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Abstract

In an undirected graph, a matching cut is a partition of vertices into
two sets such that the edges across the sets induce a matching. The
Matching Cut problem is the problem of deciding whether a given graph
has a matching cut.

Let H be a fixed undirected graph. A vertex coloring of an undirected
input graph G is said to be an H-Free Coloring if none of the color
classes contain H as an induced subgraph. The H-Free Chromatic
Number of G is the minimum number of colors required for an H-Free
Coloring of G.

Both The Matching Cut problem and the H-Free Coloring prob-
lem can be expressed using a monadic second-order logic (MSOL) formula
and hence is solvable in linear time for graphs with bounded tree-width.
However, this approach leads to a running time of f(||ϕ||, t)nO(1), where
||ϕ|| is the length of the MSOL formula, t is the tree-width of the graph
and n is the number of vertices of the graph. The dependency of f(||ϕ||, t)
on ||ϕ|| can be as bad as a tower of exponentials.

In this paper, we provide an explicit combinatorial FPT algorithms for
Matching Cut problem and H-Free Coloring problem, parameterized
by the tree-width of G. The techniques are also used to provide an FPT
algorithm when H is forbidden as a subgraph (not necessarily induced)
in the color classes of G.

1 Introduction

Consider an undirected graph G = (V,E) such that |V | = n. An edge cut is an
edge set S ⊆ E such that the removal of S from the graph increase the number
of components in the graph. A matching is an edge set such that no two edges
in the set have a common end point. A matching cut is an edge cut which is also
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a matching. The matching cut problem is the decision problem of determining
whether a given graph G has a matching cut.

The matching cut problem was first introduced by Graham in [3], in the
name of decomposable graphs. Farley and Proskurowski [4] pointed out the
applications of the matching cut problem in computer networks – in studying
the networks which are immune to failures of non-adjacent links. Patrignani
and Pizzonia [5] pointed out the applications of the matching cut problem in
graph drawing. They refer to a method of graph drawing, where one starts with
a degenerate drawing where all the vertices and edges are at the same point.
At each step, the vertices in the drawing are partitioned and progressively the
drawing approaches the original graph. In this regard, the cut involving the non-
adjacent edges (matching cut) yields a more efficient and effective performance.

The matching cut problem is NP-Complete for the following graph classes:

• Graphs with maximum degree 4 (Chvátal [6], Patrignani and Pizzonia [5]).

• Bipartite graphs with one partite set has maximum degree 3 and the other
partite set has maximum degree 4 (Le and Randerath [7]).

• Planar graphs with maximum degree 4 and planar graphs with girth 5
(Bonsma [8]).

• K1,4-free graphs with maximum degree 4 (inferred from the reduction
in [6]).

The matching cut problem has polynomial time algorithms for the following
graph classes:

• Graphs with maximum degree 3 (Chvátal [6]).

• Line graphs (Moshi [9]).

• Graphs without chordless cycles of length 5 or more (Moshi [9]).

• Series parallel graphs (Patrignani and Pizzonia [5]).

• Claw-free graphs, cographs, graphs with bounded tree-width and graphs
with bounded clique-width (Bonsma [8]).

• Graphs with diameter 2 (Borowiecki and Jesse-Józefczyk [10]).

• (K1,4,K1,4 + e)-free graphs (Kratsch and Le [11]).

When the graph G has degree at least 2, the matching cut problem in G
is equivalent to the problem of deciding whether the line graph of G has a
stable cut set. A stable cut set is a set S ⊆ V of independent vertices, such
that the removal of S from the graph G increases the number of components
of G. Algorithmic aspects of stable cut set of line graphs have been studied
in [7, 12, 13, 14].

Recently, Kratsch and Le [11] presented a 2n/2nO(1) time algorithm for the
matching cut problem using branching techniques. They also showed that the
matching cut problem is tractable for graphs with bounded vertex cover.

Let G be an undirected graph. The classical q-Coloring problem asks to
color the vertices of the graph using at most q colors such that no pair of adjacent
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vertices are of the same color. The Chromatic Number of the graph is the
minimum number of colors required for q-coloring the graph and is denoted
by χ(G). The graph coloring problem has been extensively studied in various
settings.

In this paper we consider a generalization of the graph coloring problem
called H-Free q-Coloring which asks to color the vertices of the graph using
at most q colors such that none of the color classes contain H as an induced
subgraph. Here, H is any fixed graph, |V (H)| = r, for some fixed r. The
H-Free Chromatic Number is the minimum number of colors required to
H-free color the graph. Note that when H = K2, the H-Free q-Coloring
problem is same as the classical q-Coloring problem.

For q ≥ 3, H-Free q-Coloring problem is NP-complete as the q-Coloring
problem is NP-complete. The 2-Coloring problem is polynomial time solv-
able as it is equivalent to decide whether the graph is bipartite. The H-Free
2-Coloring problem has been shown to be NP-complete as long as H has 3 or
more vertices [15]. A variant of H-Free Coloring problem which we call H-
(Subgraph)Free q-Coloring which asks to color the vertices of the graph
such that none of the color classes contain H as a subgraph (not necessarily
induced) is studied in [16, 17].

Graph bipartitioning (2-coloring) problems with other constraints have been
explored in the past. Many variants of 2-coloring have been shown to be NP-
hard. Recently, Karpiński [18] studied a problem which asks to color the vertices
of the graph using 2 colors such that there is no monochromatic cycle of a fixed
length. The degree bounded bipartitioning problem asks to partition the vertices
of G into two sets A and B such that the maximum degree in the induced sub-
graphs G[A] and G[B] are at most a and b respectively. Xiao and Nagamochi [19]
proved that this problem is NP-complete for any non-negative integers a and b
except for the case a = b = 0, in which case the problem is equivalent to testing
whether G is bipartite. Other variants that place constraints on the degree of
the vertices within the partitions have also been studied [20, 21]. Wu, Yuan
and Zhao [22] showed the NP-completeness of the variant that asks to partition
the vertices of the graph G into two sets such that both the induced graphs are
acyclic. Farrugia [23] showed the NP-completeness of a problem called (P,Q)-
coloring problem. Here, P and Q are any additive induced-hereditary graph
properties. The problem asks to partition the vertices of G into A and B such
that G[A] and G[B] have properties P and Q respectively.

The Matching Cut problem, for a fixed q, the H-Free q-Coloring prob-
lem can be expressed in monadic second order logic (MSOL) [24]. The MSOL
formulation together with Courcelle’s theorem [25, 26] implies linear time solv-
ability on graphs with bounded tree-width. This approach yields an algorithm
with running time f(||ϕ||, t) · n, where ||ϕ|| is the length of the MSOL formula,
t is the tree-width of the graph and n is the number of vertices of the graph.
The dependency of f(||ϕ||, t) on ||ϕ|| can be as bad as a tower of exponentials.

In this paper we present explicit combinatorial algorithms for the Match-
ing Cut problem and H-Free q-Coloring problem. We have the following
results:

• a 2O(t)nO(1) algorithm for the matching cut problem, where t is the tree-
width of the graph.
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• O(q4tr · n) time algorithm for the H-Free q-Coloring problem for any
arbitrary fixed graph H on r vertices.

