in many cases, if an object satisfies a single

deterministic property then it must “behave” like a typical random object in many

useful aspects. In this chapter we study one such phenomenon related to quasi-

random tournaments. The notion of quasi-randomness has been widely studied for

different combinatorial objects, like graphs, hypergraphs, groups and set systems

[21, 24, 26, 45]. In this chapter, we show that for every fixed even integer k ≥ 4, if

close to half of the k-cycles in a tournament T are even, then T must be quasi-random.

This resolves an open question raised in 1991 by Chung and Graham [22].

A directed graph D = (V,E) consists of a set of vertices and a set of directed

edges E ⊆ V × V . We use the ordered pair (u, v) ∈ V × V to denote directed edge

from u to v. A tournament T = (V,E) is a directed graph such that given any two

distinct vertices u, v ∈ V , there exists exactly one of the two directed edges (u, v)

or (v, u) in E(T ). There are no loops, i.e. directed edges of the form (u, u), in a

tournament. One can also think of a tournament as an orientation of an underlying

complete graph on V . We shall use n to denote |V |.

Consider a tournament T = (V,E). For Y ⊆ V , and v ∈ V , let d+(v, Y ) denote

the number of directed edges going from v to Y and d−(v, Y ) denote the number

of directed edges going from Y to v. A purely random tournament is one where

for each pair of distinct vertices u and v of V , the directed edge between them is
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chosen randomly to be either (u, v) or (v, u) with probability 1/2. It is not too

hard to observe that in a random tournament T , with high probability, we have∑
v∈X |d+(v, Y )− d−(v, Y )| = o(n2) for all X, Y ⊆ V (T ). If there exists X, Y ⊆ V (T )

such that
∑

v∈X |d+(v, Y )− d−(v, Y )| = cn2, for some constant c > 0, then we can

get sets X ′, Y ′ ⊆ V (T ) such that c′n2 directed edges are oriented from X ′ to Y ′.

With high probability, this cannot happen in a random tournament. Let us define

the corresponding property Q as follows:

Definition 2.1. A tournament T on n vertices satisfies property Q if

∑
v∈X

∣∣d+(v, Y )− d−(v, Y )
∣∣ = o(n2) for all X, Y ⊆ V (T ).

The notion of quasi-randomness in tournaments was introduced by Chung and

Graham [22]. They defined several properties of tournaments, all of which are satisfied

by purely random tournaments, including the property Q above. They also showed

that all these properties are equivalent, namely, if a tournament satisfies one of these

properties, then it must also satisfy all the other. They then defined a tournament

to be quasi-random if it satisfies any (and therefore, all) of these properties. For the

sake of clarity, we will focus on property Q (defined above) that will turn out to be

the easiest one to work with in the current context.

Another property studied in [22] was related to even cycles in tournaments. A

k-cycle is an ordered sequence of vertices (v1, v2, . . . , vk, v1) such that no vertex is

repeated immediately in the sequence. That is, vi 6= vi+1 for all i ≤ k − 1 and

vk 6= v1. We say that a k-cycle (for an integer k ≥ 2) is even if as we traverse

the cycle, we see an even number of directed edges opposite to the direction of the

traversal. If a k-cycle is not even, we call it odd. Let Ek(T ) denote the number of

even k-cycles in a tournament T . Clearly, the number of k-cycles in an n-vertex

tournament is nk − o(nk). In fact, it can be shown that that the exact number is

given by (n − 1)k + (−1)k(n − 1) (see Section 2.3.2). In a random tournament, we
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expect about half of the k-cycles to be even. This motivated Chung and Graham [22]

to define the following property:

Definition 2.2. A tournament T on n vertices satisfies1 property P(k) if Ek(T ) =

(1/2± o(1))nk.

Notice that when k is an odd integer, Ek(T ) is exactly half the number of k-cycles

in T , since an even cycle becomes odd upon traversal in the reverse direction. Hence,

property P(k) cannot be equivalent to property Q when k is odd.

In [22] Chung and Graham show that P(4) is quasi-random. In other words, a

tournament has (approximately) the correct number of even 4-cycles we expect to find

in a random tournament, if and only if it satisfies propertyQ. A question that was left

open in [22] was whether P(k) is equivalent to Q for all even k ≥ 4. One motivating

reason for this question is the fact that we simply expect the property P(k) to be

true for all even k ≥ 4. A deeper reason is that in the definition of quasi-random

graphs by Chung, Graham and Wilson [26](as we saw in Section 1.1.1), one of the

characterizations of quasi-randomness depends only on the number of k-length cycles

for a given even integer k ≥ 4. Our main result answers their question positively by

proving the following:

Theorem 2.3. The following holds for every fixed even integer k ≥ 4: A tournament

satisfies property Q if and only if it satisfies property P(k).

When we say that propertyQ implies property P(k) we mean that for every ε there

is a δ = δ(ε), such that any large enough tournament satisfying
∑

v∈X |d+(v, Y )− d−(v, Y )| ≤

δn2 for all X, Y has (1/2±ε)nk even cycles. The meaning of P(k) implies Q is defined

similarly.

1Observe that our definition of a k-cycle allows repeated vertices in the cycle. Note however,
that forbidding repeated vertices (that is, requiring the k-cycles to be simple) would have resulted
in the same property P(k) since the number of k-cycles with repeated vertices is o(nk). Allowing
repeated vertices simplifies some of the notation.
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2.2 Proof of Main Result

To prove Theorem 2.3, we shall go through a spectral characterization of quasi-

randomness. We use the following adjacency matrix A to represent the tournament

T . For every u, v ∈ V

Au,v =


1 if (u, v) ∈ E(T )

−1 if (v, u) ∈ E(T )

0 if u = v

.

A key observation that we will use is that the matrix A is skew-symmetric. Recall

that a real skew symmetric matrix can be diagonalized and all its eigenvalues are

purely imaginary. It follows that all the eigenvalues of A2 are non-positive. This

implies the following claim, which will be crucial in our proof.

Claim 2.4. For k ≡ 2 (mod 4), all the eigenvalues of Ak are non-positive. For k ≡ 0

(mod 4), all the eigenvalues of Ak are non-negative.

For a matrix M , we let tr(M) =
∑n

i=1Mi,i denote the trace of the matrix M .

Before we prove Lemmas 2.6 and 2.7, we make the following claim.

Claim 2.5. Let A be the adjacency matrix of the tournament T . Then for an even

integer k ≥ 4, we have

tr(Ak) = 2Ek(T )− (n− 1)k − (n− 1).

In particular, T satisfies the property P(k) if and only if |tr(Ak)| = o(nk).

Proof. Notice that the (u, u)th entry of Ak is the number of even k-cycles starting and

ending at u minus the number of odd k-cycles starting and ending at u. So the sum

of all diagonal entries, tr(Ak), is the difference between all labeled even k-cycles and

all labeled odd k-cycles. Recall that the total number of k-cycles is (n− 1)k + (n− 1)

for even k. Thus we have that tr(Ak) = 2Ek(T )− (n− 1)k − (n− 1).
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We have tr(Ak) = 2Ek(T ) − nk + o(nk). Notice that T satisfies property P(k)

when Ek(T ) = (1/2± o(1))nk, which happens if and only if |tr(Ak)| = o(nk).

We are now ready to prove the first direction of Theorem 2.3.

Lemma 2.6. Let k ≥ 4 be an even integer. If a tournament satisfies P(k) then it

satisfies Q.

Proof. Let λ1(A), . . . , λn(A) be the eigenvalues of A sorted by their absolute value,

so that λ1(A) has the largest absolute value. We first claim that |λ1(A)| = o(n).

Assume first that k ≡ 0 (mod 4). Then by Claim 2.4 all the eigenvalues of Ak are

non-negative, implying that

tr(Ak) =
n∑
i=1

λi(A
k) ≥ λ1(Ak) = λ1(A)k . (8)

Now, since we assume that T satisfies P(k), we get from Claim 2.5 that |tr(Ak)| =

o(nk). Equation (8) now implies that |λ1(A)| = o(n). A similar argument works when

k ≡ 2 (mod 4) only now all the terms in (8) would be non-positive.

We now claim that the fact that |λ1(A)| = o(n) implies that T satisfiesQ. Suppose

it does not, and let X, Y ⊆ V be two sets satisfying
∑

v∈X |d+(v, Y )−d−(v, Y )| = cn2,

for some c > 0. Let y ∈ {0, 1}n be the indicator vector for Y . We pick the vector

x in the following way: if v 6∈ X, then set the corresponding coordinate xv = 0.

For v ∈ X such that d+(v, Y ) − d−(v, Y ) ≥ 0, we set xv = 1. For all other v ∈ X,

we set xv = −1. Now notice that for these vectors x and y, we have xTAy =∑
v∈X |d+(v, Y ) − d−(v, Y )| = cn2. We can normalize x and y to get unit vectors

x̃ = x/
√
|X| and ỹ = y/

√
|Y | satisfying

x̃TAỹ = (xTAy)/
√
|X||Y | ≥ cn2/n = cn , (9)

where the inequality follows since |X|, |Y | ≤ n. We have thus found two unit vectors

x̃, ỹ such that x̃TAỹ ≥ cn.
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We finish the proof by showing that (9) contradicts the fact that |λ1(A)| = o(n).

Let v1, . . . ,vn be the orthonormal eigenvectors corresponding to the eigenvalues of

A. Let x̃ =
∑

i αivi and ỹ =
∑

i βivi be the decomposition of x̃ and ỹ along the

eigenvectors (note that αi and βi might be complex numbers). We have

x̃TAỹ =

∣∣∣∣∣∑
i

αiλi(A)βi

∣∣∣∣∣ ≤
√∑

i

|αi|2 ·
∑
i

|λi(A)βi|2 =

√∑
i

|λi(A)|2|βi|2 ≤ |λ1(A)| ,

(10)

where the first inequality follows by using Cauchy-Schwarz (α denotes the complex

conjugate of α). We then use the fact that
∑

i |αi|2 =
∑

i |βi|2 = 1 which follow from

the fact that x̃, ỹ are unit vectors. Finally, since we have that |λ1(A)| = o(n) and

that x̃TAỹ ≥ cn equation (10) gives a contradiction. So T must satisfy Q.

We now turn to prove the second direction of Theorem 2.3.

Lemma 2.7. Let k ≥ 4 be an even integer. If a tournament satisfies Q then it

satisfies P(k).

Proof. Suppose T satisfies Q. Then by the result of [22] mentioned earlier, T must

also satisfy P(4). From Claim 2.5, we have that

|tr(A4)| =

∣∣∣∣∣
n∑
i=1

λ4
i

∣∣∣∣∣ = o(n4) , (11)

where λ1, . . . , λn are the eigenvalues of A. We will now apply induction to show that

|tr(Ak)| = o(nk) for all even integers k ≥ 4. Claim 2.5 would then imply that P(k) is

true for all even integers k ≥ 4.

Now note the following for an even integer k > 4:

|tr(Ak)| =

∣∣∣∣∣∑
i

λki

∣∣∣∣∣ ≤
√∑

i

λ4
i

∑
i

λ2k−4
i ≤

√∑
i

λ4
i ·

∣∣∣∣∣∑
i

λk−2
i

∣∣∣∣∣ = o(nk) .

The first inequality is Cauchy-Schwarz. For the second inequality, recall that by

Claim 2.4 we have that λki are either all non-negative or non-positive. This means

that (
∑n

i=1 λ
k−2
i )2 ≥

∑n
i=1 λ

2k−4
i since we lose only non-negative terms. The last

equality follows by applying the induction hypothesis and (11).
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2.3 Discussions

2.3.1 Spectral Characterization of Quasi-random Tournaments

First of all, the proof of Lemma 2.6 shows that if T satisfies the property P(4), then

|λ1(A)| = o(n) which in turn implies that T satisfies Q. Since we also know that Q

implies P(4) we conclude the following:

Theorem 2.8 (Spectral Characterization of Quasi-random Tournaments). A tour-

nament T is quasi-random if and only if the largest eigenvalue of its adjacency matrix

satisfies |λ1(A)| = o(n).

This is in line with other spectral characterizations of quasi-randomness for other

combinatorial objects [3, 4, 19, 26, 61].

2.3.2 Connection between Ek(T ) and parity of k/2

Let k ≥ 4 be an even integer. Now we make an observation about Ek(T ) for an

arbitrary tournament T (which is not necessarily quasi-random). The total number

of distinct k-cycles of T is tr(Bk), where B is the adjacency matrix of the undirected

complete graph on n vertices. Since the spectrum of B is {n− 1,−1, . . . ,−1} we get

tr(Bk) = (n − 1)k + (n − 1). For k ≡ 0 (mod 4), by Claim 2.4, the eigenvalues of

Ak are all non-negative and thus we have tr(Ak) ≥ 0. By Claim 2.5, we have that

Ek(T ) ≥ ((n− 1)k + (n− 1))/2. For k ≡ 2 (mod 4), we can conclude similarly using

Claims 2.4 and 2.5 that Ek(T ) ≤ ((n− 1)k + (n− 1))/2.

2.3.3 Quasi-random Directed Graphs

Tournaments are a special case of general directed graphs. So it is natural to ask

whether the results proved in this chapter can be generalized to directed graphs. We

note that this is indeed the case; we can use the ideas we used here to prove similar

results for general directed graphs as defined by Griffiths [48]. The adjacency matrix
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A for a directed graph D is defined in the following way. For every u, v ∈ V ,

Au,v =


1 if (u, v) ∈ E(T )

−1 if (v, u) ∈ E(T )

0 if u and v are not connected

.

Also, let λ1(A), . . . , λn(A) be the eigenvalues of A sorted by their absolute value,

so that λ1(A) has the largest absolute value. Griffiths defined quasi-random directed

graphs and showed that quasi-randomness is characterized by several equivalent prop-

erties. One of these properties is the following:

Definition 2.9 ([48]). A directed graph D on n vertices is quasi-random if and only

if |λ1(A)| = o(n).

Let us extend the definition of cycles and even cycles for directed graphs as well.

Let Ck(D) denote the total number of k-cycles in D and as before, let Ek(D) denote

the number of even k-cycles in D. We extend Definition 2.2 of P(k) to directed graphs

as below.

Definition 2.10. A directed graph D on n vertices satisfies property P(k) if Ek(D) =

1/2Ck(D) + o(nk).

We prove the following result, analogous to Theorem 2.3:

Theorem 2.11. The following holds for every fixed even integer k ≥ 4: A directed

graph is quasi-random if and only if it satisfies property P(k).

Much of the proof is similar to the proof of Theorem 2.3. We first note that Claim

2.4 is true for directed graphs as well, and hence for all even k, the eigenvalues of Ak

are either all non-negative or all non-positive. The claim below is the directed graph

analogue of Claim 2.5.
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Claim 2.12. Let A be the adjacency matrix of the directed graph D. Then for an

even integer k ≥ 4, we have

tr(Ak) = 2Ek(D)− Ck(D).

In particular, D satisfies the property P(k) if and only if |tr(Ak)| = o(nk).

Proof. The proof is similar to the proof of Claim 2.5. We first observe that tr(Ak) is

the difference between all labeled even k-cycles and all labeled odd k-cycles. Thus it

follows that tr(Ak) = 2Ek(D)− Ck(D).

Now, by Definition 2.10, we can conclude that D satisfies P(k) if |tr(Ak)| =

o(nk).

We now note that the proof of Theorem 2.11 follows from the analogues of Lemmas

2.6 and 2.7. We state the corresponding lemmas below. We remark that the proofs

are very similar to the case of tournaments, and so we omit them.

Lemma 2.13. Let k ≥ 4 be an even integer. If a directed graph satisfies P(k) then

it is quasi-random.

Lemma 2.14. Let k ≥ 4 be an even integer. If a directed graph is quasi-random then

it satisfies P(k).
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CHAPTER III

A DETERMINISTIC ALGORITHM FOR THE

FRIEZE-KANNAN REGULARITY LEMMA

3.1 Introduction

The Regularity Lemma of Szemerédi [93] is one of the most powerful tools in tackling

combinatorial problems in various areas like extremal graph theory, additive com-

binatorics and combinatorial geometry. The regularity lemma guarantees that the

vertex set of any (dense) graph G = (V,E) can be partitioned into a bounded number

of vertex sets V1, . . . , Vk such that almost all the bipartite graphs (Vi, Vj) are quasi-

random. Hence, one can think of Szemerédi’s regularity lemma as saying that any

graph can be approximated by a finite structure. This aspect of the regularity lemma

has turned out to be extremely useful for designing approximation algorithms, since

in some cases one can approximate certain properties of a graph (say, the Max-Cut of

the graph) by investigating its regular partition (which is of constant size). In order

to apply this algorithmic scheme one should be able to efficiently construct a par-

tition satisfying the condition of the lemma. While Szemerédi’s proof of his lemma

was only existential, it is known how to efficiently construct a partition satisfying

the conditions of the lemma. The first to achieve this goal were Alon et al. [5] who

showed that this task can be carried out in time O(nω), where here and throughout

this chapter ω is the exponent of fast matrix multiplication. The algorithm of Cop-

persmith and Winograd [30] gives ω < 2.376. The O(nω) algorithm of Alon et al. [5]

was later improved by Kohayakawa, Rödl and Thoma [63] who gave a deterministic

O(n2) algorithm.

We have already seen the main drawback of Szemerédi regularity in Section 1.2.2,
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the number of parts required for the regularity partition can be huge. Frieze and Kan-

nan devised a weaker notion of regularity (FK-regularity) that would be applicable,

but does not involve such huge constants. As in the case of Szemerédi’s regularity

lemma, in order to algorithmically apply the FK-regularity lemma, one needs to be

able to efficiently construct a partition satisfying the conditions of the lemma. Frieze

and Kannan also showed that this task can be performed in randomized O(n2) time.

Alon and Naor [7] have shown that one can construct such a partition in deterministic

polynomial time. The algorithm of Alon and Naor [7] requires solving a semi-definite

program (SDP) and hence is not very efficient1. The fast boolean matrix multipli-

cation of Bansal and Williams [12] applies the randomized algorithm of [38, 39] for

constructing an FK-regular partition. In an attempt to derandomize their matrix

multiplication algorithm, Williams [104] asked if one can construct an FK-regular

partition in deterministic time O(n3−c) for some c > 0. Our main result in this

chapter answers this question by exhibiting a deterministic Õ(nω) time algorithm.

Furthermore, as part of the design of this algorithm, we also show that one can find

an approximation2 to the first eigenvalue of a symmetric matrix in deterministic time

Õ(nω).

Besides the above algorithmic motivation for our work, a further combinatorial

motivation comes from the study of quasi-random structures. Different notions of

quasi-randomness have been extensively studied in the last decade, both in theoretical

computer science and in discrete mathematics. A key question that is raised in such

cases is: Does there exist a deterministic condition that guarantees that a certain

structure (say, graph or boolean function) behaves like a typical random structure?

A well known result of this type is the discrete Cheeger’s inequality [3], which relates

the expansion of a graph to the spectral gap of its adjacency matrix. Other results

1In fact, after solving the SDP, the algorithm of [7] needs time O(n3) to round the SDP solution.
2The necessity of approximation when dealing with eigenvalues is due to the non-existence of

algebraic roots of high degree polynomials.
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of this type relate the quasi-randomness of functions over various domains to certain

norms (the so-called Gowers norms). We refer the reader to the surveys of Gowers

[43] and Trevisan [100] for more examples and further discussion on different notions

of quasi-randomness. An FK-regular partition is useful since it gives a quasi-random

description of a graph. Hence, it is natural to ask if one can characterize this notion

of quasi-randomness using a deterministic condition. The work of Alon and Naor [7]

gives a condition that can be checked in polynomial time. However, as we mentioned

before, verifying this condition requires one to solve a semi-definite program and is

thus not efficient. In contrast, our main result in this chapter gives a deterministic

condition for FK-regularity that can be stated very simply and checked very efficiently.

3.1.1 The main result

We recall the definitions related to the regularity lemma. For a pair of subsets A,B ⊆

V (G) in a graph G = (V,E), let e(A,B) denote the number of edges between A and

B, counting each of the edges contained in A ∩ B twice. The density d(A,B) is

defined to be d(A,B) = e(A,B)
|A||B| . We will frequently deal with a partition of the vertex

set P = {V1, V2, . . . , Vk}. The order of such a partition is the number of sets Vi (k

in the above partition). A partition is equitable if all sets are of size bn/kc or dn/ke.

We will make use of the shorthand notation for density across parts, dij = d(Vi, Vj)

whenever i 6= j. Also, we set dii = 0 for all i.

The key notion in Szemerédi’s regularity lemma [93] is the following: Let A,B be

disjoint sets of vertices. We say that (A,B) is ε-regular if |d(A,B)−d(A′, B′)| ≤ ε for

all A′ ⊆ A and B′ ⊆ B satisfying |A′| ≥ ε|A| and |B′| ≥ ε|B|. It is not hard to show

(see [64]) that ε-regular bipartite graphs behave like random graphs in many ways.

Szemerédi’s Regularity Lemma [93] states that given ε > 0 there is a constant T (ε),

such that the vertex set of any graph G = (V,E) can be partitioned into k equitable

sets V1, . . . , Vk, where k ≤ T (ε) and all but εk2 of the pairs (i, j) are such that (Vi, Vj)
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is ε-regular.

One of the useful aspects of an ε-regular partition of a graph is that it allows one

to estimate the number of edges in certain partitions of G. For example, given an

ε-regular partition, one can estimate the value of the Max-Cut in G within an error

of εn2, in time that depends only on the order of the partition (and independent of

the order of G!). Hence, one would like the order of the partition to be relatively

small. However, as we have mentioned above, Gowers [42] has shown that there are

graphs whose ε-regular partitions have size at least Tower(1/ε1/16), namely a tower

of exponents of height 1/ε1/16.

To remedy this, Frieze and Kannan [38, 39] introduced the following relaxed notion

of regularity, which we will call ε-FK-regularity.

Definition 3.1 (ε-FK-regular). Let P = {V1, V2, . . . , Vk} be a partition of V (G). For

subsets S, T ⊆ V and 1 ≤ i ≤ k, let Si = S ∩ Vi and Ti = T ∩ Vi. Define ∆(S, T ) for

subsets S, T ⊆ V as follows:

∆(S, T ) = e(S, T )−
∑
i,j

dij|Si||Tj|. (12)

The partition P is said to be ε-FK-regular if it is equitable and

for all subsets S, T ⊆ V, |∆(S, T )| ≤ εn2. (13)

If |∆(S, T )| > εn2 then S, T are said to be witnesses to the fact that P is not ε-FK-

regular.

As we have mentioned before, Frieze and Kannan [38, 39] proved that one can

construct an ε-FK regular partition of a graph in randomized time O(n2). Our main

result in this chapter is the following deterministic algorithmic version of the FK-

regularity lemma that answers a question of Williams [104].