• O(2t+r log t · n) time algorithm for Kr-Free 2-Coloring problem, where Kr

is a complete graph on r vertices.

• O(23t2 · n) time algorithm for C4-Free 2-Coloring problem, where C4 is a
cycle on 4 vertices.

• We also show that the matching cut problem is tractable for graphs with
bounded neighborhood diversity and other structural parameters.

From the above we get the explicit FPT algorithm for H-Free Chromatic
Number problem. The techniques can also be extended to obtain analogous
results for the H-(Subgraph)Free q-Coloring.

2 Preliminaries

A parameterized problem is a language L ⊆ Σ∗×N, where Σ is a fixed and finite
alphabet. For (x, k) ∈ Σ∗×N, k is referred to as the parameter. A parameterized
problem L is fixed parameter tractable (FPT) if there is an algorithm A, a
computable non-decreasing function f : N → N and a constant c such that,
given (x, k) ∈ Σ∗ × N the algorithm A correctly decides whether (x, k) ∈ L in
time bounded by f(k).|x|c.

Sometimes, we write f(n) = O∗(g(n)) if f(n) = O(g(n)poly(n)), where
poly(n) is a polynomial in n. Two vertices u, v are called neighbors if {u, v} ∈ E,
we say v is a neighbor of u and vice versa. The set of all neighbors of u (open
neighborhood) is denoted by N(u). The closed neighborhood of u, is denoted by
N [u], is defined as N [u] = N(u) ∪ {u}. For a vertex set S ⊆ V , the subgraph
induced by S is denoted by G[S]. For a vertex set S ⊆ V , G\S denotes the
graph G[V \S]. When there is no ambiguity, we use the simpler notations S\x
to denote S\{x} and S ∪ x to denote S ∪ {x}.

For a vertex set S ⊆ V , the subgraph induced by S is denoted by G[S]. A
graph G is said to be H-free if G does not have H as an induced subgraph. We
follow the standard graph theoretic terminology from [27].

A parameterized problem is a language L ⊆ Σ∗ × N, where Σ is a fixed
and finite alphabet. For (x, k) ∈ Σ∗ × N, k is referred to as the parameter.
A parameterized problem L is fixed parameter tractable (FPT) if there is an
algorithm A, a computable non-decreasing function f : N → N and a constant
c such that, given (x, k) ∈ Σ∗ × N the algorithm A correctly decides whether
(x, k) ∈ L in time bounded by f(k).|x|c. For more details on parameterized
algorithms refer to [28].

A tree decomposition of G is a pair (T, {Xi, i ∈ I}), where for i ∈ I, Xi ⊆ V
(usually called bags) and T is a tree with elements of I as the nodes such that:

1. For each vertex v ∈ V , there is an i ∈ I such that v ∈ Xi.

2. For each edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi.

3. For each vertex v ∈ V , T [{i ∈ I|v ∈ Xi}] is connected.
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The width of the tree decomposition is maxi∈I(|Xi| − 1). The tree-width of G
is the minimum width taken over all tree decompositions of G and we denote it
as t. For more details on tree-width, we refer the reader to [29]. A rooted tree
decomposition is called a nice tree decomposition, if every node i ∈ I is one of
the following types:

1. Leaf Node: For a leaf node i, Xi = ∅.

2. Introduce Node: An introduce node i has exactly one child j and there is
a vertex v ∈ V \Xj such that Xi = Xj ∪ {v}.

3. Forget Node: A forget node i has exactly one child j and there is a vertex
v ∈ V \Xi such that Xj = Xi ∪ {v}.

4. Join Node: A join node i has exactly two children j1 and j2 such that
Xi = Xj1 = Xj2 .

The notion of nice tree decomposition was introduced by Kloks [30]. Every
graph G has a nice tree decomposition with |I| = O(n) nodes and width equal
to the tree-width of G. Moreover, such a decomposition can be found in linear
time if the tree-width is bounded.

3 Matching Cut Problem parameterized by Tree-
width

We present an O∗(2O(t)) time algorithm for the matching cut problem. The
algorithm we present is based on dynamic programming technique on the nice
tree decomposition.

The matching cut problem is a graph partitioning problem, where we need
to partition the vertices into two sets A and B such that the edges across the
sets induce a matching. And we denote such a matching cut by (A,B). We use
the following notation in the algorithm.

• i: A node in the tree decomposition.

• Xi: The set of vertices associated with bag at node i.

• G[Xi]: Subgraph induced by Xi.

• Ti: The sub-tree rooted at node i of the tree decomposition. This includes
node i and all its descendants.

• G[Ti]: Subgraph induced by the vertices in node i and all its descendants.

Let Ψ = (A1, A2, A3, B1, B2, B3) be a partition of Xi, we say that the par-
tition Ψ is legal at node i if it satisfies the following conditions (?):

1. Every vertex of A1 (respectively B1) has exactly one neighbor in B1

(resp. A1) and no neighbors in B2 ∪B3 (resp. A2 ∪A3).

2. Every vertex of A2 ∪ A3 (resp. B2 ∪ B3) has no neighbors in any of
the Bi’s (resp. Ai’s).
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We say that a legal partition ψ is valid for the node i if there exists a
matching cut (A,B) of G[Ti] such that the following conditions (??) hold:

1. The Ai’s are contained in A and the Bi’s are contained in B.

2. Every vertex of A1 (resp. B1) has a matching cut neighbor in B1

(resp. A1).

3. Every vertex of A2 ∪B2 has a matching cut neighbor in G[Ti] \Xi.

4. The vertices of A3∪B3 are not part of the cut-edges, i.e. every vertex
of A3 (resp. B3) has no neighbor in B (resp. A).

A matching cut is empty if there are no edges in cut. We say that a valid
partition Ψ of Xi is locally empty in G[Ti], if every matching cut of G[Ti] ex-
tending ψ (i.e. satisfying ??) is empty. Note that, a necessary condition for Ψ
to be locally empty is: A1 ∪A2 ∪B1 ∪B2 = ∅.

We define Mi[Ψ] to be +1 if Ψ is valid for the node Xi and not locally empty,
0 if it is valid and locally empty, and −1 otherwise. Now, we explain how to
compute Mi[Ψ] for each partition Ψ at the nodes of the nice tree decomposition.

Leaf node: For a leaf node i, Xi = ∅. We have Ψ = (∅, ∅, ∅, ∅, ∅, ∅) and
Mi[Ψ] = 0. This step can be executed in constant time.

Introduce node: Let j be the only child of the node i. Suppose, v ∈ Xi is the
new node present in Xi, v /∈ Xj . Let Ψ = (A1, A2, A3, B1, B2, B3) be a partition
of Xi. If Ψ is not legal, we straightaway set Mi[Ψ] to −1. Otherwise, we use
the below procedure to compute Mi[Ψ] for v ∈ Ai, and analogously for v ∈ Bi.

Case 1: v ∈ A1, then Mi[Ψ] = +1, if there exists a unique x ∈ B1, such that,
(v, x) ∈ E and Mj [Ψ

′] ≥ 0 for Ψ′ = (A1\v,A2, A3, B1\x,B2, B3 ∪ x).
Otherwise Mi[Ψ] = −1. Note that, Mi[Ψ] can not be 0, as v ∈ A1 brings
an edge into the cut if it is valid.