Theorem 3.2 (Main Result). Given ε > 0 and an n vertex graph G = (V,E), one

can find in deterministic time O
(

1
ε6
nω log log n

)
an ε-FK-regular partition of G of

order at most 2108/ε7.
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3.1.2 Chapter overview

The rest of the chapter is organized as follows. As we have mentioned earlier, the

relation between quasi-random properties and spectral properties of graphs goes back

to the Cheeger’s Inequality [3]. Furthermore, it was shown in [40] that one can char-

acterize the notion of Szemerédi’s regularity using a spectral condition. In Section 3.2

we introduce a spectral condition for ε-FK-regularity and show that it characterizes

this property. In order to be able to check this spectral condition efficiently, one has to

be able to approximately compute the first eigenvalue of a matrix. Hence, in Section

3.3 we show that this task can be carried out in deterministic time Õ(nω). We use a

deterministic variant of the randomized power iteration method. Since we could not

find a reference for this, we include the proof for completeness. As in other algorith-

mic versions of regularity lemmas, the non-trivial task is that of checking whether a

partition is regular, and if it is not, then finding sets S, T that violate this property

(recall Definition 3.1). This key result is stated in Corollary 3.9. We explain the

(somewhat routine) process of deducing Theorem 3.2 from Corollary 3.9 in Section

3.4. Finally, Section 3.5 contains some concluding remarks and open problems.

3.2 A Spectral Condition for FK-Regularity

In this section we introduce a spectral condition that “characterizes” partitions that

are ε-FK regular. Actually, the condition will allow us to quickly distinguish between

partitions that are ε-FK regular from partitions that are not ε3/1000-FK regular. As

we will show later on, this is all one needs in order to efficiently construct an ε-FK

regular partition. Our spectral condition relies on the following characterization of

eigenvalues of a matrix. We omit the proof of this standard fact.

Lemma 3.3 (First eigenvalue). For a diagonalizable matrix M , the absolute value of
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the first eigenvalue λ1(M) is given by the following:

|λ1(M)| = max
‖x‖=‖y‖=1

xTMy.

We say that an algorithm computes a δ-approximation to the first eigenvalue of

a matrix M if it finds two unit vectors x,y achieving xTMy ≥ (1− δ)|λ1(M)|. Our

goal in this section is to prove the following theorem:

Theorem 3.4. Suppose there is an S(n) time algorithm for computing a 1/2-approximation

of the first eigenvalue of a symmetric n × n matrix. Then there is an O(n2 + S(n))

time algorithm that given ε > 0, and a partition P of the vertices of an n-vertex graph

G = (V,E), does one of the following:

1. Correctly states that P is ε-FK-regular.

2. Produces sets S, T that witness the fact that P is not ε3/1000-FK-regular.

Let A be the adjacency matrix of the graph G = (V,E), where V = {1, 2, . . . , n} =

[n]. Let S, T ⊆ V be subsets of the vertices and xS,xT denote the corresponding

indicator vectors. We would like to test if a partition P = V1, . . . , Vk of V is a

ε-FK-regular partition. We define a matrix D = D(P) in the following way. Let

1 ≤ i, j ≤ n and suppose vertex i belongs to Vli in P and vertex j belongs to Vlj , for

some 1 ≤ li, lj ≤ k. Then the (i, j)th entry of D is given by Dij = dlilj . Thus the

matrix D is a block matrix (each block corresponding to the parts in the partition),

where each block contains the same value at all positions, the value being the density

of edges corresponding to the two parts. Now define ∆ = A−D. For S, T ⊆ V and

an n× n matrix M , define

M(S, T ) =
∑

i∈S,j∈T

M(i, j) = xTSMxT .
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Notice that for the matrix ∆, the above definition coincides with (12):

∆(S, T ) = A(S, T )−D(S, T )

= e(S, T )−
∑
i,j

dij|Si||Tj|,

where Si = S ∩ Vi and Tj = T ∩ Vj.

Summarizing, P is an ε-FK-regular partition of V if and only if for all S, T ⊆ V ,

we have |∆(S, T )| ≤ εn2.

Let G = (V,E) be an n-vertex graph, let P be a partition of V (G) and let ∆

be the matrix defined above. Notice that by construction, ∆ is a symmetric matrix

and so it can be diagonalized with real eigenvalues. Lemmas 3.5 and 3.7 below will

establish a relation between the first eigenvalue of ∆ and the FK-regularity properties

of P .

Lemma 3.5. If |λ1(∆)| ≤ γn then P is γ-FK-regular.

Proof. Suppose P is not γ-FK-regular and let S, T be two sets witnessing this fact,

that is, satisfying |∆(S, T )| = |xTS∆xT | > γn2. Normalizing the vectors xS and xT ,

we have x̃S = xS/‖xS‖ = xS/
√
|S| and x̃T = xT/‖xT‖ = xT/

√
|T |. We get

|x̃TS∆x̃T | > γn2/(
√
|S| |T |) ≥ γn ,

where the last inequality follows since |S|, |T | ≤ n. By the characterization of the

first eigenvalue, we have that |λ1(∆)| > γn.

Claim 3.6. Suppose two vectors p,q ∈ [−1, 1]n satisfying pT∆q > 0 are given.

Then, in deterministic time O(n2), we can find sets S, T ⊆ [n] satisfying |∆(S, T )| ≥
1
4
pT∆q.

Proof. Let us consider the positive and negative parts of the vectors p and q. Of

the four combinations, (p+,q+), (p+,q−), (p−,q+) and (p−,q−), at least one pair

should give rise to a product at least pT∆q/4. Let us call this pair the good pair.
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Suppose the good pair is p+,q+. Let ∆i,∆
j denote respectively the ith row and jth

column of ∆. We can write (p+)T∆q+ =
∑

i p
+
i 〈∆i,q

+〉. Compute the n products,

〈∆i,q
+〉. We put vertex i in S if and only if 〈∆i,q

+〉 ≥ 0. For this choice of S, we

have xTS∆q+ ≥ (p+)T∆q+. Similarly as before, we have xTS∆q+ =
∑

j q
+
j 〈xS,∆j〉,

therefore depending on the signs of 〈xS,∆j〉, we define whether j belongs to T . Thus

we get sets S, T such that ∆(S, T ) = xTS∆xT ≥ (p+)T∆q+ ≥ pT∆q/4. Notice that

this rounding takes O(n2) time, since we need to perform 2n vector products, each of

which takes O(n) time.

If exactly one of p− or q− is part of the good pair, then we could replicate the

above argument in a similar manner. Thus we would get ∆(S, T ) ≤ −pT∆q/4. If

the good pair is (p−,q−), we would again get ∆(S, T ) ≥ pT∆q/4.

Lemma 3.7. If |λ1(∆)| > γn, then P is not γ3/108-FK-regular. Furthermore, given

unit vectors x,y satisfying xT∆y > γn, one can find sets S, T witnessing this fact in

deterministic time O(n2).

Proof. As per the previous observation, it is enough to find sets S, T such that

|∆(S, T )| > γ3n2/108. By Claim 3.6, it is enough to find vectors p and q in [−1, 1]n

satisfying pT∆q > γ3n2/27.

Suppose that |λ1(∆)| > γn and let x,y satisfy ‖x‖ = ‖y‖ = 1 and xT∆y > γn.

Let β > 1 (β will be chosen to be 3/γ later on) and define x̂, ŷ in the following

manner:

x̂i =

xi : if |xi| ≤ β√
n

0 : otherwise
, ŷi =

yi : if |yi| ≤ β√
n

0 : otherwise
.

We claim that

x̂T∆ŷ > (γ − 2/β)n . (14)
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To prove this, note that

x̂T∆ŷ = xT∆y − (x− x̂)T∆y − x̂T∆(y − ŷ)

> γn− (x− x̂)T∆y − x̂T∆(y − ŷ)

≥ γn− |(x− x̂)T∆y| − |x̂T∆(y − ŷ)| .

Hence, to establish (14) it would suffice to bound |(x − x̂)T∆y| and |x̂T∆(y − ŷ)|

from above by n/β. To this end, let C(x) = {i : |xi| ≥ β/
√
n}, and note that since

‖x‖ = 1 we have |C(x)| ≤ n/β2. Now define ∆′ as

∆′ij =

 ∆ij if i ∈ C(x)

0 otherwise
.

We now claim that the following holds:

|(x− x̂)T∆y| = |(x− x̂)T∆′y| ≤ ‖(x− x̂)T‖‖∆′y‖

≤ ‖∆′y‖

≤ ‖∆′‖F‖y‖

= ‖∆′‖F

≤ n/β .

Indeed, the first inequality is Cauchy-Schwarz and in the second inequality we use the

fact that ‖x− x̂‖ ≤ ‖x‖ = 1. In the third inequality ‖∆′‖F denotes
√∑

i,j(∆
′
ij)

2 and

the inequality follows from Cauchy-Schwarz. The fourth line is an equality that follows

from ‖y‖ = 1. The last inequality follows from observing that since |C(x)| ≤ n/β2

the matrix ∆′ has only n2/β2 non-zero entries, and each of these entries is of absolute

value at most 1. It follows from an identical argument that |x̂T∆(y− ŷ)| ≤ n/β, thus

proving (14). After rescaling x̂ and ŷ, we get

((
√
n/β)x̂)T∆((

√
n/β)ŷ) > (γ − 2/β)n2/β2 .
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Setting β = 3/γ so that (γ − 2/β)/β2 is maximized, the right hand side of the

inequality is γ3n2/27. Now that we have the necessary vectors p = (
√
n/β)x̂ and

q = (
√
n/β)x̂, an application of Claim 3.6 completes the proof.

The proof of Theorem 3.4 now follows easily from Lemmas 3.5 and 3.7.

Proof of Theorem 3.4. We start with describing the algorithm. Given G = (V,E),

ε > 0 and a partition P of V (G), the algorithm first computes the matrix ∆ = A−D

(in time O(n2)) and then computes unit vectors x,y satisfying xT∆y ≥ 1
2
|λ1(∆)| (in

time S(n)). If xT∆y ≤ εn/2 the algorithm declares that P is ε-FK-regular, and if

xT∆y > εn/2 it declares that P is not ε3/1000-FK-regular and then uses the O(n2)

time algorithm of Lemma 3.7 in order to produce sets S, T that witness this fact. The

running time of the algorithm is clearly O(n2 + S(n)).

Now let us discuss the correctness of the algorithm. If xT∆y ≤ εn/2 then since

xT∆y is a 1/2-approximation for |λ1(∆)|, we can conclude that |λ1(∆)| ≤ εn. Hence,

by Lemma 3.5 we have that P is indeed ε-FK-regular. If xT∆y > εn/2 then by

Lemma 3.7 we are guaranteed to obtain sets S, T that witness the fact that P is not

ε3/(108 · 8) ≥ ε3/1000-FK-regular.

3.3 Finding the First Eigenvalue Deterministically

In order to efficiently apply Theorem 3.4 from the previous section, we will need an

efficient algorithm for approximating the first eigenvalue of a symmetric matrix. Such

an algorithm is guaranteed by the following theorem that we prove in this section:

Theorem 3.8. Given an n × n symmetric matrix H, and a parameter 0 < δ < 1,

one can find in deterministic time O
(
nω log

(
1
δ

log
(
n
δ

)))
unit vectors x,y satisfying

xTHy ≥ (1− δ)|λ1(H)|.

Setting H = ∆ and δ = 1/2 in Theorem 3.8, and using Theorem 3.4 we infer the

following corollary.
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Corollary 3.9. There is an O(nω log log n) time algorithm, that given ε > 0, an

n-vertex graph G = (V,E) and a partition P of V (G), does one of the following:

1. Correctly states that P is ε-FK-regular.

2. Finds sets S, T that witness the fact that P is not ε3/1000-FK-regular.

As we have mentioned in Section 3.1, one can derive our main result stated in

Theorem 3.2 from Corollary 3.9 using the proof technique of Szemerédi [93]. This is

discussed in Section 3.4.

We also note that the proof of Theorem 3.8 can be modified to approximate the

quantity max‖x‖=‖y‖=1 xTHy for any matrix H. This quantity is the so-called first

singular value of H. But since we do not need this for our specific application to

FK-regularity, we state the theorem “only” for symmetric matrices H.

Getting back to the proof of Theorem 3.8 we first recall that for any matrix H we

have |λ1(H)| =
√
λ1(H2) (notice that H2 is positive semi-definite, so all its eigenval-

ues are non-negative). Hence, in order to compute an approximation to |λ1(H)|, we

shall compute an approximation to λ1(H2). Theorem 3.8 will follow easily once we

prove the following:

Theorem 3.10. Given an n × n positive semi-definite matrix M , and a parameter

0 < δ < 1, there exists an algorithm that runs in O
(
nω log

(
1
δ

log
(
n
δ

)))
time and

outputs a vector b such that

bTMb

bTb
≥ (1− δ)λ1(M).

We shall first derive Theorem 3.8 from Theorem 3.10.

Proof of Theorem 3.8. As mentioned above, |λ1(H)| =
√
λ1(H2). Since H2 is posi-

tive semi-definite we can use Theorem 3.10 to compute a vector b satisfying

bTH2b

bTb
= λ̂1 ≥ (1− δ)λ1(H2).
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We shall see that
√
λ̂1 is a (1 − δ) approximation to the first eigenvalue of H. To

recover the corresponding vectors as in Lemma 3.3, notice that

bTH2b = ‖Hb‖2 = λ̂1‖b‖2 =⇒ ‖Hb‖ =

√
λ̂1‖b‖.

Setting x = Hb√
λ̂1‖b‖

and y = b
‖b‖ , we obtain unit vectors x and y satisfying

xTHy =

√
λ̂1 ≥

√
(1− δ)λ1(H2) ≥ (1− δ)|λ1(H)| .

The main step that contributes to the running time is the computation of b using

Theorem 3.10 and hence the running time is O
(
nω log

(
1
δ

log
(
n
δ

)))
, as needed.

We turn to prove Theorem 3.10. We shall apply the power iteration method to

compute an approximation of the first eigenvalue of a positive semi-definite (PSD)

matrix. Power iteration is a technique that can be used to compute the largest

eigenvalues and is a very widely studied method. For instance, the paper [66] by

Kuczyński and Woźniakowski has a very thorough analysis of the method. The earlier

work of [76] shows that power iteration is much more effective with PSD matrices. A

much simpler (albeit slightly weaker) analysis was given in [101].

A PSD matrix M has all nonnegative eigenvalues. The goal of power iteration is

to find the first eigenvalue and the corresponding eigenvector of M . The basic idea is

that an arbitrary vector r is taken, and is repeatedly multiplied with the matrix M .

The eigenvectors of M provide an orthonormal basis for Rn. The vector r can be seen

as a decomposition into components along the direction of each of the eigenvectors

of the matrix. With each iteration of multiplication by M , the component of r along

the direction of the first eigenvector gets magnified more than the component of r

along the direction of the other eigenvectors. This is because the first eigenvalue

is larger than the other eigenvalues. One of the key properties that is required of

r is that it has a nonzero component along the first eigenvector. This is typically

ensured by setting r to be a random unit vector. However, since we are looking for a

deterministic algorithm, we ensure that by using n different orthogonal basis vectors.
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We first need the following key lemma.

Lemma 3.11. Let M be a positive semi-definite matrix. Let a ∈ Rn be a unit vector

such that |〈v1, a〉| ≥ 1/
√
n. Then, for every positive integer s and 0 < δ < 1, for

b = M sa, we have

bTMb

bTb
≥ λ1 ·

(
1− δ

2

)
· 1

1 + n
(
1− δ

2

)2s ,

where λ1 denotes the first eigenvalue of M .

Proof. Let λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 be the n eigenvalues of M (with multiplicities),

and let v1, . . . ,vn be the corresponding orthonormal eigenvectors. We can write a as

a linear combination of the eigenvectors of M .

a = α1v1 + α2v2 + . . .+ αnvn,

where the coefficients are αi = 〈a,vi〉. By assumption, we have |α1| ≥ 1/
√
n and

since a is a unit vector,
∑

i α
2
i = 1. Now, we can write b as follows:

b = α1λ
s
1v1 + α2λ

s
2v2 + . . .+ αnλ

s
nvn .

So we have

bTMb =
∑
i

α2
iλ

2s+1
i , and

bTb =
∑
i

α2
iλ

2s
i .

We will compute a lower bound to the numerator and upper bound to the denomi-

nator, resulting in a lower bound for the fraction.

Let ` be the number of eigenvalues larger than λ1 · (1− δ
2
). Since the eigenvalues

are numbered in non-increasing order and since M is positive semi-definite 3, we have

bTMb ≥
∑̀
i=1

α2
iλ

2s+1
i ≥ λ1

(
1− δ

2

)∑̀
i=1

α2
iλ

2s
i . (15)

3We are dropping terms to get an inequality, implicitly assuming that the dropped terms are
nonnegative. If the eigenvalues are negative, this need not hold.
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We also have

n∑
i=`+1

α2
iλ

2s
i ≤ λ2s

1 ·
(

1− δ

2

)2s n∑
i=`+1

α2
i ≤ λ2s

1 ·
(

1− δ

2

)2s

,

where the last inequality follows since
∑n

i=`+1 α
2
i ≤

∑n
i=1 α

2
i = 1. Continuing using

the fact that 1 ≤ nα2
1, we have,

λ2s
1 ·
(

1− δ

2

)2s

≤ nα2
1λ

2s
1 ·
(

1− δ

2

)2s

≤ n

(
1− δ

2

)2s∑̀
i=1

α2
iλ

2s
i .

Thus we get,

bTb ≤

(
1 + n

(
1− δ

2

)2s
)
·
∑̀
i=1

α2
iλ

2s
i . (16)

From (15) and (16) we deduce that

bTMb

bTb
≥ λ1 ·

(
1− δ

2

)
· 1

1 + n
(
1− δ

2

)2s ,

thus completing the proof.

Now we are ready to analyze the power iteration algorithm and to prove Theorem

3.10.

Proof of Theorem 3.10. Consider the n canonical basis vectors, denoted by ei, for

i = 1, . . . , n. We can decompose the first eigenvector v1 of M along these n basis

vectors. Since v1 has norm 1, there must exist an i such that |〈v1, ei〉| ≥ 1/
√
n, by

pigeonhole principle. We can perform power iteration of M , starting at these n basis

vectors. We would get n output vectors, and for each output vector x, we compute

xTMx/(xTx), and choose the one that gives us the maximum. By Lemma 3.11, one

of these output vectors x is such that

xTMx

xTx
≥ λ1(M) ·

(
1− δ

2

)
· 1

1 + n
(
1− δ

2

)2s .

If we use s = O
(

1
δ

log
(
n
δ

))
, we can eliminate the factor n in the denominator, and

the denominator would become (1 + δ
2
), giving us an estimate of at least λ1 · (1− δ),

which is what we require.
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To perform the n power iterations efficiently, consider taking the sth power of

M . Let N = M s = M s · I. We can think of this as performing n power iteration

algorithms in parallel, each one starting with a different canonical basis vector. For

each vector x = M sei, we need to compute (xTMx)/(xTx). For that we compute

the products P = NTMN and Q = NTN . To get the x that maximizes the answer,

we choose max{Pii/Qii : 1 ≤ i ≤ n}. The maximized ratio is the approximation to

the first eigenvalue, and the corresponding ith column of N is the estimation of the

maximizing eigenvector.

For the running time analysis, the most time consuming step is taking the sth

power of the matrix M . Using repeated squaring, this can be done in 2 log s matrix

multiplications, each of which takes time O(nω). Since we need s = O
(

1
δ

log
(
n
δ

))
, the

running time required by the entire algorithm is bounded by O
(
nω log

(
1
δ

log
(
n
δ

)))
.

3.4 Constructing an FK-Regular Partition

In this section we show how to derive Theorem 3.2 from Corollary 3.9. We start with

defining the index of a partition, which will be helpful in showing that the algorithm

terminates within a bounded number of iterations.

Definition 3.12. For a partition P = (V1, V2, . . . , Vk) of the vertex sets of a graph

G = (V,E), the index of P is defined by

ind(P) =
1

n(n− 1)

∑
i 6=j

d2
ij|Vi| |Vj| .

Notice that 0 ≤ ind(P) ≤ 1 for any partition P . We make use of the following

theorem (using ideas from the original Szemerédi paper [93]) to refine the partition,

whenever the original partition is not ε-FK-regular and improve the index. Since the

index is upper bounded by 1, we should not be able to use the following theorem too

many times. This implies that refining a finite number of times would result in an

ε-FK-regular partition.
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Theorem 3.13. Let ε′ > 0. Given a graph G = (V,E) and a partition P that is not

ε′-FK-regular, and sets S, T ⊆ V that violate the condition, the partition can be refined

in O(n) time to get a new equitable partition Q, such that ind(Q) ≥ ind(P) + ε′2/2.

Moreover the new partition Q has size at most 8/ε′2 times the size of the original

partition P.

Before proving the above theorem, we would need the following form of Cauchy-

Schwarz inequality, which we quote from [83] without proof.

Lemma 3.14. Let 1 ≤ M ≤ N , let ζ1, . . . , ζN be positive and d1, . . . , dN and d be

reals. If
∑N

i=1 ζi = 1 and d =
∑N

i=1 diζi then

N∑
i=1

d2
i ζi ≥ d2 +

(
d−

∑M
i=1 diζi∑M
i=1 ζi

)2 ∑M
i=1 ζi

1−
∑M

i=1 ζi
.

Proof of Theorem 3.13. Let P be the partition P = (V1, V2, . . . , Vk). By the hypoth-

esis that P is not ε′-FK-regular, we have sets S, T such that∣∣∣∣∣e(S, T )−
∑
i 6=j

dij|Si||Tj|

∣∣∣∣∣ > ε′n2 .

Let us define the following for i = 1, 2, . . . , k:

Si = Vi ∩ S, S̄i = Vi\S, Ti = Vi ∩ T, T̄i = Vi\T .

For each i = 1, 2, . . . , k, let us define the following sets as well:

V
(1)
i = Vi ∩ (S\T ), V

(2)
i = Vi ∩ (T\S), V

(3)
i = Vi ∩ (S ∩ T ), V

(4)
i = Vi\(S ∪ T ) .

Let R be the partition consisting of all the sets V
(1)
i , V

(2)
i , V

(3)
i , V

(4)
i for i = 1, . . . , k.

We shall show that ind(R) ≥ ind(P) + ε′2.

Let us define ηi,j = d(Si, Tj)− dij for all i, j. We have

e(Vi, Vj) = e(Si, Tj) + e(S̄i, Tj) + e(Si, T̄j) + e(S̄i, T̄j) .
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We can rewrite this as

dij|Vi| |Vj| = d(Si, Tj)|Si| |Tj| + d(S̄i, Tj)|S̄i| |Tj|

+ d(Si, T̄j)|Si| |T̄j|+ d(S̄i, T̄j)|S̄i| |T̄j| .

We also have

|Vi| |Vj| = |Si| |Tj|+ |S̄i| |Tj|+ |Si| |T̄j|+ |S̄i| |T̄j| .

Using Lemma 3.14 with the above two identities, (setting N = 4, M = 1, ζ1 =
|Si| |Tj |
|Vi| |Vj | ,

ζ2 =
|S̄i| |Tj |
|Vi| |Vj | , ζ3 =

|Si| |T̄j |
|Vi| |Vj | and ζ4 =

|S̄i| |T̄j |
|Vi| |Vj |) we get

1

|Vi| |Vj|
[
d2(Si, Tj)|Si| |Tj|+ d2(S̄i, Tj)|S̄i| |Tj|+ d2(Si, T̄j)|Si| |T̄j|+ d2(S̄i, T̄j)|S̄i| |T̄j|

]
≥

d2
ij + [dij − d(Si, Tj)]

2

 |Si| |Tj |
|Vi| |Vj |

1− |Si| |Tj |
|Vi| |Vj |

 .

That is,

d2(Si, Tj)|Si| |Tj|+ d2(S̄i, Tj)|S̄i| |Tj|+ d2(Si, T̄j)|Si| |T̄j|+ d2(S̄i, T̄j)|S̄i| |T̄j|

≥ d2
ij|Vi| |Vj|+ η2

i,j

 |Si| |Tj|
1− |Si| |Tj |

|Vi| |Vj |

 ≥ d2
ij|Vi| |Vj|+ η2

i,j|Si| |Tj| .
(17)

We have for the index of partition R,

ind(R) =
1

n(n− 1)

∑
(i,li)6=(j,lj)

d2(V
(li)
i , V

(lj)
j )|V (li)

i | |V
(lj)
j |

≥ 1

n(n− 1)

∑
i 6=j

∑
li,lj∈{1,2,3,4}

d2(V
(li)
i , V

(lj)
j )|V (li)

i | |V
(lj)
j |

≥ 1

n(n− 1)

∑
i 6=j

d2(Si, Tj)|Si| |Tj|+ d2(S̄i, Tj)|S̄i| |Tj|

+d2(Si, T̄j)|Si| |T̄j|+ d2(S̄i, T̄j)|S̄i| |T̄j| ,

where the first inequality follows from the fact that we are dropping some terms

from the summation. The second inequality follows from Cauchy-Schwarz, and by

observations such as Si = V
(1)
i ∪ V (3)

i . To see why the second inequality is true,
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note that we have Si = V
(1)
i ∪ V (3)

i and Tj = V
(2)
j ∪ V (3)

j . We can conclude that

d2(V
(1)
i , V

(2)
j )|V (1)

i | |V
(2)
j | + d2(V

(1)
i , V

(3)
j )|V (1)

i | |V
(3)
j | + d2(V

(3)
i , V

(2)
j )|V (3)

i | |V
(2)
j | +

d2(V
(3)
i , V

(3)
j )|V (3)

i | |V
(3)
j | ≥ d2(Si, Tj)|Si| |Tj| by using Cauchy-Schwarz. Similarly,

we can derive the remaining terms in the RHS of the second inequality. We can

proceed in the following manner by using (17):

ind(R) ≥ 1

n(n− 1)

∑
i 6=j

[
d2
ij|Vi| |Vj|+ η2

i,j|Si| |Tj|
]

= ind(P) +
1

n(n− 1)

∑
i 6=j

η2
i,j|Si| |Tj|

≥ ind(P) +

(∑
i 6=j ηi,j|Si| |Tj|

)2

n(n− 1)
∑

i 6=j |Si| |Tj|
,

where the last inequality follows by Cauchy-Schwarz. We have∣∣∣∣∣∑
i 6=j

ηi,j|Si| |Tj|

∣∣∣∣∣ =

∣∣∣∣∣∑
i 6=j

(e(Si, Tj)− dij|Si| |Tj|)

∣∣∣∣∣ =

∣∣∣∣∣e(S, T )−
∑
i 6=j

dij|Si| |Tj|

∣∣∣∣∣ ≥ ε′n2 .

So we get

ind(R) ≥ ind(P) +
(ε′n2)2

(n(n− 1))2
≥ ind(P) + ε′2 .

Now we shall show how to get an equitable partition Q, which is a refinement of P ,

for which the index is at least ε′2/2 more. We subdivide each vertex class Vi of P into

sets Wi,a of size bε′2n/(7k)c or bε′2n/(7k)c+1 in such a way that all but at most three

of these sets Wi,a is completely contained inside one of V
(1)
i , V

(2)
i , V

(3)
i or V

(4)
i . W.l.o.g,

let these three sets be Wi,1,Wi,2 and Wi,3. We can partition these three sets further

to get a partition Q∗, which is a refinement of R. Since Q∗ is a refinement of R,

Cauchy-Schwarz implies that ind(Q∗) ≥ ind(R). We shall now show that the indices

of Q∗ and Q are not too far apart. The only parts that differ in these partitions are

Wi,1,Wi,2 and Wi,3, for each i. Also |Wi,j| ≤ bε′2n/(7k)c+ 1. We get

ind(Q∗)− ind(Q) ≤ 1

n(n− 1)

k∑
i=1

3

(
ε′2n

7k
+ 1

)
n ≤ ε′2

2
.
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Combining, we get

ind(Q) ≥ ind(Q∗)− ε′2

2
≥ ind(R)− ε′2

2
≥ ind(P) +

ε′2

2
,

which is what we wanted to prove.

In each refinement step, we split the classes into at most b7/ε′2 + 1c ≤ 8/ε′2

classes Wi,a. So the new partition Q has size at most 8/ε′2 the size of P . Also, the

construction involves only the breaking up of the sets Vi using S, T . This can be

performed in O(n) time.

We can now prove the main theorem.

Theorem 3.2 (Restated). Given ε > 0 and an n vertex graph G = (V,E), one can

construct in deterministic time O
(

1
ε6
nω log log n

)
an ε-FK-regular partition of G of

order at most 2108/ε7.

Proof. If n ≤ 2108/ε7 , we simply return each single vertex as a separate set Vi, which

is clearly ε-FK-regular for any ε > 0. Else, we start with an arbitrary equitable

partition of vertices V . Using Corollary 3.9 we can either check that the partition is

ε-FK-regular, or obtain a proof (i.e., sets S and T that violate the condition) that the

partition is not ε3/1000-FK-regular. Now using Theorem 3.13 (with ε′ = ε3/1000),

we can refine the partition such that the index increases by at least (ε3/1000)2/2 =

ε6/(2 · 106). Since the index is upper bounded by 1, we would terminate in at most

2 · 106/ε6 iterations.

The size of the partition gets multiplied by 8/ε′2 = 8 ·106/ε6 during each iteration.

So the number of parts in the final partition is at most
(

8·106

ε6

)(2·106/ε6)

. A quick

calculation gives us that(
8 · 106

ε6

)(2·106/ε6)

= 2

(
log 8·106

ε6

)
2·106
ε6 ≤ 2(log(8·106)+log 1

ε6
) 2·106

ε6 ≤ 2108/ε7 .

We need to use Corollary 3.9 a total at most 2 · 106/ε6 times, and each use takes

O(nω log log n) time. So the total running time is O
(

1
ε6
nω log log n

)
.
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3.5 Concluding Remarks and Open Problems

We have designed an Õ(nω) time deterministic algorithm for constructing an ε-FK

regular partition of a graph. It would be interesting to see if one can design an O(n2)

time deterministic algorithm for this problem. We recall that it is known [63] that

one can construct an ε-regular partition of a graph (in the sense of Szemerédi) in

deterministic time O(n2). This algorithm relies on a combinatorial characterization

of ε-regularity using a co-degree condition. Such an approach might also work for

ε-FK regularity, though the co-degree condition in this case might be more involved.

We have used a variant of the power iteration method to obtain an Õ(nω) time

algorithm for computing an approximation to the first eigenvalue of a symmetric

matrix. It would be interesting to see if the running time can be improved to O(n2).

Recall that our approach relies on (implicitly) running n power-iterations in parallel,

each of which on one of the n standard basis vectors. One approach to design an

Õ(n2) algorithm would be to show that given an n× n PSD matrix M , one can find

in time O(n2) a set of n0.1 unit vectors such that one of the vectors v in the set

has an inner product at least 1/poly(n) with the first eigenvector of M . If this can

indeed be done, then one can replace the fast matrix multiplication algorithm for

square matrices that we use in the algorithm, by an algorithm of Coppersmith [29]

that multiplies an n × n matrix by an n × n0.1 matrix in time Õ(n2). The modified

algorithm would then run in Õ(n2).

Designing an Õ(n2) algorithm for finding the first eigenvalue of a PSD matrix

would of course yield an Õ(n2) algorithm for finding an ε-FK regular partition of a

graph (via Theorem 3.4). In our case, it is enough to find the first eigenvalue up

to a δn additive error. So another approach to getting an Õ(n2) algorithm for ε-FK

regularity would be to show that in time Õ(n2) we can approximate the first eigenvalue

up to an additive error of δn. It might be easier to design such an Õ(n2) algorithm

than for the multiplicative approximation discussed in the previous paragraph.
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After a preliminary version of this result appeared in RANDOM 2011, we learned

that another characterization of FK-regularity had appeared in a paper of Lovász and

Szegedy [69], and that one can use this characterization to design an O(nω) algorithm

for constructing an ε-FK-regular partition of a graph. However, this characterization

is different from the spectral one we obtain here. Furthermore, we are currently

working on improving the spectral approach described here in order to design an

optimal O(n2) algorithm for FK-regularity, so we expect the ideas presented here to

be useful in future studies.
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CHAPTER IV

A WOWZER TYPE LOWER BOUND FOR THE STRONG

REGULARITY LEMMA

4.1 Introduction

The regularity lemma of Szemerédi asserts that one can partition every graph into

a bounded number of quasi-random bipartite graphs. As we saw in Section 1.2.3, in

some applications, one would like to have a strong control on how quasi-random these

bipartite graphs are. Alon, Fischer, Krivelevich and Szegedy [6] obtained a powerful

variant of the regularity lemma, which allows one to have an arbitrary control on this

measure of quasi-randomness. However, their proof only guaranteed to produce a

partition where the number of parts is given by the Wowzer function, which is the

iterated version of the Tower function. We show here that a bound of this type is

unavoidable by constructing a graph H, with the property that even if one wants

a very mild control on the quasi-randomness of a regular partition, then any such

partition of H must have a number of parts given by a Wowzer-type function.

Let us now formally state Szemerédi’s regularity lemma. For a graph G = (V,E)

and two disjoint vertex sets A and B, we denote by eG(A,B) the number of edges of

G with one vertex in A and one in B. The density dG(A,B) of the pair (A,B) in the

graph G is

dG(A,B) = eG(A,B)/|A||B| . (18)

That is, dG(A,B) is the fraction of pairs (x, y) ∈ A × B such that (x, y) is an edge

of G. For γ > 0, we say that the pair (A,B) in a graph G is γ-regular if for any

choice of A′ ⊆ A of size at least γ|A| and B′ ⊆ B of size at least γ|B|, we have

|dG(A′, B′) − dG(A,B)| ≤ γ. Note that a large random bipartite graph is γ-regular
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for all γ > 0. Thus we can think of γ as measuring the quasi-randomness of the

bipartite graph connecting A and B; the smaller γ is the more quasi-random the

graph is. We will sometimes drop the subscript G in the above notations when the

graph G we are referring to is clear from context.

Let Z = {Z1, . . . , Zk} be a partition of V (G) into k sets. Throughout this chapter,

we will only consider partitions into sets Zi of equal size1. We will refer to each Z ∈ Z

as a cluster of the partition Z. The order of a partition is the number of clusters it

has (k above). We will sometimes use |Z| to denote the order of Z. We say that

a partition Z = {Z1, . . . , Zk} refines another partition Z ′ = {Z ′1, . . . , Z ′k′} if each

cluster of Z is contained in one of the clusters of Z ′.

A partition Z = {Z1, . . . , Zk} of V (G) is said to be γ-regular if all but γk2 of the

pairs (Zi, Zj) are γ-regular. Szemerédi’s regularity lemma can be also formulated in

the following manner:

Theorem 4.1 (Szemerédi [93]). For any γ > 0 and t there is an integer K = K(t, γ)

with the following property; given a graph G and a partition A of V (G) of order t,

one can find a γ-regular partition B of V (G) which refines A and satisfies |B| ≤ K.

Let T (x) be the function satisfying T (0) = 1 and T (x) = 2T (x−1) for x ≥ 1.

So T (x) is a tower of 2’s of height x. Szemerédi’s proof of the regularity lemma

[93] showed that the function K(t, γ) can be bounded from above2 by T (1/γ5). For

a long time it was not clear if one could obtain better upper bounds for K(t, γ).

Besides being a natural problem, further motivation came from the fact that some

fundamental results, such as Roth’s Theorem [85, 86], could be proved using the

regularity lemma. Hence improved upper bounds for K(t, γ) might have resulted in

1In some papers partitions of this type are called equipartitions.
2We note that in essentially any application of Theorem 4.1, one takes t to be (at least) 1/γ so

some papers simply consider the function K ′(γ) = K(1/γ, γ). The reason is that one wants to avoid
“degenerate” regular partitions into a very small number of parts, where most of the graph’s edges
will belong to the sets Vi where one has no control on the edge distribution.
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improved bounds for several other fundamental problems. In a major breakthrough,

Gowers [42] proved that the tower-type dependence is indeed necessary. He showed

that for any γ > 0 there is a graph where any γ-regular partition must have size at

least T (1/γ1/16).

Gowers’ lower bound [42] can be stated as saying that if one wants a regular

partition of order k, then the best quasi-randomness measure one can hope to obtain

is merely 1/ log∗(k). Suppose however that for some f : N 7→ (0, 1), we would like to

find a partition of a graph of order k that will be “close” to being f(k)-regular. Alon,

Fischer, Krivelevich and Szegedy [6] formulated the following notion of being close to

f(k)-regular.

Definition 4.2 ((ε, f)-regular partition). Let f be a function f : N 7→ (0, 1). An

(ε, f)-regular partition of a graph G is a pair of partitions A = {Vi : 1 ≤ i ≤ k} and

B = {Ui,i′ : 1 ≤ i ≤ k, 1 ≤ i′ ≤ `} of V (G), where B is a refinement of A and the

following two conditions hold:

1. B is f(k)-regular.

2. Say that a pair (Vi, Vj) of clusters of A is good if all but at most ε`2 of pairs

1 ≤ i′, j′ ≤ ` satisfy |d(Ui,i′ , Uj,j′) − d(Vi, Vj)| < ε. Then, at least (1 − ε)
(
k
2

)
of

the pairs (Vi, Vj) are good.

One of the main results of [6] was that given a graph G and any function f , one

can construct an (ε, f)-regular partition of G of bounded size. This version of the

regularity lemma is sometimes referred to as the strong regularity lemma. As we have

mentioned above, in order to avoid degenerate partitions we will assume henceforth

that an (ε, f)-regular partition has order at least 1/ε.

Theorem 4.3 (Strong Regularity Lemma [6]). For every ε > 0 and f : N 7→ (0, 1),

there is an integer S = S(ε, f) such that any graph G = (V,E) has an (ε, f)-regular

partition (A,B) where 1/ε ≤ |A|, |B| ≤ S.
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As we have already seen in Section 1.2.3, the strong regularity lemma is very useful

and has been widely applied in several papers [6, 8, 10, 11, 62, 82].

Let W (x) be the function satisfying W (0) = 1 and W (x) = T (W (x − 1)) for

x ≥ 1. So the function W is an iterated version of the tower function T (x). The

function W is sometimes referred to as the Wowzer3 function (for obvious reasons).

The proof of Theorem 4.3 in [6] gave a W -type upper bound for the function S(ε, f)

in Theorem 4.3. As we have mentioned above, in some applications of this lemma one

uses functions f that go to zero extremely fast. But in some cases, as was the case in

[6], one uses moderate functions like f(x) = 1/x2. However, even when the function

f is f(x) = 1/x, the upper bound given in [6] for the function S(ε, f) is (roughly)

W (1/ε). Hence it is natural to ask if better bounds can be obtained for such versions

of Theorem 4.3. Our main result here is that a W -type dependence is unavoidable

even in this case.

Theorem 4.4. Set f(x) = 1/x. For every small enough ε ≤ c0 there is a graph

H with the following property: If (A,B) is an (ε, f)-regular partition of H, and4

|A| ≥ 1/ε, then |A| ≥ W (
√

log(1/ε)/100).

An interesting aspect of our proof is that it gives the same lower bound even if

one considers a much weaker condition than the second condition in Definition 4.2.

What we show is that the lower bound of Theorem 4.3 holds even if one wants only

ε1/10k2 of the pairs (Vi, Vj) to be good. Observe that Definition 4.2 asks5 for (1−ε)
(
k
2

)
good pairs! In other words, the lower bound holds even if one is interested in having

a very weak similarity6 between the partitions A and B.

3This name was coined by Graham, Rothschild and Spencer [46].
4As we have mentioned before, in order to rule out degenerate partitions (such as taking a

partition into 1 set) we assume that |A| ≥ 1/ε. A similar assumption was used in [6], where they
assume that f(x) ≤ ε. These two assumptions are basically equivalent (recall that f(x) = 1/x), but
the one we use makes the notation somewhat simpler.

5We note that the application of Theorem 4.3 in [6] (as well as in most other papers) critically
relied on the partition having (1− ε)

(
k
2

)
good pairs.

6Recall the discussion following Definition 4.2.
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Another interesting aspect of the proof of Theorem 4.4 is that by resetting the

parameters appropriately, one can get W -type lower bounds for (ε, f)-regularity for

any function f : N 7→ (0, 1) going to zero faster that 1/ log∗(x). Observe that this is

not a caveat of the proof; when f(x) = 1/ log∗(x), Theorem 4.1 can be formulated

as saying that any graph has an (ε, f)-regular partitions of order T (1/ε5). Hence,

one cannot obtain a W -type lower bound for f of this type. So we see that even if

one wants to have a very weak relation between the order of A and the regularity

measure of B (say, 1/ log log(k)) one would still have to use a partition of size given

by a W -type function7.

The ideas we use here in order to prove Theorem 4.4 appear to be useful also for

proving W -type lower bounds for the hypergraph regularity lemma [37, 43, 44, 73,

84, 94]. As we explained above, in this case also one is faced with the need to control

a measure of quasi-randomness approaching 0, and this seems to be the main reason

why the current bounds for this lemma are of W -type.

The rest of the chapter is organized as follows. In the following section we describe

the graph H that we use in proving Theorem 4.4. In Section 4.3 we give an overview

of the proof, state the two key lemmas that are needed to prove Theorem 4.4 and then

derive Theorem 4.4 from them. In Section 4.4 we prove several preliminary lemmas

that we would later use in the proofs of the two key Lemmas. In Sections 4.5 and 4.6

we prove the key lemmas stated in Section 4.3.

4.2 A Hard Graph for the Strong Regularity Lemma

In this section we describe the graph H that will have the properties asserted in

Theorem 4.4. The description will be somewhat terse; the reader can find in Section

4.3 an overview of the proof of Theorem 4.4, which includes some intuition/motivation

for the way we define H.

7But in such cases the bound might become W (log log(1/ε)) or some other W -type function.
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4.2.1 A weighted reformulation of Theorem 4.4

Suppose P is a weighted complete graph, where each edge (x, y) is assigned a weight

dP (x, y) ∈ [0, 1]. For two sets A,B define the weighted density between A,B

dP (A,B) =
∑

x∈A,y∈B

dP (x, y)/|A||B| . (19)

Note that if we think of a graph as a weighted complete graph with 0/1 weights then

the above definition coincides with the definition of dG(A,B) given in (18). Also note

that when A = {x}, B = {y} are just two vertices then dP (A,B) is just the weight

dP (x, y) assigned to (x, y) as above. The following simple claim follows immediately

from a standard application of Chernoff’s inequality.

Claim 4.5. Suppose P is a weighted complete graph with weights in [0, 1], and H is

a random graph, where each edge (x, y) is chosen independently to be included in H

with probability dP (x, y). Then with probability at least 1/2 we have

|dH(A,B)− dP (A,B)| ≤ ζ ,

for all sets A,B of size at least 20ζ−2 log(n).

It is clear that we can prove Theorem 4.4 by constructing an arbitrarily large

graph, such that the number of vertices n will be much larger than all the constants

involved. Hence, by the above claim, we see that in order to prove Theorem 4.4 it

is enough to construct a weighted graph H satisfying the condition of the theorem

with respect to the notion of d(A,B) defined in (19). The reason is that by Claim

4.5, if we have a weighted graph H satisfying Theorem 4.4, then a random graph

generated as in Claim 4.5 will satisfy the assertion of of Theorem 4.4 with high

probability. Therefore, from this point and throughout this chapter we will focus on

the construction of a weighted graph H satisfying the condition of Theorem 4.4. Hence

whenever we talk about d(A,B) we will be referring to the weighted density between

A,B as in (19).
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4.2.2 A preliminary construction

In this subsection we describe the first step in defining the graph H of Theorem 4.4.

This graph will be a variant of the graph used by Gowers in [42]. We start with the

following definition.

Definition 4.6 (Balanced Partitions). Let M be an integer and suppose we have

a sequence (Ai, Bi)
m
i=1 of (not necessarily distinct) partitions of [M ]. We call this

sequence of partitions balanced if for any distinct j, j′ ∈ [M ], the number of 1 ≤ i ≤ m

for which j and j′ lie in the same set of the partition (Ai, Bi) is at most 3m/4.

The following claim appears in [42]. For completeness, we will reproduce a simple

proof later on in this chapter (see Section 4.4).

Claim 4.7. Let φ(m) = 2dm/16e. Then for every m ≥ 1 there exists a sequence of m

balanced partitions of φ(m).

Let T φ(x) be the function satisfying T φ(0) = 1 and T φ(x) = T φ(x−1)φ(T φ(x−1))

for x ≥ 1, where φ(x) = 2dm/16e is the function defined in Claim 4.7. It is not hard to

see that T φ it a tower-type function, and that in fact T φ(x) ≥ T (bx/2c).

Let us define a sequence of integers as follows. We set

w(1) = blog log(1/ε)c , (20)

and define inductively

w(x+ 1) = blog log(T φ(w(x)))c . (21)

It is also not hard to see that w(x) has a W -type dependence on x. Specifically we

will later (see Section 4.4) observe that:

Claim 4.8. For every integer x ≥ 1, we have w(x) ≥ W (bx/2c).
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We now turn to define a graph G, which we will later modify in order to get the

actual graph H that will satisfy the assertion of Theorem 4.4. In order to define G

we will first define a sequence of partitions of the vertex set of G. For simplicity

we will identify the n vertices of G with the integers [n]. So let n ∈ N and set

s = w( 1
48

√
log(1/ε)), where w(x) is the function defined in (21). We set m0 = 1 and

for 1 ≤ r ≤ s, let mr = mr−1φ(mr−1). For each 0 ≤ r ≤ s, let X
(r)
1 , X

(r)
2 , . . . , X

(r)
mr be

a partition of [n] into mr intervals of integers of equal size8. We will later refer to this

partition as canonical partition Pr. Thus at level r, we have a canonical partition Pr

consisting of mr clusters. So P0 is just the entire vertex set of G. Note that using

the notation we introduced above we have

|Pr| = mr = T φ(r) . (22)

A crucial observation that will be used repeatedly in this chapter is that for every

r < r′, partition Pr′ refines partition Pr.