Case 2: v ∈ A2, this case is not valid as v does not have any neighbor in
V (Ti)\Xi (it is the property of the nice tree decomposition).

Case 3 v ∈ A3, Mi[Ψ] = Mj [Ψ
′] where Ψ′ = (A1, A2, A3\v,B1, B2, B3).

The total number of possible Ψ’s for Xi is 6t+1. For each Ψ, the above cases
can be executed in polynomial time. Hence, the total time complexity at the
introduce node is O∗(6t).

Forget node: Let j be the only child of the node i. Suppose, v ∈ Xj is the
node missing in Xi, v /∈ Xi. Let Ψ = (A1, A2, A3, B1, B2, B3) be a partition of
Xi. If Ψ is not legal, we straightaway set Mi[Ψ] to −1.

Otherwise, Mi[Ψ] = maxk=6
k=1{δk}, where δk is computed as follows: If Ψ is

valid, it should be possible to add v to one of the six sets to get a valid partition
at node j.

Case 1: v is in the first set at the node j. If there is a unique x ∈ B2 such that
(v, x) ∈ E then δ1 = Mj [Ψ

′] where Ψ′ = (A1∪v,A2, A3, B1∪x,B2\x,B3).
If no such x exists, then δ1 is set to −1.
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Case 2: v is in the second set at the node j.
Let Ψ′ = (A1, A2 ∪ v,A3, B1, B2, B3) and δ2 = Mj [Ψ

′].

Case 3: v is in the third set at the node j.
Let Ψ′ = (A1, A2, A3 ∪ v,B1, B2, B3) and δ3 = Mj [Ψ

′].

The values δ4, δ5 and δ6 are computed analogously. The total number of possi-
ble Ψ’s for Xi is 6t. For each Ψ, the above cases can be executed in polynomial
time. Hence, the total time complexity at the forget node is O∗(6t).

Join node: Let j1 and j2 be the children of the node i. Xi = Xj1 = Xj2 and
V (Tj1) ∩ V (Tj2) = Xi. There are no edges between V (Tj1)\Xi and V (Tj2)\Xi.
Let Ψ = (A1, A2, A3, B1, B2, B3) be a partition of Xi. For X ⊆ A2 and Y ⊆ B2

let Ψ1 = (A1, X,A3 ∪ {A2\X}, B1, Y, B3 ∪ {B2\Y }) and Ψ2 = (A1, A2\X,A3 ∪
X,B1, B2\Y,B3 ∪ Y ).

Mi[Ψ] =

 +1, If ∃X ⊆ A2 and Y ⊆ B2 such that Mj1 [Ψ1] +Mj2 [Ψ2] ≥ 1;
0, If Ψ is locally empty, (i.e Mj1 [Ψ] = 0 and Mj2 [Ψ] = 0);
−1, Otherwise

The total number of possible Ψ’s for Xi is 6t+1. For each Ψ, we need to check
2t+1 different Ψ1 and Ψ2. The total time complexity at the join node is O∗(12t).

At each node i, let ∆i = maxΨ{Mi[Ψ]}. If ∆i = +1, then G[Ti] has a valid
non-empty matching cut. If r is the root of the nice tree decomposition, the
graph G has a matching cut if ∆r = +1. By induction and the correctness of
Mi[Ψ] values, we can conclude the correctness of the algorithm. The total time
complexity of the algorithm is O∗(12t) = O∗(2O(t)).

Theorem 1. There is an algorithm with running time O∗(2O(t)) that solves the
matching cut problem, where t is the tree-width of the graph.

4 Matching Cut Problem parameterized by Neigh-
borhood Diversity

Lampis [31] introduced a structural parameter called neighborhood diversity
which is defined as follows:

Definition 1 (Neighborhood Diversity [31]). In an undirected graph G, two
vertices u and v have the same type if and only if N(u) \ {v} = N(v) \ {u}.

The graph G has neighborhood diversity d if there exists a partition of V (G)
into d sets P1, P2, . . . , Pd such that all the vertices in each set have the same
type. Such a partition is called a type partition. Moreover, it can be computed
in linear time.

Note that, each Pi forms either a clique or an independent set in G.
If a graph has vertex cover number q, then the neighborhood diversity of the

graph is at most 2q + q [31]. Hence, graphs with bounded vertex cover number
also have bounded neighborhood diversity. However, the converse is not true
since complete graphs have neighborhood diversity 1. Some NP-hard problems
are shown to be tractable on graphs with bounded neighborhood diversity (see
e.g., [32]). Here, we show that the matching cut problem is tractable for graphs
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with bounded neighborhood diversity. We describe an algorithm with time
complexity O∗(22d), where d is the neighborhood diversity of the graph.

We start with a graph G, and its type partitioning with d partitions, i.e
neighborhood diversity of G is d. We label the vertices of G (using the type
partitioning) such that vertices having the same label should be entirely on one
side of the cut. We assume that the graph is connected and so is the type
partitioning graph. Let P1, P2, . . . , Pd be the sets of the type partition. We say
Pi is an I-set if Pi induces an independent set. Similarly, we say Pi is a C-set if
Pi induces a clique. The size of a set Pi is the number of vertices in the set Pi.

Observe that a clique Kc with c ≥ 3 and Kr,s with r ≥ 2 and s ≥ 3 do not
have a matching cut. It means that all the vertices of these graphs should be
entirely on one side of the cut. Consider a partition Pi, vertices of Pi are labeled
according to the following rules in order:

• If Pi is a C-set with size ≥ 2, vertices in the set Pi and all the vertices in
its neighboring sets get the same label.

• If Pi is an I-set with size ≥ 3 and is adjacent to an I-set with size ≥ 2,
then the vertices in both the sets get the same label.

• If Pi is an I-set with size ≥ 3 and is adjacent to two or more sets of size
≥ 1, then vertices in all these sets get the same label.

• If Pi is an I-set with size ≥ 3 and has only one adjacent set of size 1, then
G has a matching cut.

• If Pi is an I-set with size 2 and is adjacent to an I-set of size 2 and a set
of size 1, then vertices in all these sets get the same label.

• If Pi is an I-set with size 2 and is adjacent to only one I-set of size 2, in
these two sets, each vertex will get different label.

• If Pi is an I-set with size 2 and is adjacent to two sets of size 1, in these
three sets, each vertex will get different label.

• If Pi is an I-set with size 2 and is adjacent to a set of size 1, then G has
a matching cut.

• All the remaining sets of size 1 will get different labels.

If we apply the above rules, either we conclude that G has a matching cut,
or for each set we use at most 2 labels, hence we can state the following:

Lemma 2. The number of labels required is at most 2d.

The vertices of each label should entirely be in the same set of the matching cut.
Hence, there are 22d possible label combinations. Thus we have the following:

Theorem 3. There is an algorithm with running time O∗(22d) that solves the
matching cut problem, where d is the neighbourhood diversity of the graph.
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5 Matching Cut Problem for Other Structural
Parameters

For graphs with bounded feedback vertex number, the tree-width is also bounded.
As the matching cut problem is in FPT for tree-width, it is also in FPT for feed-
back vertex number. Kratsch and Le [11] showed that the matching cut problem
is in FPT for the size of the vertex cover. We use the techniques used in [11] to
show that the matching cut problem is in FPT for the parameters twin cover
and the distance to split graphs.