We finally arrive at the actual definition of G. We will start with the graph G

where each pair (x, y) has weight 0. We will then go over the partitions P1,P2, . . . ,Ps

one after the other, and in each case increase the weight between some of the pairs

(x, y).

Consider some r ≥ 1 and focus on Pr and Pr−1. Let us simplify the notation a

bit and set m = mr−1, M = φ(m) and mr = Mm. So m is the number of clusters of

Pr−1, M is the number of clusters of Pr inside each cluster of Pr−1, and mM is the

number of clusters of Pr. Let us use X1, . . . , Xm to denote the m clusters of Pr−1.

Also, for each 1 ≤ i ≤ m we use Xi,1, . . . , Xi,M to denote the M clusters of Pr inside

Xi. Now, for each 1 ≤ i ≤ m, let (A′i,j, B
′
i,j)

m
j=1 be a sequence of balanced partitions of

[M ]. Such a collection exists since M = φ(m) so Claim 4.7 can be used here. One can

think of each of these partitions as partitioning the clusters of Pr within cluster Xi.

8We assume that n is such that it can be divided into equal sized parts of size mr for all 0 ≤ r ≤ s.
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Let Ai,j = ∪t∈A′i,jXi,t and Bi,j = ∪t∈B′i,jXi,t = Xi\Ai,j. We now update the weights of

G as follows: If (x, y) ∈ Xi × Xj, then we increase dG(x, y) by 4−r/4
√

log(1/ε) if and

only if (x, y) ∈ Ai,j × Aj,i or (x, y) ∈ Bi,j × Bj,i. We will later refer several times to

the following observation.

Fact 4.9. For any x, y ∈ V (G) we have dG(x, y) ≤ 4−
√

log(1/ε).

4.2.3 Adding Traps to G

We will now need to modify the graph G defined above in order to obtain the graph H

from Theorem 4.4. To this end we will need to define certain quasi-random graphs.

Let b′ < b and consider two of the canonical partitions Pb′ and Pb defined in the

previous subsection. Suppose Pb has order mb and let V be a set of mb vertices, where

we identify vertex i ∈ V with cluster Xi ∈ Pb. Note that with this interpretation in

mind, one can think of a cluster U ∈ Pb′ as a subset of vertices U ′ ⊆ V , where vertex

j belongs to U ′ if and only if cluster Xj ∈ Pb is a subset of U . It follows that for every

b′ < b, partition Pb′ defines a natural partition of V into mb′ subsets U b′
1 , . . . , U

b′
mb′

corresponding to its mb′ clusters.

We now arrive at a critical definition. We will use e(R,R′) to denote the number

of edges in a graph with one vertex in R and another in R′, where edges in R ∩ R′

are counted twice9.

Definition 4.10 (Trap). Let Pb, mb, V and the partitions U b′
1 , . . . , U

b′
mb′

be as above.

Let O = (V,E) be an mb-vertex graph on V . Then O is said to be a trap if it satisfies

the following two conditions:

• For every pair of sets R,R′ ⊆ V (O) of size d√mb/4e we have∣∣∣∣e(R,R′)− 1

2
|R||R′|

∣∣∣∣ ≤ 1

4
|R||R′| .

9Note that this definition is compatible with the definition of e(A,B) we used earlier, where we
assumed that the sets A,B are disjoint.
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• For every b′ < b, for every 1 ≤ i, j ≤ mb′, every choice of 200 ≤ k ≤ log(mb),

every choice of R ⊆ U b′
i of size k6 and every choice of R′ ⊆ U b′

j of size d|U b′
j |/ke,

we have ∣∣∣∣e(R,R′)− 1

2
|R||R′|

∣∣∣∣ ≤ 1

k2
|R||R′| .

We will later prove the following (see Section 4.4).

Claim 4.11. There is a constant C, such that for every m > C, there exists a trap

on m vertices.

We are now ready to describe the modifications needed to turn G into the graph

H. We do the following for every integer 1 ≤ g ≤ 1
48

√
log(1/ε); let b = w(g) be the

integer defined in (21), let mb be the order of Pb and let Ob = (V,E) be10 a trap on

a vertex set V of size mb. Recall that we identify vertex i ∈ V with cluster Xi ∈ Pb.

We now modify G as follows; for every pair of clusters (Xi, Xj), if (i, j) ∈ E(Ob) we

increase by 4−g the weight of every pair of vertices (x, y) ∈ Xi×Xj. If (i, j) 6∈ E(Ob)

we do not increase the weight of (x, y). Let us state the following fact to which we

will later refer.

Fact 4.12. The smallest weight used when placing a trap in H is 4−
1
48

√
log(1/ε).

Later on in this chapter we will say that we have placed a trap on partition Pb

if b is one of the integers w(1), . . . , w( 1
48

√
log(1/ε)). If a trap was placed on Pb and

(i, j) is an edge of the graph Ob that was used in the previous paragraph, then we

will say that the pair (Xi, Xj) belongs to the trap placed on Pb. Also, if b = w(g),

then we will refer to the trap placed on Pb as the gth trap placed in H. Finally, if

(x, y) ∈ Xi × Xj and (Xi, Xj) belong to the trap placed on Pw(g) then we will say

that (x, y) received an extra weight of 4−g from the gth trap placed in H.

10Note that since we only ask Theorem 4.4 to hold for small enough ε, we can assume that ε is
small enough so that already mw(1) = Tφ(w(1)) would be larger than C, thus allowing us to pick a
trap via Claim 4.11 (where w(1) is defined in (20)).
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Using the above jargon, we can thus say that in order to obtain the graph H from

the graph G we do the following for every 1 ≤ g ≤ 1
48

√
log(1/ε); setting b = w(g),

we place the gth trap on partition Pb, by increasing the weight of (x, y) by 4−g if and

only if (x, y) ∈ Xi ×Xj and (Xi, Xj) belong to the trap.

Let us draw some distinction between the way we assigned weights to edges in

G and the way we have done so when modifying G to obtain H. When defining G

we looked at each of the partitions Pr, and for every Xi, Xj ∈ Pr−1 added weight

4−r/4
√

log(1/ε) only to some of the pairs (x, y) ∈ Xi × Xj. More specifically, we

considered the partitions of Xi = Ai,j ∪Bi,j and Xj = Aj,i ∪Bj,i and only added the

weight 4−r/4
√

log(1/ε) when either (x, y) ∈ Ai,j × Aj,i or (x, y) ∈ Bi,j × Bj,i. When

adding the traps, we have only added weights to some of the partitions Pb, that is,

those for which b = w(g) for some 1 ≤ g ≤ 1
48

√
log(1/ε). Moreover, when placing

a trap on Pb we added weight 4−g only to pairs (x, y) connecting some of the pairs

(Xi, Xj) (those that belong to the trap). Finally, for each such pair (Xi, Xj) we either

added more weights to all the pairs (x, y) ∈ Xi ×Xj or to none of them.

Another important distinction is the following; suppose b = w(g). Then in G,

the weight that was added to Pb was 4−b/4
√

log(1/ε) while the weight we added when

placing a trap on Pb is 4−g. Since w is a W -type function we see that the weights

assigned in G to a specific partition Pb are extremely small compared to those assigned

to Pb when placing a trap on it (assuming a trap was placed on Pb).

We also observe that for every pair of vertices (x, y) of H, the total weight it can

receive from all the traps we placed is bounded by 1/4 + 1/16 + . . . < 1/3. We also

recall Fact 4.9 stating that the total weight assigned to a pair (x, y) in G is bounded

by 1/4
√

log(1/ε). This means that dH(x, y) ≤ 1, as needed for the application of Claim

4.5.
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4.3 Proof Overview, Key Lemmas and Proof of Theorem
4.4

Our goal in this section is fourfold; give an overview of the proof of Theorem 4.4,

describe the main intuition behind the construction of H, state the two key lemmas

that will be used to prove Theorem 4.4 and finally derive Theorem 4.4 from these two

lemmas.

Perhaps the best way to approach our construction of H is to first consider the

proof of Theorem 4.3 in [6]. For simplicity, let us consider the case f(x) = 1/x; we

start by taking A1 to be an arbitrary partition of G of order 1/ε, and then apply

Theorem 4.1 in order to find a 1/|A1|-regular partition, B1, of G that refines A1.

Note that by definition, A1 and B1 satisfy the first condition of Definition 4.2, so if

they also satisfy the second, then we are done. If they do not, then we set A2 to be

B1 and use Theorem 4.1 to find a 1/|A2|-regular partition, B2, of G which refines A2.

Note that A2 and B2 satisfy the first property, so if they satisfy the second we are

done. The process thus goes on till we end up with a pair of partitions Ai, Bi that

satisfy the second condition. The main argument in [6] shows that this process must

stop after (about) 1/ε steps with a pair Ai, Bi that satisfies the second condition,

and also (by definition) the first condition. Since the above proof applies Theorem

4.1 repeatedly, where each time we take 1/γ to be the order of the previous partition,

the bound we obtain is of W -type.

Of course, if we want to have any chance of proving Theorem 4.4, we need to

come up with a graph for which the proof of Theorem 4.3 will produce a partition

of W -size. Given the overview of this proof described above, the graph H needs to

have two properties: (1) For every γ > 0, any γ-regular partition of H has size given

by a tower-type function; (2) one needs to iteratively apply Theorem 4.1 a super-

constant11 number of times in order to get two partitions A and B satisfying the

11To be precise, in order to get a W -type lower bound the number of iterations needs to be larger
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second condition of Definition 4.2. The first property will guarantee that each time

we apply Theorem 4.1 we get a tower-type increase in the size of Ai while the second

condition will guarantee that we will have to repeat this sufficiently many times.

Let us describe how to get a graph satisfying property (1) mentioned above. Recall

that Gowers showed [42] that for every γ there exists a graph with the property

that any γ-regular partition has a size T (1/γ1/16). It is not hard to see that by a

minor “tweak” of his construction12 one can get a single graph that works for all

γ bounded away from 0. This is basically13 the graph G we defined in Subsection

4.2.2. For completeness let us describe the intuition behind Gowers’ construction.

Let us explain why the partitions Pr used in the construction of G cannot be used

as γ-regular partitions of G. Recall that at each iteration, we take every pair of sets

Xi, Xj ∈ Pr−1 split them as Xi = Ai,j ∪ Bi,j and Xj = Aj,i ∪ Bj,i and increase the

weight between Ai,j, Aj,i and Bi,j, Bj,i. So, in some sense, each partition Pr is used

in order to rule out the possibility of using the previous partition Pr−1 as a γ-regular

partition. We note that when one comes about to actually prove that no other (small)

partition can be γ-regular one relies critically on the fact that the weights assigned

to the partitions Pr in G decrease exponentially (as a function of r). This makes sure

that any irregularity found in level r cannot be canceled by weights assigned to levels

r′ > r.

Let us describe how to get a graph satisfying property (2) mentioned above. Recall

that G was defined over a sequence of partitions Pr. Suppose we want to make sure

that two specific partitions in this sequence Pr and Pr′ , with Pr′ refining Pr, will

not satisfy the second property of Definition 4.2. Then we can do the following; we

than W−1(1/ε).
12In fact, we will be tweaking the construction of Gowers [42] that gives a slightly weaker lower

bound of T (log(1/γ)), and is much simpler to analyze. Since we are trying to prove W -type lower
bounds it makes little difference if we are iterating the function T (x) or log(T (x)).

13If we were only interested in getting a graph that for all γ > 0 had only γ-regular partitions of

Tower-size, then we could have used the weights 4−r instead of 4−r/4
√

log(1/ε) like we do.

62



take a random graph O whose vertices are the clusters of Pr′ , and for every edge

(i′, j′) ∈ E(O) increase the weight of all pairs (x, y) ∈ Ui′ × Uj′ , where Ui′ , Uj′ ∈ Pr′ .

This is just the trap we used in Subsection 4.2.3. Since we use a random graph, we

expect all pairs of clusters (Xi, Xj) of Pr to not be good (in the sense of Definition

4.2) since close to half of the clusters (Ui′ , Uj′) with Ui′ ⊆ Xi, Uj′ ⊆ Xj, will get an

extra weight while the other half will not. Now it is not hard to see that for this to

work we do not actually have to put the trap on Pr′ ; it is enough to do that on some

partition Pb with r ≤ b ≤ r′ them. Since we will make sure that a γ-regular partition

must be huge, in order to satisfy the first condition of Definition 4.2 one would have

to pick two partitions Pr′ , Pr with r′ being much larger than r. Therefore, in order

to make sure that all pairs Pr′ , Pr will fail the second condition, it is enough to place

the traps only on very few partitions Pb, where by few we mean that there will be a

tower-type jump between their indices.

So with one serious caveat, if one wants to construct an (ε, f)-regular partition by

taking A and B to be two of the canonical partitions Pr,Pr′ , then one is forced to take

two partitions that refine the last trap we have placed in H. The reason is that by

property (1) the integers r and r′ must be very far apart, and the way we have placed

the traps will guarantee that there will be a trap in between them that will then make

sure that they do not satisfy the second property of Definition 4.2. The caveat we

are referring to is the fact that once we have added the traps to G, we have destroyed

the critical feature of the graph G, which is that the weights decrease exponentially

(recall the observation we made above and the discussion at the end of Subsection

4.2.3). Hence, it is no longer true that once we find a discrepancy in some partition

Pr, this discrepancy cannot be canceled by lower levels. In terms of analyzing Gowers’

example, it might be the case that some pairs that were not γ-regular in G, might

become γ-regular in H. Actually, there will be such pairs. This might completely

ruin our ability to prove the H has only γ-regular partitions of tower-size.
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We overcome the above problem by proving that it cannot happen very often.

Namely, since the trap we have added originates from a random graph, then at least

on average we expect it to contribute the same density to all pairs of vertex sets.

So on average, we do not expect a trap to cancel a discrepancy caused by partitions

that are refined by it. This is of course only true on average. To turn this into a

deterministic statement, we formulate a condition that holds in random graphs, and

show that if too many pairs that were supposed not to be γ-regular somehow turn

out to be γ-regular, then we get a violation of the property we assume the trap to

satisfy. Turning this intuition into formality is probably the most challenging part of

this chapter. One of the main reasons is that we cannot run this argument over all

the pairs; instead we need to somehow “pack” them together and then argue about

each of these packaged pairs. See Lemmas 4.25 and 4.26.

We now turn to the key lemmas of this chapter. To state them we will need to

define the notion of β-refinement. We briefly mention that this notion is crucial in

overcoming another assumption we have used in the above discussion, that one is try-

ing to construct an (ε, f)-regular partitions by using only the canonical partitions Pr.

Using the notion of β-refinement we will show that one actually has to approximately

use only such partitions.

Let 0 ≤ β < 1/2. Given two sets Z and X, we write Z ⊂β X, to denote the fact

that |Z ∩X| ≥ (1− β)|Z|. We will sometimes also say that X β-contains Z or that

Z is β-contained in X to refer to the fact that Z ⊂β X. Note that since we assume

that β < 1/2, there can be at most one set X that β-contains a set Z. Given two

partitions P = {X1, . . . , Xm} and Z = {Z1, . . . , Zk} of V (H) and β > 0, we shall say

that Z is a β-refinement of P if for at least (1 − β)k values of t, there exists i such

that Zt ⊂β Xi. Observe that if β = 0, then β-refinement coincides with the standard

notion of one partition refining another one, that we discussed earlier.

In what follows, when we refer to the graph H we mean the graph H defined in
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the previous section. We now state the two key lemmas we will prove later on in this

chapter. Getting back to the intuitive discussion above, one can think of the first

lemma as formalizing condition (1) mentioned above, which we wanted H to satisfy.

Lemma 4.13. Let f(x) = 1/x. Suppose A and B form an (ε, f)-regular partition of

H. If |A| = k ≥ 1/ε then B is an ε1/5-refinement of P2 log log k.

Note that if β < 1/2 and partition A is a β-refinement of Pr then the order of A

is at least as large as the order of Pr. Hence the above lemma says (implicitly) that

partition B, which must be 1/k-regular, must have order as large as that of P2 log log k.

Recalling (22), this means that |B| ≥ T φ(log log k). We note however, that knowing

that B must have tower size is not enough for our proof to work. We actually need

to know that B is a good refinement of partition P2 log log k. This is needed in order to

show that if a trap was placed between A and B then they will indeed fail to satisfy

the second property of Definition 4.2. This is exactly where the notion of β-refinement

becomes useful, as we state in the second key lemma, that formalizes property (2)

mentioned above that we wanted H to satisfy.

Lemma 4.14. Suppose A, B are two partitions of H with the following properties

• B is a refinement of A.

• |A| = k and H has a trap on a canonical partition Pb whose order is at least

k2.

• B is an ε1/5-refinement of Pb.

Then A and B do not satisfy the second condition of Definition 4.2. In particular

they do not form an (ε, f)-regular partition of H.

We end this section with the derivation of Theorem 4.4 from Lemma 4.13 and

Lemma 4.14.
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Proof of Theorem 4.4. Suppose A and B form an (ε, f)-regular partition of H, where

|A| = k ≥ 1/ε. Let ms denote the order of Ps, which is the largest partition on which

we have placed a trap. Recall that s = w( 1
48

√
log(1/ε)) and that ms ≥ s (In fact,

ms = T φ(s)). Hence, by Claim 4.8 we have ms ≥ W ( 1
96

√
log(1/ε)). Therefore, if

k ≥ √ms we are done since
√
W ( 1

96

√
log(1/ε)) > W ( 1

100

√
log(1/ε)) (with a lot of

room to spare).

We can thus assume that |A| = k ≤ √ms, and choose b to be the smallest index

of a partition Pb, on which we have placed a trap satisfying |Pb| ≥ k2. If we could

show that B forms an ε1/5-refinement of Pb, then an application of Lemma 4.14 would

give that A and B do not form an (ε, f)-regular partition of H, which would be a

contradiction. Now, Lemma 4.13 tells us that B is an ε1/5-refinement of P2 log log k.

Note that if B is an ε1/5-refinement on P2 log log k then it is also an ε1/5-refinement of

any partition that is refined by P2 log log k. In other words, it is enough14 that we show

that b ≤ 2 log log(k).

Suppose first that b = w(1), that is, the first trap of size at least k2 is the first

trap placed in H. Then recalling (20) and the fact that k ≥ 1/ε, we have

b = w(1) = blog log(1/ε)c ≤ 2 log log(k) ,

as needed. Suppose now that b = w(g + 1) for some g ≥ 1 and that the trap with

largest order smaller than k2 was placed on Pb′ where b′ = w(g). Then recalling (21)

we see that b = blog log(T φ(b′))c. We also recall (22) stating that |Pb′ | = T φ(b′). We

thus infer that

T φ(b′) = |Pb′| ≤ k2 ,

implying that

b = blog log(T φ(b′))c ≤ log log(k2) ≤ 2 log log(k) ,

thus completing the proof.

14Recall that each partition Pr is a refinement of all the partitions Pr′ with r′ ≤ r.
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As one can see from our proof of Theorem 4.4, what we show is not only that an

(ε, f)-regular partition must be large, but that the only way to get such a partition

it to basically take A and B to be refinements of partition Ps in H. Recall that

we started this section by saying that one should design H in a way that will make

sure that at least the proof of Theorem 4.3 will produce a large partition. The fact

that the only way to get an (ε, f)-regular partition is to take partition Ps, can be

interpreted as saying that the only way to prove Theorem 4.3 is to go through the

process described at the beginning of this section.

4.4 Some Preliminary Lemmas

In this section we prove some simple lemmas that will be used later on in this chapter.

But we start with proving the claims that were stated without proof in the previous

sections. From this point on, when we write something like x ≤(20) y, we mean that

the fact that x ≤ y follows from the facts stated in equation (20). As the reader will

inevitably notice, we will be very loose in many of the proofs. The main reason is

that as we are dealing with W -type and Tower-type functions, many “improvements”

have absolutely no difference even on the quantitative bounds one obtains. Hence,

we opted for statements that are simpler to state and apply.

Proof of Claim 4.7. First, notice that for any m ≥ 1, we can choose M = 2. Indeed,

we can simply repeat the partition Ai = {1}, Bi = {2}, a total of m times to get m

partitions where there is no i for which (distinct) j, j′ appear in the same set. So the

claim holds for 1 ≤ m ≤ 16.

Suppose now that m ≥ 17, set M = 2dm/16e and consider a randomly generated

sequence (Ai, Bi)
m
i=1 of partitions of [M ] obtained as follows; for each 1 ≤ i ≤ m and

each 1 ≤ j ≤ M we assign element j to Ai with probability 1/2 (all mM choices

being independent). Fix a pair of distinct elements j, j′ ∈ [M ]. Clearly the number

of i such that j, j′ belong to the same class in (Ai, Bi) is distributed as the binomial
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random variable B(m, 1/2). Hence, we get from a standard application of Chernoff’s

inequality that the probability that the number of these i is larger than 3m/4 is

bounded by e−m/6. Hence, the probability that some pair of distinct j, j′ ∈ [M ] belong

to the same part in more than 3m/4 of the partitions is bounded by
(
M
2

)
e−m/6 < 1

so the required sequence of partitions exists.

Proof of Claim 4.8. Let us start by proving that

T φ(x) ≥ T (bx/2c) , (23)

as we have previously claimed. We first notice that when x ≥ 256 we have 2x/16 ≥ 16x,

implying that in this case we have

φ(φ(t)) ≥ 22t/16/16 ≥ 2t . (24)

Now, one can verify that (23) holds when 1 ≤ x ≤ 10 and that T (x) ≥ 256 when

x ≥ 4. Thus, when x ≥ 11, we have

T φ(x) ≥ φ(φ(T φ(x− 2))) ≥(23) φ(φ(T (bx/2c − 1))) ≥(24) 2T (bx/2c−1) = T (bx/2c) .

We now recall (20) which implies that since we can assume that ε is small enough,

we can also assume that w(1) is large enough. In particular we have w(1)� W (1) =

T (1) = 2. Let us denote T̂ (t) = blog log(T φ(t))c. So w(i) is just T̂ iterated i

times with w(1) = blog log(1/ε)c. Now we shall show that for any large enough t,

T̂ (T̂ (t)) > T (t). Using induction, it would follow that for all i ≥ 1, w(i) > W (bi/2c),
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thus completing the proof. Now

T̂ (T̂ (t)) = blog log(T φ(blog log(T φ(t))c))c

≥ 1

4
log log

(
T

(
1

4
log log (T (t/4))

))
≥ 1

4
T

(
1

4
T (t/4− 2)− 2

)
≥ 1

4
T

(
1

5
T

(
t

5

))
≥ T (t) ,

where in the first inequality we apply (23), in the second we use the fact that

log log(T (x)) = T (x− 2), and the last holds for all large enough t.