Lemma 4 (stated as Lemma 3 in [11]). Let I be an independent set and
let U = V \I. Given a partition (X,Y ) of U , it can be decided in O(n2) time if
the graph has a matching cut (A,B) such that X ⊆ A and Y ⊆ B.

Two non-adjacent (adjacent) vertices having the same open (closed) neigh-
borhood are called twins. A twin cover is a vertex set S such that for each edge
{u, v} ∈ E, either u ∈ S or v ∈ S or u and v are twins. Note that, for a twin
cover S ⊆ V , G[V \S] is a collection of disjoint cliques.

Lemma 5. Let S ⊆ V be a twin cover of G. Given a partition (X,Y ) of S, it
can be decided in O(n2) time if the graph has a matching cut (A,B) such that
X ⊆ A and Y ⊆ B.

Proof. Clearly, V \S induces a collection of disjoint cliques. Consider a maximal
clique C on two or more vertices in V \S. Let u, v be any two vertices of the
clique C. Clearly, u and v are twins. If u and v has a common neighbor in
both X and Y , then the graph has no matching cut such that X ⊆ A and
Y ⊆ B. Hence, without loss of generality we can assume that u and v have
common neighbors only in X. Let X ′ = X ∪ V (C). Clearly, V \(S ∪ V (C)) is
an independent set. Using Lemma 4, we can decide in O(n2) time if the graph
has a matching cut (A,B) such that X ′ ⊆ A and Y ⊆ B.

Let S be a twin cover of the graph. By guessing a partition (X,Y ) of S, we
can check in O(n2) time if G has a matching cut (A,B) such that X ⊆ A and
Y ⊆ B. Hence we can state the following theorem.

Theorem 6. There is an algorithm with running time O∗(2|S|) to solve the
matching cut problem, where S is the twin cover of the graph.

Lemma 7. Let G be a graph with vertex set V , if S ⊆ V be such that G[V \S]
is a split graph. Given a partition (X,Y ) of S, it can be decided in O(n2) time
whether the graph G has a matching cut (A,B) such that X ⊆ A and Y ⊆ B.

Proof. Let V \S = C ∪ I be the vertex set of the split graph, where C is a clique
and I is an independent set. If |C| = 1 or |C| ≥ 3, then let X ′ = X ∪ V (C)
and Y ′ = Y ∪ V (C). Clearly, V \(S ∪ V (C)) is an independent set. Hence, G
has matching cut (A,B) such that X ⊆ A and Y ⊆ B if and only if G has a
matching cut such that either X ′ ⊆ A and Y ⊆ B or X ⊆ A and Y ′ ⊆ B.
Both these instances can be solved in O(n2) time using Lemma 4. If |C| = 2,
depending on whether the vertices of C go to X or Y , we solve four instances
of Lemma 4 to check whether the graph has a matching cut (A,B) such that
X ⊆ A and Y ⊆ B. Therefore the time complexity is O(n2).
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Similar to Theorem 6, we can state the following theorem.

Theorem 8. There is an algorithm with running time O∗(2|S|) to solve the
matching cut problem, where S ⊆ V such that G[V \S] is a split graph.

6 Algorithms for H-Free 2-Coloring Problems

6.1 Overview of the Techniques Used

In the rest of the paper, we assume that the nice tree decomposition is given. Let
i be a node in the nice tree decomposition, Xi is the bag of vertices associated
with the node i. Let Ti be the subtree rooted at the node i and G[Ti] denote
the graph induced by all the vertices in Ti.

We use dynamic programming on the nice tree decomposition. We process
the nodes of the nice tree decomposition according to its post order traversal.
We say that a partition (A,B) of G is a valid partition if neither G[A] nor
G[B] has H as an induced subgraph. At each node i, we check each bipartition
(Ai, Bi) of the bag Xi to see if (Ai, Bi) leads to a valid partition in the graph
G[Ti]. For each partition, we also keep some extra information that will help us
to detect if the partition leads to an invalid partition at some ancestral (parent)
node. We have four types of nodes in the tree decomposition – leaf, introduce,
forget and join nodes. In the algorithm, we explain the procedure for updating
the information at each of these nodes and consequently, to certify whether a
partition is valid or not. During the description of the algorithms, we refer to
the set V (Ti)\Xi, i.e., the vertices in the subtree Ti but not in the bag Xi, as
forgotten vertices of the subtree Ti.

In Section 6, we start the discussion with H-Free 2-Coloring problems.
In Sections 6.2 and 6.3, we discuss the algorithm for the cases when H = Kr and
H = C4 respectively before moving on to the case of general H in Section 6.4.
In Section 7, we give the algorithm for H-Free q-Coloring problem. In Sec-
tion 8, we give the algorithm for H-(Subgraph)Free q-Coloring problem.
Presenting the algorithms for H = Kr and H = C4 initially will help in the
exposition, as they will help to understand the setup before moving to the more
involved general case.

6.2 Kr-Free 2-Coloring

In this section, we consider the H-Free 2-Coloring problem when H = Kr,
a complete graph on r vertices.

Let Ψ = (Ai, Bi) be a partition of a bag Xi. We set Mi[Ψ] to 1 if there
exists a partition (A,B) of V (Ti) such that Ai ⊆ A, Bi ⊆ B and both G[A] and
G[B] are Kr-free. Otherwise, Mi[Ψ] is set to 0.

Leaf node: For a leaf node Ψ = (∅, ∅) and Mi[Ψ] = 1. This step takes constant
time.

Introduce node: Let j be the only child of the node i. Let v be the lone
vertex in Xi\Xj . Let Ψ = (Ai, Bi) be a partition of Xi. If G[Ai] or G[Bi] has
Kr as a subgraph, we set Mi[Ψ] to 0. Otherwise, we use the following cases to
compute Mi[Ψ] value. Since v cannot have forgotten neighbors, it can form a
Kr only within the bag Xi.
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Case 1: v ∈ Ai, Mi[Ψ] = Mj [Ψ
′], where Ψ′ = (Ai\{v}, Bi).

Case 2: v ∈ Bi, Mi[Ψ] = Mj [Ψ
′], where Ψ′ = (Ai, Bi\{v}).

The total number of Ψ’s for Xi is 2t+1, for each Ψ checking if G[Ai] or G[Bi]
contains Kr as subgraph can be done in (t + 1)rr2 time. Hence the total time
complexity at the introduce node is O(2ttr).

Forget node: Let j be the only child of the node i. Let v be the lone vertex
in Xj\Xi. Let Ψ = (Ai, Bi) be a partition of Xi. If G[Ai] or G[Bi] has Kr

as a subgraph, we set Mi[Ψ] to 0. Otherwise, Mi[Ψ] = max{Mj [Ψ
′],Mj [Ψ

′′]},
where, Ψ′ = (Ai ∪ {v}, Bi) and Ψ′′ = (Ai, Bi ∪ {v}).

The total number of Ψ’s for Xi is 2t, for each Ψ checking if G[Ai] or G[Bi]
contains Kr as subgraph can be done in trr2 time. Hence the total time com-
plexity at the forget node is O(2ttr).

Join node: Let j1 and j2 be the children of the node i. Xi = Xj1 = Xj2

and V (Tj1) ∩ V (Tj2) = Xi. Let Ψ = (Ai, Bi) be a partition of Xi. If G[Ai] or
G[Bi] has Kr as a subgraph, we set Mi[Ψ] to 0. Otherwise, we use the following
expression to compute Mi[Ψ] value. Since there are no edges between V (Tj1)\Xi

and V (Tj2)\Xi, a Kr cannot contain forgotten vertices from both Tj1 and Tj2 .

Mi[Ψ] =

{
1, If Mj1 [Ψ] = 1 and Mj2 [Ψ] = 1.

0, Otherwise.
(1)

The total number of Ψ’s for Xi is 2t+1, for each Ψ checking if G[Ai] or G[Bi]
contains Kr as subgraph can be done in (t + 1)rr2 time. Hence the total time
complexity at the join node is O(2ttr).

The correctness of the algorithm is implied from the correctness of Mi[Ψ]
values, which can be proved using bottom up induction on the nice tree decom-
position. G has a valid bipartitioning if there exists a Ψ such that Mr[Ψ] = 1,
where r is the root node of the nice tree decomposition. The total time com-
plexity of the algorithm is O(2ttr · n) = O(2t+r log t · n). With this we state the
following theorem.

Theorem 9. There is an O(2t+r log t ·n) time algorithm that solves the H-Free
2-Coloring problem when H = Kr, on graphs with tree-width at most t.

6.3 C4-Free 2-Coloring

In this section, we describe the combinatorial algorithm for the H-Free 2-
Coloring problem for the case when H = C4, a cycle of length 4.

Note that an induced cycle of length 4 is formed when a pair of non-adjacent
vertices have two non-adjacent neighbors. If a graph has no induced C4 then
any non-adjacent vertex pairs cannot have two or more non-adjacent vertices
as neighbors. They can have neighbors which are pairwise adjacent. We keep
track of such vertex pairs as they can form an induced C4 at some ancestral
(introduce/join) nodes. Let Xi be a bag at the node i of the nice tree decom-
position. We consider partitions (Ai, Bi) of the bag Xi and see if they lead to
a valid partition (A,B) of V (Ti). For each non-adjacent pair of vertices from
Ai (similarly Bi), we also guess if the pair has a common forgotten neighbor
in part A (similarly B) of the partition. We check if the above guesses lead to
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a valid partitioning in the subgraph G[Ti], which is the graph induced by the
vertices in the node i and all its descendant nodes. In this section, we use the
standard notation of

(
S
2

)
to denote the set of all 2-subsets of a set S.

Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple defined as follows: (Ai, Bi) is a partition
of Xi, Pi ⊆

(
Ai

2

)
and Qi ⊆

(
Bi

2

)
. Intuitively, Pi and Qi are the set of those non-

adjacent pairs that have common forgotten neighbor.
We define Mi[Ψ] to be 1 if there is a partition (A,B) of V (Ti) such that:

1. Ai ⊆ A and Bi ⊆ B.

2. Every pair in Pi has a common neighbor in A\Ai.

3. Every pair in
(
Ai

2

)
\ Pi does not have a common neighbor in A\Ai.

4. Every pair in Qi has a common neighbor in B\Bi.

5. Every pair in
(
Bi

2

)
\Qi does not have a common neighbor in B\Bi.

6. G[A] and G[B] are C4-free.

Otherwise, Mi[Ψ] is set to 0. Suppose there exists a 4-tuple Ψ such that Mr[Ψ] =
1, where r is the root of the nice tree decomposition. Then the above conditions
1 and 6 ensure that G can be partitioned in the required manner.

When one of the following occurs, it is easy to see that the 4-tuple does not
lead to a required partition. We say that the 4-tuple Ψ is invalid if one of the
below cases occur:

(i) G[Ai] or G[Bi] contains an induced C4.

(ii) There exists a pair {x, y} ∈ Pi such that {x, y} ∈ E.

(iii) There exists a pair {x, y} ∈ Qi such that {x, y} ∈ E.

Note that it takes O(t4) time to check if a given Ψ is invalid. Below we
explain how to compute Mi[Ψ] value at each node i.

Leaf node: For a leaf node i, Ψ = (∅, ∅, ∅, ∅) and Mi[Ψ] = 1. This step takes
constant time.

Introduce node: Let j be the only child of the node i. Suppose v ∈ Xi is
the new vertex present in Xi, v /∈ Xj . Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple of
Xi, If Ψ is invalid, we set Mi[Ψ] to 0. Otherwise, we use the following cases to
compute the Mi[Ψ] value.

Case 1, v ∈ Ai: If ∃{v, x} ∈ Pi for some x ∈ Ai or if ∃{x, y} ∈ Pi such that
{x, y} ⊆ N(v) ∩ Ai, then Mi[Ψ] = 0. Otherwise, Mi[Ψ] = Mj [Ψ

′], where
Ψ′ = (Ai\{v}, Bi, Pi, Qi).

As v is a newly introduced vertex, it cannot have any forgotten neighbors.
Hence, {v, x} ∈ Pi =⇒ Mi[Ψ] = 0. If x and y have a common forgotten
neighbor, they all form an induced C4, together with v. Hence {x, y} ∈
Pi =⇒Mi[Ψ] = 0.

Case 2, v ∈ Bi: If ∃{v, x} ∈ Qi for some x ∈ Bi or if ∃{x, y} ∈ Qi such that
{x, y} ⊆ N(v) ∩ Bi, then Mi[Ψ] = 0. Otherwise, Mi[Ψ] = Mj [Ψ

′], where
Ψ′ = (Ai, Bi\{v}, Pi, Qi).

12



The total number of Ψ’s for Xi is 2t+12(t+1)2 . It takes O(t4) time to check if

Ψ is invalid. Hence total time complexity at the introduce node is O(2t
2+3tt4).

Forget node: Let j be the only child of the node i. Suppose v ∈ Xj is the
vertex missing in Xi, v /∈ Xi. Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple of Xi, If Ψ
is invalid, we set Mi[Ψ] to 0. Otherwise, Mi[Ψ] is computed as follows:

Case 1, v ∈ Aj: If ∃x, y ∈ Ai such that xy /∈ E and xv, yv ∈ E, then v is a
common forgotten neighbor for x and y. Hence we set Mi[Ψ] = 0 whenever
{x, y} /∈ Pi. Otherwise, let R = {{x, y}|x, y ∈ Ai ∩ N(v)}. Some of the
vertex pairs in R can still have a common forgotten neighbor (other than
v) at node j which is adjacent to v. Also there can be new pairs formed
with v at the node j. Let S = {{v, x}|x ∈ Ai}. We have the following
equation.

δ1 = max
X⊆S,Y⊆R

{Mj [Ai ∪ {v}, Bi, (Pi\R) ∪ (X ∪ Y ), Qi]}. (2)

Case 2, v ∈ Bj: This is analogous to Case 1. We set Mi[Ψ] = 0, whenever
{x, y} /∈ Qi. Otherwise, let R = {{x, y}|x, y ∈ Bi ∩ N(v)} and S =
{{v, x}|x ∈ Bi}.