We now turn to the proof of Claim 4.11. Recall that given two sets of vertices

R,R′, which are not necessarily disjoint, we used e(R,R′) to denote the number of

edges connecting a vertex in R to a vertex in R′, where an edge belonging to R ∩R′

is counted twice.

Claim 4.15. There is a constant C, such that if m = mb ≥ C and O is a random

graph from G(m, 1/2), then with probability at least 3/4 it satisfies the first condition

of a trap (as stated in Definition 4.10).

Proof. Fix two sets R,R′ of size r = d
√
m/4e. Given distinct i, i′ let zi,i′ be the

indicator for the event that (i, i′) ∈ E(O), and zR,R′ =
∑

i∈R,i′∈R′ zi,i′ . Then,

3r2

8
≤
(
r

2

)
≤ E[zR,R′ ] = E[e(R,R′)] =

1

2

(
r2 − |R ∩R′|

)
≤ r2

2
,

for all large enough m. Now observe that zR,R′ is a sum of at least
(
r
2

)
indicators zi,i′

and each zi,i′ can change the value of zR,R′ by at most 2. We thus get from a standard

application of Chernoff’s inequality that

P
[∣∣∣∣e(R,R′)− 1

2
r2

∣∣∣∣ ≥ 1

4
r2

]
≤ P

[
|zR,R′ − E[zR,R′ ]| ≥

1

8
r2

]
≤ e−

r2

100 .
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Hence the probability that there is any pair of sets R,R′ satisfying |e(R,R′)− 1
2
r2| >

1
4
r2 is at most (

m

r

)2

2−
1

100
r2 ≤ m

√
me−m/1600 � 1/4 ,

for all large enough m.

Claim 4.16. There is a constant C, such that if m = mb ≥ C and O is a ran-

dom graph from G(m, 1/2), then with probability at least 3/4, it satisfies the second

condition of a trap (as stated in Definition 4.10).

Proof. Let us start by considering the case b′ = b − 1. Suppose U1, . . . , Umb−1
is the

partition of V (O) induced by the partition Pb−1 (as discussed prior to Definition

4.10). Now recall (see Subsection 4.2.2) that the integers mb satisfy the relation

m = mb = mb−1φ(mb−1) = mb−12dmb−1/16e .

This means that

log(m) ≤ mb−1 ≤ 17 log(m) , (25)

so the size of the sets Ui, which we will denote by hb−1, satisfies

m/17 log(m) ≤ hb−1 = m/mb−1 ≤ m/ log(m) . (26)

Fix now two sets Ui, Uj, an integer 200 ≤ k ≤ log(m), a subset R ⊆ Ui of size k6 and

a subset R′ ⊆ Uj of size dhb−1/ke. Given distinct i, i′ with i ∈ R and i′ ∈ R′ let zi,i′

be the indicator for the event that (i, i′) ∈ E(O), and zR,R′ =
∑

i∈R,i′∈R′ zi,i′ . Then

|R||R′|
2

≥ E[zR,R′ ] = E[e(R,R′)] =
1

2
(|R||R′| − |R ∩R′|)

≥ 1

2
|R||R′| − 1

2
|R|

≥
(

1

2
− 1

2k2

)
|R||R′| .

where in the last inequality we use the facts that k ≤ log(m), that |R′| = hb−1 ≥(26)

m/17 log(m) and that we can pick m to be large enough so that |R′| ≥ k2.
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Note that zR,R′ is a sum of at least |R|(|R′| − |R|) ≥ |R||R′|/2 indicators zi,i′ (we

are using the fact that |R| � |R′|). Since each of them can change zR,R′ by at most 2,

we get from Chernoff’s inequality, the fact that k ≥ 200 and the estimate for E[zR,R′ ]

from the previous paragraph that

P
[∣∣∣∣e(R,R′)− 1

2
|R||R′|

∣∣∣∣ ≥ 1

k2
|R||R′|

]
≤ P

[
|zR,R′ − E[zR,R′ ]| ≥

1

2k2
|R||R′|

]
≤ e−

|R||R′|
64k4

≤ e−khb−1/64

≤ e−2hb−1 .

Now, there are m2
b−1 = O(log2(m)) ways to pick the sets Ui, Uj, O(log(m)) ways to

choose k,
(
hb−1

k6

)
ways to pick R and

(
hb−1

hb−1/k

)
ways to pick R′. Overall, we get from a

union bound that the probability that some choice of Ui, Uj, k, R and R′ will violate

the second condition of Definition 4.10 is bounded by

O(log3m)

(
hb−1

k6

)(
hb−1

hb−1/k

)
e−2hb−1 ≤ m2k6(ek)hb−1/ke−2hb−1 ≤ m2 log6(m)e−hb−1 , (27)

where in the first inequality we use the inequality
(
n
k

)
≤ (en/k)k and in the second

the fact that k ≤ log(m).

Let us now consider an arbitrary b′ < b. Note that since mb′ ≤ mb−1, we still

have mb′ ≤ 17 log(m). Hence there are still only O(log2(m)) many ways to choose the

sets U b′
i , U

b′
j . This means that the upper bound obtained in (27) for the probability

of partition Pb−1 violating the condition applies to any given partition Pb′ , with hb−1

replaced by hb′ . But since hb′ ≥ hb−1 the bound in (27) still holds.

We finally recall (22) stating that mb = T φ(b). As we noted in (23) we have

T φ(b) > T (bb/2c). Hence the number of b′ < b we need to consider is only O(log∗(m)).

So combining this fact with the discussion in the previous paragraph we get that the

probability of any partition Pb′ violating the second condition of Definition 4.10 is

bounded by

m3 log6(m)e−hb−1 � 1/4
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where we apply the fact that hb−1 ≥ m/17 log(m), stated in (26).

Proof of Claim 4.11. Follows immediately from Claims 4.15 and 4.16.

We will now prove two lemmas that will somewhat streamline the application

of the properties of traps later on in this chapter. Both lemmas will rely on the

observation stated in Lemma 4.17 below. In what follows, we use vS ∈ Rn, with

S ⊆ [n] to denote the vector whose ith entry is 1/|S| when i ∈ S and 0 otherwise. Let

Vk = {vS : S ⊆ [n], |S| = k}.

Lemma 4.17. If x ∈ [0, 1/k]n and
∑
xi = 1, then x is a convex combination of the

vectors of Vk.

Before we prove this lemma, we need a standard theorem from linear programming

theory, which we state without proof. A polyhedron P ⊆ Rn is the set of points

satisfying a finite number of linear inequalities. P is bounded if there is a constant C

such that ‖x‖ ≤ C for all x ∈ P . Finally, a point x ∈ P is said to be a vertex of P if

it cannot be represented as a proper convex combination of points x′, x′′ ∈ P .

Theorem 4.18 ([14]). For every bounded polyhedron P ⊆ Rn and x ∈ P , the point

x can be written as a convex combination of the vertices of P .

Proof of Lemma 4.17. Consider the polyhedron

P =

{
x :

∑
i

xi = 1, and 0 ≤ x1, . . . , xn ≤ 1/k

}
.

Notice that for all x ∈ P , we have ‖x‖ ≤ 1. Let V be the set of vertices of P . By

Theorem 4.18, we have that any x ∈ P is a convex combination of V . So we need to

show that15 V ⊆ Vk.

Suppose u ∈ V . If all its entries are either 0 or 1/k it obviously belongs to

Vk. So suppose that u has an entry ui ∈ (0, 1/k). Then there exists at least one

15We clearly have Vk ⊆ V but this direction is not needed.
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more entry uj ∈ (0, 1/k), because otherwise the entries cannot sum to 1. Let εu =

1
2

min{ui, uj, 1/k−ui, 1/k−uj}. Let ei denote the canonical basis vector where the ith

entry is 1 and all the other entries are 0. Similarly define ej. Let u′ = u+ εuei− εuej

and u′′ = u−εuei+εuej. It can be checked that both u′, u′′ ∈ P and that u′+u′′ = 2u.

So u can be written as the convex combination of two other vectors in P , which means

that u is not a vertex of P .

We now turn to prove two lemmas. The first one will help us in applying the

first property of traps in proving Lemma 4.14, while the second one will help us in

applying the second property of traps in proving Lemma 4.13.

Lemma 4.19. Suppose O is the graph that was used when defining the trap on par-

tition Pb (so |V (O)| = mb and we can assume that O satisfies the first condition of

Definition 4.10). Let Q be the adjacency matrix of O, and suppose x, y ∈ [0, 1]mb

satisfy
∑
xi =

∑
yi = g ≥ √mb/2. Then we have∣∣∣∣xTQy − 1

2
g2

∣∣∣∣ ≤ 1

4
g2 .

Proof. The vectors x/g and y/g satisfy the condition of Lemma 4.17 with k =

d√mb/4e. Hence we can express x/g and y/g as convex combinations of the vectors

of Vk as x/g =
∑

R aRvR and y/g =
∑

R′ bR′vR′ . Observe further that (vR)TQvR′ =

e(R,R′)/|R||R′|. Since |R| = |R′| = k = d√mb/4e and we assume that O satisfies

the first condition of being a trap, we can infer that for any R and R′ we have

1/4 ≤ (vR)TQvR′ ≤ 3/4 . (28)

We can thus infer from (28) and the fact that
∑

R aRvR and
∑

R′ bR′vR′ are convex
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combinations that

(x/g)TQ(y/g) =

(∑
R

aRvR

)T

Q

(∑
R′

bR′vR′

)
=

∑
R,R′

aRbR′(vR)TQvR′

≤ 3

4

∑
R,R′

aRbR′

=
3

4
,

implying that xTQy ≤ 3
4
g2. An identical argument gives xTQy ≥ 1

4
g2, which com-

pletes the proof.

Lemma 4.20. Suppose O is the graph that was used when defining the trap placed on

partition Pb (so |V (O)| = mb and we can assume that O satisfies the second condition

of Definition 4.10). Let Q be the adjacency matrix of O. Let b′ < b, set m = mb′ and

let X1, . . . , Xm be the partition of V (O) induced16 by Pb′. Suppose each of the sets Xi

has size h and let Xi, Xj be two of these sets. Suppose δ and y, x ∈ [0, 1]mb satisfy the

following conditions:

1. 1/ log(mb) < δ < 1/200.

2. The vector y has only non-zero entries in Xi and x has only non-zero entries

in Xj.

3. For each 1 ≤ p′ ≤ mb we have yp′/(
∑

p yp) < δ6.

4.
∑mb

p=1 xp > 2δh.

Then, setting g1 =
∑

p yp and g2 =
∑

p xp, we have∣∣∣∣yTQx− 1

2
g1g2

∣∣∣∣ ≤ 2δ2g1g2 . (29)

16This was defined explicitly just before Definition 4.10. Since we are identifying the clusters of
Pb with the vertices of O we can also identify these clusters with the indices of the adjacency matrix
Q. Hence, since we think of Xi as a subset of vertices of O, we can say (as we will in item 2) that
an index of a vector x ∈ [0, 1]mb belongs to Xi.
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Proof. Put k = b1/δc. Then item (1) of the lemma guarantees that 200 ≤ k ≤

log(mb). Item (3) of the lemma guarantees that the vector y/g1 satisfies the condition

of Lemma 4.17 with respect to k6. Hence we can write y/g1 =
∑

R aRvR using the

vectors of Vk6 . Moreover, since item (2) guarantees that y has only non-zero entries in

Xi we know that in the convex combination
∑

R aRvR we have only R ⊆ Xi. Observe

now that item (2) guarantees that x has only non-zero entries in Xj. Item (4) of the

lemma guarantees that the vector x/g2 satisfies the condition of Lemma 4.17 with

respect to dh/ke. Hence we can write x/g2 =
∑

R′ bR′vR′ using the vectors of Vdh/ke.

Again, we know that in this convex combination we are only using sets R′ ⊆ Xj.

Now, (vR)TQvR′ = e(R,R′)/|R||R′|. Hence, if |R| = k6 and |R′| = dh/ke and

R ⊆ Xi, R
′ ⊆ Xj, then we can use the assumption that O satisfies the second

condition of being a trap, to conclude that∣∣∣∣(vR)TQvR′ −
1

2

∣∣∣∣ ≤ 1/k2 ≤ 2δ2 . (30)

We can thus infer from (30) and the facts that
∑

R aRvR and
∑

R′ bR′vR′ are convex

combinations that

(y/g1)TQ(x/g2) =

(∑
R

aRvR

)T

Q

(∑
R′

bR′vR′

)
=

∑
S,T

aRbR′(vR)TQvR′

≤ (1/2 + 2δ2)
∑
R,R′

aRbR′

= (1/2 + 2δ2)

implying that yTQx ≤ (1/2 + 2δ2)g1g2. An identical argument gives yTQx ≥ (1/2−

2δ2)g1g2, which completes the proof.

4.5 Proof of Lemma 4.14

Suppose A = {Vi : 1 ≤ i ≤ k} and B = {Ui,i′ : 1 ≤ i ≤ k, 1 ≤ i′ ≤ `} (so |B| = k`).

We will say that a pair of sets (Vi, Vj) is bad if there are two sets C1, C2 ⊆ [`]×[`], each
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of size at least ε`2 such that |d(Ui,i1 , Uj,j1)− d(Ui,i2 , Uj,j2)| ≥ 2ε for every (i1, j1) ∈ C1

and (i2, j2) ∈ C2. Note that if (Vi, Vj) is bad then it cannot be good in the sense

Definition 4.2. Hence, to show that A and B fail to satisfy the second condition of

Definition 4.2 it is enough to show that there are at least ε
(
k
2

)
bad pairs (Vi, Vj). As

we mentioned after the statement of Theorem 4.4, we will actually show that there

at least (1− 2ε1/10)
(
k
2

)
bad pairs.

A set Ui,i′ is called useful if there is an X ∈ Pb such that Ui,i′ ⊂ε1/5 X. If Ui,i′ is

not useful, we call it useless. A set Vi is called useful if it contains17 less than ε1/10`

useless sets Ui,i′ . If Vi is not useful, we call it useless. Observe that there can be

at most ε1/10k useless sets Vi, as otherwise B would not be an ε1/5-refinement of Pb,

which would contradict the third assumption of the lemma. Hence, there are at least

(1− 2ε1/10)
(
k
2

)
pairs of useful sets (Vi, Vj). By the previous paragraph it is enough to

show that every such pair is bad.

So for the rest of the proof, let us fix a pair of useful sets (Vi, Vj). Let us assume

that ε is small enough so that ε1/5 < 1/2. Given a useful set Ui,i′ ⊂ε1/5 X ∈ Pb, we

let XPb
(Ui,i′) denote this (unique) cluster in Pb that ε1/5-contains Ui,i′ . We will later

prove the following claim:

Claim 4.21. If Vi and Vj are both useful, then there are D1, D2 ⊆ [`]× [`] satisfying

the following:

• D1 and D2 have size at least 1
32
`2.

• For every (i1, j1) ∈ D1 both Ui,i1 and Uj,j1 are useful and the pair (XPb
(Ui,i1), XPb

(Uj,j1))

belongs to the trap placed on Pb.

• For every (i2, j2) ∈ D2 both Ui,i2 and Uj,j2 are useful and the pair (XPb
(Ui,i2), XPb

(Uj,j2))

does not belong to the trap placed on Pb.

17Recall that each Vi is the union of ` sets Ui,i′ .
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In the next subsection we prove the lemma assuming Claim 4.21, in the subsection

following it we will prove this claim.

4.5.1 Proof of Lemma 4.14 via Claim 4.21

Let α be the weight added to H by the trap that was placed on Pb. Let D1, D2 be

the subsets of [`] × [`] guaranteed by Claim 4.21. Take any pair (i1, j1) ∈ D1 and

let X1 = XPb
(Ui,i1) and X2 = XPb

(Uj,j1). Since (i1, j1) ∈ D1 we know that the pair

(X1, X2) was assigned an extra weight of α by the trap placed on Pb. Now consider

the traps with weight larger than α, that is, the traps that were placed on partitions

P ′ that are refined by Pb. Note that (X1, X2) might get an extra weight from a subset

of these traps18. But since H contains only 1
48

√
log(1/ε) many traps, the number of

ways to choose the subset of the traps with weight larger than α from which (X1, X2)

get an extra weight is bounded by 2
1
48

√
log(1/ε) � 1

32ε
. Hence D1 must have a subset

of pairs of size at least ε`2, denoted D′1, and set of weights W1 (all larger than α) with

the following property; if α′ > α and P ′ is the partition on which the trap with weight

α′ was placed then for any (i1, j1) ∈ D′1 the pair (XP ′(Ui,i1), XP ′(Uj,j1)) belongs to

the trap on P ′ if and only if α′ ∈ W1. We can also define D′2 and W2 in the same

manner.

We now claim that we can take C1 and C2 (the sets showing that (Vi, Vj) is bad)

to be the sets D′1 and D′2. First, as noted above, both D′1 and D′2 have size at least

ε`2. So to finish the proof we will have to show that for every (i1, j1) ∈ D′1 and

(i2, j2) ∈ D′2 we have

|d(Ui,i1 , Uj,j1)− d(Ui,i2 , Uj,j2)| ≥ 2ε . (31)

Let α′ be the largest weight that belongs to exactly one of the sets W1 and W2.

Assume without loss of generality that α′ ∈ W1 and α′ 6∈ W2. If there is no such

18More precisely, if X1 and X2 are subsets of the same cluster X ′ ∈ P ′, then they will never get
an extra weight from the trap placed on P ′. If they belong to different clusters X ′1, X

′
2 ∈ P ′, then

they will receive an extra weight only if (X ′1, X
′
2) belong to the trap placed on P ′.
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weight (that is, W1 = W2) then set α′ = α. We now recall Fact 4.12 which tells us

that

α′ ≥ 4−
1
48

√
log(1/ε) . (32)

Let P ′ be the partition on which the trap with weight α′ was placed. Since traps with

weight at least α are placed on partitions that are refined by Pb, we see that if a set

Ui,i′ is useful with respect to Pb it must also be useful with respect to P ′. This means

that for each pair (i1, j1) ∈ D′1 the trap at P ′ increases d(Ui,i1 , Uj,j1) by at least

α′
(
1− ε1/5

)2 ≥ α′(1− 2ε1/5) ≥ 0.99α′ .

Similarly, for each pair (i2, j2) ∈ D′2 the trap at P ′ increases d(Ui,i2 , Uj,j2) by at most

2α′ε1/5 ≤ 0.01α′ .

Hence, disregarding for a moment all the other weights that can be assigned to these

sets in H, we see that all the pairs in (i1, j1) ∈ D′1 are such that d(Ui,i1 , Uj,j1) ≥ 0.99α′

while all (i2, j2) ∈ D′2 are such that d(Ui,i2 , Uj,j2) ≤ 0.01α′. We will now show that

this discrepancy is (essentially) maintained even when considering the entire graph

H.

First, recall that by Fact 4.9 the total weight assigned to any pair of vertices

of H in the graph G is bounded by 1/4
√

log(1/ε). Hence, recalling (32), we see that

even after taking into account these weights, we have d(Ui,i2 , Uj,j2) ≤ 0.02α′ for any

(i2, j2) ∈ D′2. Let us now consider the contribution of the weights coming from traps

that were assigned a weight smaller than α′. Since these weights are α′/4, α′/16, ...

their sum is bounded by α′/3, so after taking these weights into account we still have

d(Ui,i2 , Uj,j2) ≤ 0.36α′ for any (i2, j2) ∈ D′2. Let us now consider the contribution

coming from traps with weight more than α′. Consider any trap with weight α′′ > α′

that was placed on a partition P ′′. Recall that by definition of W1, W2 and by our

choice of α′, either the extra weight α′′ was added to all pairs (XP ′′(Ui,i′), XP ′′(Uj,j′))
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with (i′, j′) ∈ D′1 ∪D′2 or to none of them. Since all the sets Ui,i1 and Uj,j1 are useful

we see that for each pair (i1, j1) ∈ D′1 the pair (Ui,i1 , Uj,j1) gets from the trap at P ′′

a total weight at least

α′′
(
1− ε1/5

)2 ≥ α′′(1− 2ε1/5) .

Set w to be the sum of the weights in W1 that are larger than α′. Then the above

discussion implies that for each (i1, j1) ∈ D′1 we have

d(Ui,i1 , Uj,j1) ≥ (1− 2ε1/5)w + 0.99α′ ≥ w + 0.99α′ − 2ε1/5 . (33)

Consider now a pair (i2, j2) ∈ D′2; If a weight α′′ ≥ α′ belongs to W2 then it can

contribute to d(Ui,i2 , Uj,j2) a weight of at most α′′, hence such weights contribute to

d(Ui,i2 , Uj,j2) a total weight of at most19 w. As to weights α′′ > α′ that do not belong

to W2, we see that since Ui,i2 and Uj,j2 are useful, they can increase d(Ui,i2 , Uj,j2) by

at most 2α′′ε1/5. As the total sum of weights of all traps is at most 1, this extra

contribution is bounded by 2ε1/5. All together, we see that for every (i2, j2) ∈ D′2

d(Ui,i2 , Uj,j2) ≤ w + 0.36α′ + 2ε1/5. (34)

Recalling (32), we see that 4ε1/5 < 0.1α′. Hence, (33) and (34) imply that

d(Ui,i1 , Uj,j1)− d(Ui,i2 , Uj,j2) > 0.2α′ >(32) 2ε

for every choice of (i1, j1) ∈ D′1 and (i2, j2) ∈ D′2. This establishes (31), thus com-

pleting the proof.

4.5.2 Proof of Claim 4.21

Let us start with observing that since Vi is assumed to be useful, it contains (more

than) 1
2
` useful sets Ui,i′ . Let V ′i be the union of 1

2
` such sets, and define V ′j is a

similar way. From now on we will focus on V ′i and V ′j and their subsets Ui,i′ and Uj,j′

19Recall that by choice of α′ the sets W1 and W2 contain the same weights larger than α′.
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so we will only be talking about sets Ui,i′ and Uj,j′ that are useful. Recall that for any

useful set Ui,i′ there is a (unique) set XPb
(Ui,i′) ∈ Pb such that Ui,i′ ⊂ε1/5 XPb

(Ui,i′).