δ2 = max
X⊆S,Y⊆R

{Mj [Ai, Bi ∪ {v}, Pi, (Qi\R) ∪ (X ∪ Y )]}. (3)

If Mi[Ψ] is not set to 0 already, we set Mi[Ψ] = max{δ1, δ2}.
The total number of Ψ’s for Xi is 2t2t

2

. It takes O(t4) time to check if Ψ is
invalid. The computations of δ1 and δ2 requires us to iterate over every subset
of S which is of size at most t and every subset of R which is of size at most t2.
Hence, we get a factor of 2t+t2 in the overall time complexity. Thus the total
time complexity at the forget node is O(22t2+2tt4).

Join node: Let j1 and j2 be the children of the node i. By the property of nice
tree decomposition, we have Xi = Xj1 = Xj2 and V (Tj1)∩ V (Tj2) = Xi. There
are no edges between V (Tj1)\Xi and V (Tj2)\Xi. Let Ψ = (Ai, Bi, Pi, Qi) be a
4-tuple of Xi. If Ψ is invalid, we set Mi[Ψ] to 0. Otherwise, we use the following
expression to compute the value of Mi[Ψ].

A pair {x, y} ∈ Pi can come either from the left subtree or from the right
subtree but not from both, for that would imply two distinct non-adjacent
common neighbors for x and y and hence an induced C4. For X ⊆ Pi and
Y ⊆ Qi, Ψ1 = (Ai, Bi, X, Y ) and Ψ2 = (Ai, Bi, Pi\X,Qi\Y ).

Mi[Ψ] =

{
1, ∃X ⊆ Pi, Y ⊆ Qi such that Mj1 [Ψ1] = Mj2 [Ψ2] = 1.

0, Otherwise.
(4)

The total number of Ψ’s for Xi is 2t+12(t+1)2 . It takes O(t4) time to check if

Ψ is invalid. As we solve the equation 4, a factor of 2(t+1)2 comes in the overall
time complexity. Hence total time complexity at the join node is O(22t2+5tt4).

The correctness of the algorithm is implied by the correctness of Mi[Ψ]
values, which follows by a bottom-up induction on the nice tree decomposition.
G has a valid bipartitioning if there exists a 4-tuple Ψ such that Mr[Ψ] = 1,
where r is the root of the nice tree decomposition. We have the following
theorem.
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Figure 1: An example graph H.
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Figure 2: Forming H at an introduce
node. Sequence s = (v, v2, v1, fg, fg, fg).

i
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1 2 21

1 2

1 2

Figure 3: Forming H at join node. Sequences at node j1, s′ =
(dc,dc, v1, v2, fg, fg), at node j2, s′′ = (fg, fg, v1, v2,dc,dc) gives a sequence
s = (fg, fg, v1, v2, fg, fg) at node i. The vertices outside the dashed lines are
forgotten vertices.

Theorem 10. There is an O(23t2 · n) time algorithm that solves the H-Free
2-Coloring problem when H = C4 on graphs with tree-width at most t.

6.4 H-Free 2-Coloring Problem

Let Xi be a bag at node i of the nice tree decomposition. Let (Ai, Bi) be a
partition of Xi. We can easily check if G[Ai] or G[Bi] has H as an induced
subgraph. Otherwise, we need to see if there is a partition (A,B) of V (Ti)
such that Ai ⊆ A, Bi ⊆ B and both G[A] and G[B] are H-free. If there is
such a partition (A,B), then G[A] and G[B] may have subgraph H ′, an induced
subgraph of H which can lead to H at some ancestral node (introduce node or
join node) of the nice tree decomposition (see Figures 2 and 3).

We perform dynamic programming over the nice tree decomposition. At
each node i we guess a partition (Ai, Bi) of Xi and possible induced subgraphs
of H that are part of A and B respectively. We check if such a partition is
possible. Below we explain the algorithm in detail.

Let the vertices of the graph H be labeled as u1, u2, u3, . . . , ur. Let (Ai, Bi)
be a partition of vertices in the bag Xi. Let (A,B) be a partition of V (Ti) such
that A ⊇ Ai and B ⊇ Bi. We define ΓAi as follows:
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SAi
={(w1, w2, w3, . . . , wr)|w` ∈ {Ai ∪ {fg,dc}},
∀`1 6= `2, w`1 = w`2 =⇒ w`1 ∈ {fg,dc}}.

IAi
={s = (w1, w2, w3, . . . , wr) ∈ SAi

| there exists `1 6= `2

such that w`1 = fg, w`2 = dc and {u`1 , u`2} ∈ E(H)}.
ΓAi

=SAi
\IAi

.

Here ‘fg’ represents a vertex in A\Ai, i.e. the forgotten vertices in A. The
label ‘dc’ (can be thought of as “don’t care”) represents the vertices that are not
part of the subgraph right now, and can potentially be added at some ancestral
nodes to form a larger induced subgraph of H.

Similarly, we can define ΓBi with respect to the sets Bi and B.
A sequence in SAi corresponds to an induced subgraph H ′ of H in A as

follows:

1. If w` = fg then u` is part of A\Ai, the forgotten vertices in A.

2. If w` = dc then u` is not be part of the subgraph H ′.

3. If w` ∈ Ai then the vertex w` corresponds to the vertex u` of H ′.

ΓAi
is the set of sequences that can become H in future at some ancestral

(introduce/join) node of the tree decomposition. Note that the sequences IAi
are

excluded from ΓAi
because a forgotten vertex cannot have an edge to a vertex

which will come in future at some ancestral node (introduce or join nodes).

Definition 2 (Induced Subgraph Legal Sequence in ΓAi with respect to A).
A sequence s = (w1, w2, w3, . . . , wr) ∈ ΓAi

is legal if the sequence s corresponds
to an induced subgraph H ′ of H within A as follows.

Let FG(s) = {`|w` = fg}, DC(s) = {`|w` = dc} and VI(s) = [r]\{FG(s) ∪
DC(s)}. Let H ′ be the induced subgraph of H formed by u`, ` ∈ {VI(s)∪FG(s)}.
That is H ′ = H[{u`|` ∈ VI(s) ∪ FG(s)}].

If there exist |FG(s)| distinct vertices z` ∈ A\Ai corresponding to each index
in FG(s) such that H ′ is isomorphic to G[{w`|` ∈ VI(s)} ∪ {z`|` ∈ FG(s)}],
then s is legal. Otherwise, the sequence is illegal.

Analogously, we define legal/illegal sequences in ΓBi
with respect to B.

Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple. Here, (Ai, Bi) is a partition of Xi,
Pi ⊆ ΓAi

and Qi ⊆ ΓBi
.

We define Mi[Ψ] to be 1 if there is a partition (A,B) of V (Ti) such that:

1. Ai ⊆ A and Bi ⊆ B.

2. Every sequence in Pi is legal with respect to A.

3. Every sequence in Qi is legal with respect to B.

4. Every sequence in ΓAi\Pi is illegal with respect to A.

5. Every sequence in ΓBi
\Qi is illegal with respect to B.

6. Neither G[A] nor G[B] contains H as an induced subgraph.
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Otherwise Mi[Ψ] is set to 0.
We call a 4-tuple Ψ as invalid if one of the following conditions occur. If Ψ

is invalid we set Mi[Ψ] to 0.