Suppose Pb has m clusters and recall that we defined the trap on Pb using an

m-vertex graph O satisfying the first condition of Definition 4.10. That is (u, v) is

an edge of O if and only if (Xu, Xv) belongs to the trap on Pb. Define a vector

x ∈ [0, 1]m by setting xu = |V ′i ∩ Xu|/|Xu|. Define y ∈ [0, 1]m similarly by setting

yu = |V ′j ∩ Xu|/|Xu|. Recall that each of the sets Vi contains a 1/k-fraction of the

vertices H (since |A| = k) so |V ′i | contains a 1/2k-fraction of the vertices of H. Since

Pb has order m (so there are m sets Xu) and we assume that m ≥ k2 (in the second

item of Lemma 4.14) we infer that

∑
u

xu =
∑
u

yu =
m

2k
≥
√
m/2 . (35)

If we take Q to be the adjacency matrix of O, then by (35) we can apply Lemma 4.19

(with g = m/2k) to infer that

1

4
(m/2k)2 ≤ xTQy ≤ 3

4
(m/2k)2 . (36)

Given a set Ui,i′ we define a vector xi
′

by setting xi
′
u = |Ui,i′ ∩ Xu|/|Xu|. Similarly

given a set Uj,j′ we define a vector yj
′

by setting yj
′
u = |Uj,j′ ∩Xu|/|Xu|. Observe that

since V ′i is the union of the sets Ui,i′ we have x =
∑

i′ x
i′ where the sum ranges over

all the `/2 indices i′ for which Ui,i′ ⊆ V ′i . Similarly y =
∑

j′ y
j′ where the sum ranges

over all the `/2 indices j′ for which Uj,j′ ⊆ V ′j . Hence, we get from (36) that

1

4
(m/2k)2 ≤

∑
i′,j′

(xi
′
)TQyj

′ ≤ 3

4
(m/2k)2 . (37)

Consider now any pair i′, j′ in the above sum. Let Xu = XPb
(Ui,i′) and Xv =

XPb
(Uj,j′). Recall that Ui,i′ contains a 1/k` fraction of V (H) while the sets Xu

contains a 1/m fraction of V (H). This means that

∑
u

xi
′

u = m/k` ,
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hence

0 ≤ (xi
′
)TQyj

′ ≤ m2/k2`2 . (38)

More importantly, since |Ui,i′ ∩Xu| ≥
(
1− ε1/5

)
|Ui,i′| we have

xi
′

u = |Ui,i′ ∩Xu|/|Xu| ≥
(
1− ε1/5

)
m/k` , (39)

and since |Uj,j′ ∩Xv| ≥
(
1− ε1/5

)
|Uj,j′ | we have

yj
′

v = |Uj,j′ ∩Xv|/|Xv| ≥
(
1− ε1/5

)
m/k` . (40)

Suppose now that (Xu, Xv) belong to the trap placed on Pb, that is, that Qu,v = 1.

We then get from (38), (39) and (40) that

0.99m2/k2`2 ≤
(
1− ε1/5

)2
m2/k2`2 ≤ (xi

′
)TQyj

′ ≤ m2/k2`2 . (41)

Suppose now that (Xu, Xv) does not belong to the trap placed on Pb, that is, that

Qu,v = 0. We then get from (38), (39) and (40) that

0 ≤ (xi
′
)TQyj

′ ≤ 2ε1/5m2/k2`2 ≤ 0.01m2/k2`2 . (42)

We thus see from (42) that the total to contribution to (37) of pairs (i′, j′) for

which (Xu, Xv) does not belong to the trap is bounded by (`/2)2 · 0.01m2/k2`2 =

0.01(m/2k)2. Combining (37), (41) and (42) it thus must be the case that there are

at least
1
4
(m/2k)2 − 0.01(m/2k)2

m2/k2`2
≥ 1

32
`2 ,

pairs (i′, j′) for which (Xu, Xv) belongs to the trap placed on Pb. Hence we can take

D1 to be the collection of these pairs. Finally, we see from (37), (41) and (42) that

the number of pairs (i′, j′) for which (Xu, Xv) belongs to the trap on Pb cannot be

larger than
3
4
(m/2k)2

0.99m2/k2`2
≤ 31

32
`2 ,

so we can take D2 to be the collection of pairs (i′, j′) that do not belong to D1. We

thus complete the proof of Claim 4.21.
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4.6 Proof of Lemma 4.13

We will prove Lemma 4.13 by first performing a series of reductions that will culminate

in Lemma 4.26. We will then spend most of this section proving Lemma 4.26. Let us

first derive Lemma 4.13 from the following lemma:

Lemma 4.22. Suppose γ ≤ ε and Z = {Z1, . . . , Zk} is a γ-regular partition of H.

Assume

• r < log(1/γ)

10
√

log(1/ε)

• γ1/4 ≤ β ≤ 1/100

Then, if Z is a β-refinement of Pr−1 it is also an 8β-refinement of Pr.

Proof that Lemma 4.22 implies Lemma 4.13. By the definition of (ε, f)-regularity, we

get that if |A| = k then B must be 1
k
-regular. Since k ≥ 1/ε we have 1/k ≤ ε. Since

B is a refinement of P0 (recall that P0 is just the entire vertex set of H), it is in

particular a (1/k)1/4-refinement of P0. Hence, starting with β = (1/k)1/4 we can

repeatedly apply Lemma 4.22 (with γ = 1/k) as long as

r ≤
√

log(k)

10
≤ log k

10
√

log(1/ε)
(43)

and

8r/k1/4 ≤ 1/100 . (44)

Taking r = 2 log log(k), we thus make sure that both (43) and (44) hold20 with a lot

of room to spare. Hence, after these r = 2 log log k applications of Lemma 4.22 we

get that B must be an 82 log log k/k1/4-refinement of P2 log log k. Since

82 log log k/k1/4 ≤ 1/k1/5 ≤ ε1/5 ,

we get that B is indeed an ε1/5-refinement of P2 log log k.

20Recall that k ≥ 1/ε. Since Theorem 4.4 allows us to assume that ε is sufficiently small, we can

assume that k is large enough so that 2 log log k <

√
log(k)

10 and that 82 log log k/k1/4 ≤ 1/100.
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Let us now continue with the proof of Lemma 4.22. So throughout the rest of this

section we assume all the facts that are stated in the lemma. Suppose Pr−1 = {Xi :

1 ≤ i ≤ m} and Pr = {Xi,i′ : 1 ≤ i ≤ m, 1 ≤ i′ ≤ M}. Recall the sets Ai,j, Bi,j that

were used in the construction of the graph G in Subsection 4.2.2. With respect to

these, we make the following definition:

Definition 4.23. A pair of sets (Zt, Zu) is said to be β-helpful if

1. There are 1 ≤ i, j ≤ m such that Zt ⊂β Xi and Zu ⊂β Xj (we are not requiring

i 6= j).

2. We have min(|Zt ∩ Ai,j|, |Zt ∩Bi,j|) ≥ β2|Zt|.

We will need the following lemma, restated from [42].

Lemma 4.24. ([42]) Let M be an integer and let (Aj, Bj)
m
j=1 be a sequence of balanced

partitions of [M ]. Let 0 < ζ ≤ 1/2 and let η, ξ > 0 be such that

(1− η)(1− 4ξ) > 1− ζ + ζ2 . (45)

Then for every sequence λ = (λ1, . . . , λM) such that λi′ ≥ 0 for every i′, ‖λ‖1 = 1 and

‖λ‖∞ < 1−ζ, there are at least ηm values of j for which min(
∑

i′∈Aj
λi′ ,
∑

i′∈Bj
λi′) >

ξ.

Lemma 4.25. Suppose Z is a β-refinement of Pr−1. Then, if Zt ⊂β Xi for some i,

but there is no i′ for which Zt ⊂8β Xi,i′, then there are at least 2βm sets Xj such that

each of these sets Xj β-contains at least k
2m

sets Zu such that (Zt, Zu) are β-helpful.

Proof. Let Zt ⊂β Xi and suppose that there is no 1 ≤ i′ ≤M for which Zt ⊂8β Xi,i′ .

Write λi′ for |Zt ∩Xi,i′ |/|Zt|. Then λi′ ≥ 0 for all i′, ‖λ‖1 ≥ 1 − β (since Zt ⊂β Xi)

and ‖λ‖∞ ≤ 1− 8β (since we assume that there is no i′ for which Zt ⊂8β Xi,i′). Set

ζ = 7β/(1− β) < 1/2 and note that we have

(1− 6β)(1− 8β2) > 1− 6β − 8β2 > 1− ζ + ζ2 , (46)
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where in the second inequality we use the fact that β < 1/100. Define the vector

λ′ = λ/‖λ‖1. Then ‖λ′‖1 = 1 and

‖λ′‖∞ ≤ (1− 8β)/‖λ‖1 ≤ (1− 8β)/(1− β) = 1− ζ . (47)

Since (A′i,j, B
′
i,j)

m
j=1 are balanced partitions of [M ], we can apply Lemma 4.24

to the vector λ′ (with η = 6β and ξ = 2β2), and conclude that there are at

least 6βm values of j, for which min(
∑

i′∈A′i,j
λ′i′ ,
∑

i′∈B′i,j
λ′i′) > 2β2. Recalling that

λ′ = λ/‖λ‖1 and that ‖λ‖1 ≥ 1 − β this means that for each such j we have

min(
∑

i′∈A′i,j
λi′ ,
∑

i′∈B′i,j
λi′) > 2β2(1 − β) > β2. Notice that by the construction

of the sets Ai,j, Bi,j, (that is Ai,j = ∪i′∈A′i,jXi,i′ and Bi,j = ∪i′∈B′i,jXi,i′) and by the

definition of λ, these j’s satisfy

min(|Zt ∩ Ai,j|, |Zt ∩Bi,j|) ≥ β2|Zt| , (48)

that is, they satisfy the second condition of being β-helpful. This means that if a set

Zu is β-contained in Xj then (Zt, Zu) is β-helpful. So to finish the proof, we need to

show that out of the 6βm values of j that satisfy (48), at least 2βm are such that Xj

β-contains at least k/2m sets Zu. Hence, it is enough to show that Pr−1 has at most

4βm sets X that β-contain less than k/2m sets Z ∈ Z.

Call a vertex v ∈ V (H) bad if it either belongs to a set Z ∈ Z that is not β-

contained in any X ∈ Pr−1 or if it belongs to Z \X where Z ⊂β X. Note that since

we assume that Z is a β-refinement of Pr−1 then the fraction of H’s vertices that

are bad is bounded by 2β. Suppose now that there are more than 4βm sets X that

β-contain less than k/2m sets Z. Recall that each set X contains a 1/m-fraction of

vertices of H, while each Z contains a 1/k-fraction. Therefore, if X has less than

k/2m sets Z that are β-contained in it, then half of its vertices belong to sets Z

that are either β-contained in another set X ′ or that are not β-contained in any set.

Hence, if Pr−1 has more than 4βm such sets X, then more than 2β-fraction of H’s

vertices would be bad which is impossible.
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The main part of the proof of Lemma 4.22 will be the proof of the following lemma

Lemma 4.26. Suppose Z ∈ Z and Xi, Xj ∈ Pr−1. Suppose Z ⊂β Xi and there are

k
2m

sets Zu ⊂β Xj such that (Z,Zu) is β-helpful. Then at least k
4m

of the sets Zu are

such that (Z,Zu) is not γ-regular.

We first derive Lemma 4.22 from Lemmas 4.25 and 4.26.

Proof of Lemma 4.22. By Lemma 4.25 we know that if Zt ⊂β Xi for some i, but

there is no i′ for which Zt ⊂8β Xi,i′ , then there is St ⊆ [m] of size at least 2βm such

that for any j ∈ St, the set Xj β-contains at least k/2m sets Zu for which (Zt, Zu)

is β-helpful. By Lemma 4.26, each of these sets Xj β-contains at least k/4m sets Zu

such that (Zt, Zu) is not γ-regular. Hence, all together (that is, when considering all

the sets Xj where j ∈ St) there are at least βk/2 sets Zu such that (Zt, Zu) is not

γ-regular. Hence, since β2 > γ and we assume that Z is γ-regular, there cannot be

more than 2βk sets Zt as above.

Since we assume that for at least (1 − β)k of the sets Zt there is a set Xi such

that Zt ⊂β Xi, it follows that for at least (1− 3β)k > (1− 8β)k of the sets Zt there

exists an Xi and i′ such that Zt ⊂8β Xi,i′ , which means that Z is an 8β-refinement of

Pr.

In the next subsections we complete the proof of Lemma 4.22 by proving Lemma

4.26.

4.6.1 Setting the stage for the proof of Lemma 4.26

We start by setting some notation and observing some relations between the param-

eters involved. We remind the reader again that we will be assuming the conditions

of Lemma 4.22. Also, hereafter we focus only on the k/2m sets Zu ⊂β Xj such that

(Z,Zu) are β-helpful, namely the sets in the statement of Lemma 4.26.
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Let us set A = Z ∩ Ai,j and B = Z ∩ Bi,j. Also for each of the sets Zu ⊂β Xj, if

|Zu∩Aj,i| ≥ |Zu∩Bj,i| we set Wu = Zu∩Aj,i, otherwise we set Wu = Zu∩Bj,i. Since

we assume that all the pairs (Z,Zu) are β-helpful and that β ≥ γ1/4 we can deduce

that

min(|A|, |B|) ≥ β2|Z| ≥ γ1/2|Z| , (49)

and for all u we have

|Wu| ≥ (1− β)|Zu|/2 ≥ |Zu|/4 . (50)

Let Pr1 , ...,Prf be the canonical partitions that refine Pr−1 and on which we have

placed a trap. For each 1 ≤ ` ≤ f , let α` be the weight21 that was added to H when

placing a trap on partition Pr` . Recall that H contains 1
48

√
log(1/ε) many traps so

f ≤ 1

48

√
log(1/ε) . (51)

Also recall that by Fact 4.12 we have that all weights α1, . . . , αf satisfy

α1, . . . , αf ≥ 4−
1
48

√
log(1/ε) . (52)

Set

δ =
4−r

4
√

log(1/ε)
, (53)

and recall that δ is the extra weight we have added to some of the pairs (x, y) in

G when considering partition Pr−1. Since in Theorem 4.4 we can assume that ε is

sufficiently small, we get from (51), (52) and (53) that

δ � 1

f
, α1, . . . , αf . (54)

We also observe that since γ ≤ ε, and Lemma 4.22 assumes that r ≤ log(1/γ)

10
√

log(1/ε)
we

get from (53) that

γ1/3 � δ . (55)

21So recalling the way we have defined H in Subsection 4.2.3, we get that if r` = b = w(g) then
α` = 4−g.
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We now define a set A′ ⊆ A using the following iterative process. We first set

A0 = A. If each of the clusters X ∈ Pr1 is such that |A0 ∩ X| < δ6|A0|, then the

process ends with A′ = A0. If there is a cluster X ∈ Pr1 such that |A0 ∩X| ≥ δ6|A0|

then we set A1 = |A0 ∩ X|, and continue to the next phase. If each of the clusters

X ∈ Pr2 is such that |A1 ∩X| < δ6|A1|, then the process ends with A′ = A1. If there

is a cluster X ∈ Pr2 such that |A1∩X| ≤ δ6|A1| then we set A2 = |A2∩X| and move

to the next phase. So the process either stops at some level Prt in which none of the

clusters of Prt contains more than a δ6-fraction of At−1, or it goes all the way to Prf .

Let us make two important observations about A′. First, if the process stops at

level Prt (where t ≤ f) then for any t′ > t we have |A′ ∩X| < δ6|A′| for all X ∈ Prt′ .

This follows from the fact that Prt′ refines Prt . Therefore, A′ has the property, that

for each partition Prt the set A′ is either contained in a single cluster X ∈ Prt or none

of the clusters contains more than a δ6-fraction of A′.

The second observation is that at each iteration the process picks a subset Ai

satisfying |Ai| ≥ δ6|Ai−1|. Since we have at most f iterations, we get that the final

set A′ we end up with satisfies

|A′| ≥ δ6f |A| =
(

4−r

4
√

log(1/ε)

)6f

|A| ≥(51)

(
4−r

4
√

log(1/ε)

) 6
48

√
log(1/ε)

|A| ≥ ε1/4γ1/4|A| ≥ γ|Z| ,

(56)

where the third inequality relies on the assumption of Lemma 4.22 that r ≤ log(1/γ)

10
√

log(1/ε)

and the last uses (49) and the fact that γ ≤ ε. We now use the same process to pick

a set B′ ⊆ B satisfying the same properties discussed above, and whose size also

satisfies

|B′| ≥ γ|Z| . (57)

Take one of the sets W = Wu and assume without loss of generality that W ⊆ Aj,i.

Recall that by dG(A′,W ) and dG(B′,W ) we denote the densities between these sets

in the graph G, that is, before adding the traps to obtain the final graph H. First
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note that since A′, B′ both belong to Xi ∈ Pr−1 and W ⊆ Xj, we infer that exactly

the same weight was added in G to d(A′,W ) and d(B′,W ) by the partitions P that

are refined by Pr−1. Now recall that we put weight δ between all the edges connecting

a vertex in Ai,j and a vertex in Aj,i and that we did not do so for edges connecting a

vertex in Bi,j and a vertex in Aj,i. Since A′ ⊆ Ai,j, B
′ ⊆ Bi,j and W ⊆ Aj,i this means

that Pr−1 creates a discrepancy of δ between d(A′,W ) and d(B′,W ). Now recall that

the weights assigned by G to the partitions P that refine Pr−1 are δ/4, δ/42, δ/43, . . ..

Since the sum of these weights is at most δ/3 we get that

|dG(A′,W )− dG(B′,W )| ≥ 2

3
δ ≥(55) γ . (58)

It thus follows from (50) (56), (57) and (58) that if we had not added the traps to G,

we would have thus concluded that every β-helpful pair (Z,Zu) is not γ-regular. So

to finish the proof we need to show that a large number of these β-helpful pairs are

not γ-regular in H as well.

For 1 ≤ ` ≤ f we let d`(A,B) be the weight added to d(A,B) by the trap placed

on Pr` . We thus have the following claim:

Claim 4.27. If (Z,Zu) is γ-regular, then there is 1 ≤ ` ≤ f for which

|d`(A′,Wu)− d`(B′,Wu)| > 4δ2 . (59)

Proof. Recall that since both A′, B′ ⊆ Xi ∈ Pr−1 and Wu ⊆ Xj ∈ Pr−1 we get

that dH(A′,Wu) and dH(B′,Wu) get the same weight from each of the traps placed

on partitions Pr′ that are refined by Pr−1 (that includes the case that a trap was

placed on Pr−1). This means that a discrepancy between dH(A′,Wu) and dH(B′,Wu)

can come either from dG(A′,Wu) and dG(B′,Wu) or from traps placed on partitions
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Pr1 , . . . ,Prf . Thus, if (59) does not hold for all 1 ≤ ` ≤ f then we would have

|dH(A′,Wu)− dH(B′,Wu)| =

∣∣∣∣∣dG(A′,Wu)− dG(B′,Wu) +

f∑
`=1

(d`(A
′,Wu)− d`(B′,Wu))

∣∣∣∣∣
≥ |dG(A′,Wu)− dG(B′,Wu)| −

f∑
`=1

|(d`(A′,Wu)− d`(B′,Wu))|

≥ 2

3
δ − 4fδ2 ≥(54)

1

3
δ ≥(55) γ ,

where in the second inequality we use (58). Recalling (50), (56) and (57) we thus

infer that (Z,Zu) is not γ-regular which is a contradiction.

Assume that for each u for which (Z,Zu) is γ-regular, we set `u to be the smallest

integer for which (59) holds. In the following subsection we prove Lemma 4.26 via

Claim 4.28 (stated below) and in the subsection following it we prove this claim thus

completing the proof of Lemma 4.26.

Claim 4.28. If (Z,Zu) is γ-regular, then either A′ or B′ satisfies the following two

conditions (we write the condition with respect to A′):

• There is no X ∈ Pr`u such that A′ ⊆ X.

• |d`u(A′,Wu)− 1
2
α`u| > 2δ2.

4.6.2 Proof of Lemma 4.26 via Claim 4.28

Once again, let us recall that given Z ⊂β Xi and Xj we are focusing only the k/2m

sets Zu ⊂β Xj such that (Z,Zu) are β-helpful. We need to show that at least k/4m

of the sets Zu are such that (Z,Zu) is not γ-regular.

Suppose to the contrary that there are k/4m sets Zu for which (Z,Zu) is γ-regular.

Then by Claim 4.28, for such Zu either A′ or B′ satisfies the two conditions of Claim

4.28. Suppose without loss of generality that in at least k/8m of these cases the set is

A′. Also, suppose without loss of generality that out of these k/8m cases, in at least

k/16m we have d`u(A′,Wu) > α`u/2 + 2δ2. Finally, since there are only f traps, we
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get that there must be an integer 1 ≤ ` ≤ f for which there at least k/16mf sets Wu

for which the above holds and `u = `. So for each of these sets we have

d`(A
′,Wu) >

1

2
α` + 2δ2 . (60)

For what follows we set S to be the collection of k/16mf values of u for which (60)

holds and such that `u = `.

We now make a simple observation that relates d`(A
′,Wu), the graph Or` that was

used to define the trap which was placed on level Pr` and the way in which A′ and

W are “spread” over the clusters of Pr` . Let mr` denote the number of clusters of Pr`

(which is also the number of vertices of Or`). Let us use Yp to denote the clusters of

Pr` . Suppose Xi and Xj each contain h clusters of Pr` .

Let xa ∈ [0, 1]mr` be the vector satisfying xap = |A′∩Yp|/|Yp| for every 1 ≤ p ≤ mr` .

Similarly, let xu ∈ [0, 1]mr` be the vector satisfying xup = |Wu ∩ Yp|/|Yp| for every

1 ≤ p ≤ mr` . If we take Q to be the adjacency matrix of Or` then

d`(A
′,Wu) =

(xa)T (α`Q)xu

(
∑

p x
a
p)(
∑

p x
u
p)
. (61)

Our plan now is to show that the information we have gathered thus far contradicts

Lemma 4.20. Let us start setting the stage for applying this lemma. First, as partition

Pb in Lemma 4.20 we will take partition Pr` . So we are using mr` as mb in Lemma

4.20.

Second, as partition Pb′ in Lemma 4.20 we will take partition Pr−1. Note that

here and in Lemma 4.20 we use m to denote the number of clusters in partitions Pr−1

and Pb′ and that we use X1, . . . , Xm to name the m clusters of both partitions. As δ

in Lemma 4.20 we use the same δ used here, that is δ = 4−r/4
√

log(1/ε) as defined in

(53). We clearly have δ < 1/200. Also, to satisfy the first condition of Lemma 4.20

we need to make sure that δ > 1/ log(mr`), or equivalently that

mr` =(22) T
φ(r`) ≥(23) T (br`/2c) > 24r+

√
log(1/ε)

=(53) 21/δ , (62)
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So we need to verify the second inequality. Recall that r` ≥ r since we are only

considering traps that were placed on partitions refining Pr−1. Recalling (20) we also

have r` ≥ log log(1/ε) since the first trap was placed on a partition with this index.

It is easy to see that these two facts imply that the second inequality in (62) indeed

holds.

As the vector y in Lemma 4.20 we will take the vector xa defined above, and as

the vector x we take
∑

u∈S x
u with S the set defined just after equation (60). Note

that since A′ ⊆ Xi and for all u we have Wu ⊆ Xj, these vectors satisfy the second

condition of Lemma 4.20.

Now, by Claim 4.28 there is no cluster22 X ∈ Pr` such that A′ ⊆ X. By the

process we have used to define A′, this means that each of the clusters of X ∈ Pr`

contains no more than a δ6-fraction of the vertices of A′. This means that the vector

xa defined above satisfies the third item of Lemma 4.20.

Finally, observe that each of the sets Yp contains a 1/mh-fraction of H’s vertices23

while each set Zu takes a 1/k-fraction. We thus get from (50) that the sum of entries

of each of the vectors xu is at least mh/4k. Since we assume that there are at least

k/16mf sets Wu, we infer that the sum of entries of x is at least h/64f ≥(54) 2δh.

Hence x satisfies the fourth condition of Lemma 4.20.

Since we assume that each of the sets Wu satisfies (60), we can use the formulation

of (61) to infer that

(xa)TQxu > (1/2 + 2δ2)

(∑
p

xap

)(∑
p

xup

)
=
(
1/2 + 2δ2

)
g1g

u
2 , (63)

where we set g1 =
∑

p x
a
p and gu2 =

∑
p x

u
p . Now set g2 =

∑
p xp =

∑
u g

u
2 . Summing

22Recall that we assume that `u = ` for the set Wu with u ∈ S. See the discussion at the beginning
of this subsection.

23Since each Xi contains a 1/m fraction of H’s vertices and we assumed that Xi is partitioned
into h sets Yp.

91



over all vectors xu, and applying (63) we have

(xa)TQx = (xa)TQ

(∑
u

xu

)
>
(
1/2 + 2δ2

)
g1

∑
u

gu2 =
(
1/2 + 2δ2

)
g1g2 ,

which contradicts (29) in Lemma 4.20.

4.6.3 Proof of Claim 4.28

We recall that we use α` to denote the weight added to H when placing a trap on

partition Pr` , and that for a set Wu we defined `u just before Claim 4.28.

Claim 4.29. Set α = α`u. If |d`u(A′,Wu) − d`u(B′,Wu)| ≥ 0.4α then (Z,Zu) is not

γ-regular.

Proof. Recall that `u was chosen to be the smallest integer for which (59) holds.

Hence ∣∣∣∣∣
`u−1∑
`=1

d`(A
′,Wu)− d`(B′,Wu)

∣∣∣∣∣ ≤ 4fδ2 ≤(54)
1

100
α .

The assumption of the lemma thus gives∣∣∣∣∣
`u∑
`=1

d`(A
′,Wu)− d`(B′,Wu)

∣∣∣∣∣ ≥ 0.39α .

Since the weights assigned to traps with weight smaller than α are given by α/4, α/16, . . .,

after taking into account all the traps placed on Pr1 , . . . ,Prf we still have∣∣∣∣∣
f∑
`=1

d`(A
′,Wu)− d`(B′,Wu)

∣∣∣∣∣ ≥ 0.05α . (64)

As we have noted in the proof of Claim 4.27, the only traps that can create a discrep-

ancy between dH(A′,Wu) and dH(B′,Wu) are those placed on Pr1 , . . . ,Prf . Hence

we can disregard the traps that were placed on partitions refined by Pr−1, that is

partitions other than Pr1 , . . . ,Prf . Thus, (64) holds even when considering all the

traps placed in H. Finally, by Fact 4.9 the total weight assigned to edges in G is at

most 1/4
√

log(1/ε) ≤(52) 0.01α. We thus conclude that

|dH(A′,Wu)− dH(B′,Wu)| ≥ 0.04α >(52) ε ≥ γ .

Recalling (50), (56) and (57) we can deduce that (Z,Zu) is not γ-regular.
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Claim 4.30. If there is a cluster X ∈ Pr` such that A′ ⊆ X and

δ2 ≤ d`(A
′,Wu) ≤ α` − δ2 , (65)

then (Z,Zu) is not γ-regular24.

Proof. Let us define the vectors xa and xu as we have done just before equation (61).

Let us also use the terminology used when defining these vectors. So X = Yq for some

Yq ⊆ Xi implying that xaq = |A′|/|Yq| and all the other entries of xa are 0. Suppose

Y1, . . . , Yh are the clusters of Pr` within Xj. Let Or` be the graph used when placing

the trap on Pr` , let vq ∈ V (O) be the vertex corresponding to cluster Yq and let

u1, . . . , uh be the vertices corresponding to Y1, . . . , Yh. Finally set N = {p : (vq, up) ∈

E(O)} to be the indices of the vertices u1, . . . , uh that are neighbors of vq in O. Then

by (61) and (65) we have

δ2 ≤
α`
∑

p∈N x
u
p∑h

p=1 x
u
p

≤ α` − δ2 ,

implying that

δ2 ≤
∑

p∈N x
u
p∑h

p=1 x
u
p

≤ 1− δ2 .

This means that if we take W 1 = Wu ∩ (
⋃
p∈N Yp) then

δ2|Wu| ≤ |W 1| ≤ (1− δ2)|Wu| . (66)

Let W 2 = Wu \W 1 and note that it satisfies (66) as well. A critical observation now

is that our choice of N implies that for all p ∈ N the pair (Yq, Yp) belongs to the trap

placed on Pr` and for all p 6∈ N the pair (Yq, Yp) does not belong to this trap. This

means that d`(A
′,W 1) = α` while d`(A

′,W 2) = 0.

We will now show that we can find W ′ ⊆ W 1 and W ′′ ⊆ W 2, satisfying |W ′| ≥

ε1/10|W 1|, |W ′′ | ≥ ε1/10|W 2| and

|dH(A′,W ′)− dH(A′,W ′′)| ≥ γ . (67)

24Note that in this claim we are not assuming that ` = `u. That is, the claim is true for all
1 ≤ ` ≤ f . However, we will only apply it with ` = `u.
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Recalling (56), this will imply that (Z,Zu) is not γ-regular as the fact that |W ′| ≥

ε1/10|W 1| means that

|W ′| ≥ ε1/10|W 1| ≥(66) ε
1/10δ2|Wu| ≥(50)

1

4
ε1/10δ2|Zu| ≥

1

4
γ1/10δ2|Zu| ≥(55) γ|Zu| ,

where in the fourth inequality we use the fact that γ ≤ ε. A similar derivation would

show that |W ′′| ≥ γ|Zu|.

So we are left with picking the sets W ′ and W ′′. Let us focus on W ′. Consider

some 1 ≤ `′ < `. Since we assume that A′ is contained is one of the clusters of Pr`

there must be a cluster Y ′q ∈ Pr`′ such that A′ ⊆ Y ′q . Take some p ∈ N and let

Y ′p ∈ Pr`′ be the cluster containing Yp. So we see that for each pair (Yq, Yp), either

all the vertices (x, y) ∈ Yq × Yp get an extra weight of α`′ from that trap or none

of them do (depending on whether (Y ′q , Y
′
p) belongs to the trap placed on Pr`′ ). So

for each pair (Yq, Yp) there is a subset Sp ⊆ [` − 1] representing those traps from

which (Yq, Yp) got an extra weight. Recall now that H contains only 1
48

√
log(1/ε)

many traps, so there are (much) less than 1/ε1/10 ways to pick a set Sp ⊆ [`− 1]. So

there must be a subset N ′ ⊆ N such that Sp = Sp′ for all p, p′ ∈ N ′ and such that

|W 1∩
⋃
p∈N ′ Yp| ≥ ε1/10|W 1|. We now take W ′ = W 1∩

⋃
p∈N ′ Yp and take S ′ to be the

subset of [` − 1] that is common to all p ∈ N ′. Recapping the above, we see that if

`′ ∈ S ′ then d`′(A
′,W ′) = α`′ and if `′ 6∈ S ′ then d`′(A

′,W ′) = 0. We can now define

W ′′ and S ′′ in a similar way, such that if `′ ∈ S ′′ then d`′(A
′,W ′′) = α`′ and if `′ 6∈ S ′′

then d`′(A
′,W ′′) = 0.

If S ′ = S ′′ set α = α`, otherwise, let `′ be the smallest index that appears in

exactly one of the sets S ′ and S ′′ and set α = α`′ . Let us now compare dH(A′,W ′)

and dH(A′,W ′′). By our choice of α, the traps with weight larger than α have the

same contribution to both dH(A′,W ′) and dH(A′,W ′′). Using again the way we chose

α we get that ∣∣∣∣∣
`′∑
`=1

d`(A
′,W ′)− d`(A′,W ′′)

∣∣∣∣∣ = α .
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Now observe that the total weight added by traps with weight smaller than α is

bounded by α/4 + α/16... < α/3 so after taking into account all traps Pr1 , . . . ,Prf

there is still a discrepancy of at least∣∣∣∣∣
f∑
`=1

d`(A
′,W ′)− d`(A′,W ′′)

∣∣∣∣∣ ≥ α/2 .

As in previous proofs, we do not need to consider the weight coming from traps

not placed on Pr1 , . . . ,Prf (that is, traps placed on partitions refined by Pr−1) since

A′ ⊆ Xi ∈ Pr−1 and Wu ⊆ Xj ∈ Pr−1. Finally, by Fact 4.9 the total weight assigned

to edges in G is bounded by 1/4
√

log(1/ε) ≤(52) α/4, so after taking into account all

the weights assigned to (A′,W ′) and (A′,W ′′) in H we still have

|dH(A′,W ′)− dH(A′,W ′′)| ≥ α/4 ≥(52) ε ≥ γ .

This proves (67) thus completing the proof.

Claim 4.31. If there is a cluster X ∈ Pr`u such that A′ ⊆ X and a cluster Y ∈ Pr`u
such that B′ ⊆ Y then (Z,Zu) is not γ-regular.

Proof. If either A′ or B′ satisfies (65) then Claim 4.30 implies that (Z,Zu) is not γ-

regular. So suppose both do not satisfy (65). Now note d`u(A′,Wu), d`u(B′,Wu) ≤ α`u

since α` is the maximum weight a pair of sets can get from the trap placed on Pr` .

Recall that `u is an integer for which (59) holds hence one of the sets (say A′) satisfies

0 ≤ d`u(A′,Wu) ≤ δ2 while the other satisfies α`u − δ2 ≤ d`u(B′,Wu) ≤ α`u . But this

means that

|d`u(A′,Wu)− d`u(B′,Wu)| ≥ α`u − 2δ2 ≥(54) α`u/2 ,

so (Z,Zu) is not γ-regular by Claim 4.29.

We are now ready to complete the proof of Claim 4.28. We know from Claim 4.31

that one of the sets A′ or B′ must satisfy the first requirement of the claim. Suppose

it is A′. If A′ also satisfies the second item then we are done, so suppose it does not.
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If B′ also satisfies the first requirement of the claim, then since `u is chosen to

satisfy (59) and since we assume that A′ does not satisfy the second requirement of

the lemma, we get that B′ must satisfy the second requirement and we are done.

So suppose now that the B′ does not satisfy the first item. If δ2 ≤ d`u(B′,Wu) ≤

α`u−δ2 then by Claim 4.30 (Z,Zu) is not γ-regular, which contradicts the assumption

of Claim 4.28 that (Z,Zu) is γ-regular. Finally, if either d`u(B′,Wu) ≥ α`u − δ2 or

d`u(B′,Wu) ≤ δ2 we can combine this with the assumption that A′ does not satisfy

the second requirement of the claim to get that

|d`u(A′,Wu)− d`u(B′,Wu)| ≥
1

2
α`u − 3δ2 >(54) 0.4α`u .

Claim 4.29 then implies that (Z,Zu) is not γ-regular which again contradicts the

assumption of Claim 4.28.
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CHAPTER V

SIMULATION OF COUNTING TURING MACHINES

5.1 Introduction

The Turing machine is the most fundamental model of computation. Introduced by

Alan Turing in 1936 [102], almost all of Theoretical Computer Science as we know it

today has been built on top of the basic building block that is the Turing machine.

The simplest Turing machine just contains an infinitely long tape, a head that

reads the tape and a state control that controls the movement of the Turing tape

according to the symbols read. The tape serves as the carrier for the input, a storage

device and (if necessary) as an output device. The basic model of the Turing ma-

chine is deterministic, in that, the output and the computation process of the Turing

machine is determined only by the input given to the Turing machine. Even though

there are more complicated variants of Turing machines, it could be shown that they

are all equivalent in computation power.

Usually, in computer science, one describes algorithms in pseudocode or a simple

programming language, such as C++. The relevance of Turing machines is captured

by the Church-Turing thesis, which asserts that one can encode any “reasonable”

algorithm into a Turing machine algorithm. That is, any algorithm that could be

described by pseudocode or a conventional programming language can be encoded so

that a Turing machine could be made to run this algorithm.

In this chapter, we observe randomized algorithms from a different perspective:

we view them as algorithms performed by randomized Turing machines. In this set-

ting, the derandomization of a randomized Turing machine amounts to performing a

deterministic simulation of it. The basic ability required for simulating a randomized
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Turing machine is the ability to count the number of accepting computations. We

study the following problem in this chapter: how fast can a deterministic Turing ma-

chine count the number of accepting computations of a randomized/nondeterministic

Turing machine? We exploit the fact that the Turing machine operations are very

structured and hence a simulation algorithm should be able to exploit this structure.

A key feature of our algorithms is that they make no assumption about the kind

of problem that the Turing machine is attempting to solve/compute. Our results only

rely on the structure of the Turing machine and the manner in which a computation

is performed.

5.1.1 Simulation of Turing Machines

How fast can we deterministically simulate a nondeterministic Turing machine (NTM)?

This is one of the fundamental problems in theoretical computer science. Of course,

the famous P 6= NP conjecture, as most believe, would answer that we cannot hope

to simulate nondeterministic Turing machines very fast. However, the best known

result to date is the famous theorem of Paul, Pippenger, Szemerédi, and Trotter [78]

that NTIME(O(n)) is not contained in DTIME(o((n log∗ n)1/4)). This is a beautiful

result, but it is a long way from the current belief that the deterministic simulation

of a nondeterministic Turing machine should in general take exponential time.

We look at NTM simulations from the opposite end: rather than seeking better

lower bounds, we ask how far can one improve the upper bound? We suspect even

the following could be true:

For any ε > 0, NTIME(t(n)) ⊆ DTIME(2εt(n)).

To our knowledge, this does not contradict any of the current strongly held beliefs.

This interesting question has been raised before, see e.g., [36].

For a given nondeterministic Turing machine (NTM), counting the number of

accepting computation paths is a more difficult problem in general. If we can count
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the number of accepting computation paths, we can check if the count is nonzero or

zero, thereby determining if the NTM accepts or not. So counting the number of

accepting computation paths is at least as hard as simulating an NTM. Moreover,

the complexity class #P captures the complexity of counting for decision problems

in NP. The computational power of #P is highlighted by a celebrated result of Toda

[99]. Toda showed that a polynomial time machine with a #P oracle can perform

any computation in the polynomial hierarchy.

We prove that we can deterministically count the number of accepting paths of a

k-tape NTM N in time

akt/2 · f(·) ,

where a is the alphabet size, and t is the running time of N . The function f grows

much slower than akt/2 and so does not contribute significantly to the running time.

Our main theorem is:

Theorem 5.1. The number of accepting computations of any k-tape NTM N with

time complexity t(n) can be computed by a DTM M in time

akt(n)/2H

√
t(n) log t(n)

N · q2poly(log q, k, t(n), a),

where a is the alphabet size and q is the number of states of N and HN is a constant

that depends only on a.

The ability to count the number of accepting computations immediately implies

the ability to simulate probabilistic classes, like PP. In [103], van Melkebeek and

Santhanam had shown a simulation of probabilistic time machines in deterministic

time o(2t). However, their model restricted the nondeterministic choices available.

Our model is more general and considers all the choices available, i.e., the choices in

tape movement, written alphabet and next state.

Our bound has two key improvements. First, all nondeterminism arising from

the choice of the next state or tape head movements is subsumed into the factor
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H

√
t(n) log t(n)

N with much smaller time dependence, compared to the main exponential

term. Second, while N may write any of S = akt(n) strings nondeterministically on

its k tapes, our simulator needs to search only
√
S of that space. Thus, we search the

NTM graph in the square-root of its size.

There is no general deterministic procedure that can search a graph of size S in
√
S time, even if the graph has a simple description. Hence to prove our theorem we

must use the special structure of the graph: we must use that the graph arises from

an NTM. We use several simple properties of the operation of Turing tapes and the

behavior of guessing to reduce the search time by the square root.

5.1.2 Some related work

The only separation of nondeterministic from deterministic time known is DTIME(n) 6=

NTIME(n) proved in [78], which is also specific to the multi-tape Turing machine

model. It is also known that nondeterministic two-tape machines are more pow-

erful than deterministic one-tape machines [59], and non-deterministic multi-tape

machines are more powerful than deterministic multi-tape machines with additional

space bound [60]. Limited nondeterminism was analyzed in [36], which showed that

achieving it for certain problems implies a general subexponential simulation of non-

deterministic computation by deterministic computation. In [103] an unconditional

simulation of time-t(n) probabilistic multi-tape Turing machines Turing machines

operating in deterministic time o(2t) is given.

For certain NP-complete problems, improvements over exhaustive search that in-

volve the constant in the exponent were obtained in [13], [16], [89], and [96], while

[53] and [74] also found NP-complete problems for which exhaustive search is not the

quickest solution. Williams [105] showed that having such improvements in all cases

would collapse other complexity classes. Drawing on [103], Williams [105] showed
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that the exponent in the simulation of NTM by DTM can be reduced by a multi-

plicative factor smaller than 1. The NTMs there are allowed only the string-writing

form of nondeterminism, but may run for more steps; since the factor is not close to

1/2, the result in [105] is incomparable with ours.

5.2 Model & Problem Statement

Given a nondeterministic Turing machine (NTM) N , let t = t(n) be the time com-

plexity for inputs of size n. We assume that t(n) is time-constructible and space-

constructible. A function f : N→ N is called time-constructible if there exists a Tur-

ing machine M that given a string 1n consisting of n ones as input, outputs the binary

representation of f(n) in O(f(n)) time. Similarly, f is called space-constructible if

there exists a Turing machine M that given the string 1n, outputs the binary repre-

sentation of f(n), while using only O(f(n)) space. Throughout this chapter, we will

use q for the number of states, k for the number of tapes, and a for the alphabet size

of N . Our question is, in terms of a, k, q, what is the most efficient way in which a de-

terministic Turing machine (DTM) can count the number of accepting computations

of N? Let us first see two straightforward approaches.

Tracing the computation tree: This is the standard method, the one that is the

most straightforward. Here we trace down each computation path of the NTM N

from the starting configuration till it halts. We keep count of the number of accepting

paths. Since we do not limit N to be binary-branching, individual nodes of the tree

may have degree as high as v = ak3kq, where the “3” allows each head on each tape

to move left, right, or stationary. This leads to the following proposition.

Proposition 5.2. The number of accepting computations of any NTM N with time

complexity t(n) can be computed by a DTM M in time c(N)t(n), where c(N) is a

constant depending on N .

An upper bound for c(N) is given by the maximum degree of the computation
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tree, v, which depends on q as well as k and a. There is thus a factor qt in the running

time of M . It would be our goal to eliminate such a factor.

Traversing the configuration graph: Here we show that we can eliminate qt factor

by looking at the configuration graph of N .

A configuration of a Turing machine is an encoding of the current state, the tape

contents, and current position of the tape heads. Configurations form a directed graph

where there are directed edges from a configuration to a valid successor configuration,

with sources being the initial configurations Ix on given inputs x and sinks being

accepting configurations Ia (perhaps including non-accepting halting configurations

too). When N uses at most space s on any one tape, the number of nodes in the

graph (below Ix) is at most

qakssk.

Notice that s ≤ t holds trivially, where t is the running time of N . By using a

modified configuration graph and a variant of the Breadth First Search algorithm, we

get the following proposition.

Proposition 5.3. The number of accepting computations of any NTM N with time

complexity t(n) can be computed by a DTM M in time q2(3at)kakt(n)poly(log q, k, t(n), a).

Proof. We consider the following modified configuration graph C̃: the nodes are pairs

(I, p), where I is a configuration of the NTM N and p is an integer 0 ≤ p ≤ t. By the

above bound, this graph has at most S = qakttk · (t + 1) nodes. There is a directed

edge from (I, p) to (I ′, p′) if and only if I ′ is a valid successor configuration for I in

the NTM N and p′ = p + 1. Notice that C̃ is a directed acyclic graph, and that for

any two nodes (I, p), (I ′, p′) ∈ V (C̃) all paths from (I, p) to (I ′, p′) are of the same

length. This follows from the fact that all the paths have to be of length p′ − p. One

can use a variant of Breadth First Search in C̃ to keep track of the number of shortest

paths to each node from the starting node (Ix, 0). By construction of C̃, each path
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is a shortest path, and this gives the number of shortest paths from (Ix, 0) to each

node. We use a look up table for simulating the transition function of N .

At the end, we have the number of paths leading to each node. We go through

all the nodes, and sum up the number of paths to all the nodes corresponding to

accepting configurations of N .

The dominant term in the running time comes from the sorting we need to perform.

This is

O(Sv · log(Sv) · logS) = q2(3at)kaktpoly(log q, k, t, a).

Notice that the dependence on q is at most q2, not qt. Proposition 5.2 and Propo-

sition 5.3 present the tradeoff between space and time. For tracing the tree, we need

to store only the current path from the root and some local information, but we

need to spend more time in re-computing nodes that are reached by multiple paths.

In Proposition 5.3, we avoid this redundant expansion at the expense of storing the

whole list of visited nodes.

Theorem 5.4. The number of accepting computations of any NTM N can be com-

puted by a DTM M in time c(N)t(n), where t(n) is the time complexity of N and the

constant c(N) depends on the alphabet size a and the number of tapes k of N , but is

independent of q.

Proof. We define weak trace as the move labels on an accepting path in the com-

putation tree, but omitting the next-state information. There are only (ak3k)t such

potential witnesses to enumerate. We call a path “compatible with the weak trace

y” if it adds states q0, . . . , qt to the parts specified by y to make a legal computation.

Below, we show that for each of these weak traces we can compute the number of

compatible accepting computations in time q2a2k3kpoly(log q, a, k, t).
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For each step j in the computation, define Qj to be the set of pairs (q, c), where

q is a state N that can be in at step j on some full path that is compatible with y,

and c is the number of compatible full paths that lead to q at step j. We also keep

track of the number of compatible accepting computation paths.

Initially Q0 = { (q0, 1), (qA, 0) }, where q0 is the start state of N and qA is the

accepting state. Given Qj−1, to compute Qj, we first get the entry (qA, cA) ∈ Qj−1.

and add (qA, cA) to Qj. For each pair (r, c) in Qj−1, we look up all possible next

states r′ in a pre-computed lookup table based on the transition relation of N . For

each compatible transition of r to r′ at the jth step, we add (r′, c) to Qj where c is

the second entry from (r, c) in Qj−1. If the element (r′, c) already exists in Qj, we

simply add a duplicate copy. This is done to preserve the count.