1. There exists a sequence s ∈ Pi such that s does not contain dc.

2. There exists a sequence s ∈ Qi such that s does not contain dc.

As |Pi|+ |Qi| ≤ (t+ 5)r, it takes (t+ 5)rr time to check if Ψ is invalid.
Now we explain how to compute Mi[Ψ] values at the leaf, introduce, forget

and join nodes of the nice tree decomposition.

Leaf node: Let i be a leaf node, Xi = ∅, for Ψ = (Ai, Bi, Pi, Qi), we have
Mi[Ψ] = 1. Here Ai = Bi = ∅, Pi ⊆ {([dc]r)} and Qi ⊆ {([dc]r)}. This step
takes constant time.

Introduce node: Let i be an introduce node and j be the child node of i. Let
{v} = Xi\Xj . Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple at node i. If Ψ is invalid
we set Mi[Ψ] = 0. Otherwise depending on whether v ∈ Ai or v ∈ Bi we have
two cases. We discuss only the case v ∈ Ai, the case v ∈ Bi can be analogously
defined.

v ∈ Ai: We set Mi[Ψ] = 0, if there exists an illegal sequence s (in Pi) containing
v or if there exists a trivial legal sequence s containing v but s is not in
Pi.

That is, we set Mi[Ψ] = 0 if one of the following (?) conditions occurs:

[? Conditions]

1. ∃`1 6= `2, such that w`1 = v, w`2 ∈ Ai, {u`1 , u`2} ∈ E(H) but
{v, w`2} /∈ E(G).

2. ∃`1 6= `2, such that w`1 = v, w`2 ∈ Ai, {u`1 , u`2} /∈ E(H) but
{v, w`2} ∈ E(G).

3. ∃`1 6= `2, such that w`1 = v, w`2 = fg, {u`1 , u`2} ∈ E(H).

4. Let s = (w1, w2, w3, . . . , wr) ∈ ΓAi
\Pi. There exists `1 such that

w`1 = v and for all `2 6= `1, w`2 ∈ Ai ∪ {dc}. For all `1 6= `2,
w`1 , w`2 ∈ Ai, {u`1 , u`2} ∈ E(H) ⇐⇒ {w`1 , w`2} ∈ E(G).

The conditions 1 − 3 are to check if a sequence s ∈ Pi containing the
vertex v is an illegal sequence. The condition 4 is to check if a sequence
s /∈ Pi containing the vertex v is a trivial legal sequence. Otherwise we set
Mi[Ψ] = Mj [Ψ

′], where Ψ′ = (Ai\{v}, Bi, Pj , Qi). Here Pj is computed
as Pj = ∪s∈Pi{Repdc(s, v)}, where Repdc is defined as follows:

Definition 3. Repdc(s, v) = s′, sequence s′ obtained by replacing v (if
present) with dc in s.

Note that, Repdc(s, v) = s, if v not present in s.
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The total number of Ψ’s for Xi is 2(t+1)2(t+5)r . Checking if Ψ is invalid takes
(t + 5)rr time. Checking for illegal sequences containing v (steps 1 to 3 in ?
Conditions) takes (t+ 5)rr time. Checking for legal sequences containing v not
part of Pi/Qi (steps 4 in ? Conditions) takes (t + 5)rr2. Computing Ψ′ takes
(t+ 5)rr. Hence total time complexity is O(2(t+1)2(t+5)r (t+ 5)2rr2) = O(22tr ).

Forget node: Let i be a forget node and j be the only child of node i. Let
{v} = Xj\Xi. Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple at node i. If Ψ is invalid
we set Mi[Ψ] = 0. Otherwise, we set Mi[Ψ] = max{δ1, δ2} where δ1 and δ2 are
computed as follows:

Computing δ1: Set Aj = Ai ∪{v}. As v is the extra vertex in Aj , there could
be many possible Pj at node j.

Definition 4. Repfg(s, v) = s′, sequence s′ obtained by replacing v (if

present) with fg in s.

Note that, if s does not contain the vertex v then Repfg(s, v) = s.

We also extend the definition of Repfg to a set of sequences as follows:

Repfg(S, v) = ∪s∈S{Repfg(s, v)}.

Note that, if s is a legal sequence at the node j with respect to A, then
Repfg(s, v) is also a legal sequence at node i with respect to A.

δ1 = max
Pj⊆ΓAj

Repfg(Pj ,v)=Pi

{Mj [(Aj , Bi, Pj , Qi)]}

Computing δ2: Bj = Bi∪{v}. It is analogous to computing δ1 but we process
on B.

The total number of Ψ’s for Xi is 2t(t + 4)r. Checking for invalid case takes
(t+ 4)rr time. computing δ1 and δ2 takes 2(t+4)r (t+ 4)rr time. Hence the total
time complexity is O(2t22(t+4)r (t+ 4)2rr2) = O(23tr ).

Join node: Let i be a join node, j1, j2 be the left and right children of the
node i respectively. Xi = Xj1 = Xj2 and there are no edges between V (Tj1)\Xi

and V (Tj2)\Xi. Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple at node i. If Ψ is invalid
we set Mi[Ψ] = 0. Otherwise, we compute Mi[Ψ] value as follows:

Definition 5. Let s = (w1, w2, w3, . . . , wr), s′ = (w′1, w
′
2, w

′
3, . . . , w

′
r) and s′′ =

(w′′1 , w
′′
2 , w

′′
3 , . . . , w

′′
r ) be three sequences. We say that s = Merge(s′, s′′) if the

following conditions are satisfied.

1. ∀` w` ∈ Xi =⇒ w′` = w′′` = w`.

2. ∀` w` = fg =⇒ either (w′` = fg and w′′` = dc) or (w′` = dc and w′′` = fg).

3. ∀` w` = dc =⇒ w′` = w′′` = dc.
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Note that, if s′ ∈ ΓAj1
and s′′ ∈ ΓAj2

are legal sequences at node j1 and j2
respectively then s is a legal sequence at node i with respect to A. We extend
the Merge operation to sets of sequences as follows:

Merge(S1, S2) = {s|∃s′ ∈ S1, s
′′ ∈ S2 such that s = Merge(s′, s′′)}.

We set Mi[Ψ] = 1 if there exists Pj1 , Qj1 , Pj2 and Qj2 such that the following
conditions are satisfied:

(i) Pi = Merge(Pj1 , Pj2), (ii) Qi = Merge(Qj1 , Qj2),
(iii) Mj1 [Ai, Bi, Pj1 , Qj1 ] = 1, and (iv) Mj2 [Ai, Bi, Pj2 , Qj2 ] = 1.

The total number of Ψ’s for Xi is 2(t+1)2(t+5)r . Checking if Ψ is invalid
takes (t + 5)rr. A factor of 4(t+5)r (t + 5)rr comes as we try all possible
Pj1 , Qj1 , Pj2 , Qj2 . Hence the total time complexity at join node isO(2(t+1)23(t+5)r (t+
5)rr) = O(24tr ).