After computing each Qj, M needs to sort and combine the duplicate states in Qj.

All of the pairs (r′, cir′) ∈ Qj are replaced by one pair (r′,
∑

i c
i
r′) where the second

entry is the sum of all the second entries. This achieves a two-fold purpose. First, the

second entry of r′ is the number of compatible paths leading to r′. Second, this helps

maintain the sets Qj bounded in size. The simulation finally goes through Qt, and at

the end the second entry in (qA, cA) ∈ Qt gives the number of accepting computations

compatible to the given weak trace.

The deterministic counting machine M has k + 3 tapes. The first k tapes are

meant to simulate the tapes of the NTM N . The next tape contains the transition

function of the NTM as a lookup table. The remaining two tapes left alone for the

bookkeeping.

The lookup table rows are indexed by the current state, the k symbols being

currently read, the k symbols that would be written and k directions (left, right or

stay) in which the tape heads shall move. The entries contain: (i) all the possible

states that N can move to, and (ii) the number of distinct compatible ways to reach

each state corresponding to the indexed state, symbols read and written and directions
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moved. The lookup table is stored in a serial fashion in a single tape. There are

q(3a2)k rows and each row could have at most q entries. The cost of a look up is

upper bounded by q(3a2)k · [k log(3a2) + log q] + q log q.

After the lookups, we sort and combine duplicates from a set (of pairs) that could

be potentially q2 in size. This takes q2 log q comparisons, where each comparison costs

log q, yielding a running time of q2 log2 q. Multiplying the whole expression by t, we

get that the running time per weak trace is

[q(3a2)k · [k log(3a2) + log q] + q log q + q2 log2 q] · t,

which can be upper bounded by

h(a, q, k, t) = q2a2k3kpoly(log q, a, k, t).

We run through all the possible weak traces and obtain the number of compatible

accepting computations for each one. We add the number over all weak traces to get

the distinct number of accepting computation paths. Notice that each computation

path is accounted for by exactly one weak trace, so there is no over-counting.

The overall running time is (3kak)t multiplied by the function h. The factor h is

majorized by (1 + δ)t for any δ > 0 as t becomes sufficiently large, which happens

as inputs x to N become sufficiently large. The whole time is thus bounded by

(3kak + δ′)t, where δ′ = 3kakδ. Note that δ′ is independent of q and can likewise be

made arbitrarily small when a and k are fixed. Hence the total computation time is

asymptotically bounded by c(N)t(n) where c(N) is independent of q.

We improve on this idea in the next section by using block traces, which are more

succinct witnesses, carrying more information. As a consequence, we would need to

enumerate a smaller number of them, resulting in a faster simulation.
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5.3 Block-Trace Simulation

We introduce the idea of block traces, where we break down computations of the

NTM N into “blocks” of d steps, where d will be specified later. Let us start with

the following definitions.

Definition 5.5. A segment of size d for a k-tape NTM N with alphabet of size a is

a sequence of 4-tuples

τ = [(r1, f1, `1, u1), . . . , (rk, fk, `k, uk)],

where for each tape j, 1 ≤ j ≤ k:

• rj ∈ { 0, . . . , d } stands for the maximum number of cells to the right of its

starting position the tape head will ever be over the next d steps,

• fj ∈ { 0, . . . , d− rj } is the number of cells left of the position of rj that the tape

head ends up after the d-th step, and

• `j ∈ { 1, . . . , d } is the number of distinct cells that shall be changed over the

next d steps on tape j. For a given rj and fj we have the bound `j ≤ d + 1 −

min{ rj, fj }.

• uj is a string of length `j, which is interpreted as the final contents of those

cells.

Definition 5.6. A block trace of block-size d, for an NTM N , is a sequence of

segments of size d.

Definition 5.7. An accepting full path is compatible with a block trace if the latter

has dt/de blocks where t is the total number of steps in the path, and in every block

each 4-tuple (rj, fj, `j, uj) correctly describes the head locations after the corresponding

d steps of the full path, and every character in uj is the correct final content of its

cell after the d steps.
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Every accepting computation path gives rise to a block trace with which it is

compatible. The above definition includes all the possible head movements of N

over the next d steps. The following immediate, but critical lemma validates the

correctness of this method of counting.

Lemma 5.8. Two different block trace witnesses give rise a disjoint set of computa-

tion paths.

Proof. Every computation path has a corresponding block trace witness. So it is

enough to show that this witness is unique. This follows from the definition of block

trace witness. For a given fixed computation path, at each time instance and for each

tape j, the values rj, fj, `j, uj are fixed as in definition 5.5. So the lemma follows.

The running time of the resulting simulation is a consequence of the following

lemmas. Lemma 5.9 bounds the number of potential block trace witnesses for a given

d. The proof of Lemma 5.10 follows by generalizing the ideas in Theorem 5.4. The

main distinction is that we are dealing with a block trace witness, i.e., segments of size

d each. The structure of the lookup table needs to be modified accordingly. Lemma

5.10 thus gives us an algorithm to count the number of accepting computations com-

patible with each block trace witness. Theorem 5.11 combines these two lemmas to

obtain an algorithm to count the number of accepting computations of the NTM N .

Lemma 5.9. The number B of valid segments is at most (32ad)k. Hence the number

of potential block trace witnesses is at most Bt/d = akt32kt/d.

Proof. We first bound the number of 4-tuples per each tape. We note that for ` cells

affected for a particular segment, there are a` possible strings u. We sum over all

the possible values of ` – ranging from d to 1. Direct calculation gives us that for

` = d, there are at most 6 possible sets of (r, f), for ` = d − 1 at most 14, etc. An

upper bound for the number of possible sets for ` = d+ 1− i is given by 6, 14, 24, . . .
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for i = 1, 2, 3, . . .. This can be simply written as i2 + 5i. A total number of distinct

4-tuples is upper bounded by

1∑
`=d

[(d+ 1− `)2 + 5(d+ 1− `)]a` = ad ·
d∑
i=1

(i2 + 5i)/ai−1 ≤ 32ad,

where the last inequality follows by the worst case value a = 2. Since we have k

tapes, we obtain B ≤ (32ad)k. (In fact, we can get B ≤ (Caa
d)k where Ca −→ 6 as

a −→∞, but this tighter counting does not result in any notable improvement in the

eventual simulation.)

Lemma 5.10. The number of accepting computations that are compatible with a

given block trace witness can be calculated by a deterministic Turing machine in time

q2a3kdpoly(log q, k, t, a, d).

Proof. We generalize the ideas in Theorem 5.4. We are given a block trace witness,

i.e., t/d segments of size d each. The idea is to maintain the set Qi of pairs (r, c). Here

r is a state that the machine N on input x can possibly be in, after the i-th segment

of d steps in some computation path, and c is the number of distinct compatible

computation paths leading to r at the time instance i · d. We precompute a lookup

table Td whose rows are indexed by the following information:

• An initial state p entering the segment of d steps.

• Strings wj of length at most 2d − 1 indicating the true contents in the cells

surrounding the head on tape j. The cases where a segment of cells on the

right or left are blank (through never having been visited before) are handled

by adjoining integers bj indicating such cells.

• The string uj and integers rj, fj for each tape j, representing a segment in a

block trace.

The lookup table entries contain pairs (r, c) where r is a state that can be reached from

p in a manner compatible with the lookup table index and c the number of compatible
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paths to reach p from r. The lookup table is the d-length segment equivalent of the

lookup table in Theorem 5.4. There are qa(3d−1)kd2 rows of the table, the length of

each index in binary being thus asymptotic to log2 q+ (3d− 1)k log2 a+ 2 log2 d. The

cost of each lookup is thus upper bounded by qa3kdd2(log q + 3kd log a + 2 log d) +

q log q. Similar to Theorem 5.4, we transfer the values in the pair corresponding to

the accepting state qA from Qi−1 to Qi for each i. We stop the computation when we

reach Qt. The second entry in the pair corresponding to qA in Qt gives the number

of distinct compatible computation paths leading to an acceptance.

By including the time for sorting the states, and multiplying by the running time

of t/d segments, we get

[qa3kdd2(log q + 3kd log a+ 2 log d) + q log q + q2 log2 q] · t/d,

which is upper bounded by

q2a3kdpoly(log q, k, t, a, d).

Theorem 5.11. The number of accepting computation paths of a nondeterministic

k-tape TM with q states and alphabet size a can be computed by a multi-tape deter-

ministic TM in time

aktC
√
t

N · q
2poly(log q, k, t, a),

where CN is a constant that depends only on a and k.

Proof. This follows from Lemmas 5.9 and 5.10. The deterministic machine tries out

all the possible block witnesses, with a running time

q2akt+3kd32kt/dpoly(log q, k, t, a, d).

The machine keeps track of number of compatible accepting paths for each witness

and then adds them up to get the total number of accepting computations. Lemma
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5.8 ensures that there is no overcounting, i.e., each computation path is captured by

exactly one block trace witness. We can choose d to be such that these the product

of the two factors a3kd and 32kt/d are minimized. Direct calculation gives us that this

happens when d =
√

5t/(3 log2 a). Setting CN = 2k
√

15 log2 a, we get a running time

of

aktC
√
t

N · q
2poly(log q, k, t, a).

5.4 Main Theorem

Our goal in this section is to reduce the exponent of the computation time by half.

The algorithm that searches the configuration graph, discussed in Section 5.2, needs

a running time of q2(3at)kaktpoly(log q, k, t, a). The block trace method requires a

running time of aktC
√
t

N · q2poly(log q, k, t, a). The time bounds seem similar, but the

approaches are quite different, we shall combine these two approaches to get the

reduction in running time.

In the graph search method, the dominating part in the running time is caused

by the number of configurations. There are at most qakttk of them. If the NTM

used only a tape space of kt/2 over all the k tapes, then the number of configura-

tions would be reduced to qakt/2tk. This would lead to a computation that requires

q2(3at)kakt/2poly(log q, k, t, a) time.

But when the NTM computations use more than kt/2 tape space, we will use the

block trace method to exploit an interesting property of the Turing machines. We

make the following observation: the last time we visit a location in the NTM tape,

we need not write any character there. This is because the tape head would not be

reading from that position later. If the NTM visits at least kt/2 locations on all tapes

together, then each of these kt/2 locations is visited once for a last time. For the

block traces, we do not need to have a symbol to write down, if we are visiting a tape
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location for a last time. We could potentially save on a factor of akt/2 on the running

time. This brings down the main factor in the running time in Theorem 5.11 to akt/2

as well.

We need the following definition and the subsequent Lemma 5.13 before getting

to the main theorem. Lemma 5.14 ensures that we do not over-count the number of

accepting computations and is immediate from the definition of directional traces.

Definition 5.12. A directional segment of size d for a k-tape NTM N with alphabet

size a is a segment of size d, omitting the strings uj, that is

τ = [(r1, f1, `1), . . . , (rk, fk, `k)],

where rj, fj, `j are defined as in Definition 5.5.

A directional trace of block size d, is a sequence of directional segments of size d.

Lemma 5.13. The number of segments of block size d is upper bounded by d3. The

number of potential directional trace witnesses is at most (d3)t/d.

Proof. The calculations are similar to those in the proof of Lemma 5.9. The difference

here is that we do not need to count the number of possible strings u for each tape.

This bounds the number of directional segments to
∑d

i=1(i2 +5i) = 1
3
d(d+1)(d+8) ≤

d3 per tape, for d ≥ 6. Since we have k tapes, the bound is d3k. The bound on

directional traces follows.

Lemma 5.14. Two different directional trace witnesses give rise a disjoint set of

computation paths. In other words, every computation path corresponds to a unique

directional trace witness.

We are now ready to prove the main theorem.

Theorem 5.1 (Restated). The number of accepting computations of any k-tape NTM

N with time complexity t(n) can be computed by a DTM M in time

akt(n)/2H

√
t(n) log t(n)

N · q2poly(log q, k, t(n), a),
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where a is the alphabet size and q is the number of states of N and HN is a constant

that depends only on a.

Proof. We assume that we know an upper bound t = t(n) as a function of the input

length n. (If not, we run the computations for t = 1, 2, 3, · · · , and this will introduce

a multiplicative factor t(t− 1)/2, which is poly(t) anyway.)

The counting simulation, performed by the DTM M , consists of three parts. First,

preprocessing the directional traces. Second, running the block trace computation

for those traces that have tape usage ≥ kt/2. And third, running the graph search

computation restricting the tape usage to kt/2.

1. This is the preprocessing stage. Here the DTM M lists down all the pos-

sible directional traces. There are d3t/d such traces by Lemma 5.13. For

d =
√

5t/(3 log2 a), as optimized in Theorem 5.11, we get that the number

of traces is (
√
t)O(

√
t) or H

√
t log t

N , where HN depends only on a.

The machine M calculates the total tape usage of N for each directional trace.

In particular, M decides if the total tape usage is ≤ kt/2 or ≥ kt/2. Also, for

each tape location M calculates the time of the last visit to that location. This

data is stored in a lookup table, in another tape of M . All these operations can

be performed in time poly(k, t) per directional trace.

2. The block trace simulation is performed for the directional traces where the total

tape usage is ≥ kt/2. For a given directional trace, all the block traces that

match the (r, f, `) parts are generated, but with a small difference. For those

time instances for which the tape head is visiting a location for the last time,

the block trace is generated with a character in the corresponding location.

The preprocessed data from the directional traces is used to determine if the

visit is a last one for the tape location.

There are at least kt/2 locations visited for the last time, so the number of
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corresponding block traces is ≤ akt/2. So the total number of relevant directional

traces here is upper bounded by H
√
t log t

N akt/2.

The running time in the Lemma 5.10 holds essentially by the following observa-

tion. The lookup table could be expanded (slightly) to accommodate one more

symbol in the alphabet, the ‘ ’ symbol. The set of states that are possible in the

lookup table after a doing block trace move with a ‘ ’ is obtained by treating

the ‘ ’ symbol as a wildcard. To accommodate for the symbol, for every state

r reachable, the lookup table provides the pair (r, c) where c is the number of

distinct ways to reach r compatible with the given directional segment. The

number c also changes (from the lookup table in Lemma 5.10) because of the

wildcard nature of the symbol.

The running time of this stage is akt/2H
√
t log t

N · q2poly(log q, k, t, a).

3. The directional trace can be discarded for the cases when the total tape usage is

≤ kt/2. For all such cases combined, just one call to the graph search simulation

is sufficient. The deterministic machine M keeps track of the configurations,

and rejects a branch as soon as the tape usage exceeds kt/2. This gives a

running time of akt/2q2(3at)kpoly(log q, k, t, a).

The theorem follows by observing that every accepting computation path of the NTM

N , is captured by exactly one of the two simulations, the block trace or the graph

search method. The total number of accepting computations is simply the sum of the

numbers given by the two methods. The running time is

T (n) = akt/2H
√
t log t

N · q2poly(log q, k, t, a).
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5.4.1 Uniform Simulation

We remark that we could convert the computation in the proof of Theorem 5.1 into a

uniform computation performed by a universal Turing machine. This Turing Machine

would take the description of the NTM N , along with its input x as arguments. This

can be done because the description of N is used only in computing the lookup tables.

An application of [80] on the universal machine would yield a 2-tape machine that

computes the number of accepting paths of N , and runs essentially in the same time

as the machine constructed in the proof of Theorem 5.1. We describe it formally

below:

Theorem 5.15. We can construct a deterministic two-tape Turing machine that

given any k-tape NTM N running in time t(n) and binary string x of length n as

input, simulates t(n) steps of N(x) in time

akt(n)/2H

√
t(n) log t(n)

N · q4poly(log q, k, t(n), a), (68)

where a is the alphabet size of N , q is the number of states of N , and HN is a constant

that depends only on a and k.

Proof. We first extend Theorem 5.1 to show that we can build a k + 3-tape deter-

ministic TM M , which takes in the description of the NTM N and an input string

x as input, and performs a uniform simulation in the following running time as in

Theorem 5.1.

t′(n) = akt/2H
√
t log t

N · q2poly(log q, k, t, a).

To build M we need to show how to perform each action in Theorem 5.1 with a

universal TM. We go through the three parts, as listed in the proof of Theorem 5.1,

and explain how each of the parts can be performed. Like in Theorem 5.1 we assume

that we know an upper bound t = t(n) as a function of the input length n.
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1. The preprocessing stage is a set of calculations which are independent of the

machine N . This can be performed with no knowledge of the transition function

of N .

2. The block trace simulation requires the lookup table Td which provides the

successor state to each state as in Lemma 5.10. Once the DTM has this table,

it can perform the simulation. This can be computed from the description of

the NTM N , which contains the description of the transition function δ of N .

3. Here we need to perform the graph search simulation. We require the ability

to compute the configuration(s) which are successor(s) to a given configuration.

This too can be computed from the description of the transition function of the

NTM N .

Notice that the running time remains the same as that in Theorem 5.1, up to a

polynomial factor. The number of tapes that is required is k + 3 as in Theorem 5.1,

we need k tapes to recreate the tapes of N , one store the lookup table and two for

other computations.

Now we apply the Hennie-Stearns construction [49] to M to obtain the required

2-tape DTM which simulates M . Here the second tape serves only to copy “blocks”

on the first tape to adjacent locations. The 2-tape TM thus runs in time at worst

O(t′(log t′+ |M |)). Using the above expression for t′, we get that the running time is

at most

t′ ·O(kt/2 log a+
√
t log t logHN + lower terms) + t′ · |M |

where |M | is the program size of M . It is O(t′(log t′ + |M |)) not O(t′ log t′ · |M |)

because the part of the second tape storing the program needs to be consulted only

once for each step simulated. The multiplier inside the O(. . . ) is absorbed into the

poly term of (68), so we are left only to bound and absorb the term t′ · |M |, The proof

of Theorem 5.1 constructs the program size |M | of M to be O(|N |+ kt logHN) plus
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lower-order terms. This can be observed by the following argument: The machine

M needs to keep track of the basic operations of N , plus it has to keep track of the

counters for directional and block traces, for which O(kt logHN) is an upper bound.

The program size of N , i.e. |N | is given by approximately a2k3kq2. The multiplier

kt logHN of t′ is likewise absorbed into the poly term, leaving just |N | ≈ a2k3kq2 to

deal with. The first part converts the multiplier q2 into q4, while the rest can be

absorbed into the H

√
t(n) log t(n)

N term, by increasing HN slightly.

5.5 Implications and Possible Extensions

We have shown techniques by which we can deterministically search the computation

tree and count the number of accepting computations of an NTM in time square

root of the size of the graph. It would be interesting to see if one could use these

techniques to push the running time even lower. Also, it would be interesting to see

any lower bounds for the problem.

5.5.1 Simulating Probabilistic Classes

One consequence of being able to count the number of accepting computations exactly

is that we could deterministically simulate some randomized complexity classes. We

use the following definition of a probabilistic Turing machine and prove the following

theorem, almost immediately.

Definition 5.16. A probabilistic Turing machine is a TM that makes choices, possibly

at each step, based on probabilities assigned to each of the choices. We say that a

probabilistic TM P accepts a string x, if it accepts x with probability at least 1/2.

Theorem 5.17. A probabilistic k-tape TM P with q states and alphabet size a can

be simulated by a multi-tape deterministic TM in time

akt(n)/2H

√
t(n) log t(n)

N · q2poly(log q, k, t(n), a),

where t(n) is the running time of N and HN is a constant depending only on a.
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Proof. Given a probabilistic machine P that generates random coins for its compu-

tation, one can think of the corresponding nondeterministic Turing machine N , that

makes nondeterministic choices for the random coins. For a given input x, P would

decide on acceptance based on the number of random choices that lead to acceptance.

In terms of N , this translates to the number of different nondeterministic choices that

lead to acceptance.

The above theorem implies a simulation of probabilistic classes in the same running

time. We define the complexity class PP below.

Definition 5.18 ([41]). A language L is said to be in the class Probabilistic Poly-

nomial Time (denoted by PP) if it can be decided by a probabilistic Turing machine

that runs in polynomial time. An alternative characterization is that a language L is

in PP if there is a nondeterministic polynomial-time Turing machine N such that x

is in L if and only if M(x) has more accepting than rejecting paths.

Once we define PP as above, the following corollary is immediate.

Corollary 5.19. Consider a language L ∈ PP. Let L be decided by a k-tape proba-

bilistic TM with q states and alphabet size a that runs in time t(n). Then L can be

simulated in time

akt(n)/2H

√
t(n) log t(n)

N · q2poly(log q, k, t(n), a).

Van Melkebeek and Santhanam [103] gave an unconditional simulation of time-t(n)

probabilistic multi-tape Turing machines by Turing machines operating in determin-

istic time o(2t). They showed that the exponent in the simulation of probabilistic

TM can be reduced by a multiplicative factor smaller than 1 (as compared to our

factor of 1/2). Moreover, the class PP contains the classes BPP and BQP. Hence our

simulations imply a faster simulation of these classes also.
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5.5.2 Polynomial Hierarchy and Alternating TMs

By Toda’s theorem [99], we have that the entire polynomial hierarchy (PH)is contained

in P#P. But we cannot conclude that we have an Õ(akt/2) time simulation for classes

in PH. This is because Toda’s theorem involves a blow-up of the running time when

converting a problem in say, Σ2 to #P. This negates the advantage that we gain by

halving the exponent.

This leads us to a further open question. It would be interesting to see if we can

simulate any of the classes in PH by #P in the same time bound. This, combined

with our counting algorithm, would lead to a faster simulation of the classes in PH.

Alternatively, we could try to simulate a time-t(n) alternating TM, for instance a Σ2-

machine A, directly by iterating our uniform simulation for NTM’s. This seems to

work if the two phases of A are divided neatly into t(n)/2 steps each, but encounters

a problem if A is existential for t(n)(1 − ε) steps in some computation paths and

existential for only εt(n) steps in others.
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Schacht, M., “Quasi-randomness and algorithmic regularity for graphs with
general degree distributions,” SIAM J. Comput., vol. 39, pp. 2336–2362, April
2010.

[5] Alon, N., Duke, R. A., Lefmann, H., Rödl, V., and Yuster, R., “The
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[83] Rödl, V. and Schacht, M., “Regularity lemmas for graphs,” in Fete of
Combinatorics and Computer Science (Tóth, G. F., Katona, G. O. H.,
Lovász, L., Pálfy, P. P., Recski, A., Stipsicz, A., Szász, D., Miklós,
D., Katona, G. O. H., Schrijver, A., Szonyi, T., and Sági, G., eds.),
vol. 20 of Bolyai Society Mathematical Studies, pp. 287–325, Springer Berlin
Heidelberg, 2010.
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natorics,” in An Irregular Mind (Tóth, G. F., Katona, G. O. H., Lovász,
L., Pálfy, P. P., Recski, A., Stipsicz, A., Szász, D., Miklós, D.,
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