The graph has a valid bipartitioning if there exists a Ψ such that Mr[Ψ] = 1,
where r is the root node of the nice tree decomposition. The correctness of the
algorithm is implied by the correctness of Mi[Ψ] values, which can be proved
using a bottom up induction on the nice tree decomposition. Thus we get the
following:

Theorem 11. There is an O(24tr · n) time algorithm that solves the H-Free
2-Coloring problem for any arbitrary fixed H, on graphs with tree-width at
most t.

7 Algorithm for H-Free q-Coloring Problem

We note that our techniques extend in a straightforward manner to solve the
H-Free q-Coloring problem. In this case, we have to consider tuples Ψ that
have 2q sets. That is Ψ = (A1

i , A
2
i , . . . , A

q
i , P

1
i , P

2
i , . . . , P

q
i ). Here Aj

i ⊆ Xi and

P j
i ⊆ ΓAj

i
. The operations at the leaf, introduce and forget nodes are very

similar to the case of 2-coloring problem. At introduce and forget nodes we will
have q cases instead of 2 cases. At the join node we need to define the Merge
operation on q sets instead of 2 sets. Below is the modified definition of Merge.

Definition 6. Let s = (w1, w2, w3, . . . , wr), s1 = (w1
1, w

1
2, w

1
3, . . . , w

1
r), s2 =

(w2
1, w

2
2, w

2
3, . . . , w2

r) , . . . , sq = (wq
1, w

q
2, w

q
3, . . . , w

q
r) be three sequences. We say

that s = Merge(s1, s2, s3, . . . , sq) if the following conditions are satisfied.

1. ∀` w` ∈ Xi =⇒ w1
` = w2

` = · · · = wq
` = w`.

2. ∀` w` = fg =⇒ ∃i such that wi
` = fg and ∀j 6= i, wj

` = dc.

3. ∀` w` = dc =⇒ w1
` = w2

` = · · · = wq
` = dc.

Thus we state the following theorem.

Theorem 12. There is an O(q4tr · n) time algorithm that solves the H-Free
q-Coloring problem for any arbitrary fixed H, on graphs with tree-width at
most t.
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The H-Free Chromatic Number is at most the chromatic number χ(G).
For graphs with tree-width t, we have χ(G) ≤ t+ 1. Our techniques can also be
used to compute the H-Free Chromatic Number of the graph by searching
for the smallest q for which there is an H-free q-coloring. We have the following
theorem.

Theorem 13. There is an O(t4t
r · n log t) time algorithm to compute H-Free

Chromatic Number of the graph whose tree-width is at most t.

8 Algorithm for H-(Subgraph)Free q-Coloring
Problem

We can solve the H-(Subgraph)Free 2-Coloring problem using the tech-
niques described in Section 6.4. As we are looking for bipartitioning without H
as a subgraph, we need to modify the Definition 2 and (?) conditions.

Instead of Definition 2 we have Definition 7.

Definition 7 (Subgraph Legal Sequence in ΓAi
with respect to A). A se-

quence s = (w1, w2, w3, . . . , wr) ∈ ΓAi
is legal if the sequence s corresponds to a

subgraph H ′ of H within A as follows.
Let FG(s) = {`|w` = fg}, DC(s) = {`|w` = dc} and VI(s) = [r]\{FG(s) ∪

DC(s)}. Let H ′ be the induced subgraph of H formed by u`, ` ∈ {VI(s)∪FG(s)}.
That is H ′ = H[{u`|` ∈ VI(s) ∪ FG(s)}].

If there exist |FG(s)| distinct vertices z` ∈ A\Ai corresponding to each index
in FG(s) such that H ′ is a subgraph of G[{w`|` ∈ VI(s)}∪{z`|` ∈ FG(s)}], then
s is legal. Otherwise, the sequence is illegal.

At the introduce node, instead of (?) conditions we have to check the fol-
lowing (??) conditions:

[?? Conditions]

1. ∃`1 6= `2, such that w`1 = v, w`2 ∈ Ai, {u`1 , u`2} ∈ E(H) but
{v, w`2} /∈ E(G).

2. ∃`1 6= `2, such that w`1 = v, w`2 = fg, {u`1 , u`2} ∈ E(H).

3. Let s = (w1, w2, w3, . . . , wr) ∈ ΓAi\Pi. There exists `1 such that
w`1 = v and for all `2 6= `1, w`2 ∈ Ai ∪ {dc}. For all `1 6= `2,
w`1 , w`2 ∈ Ai, {u`1 , u`2} ∈ E(H) =⇒ {w`1 , w`2} ∈ E(G).

Thus we get the following:

Theorem 14. There is an O(q4tr ·n) time algorithm that solves the H-(Subgraph)Free
q-Coloring problem for any arbitrary fixed H, on graphs with tree-width at
most t.

Theorem 15. There is an O(t4t
r ·n log t) time algorithm to compute H-(Subgraph)Free

Chromatic Number of the graph whose tree-width is at most t.
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[18] Karpiński, M.: Vertex 2-coloring without monochromatic cycles of fixed
size is NP-complete. Theoretical Computer Science 659(Supplement C)
(2017) 88–94

[19] Xiao, M., Nagamochi, H.: Complexity and kernels for bipartition into
degree-bounded induced graphs. Theoretical Computer Science 659 (2017)
72–82

[20] Cowen, L.J., Cowen, R.H., Woodall, D.R.: Defective colorings of graphs in
surfaces: Partitions into subgraphs of bounded valency. Journal of Graph
Theory 10(2) (1986) 187–195

[21] Bazgan, C., Tuza, Z., Vanderpooten, D.: Degree-constrained decomposi-
tions of graphs: Bounded treewidth and planarity. Theoretical Computer
Science 355(3) (2006) 389–395

[22] Wu, Y., Yuan, J., Zhao, Y.: Partition a graph into two induced forests.
Journal of Mathematical Study 1 (1996) 1–6

[23] Farrugia, A.: Vertex-partitioning into fixed additive induced-hereditary
properties is NP-hard. The Electronic Journal of Combinatorics 11 (2004)

[24] Rao, M.: MSOL partitioning problems on graphs of bounded treewidth
and clique-width. Theoretical Computer Science 377(1) (2007) 260–267

[25] Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable
sets of finite graphs. Information and Computation 85(1) (1990) 12–75

[26] Courcelle, B.: The monadic second-order logic of graphs III: tree-
decompositions, minor and complexity issues. Theoretical Informatics and
Applications 26 (1992) 257–286

[27] Diestel, R.: Graph Theory. Springer-Verlag Heidelberg (2005)

[28] Cygan, M., Fomin, F.V., Kowalik,  L., Lokshtanov, D., Marx, D., Pilipczuk,
M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer (2015)

[29] Robertson, N., Seymour, P.: Graph minors. X. Obstructions to tree-
decomposition. Journal of Combinatorial Theory, Series B 52(2) (1991)
153–190

[30] Kloks, T., ed. In: Treewidth: Computations and Approximations. Lecture
Notes in Computer Science, Springer (1994)

[31] Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Al-
gorithmica 64(1) (2012) 19–37

[32] Ganian, R.: Using neighborhood diversity to solve hard problems. CoRR
abs/1201.3091 (2012)

21


