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Abstract

Given an undirected graph G = (V,E), a conflict-free coloring with respect to
open neighborhoods (CFON coloring) is a vertex coloring such that every vertex has
a uniquely colored vertex in its open neighborhood. The minimum number of colors
required for such a coloring is the CFON chromatic number of G, denoted by χON (G).

In previous work [WG 2020], we showed the upper bound χON (G) ≤ dc(G) + 3,
where dc(G) denotes the distance to cluster parameter of G. In this paper, we obtain
the improved upper bound of χON (G) ≤ dc(G) + 1. We also exhibit a family of graphs
for which χON (G) > dc(G), thereby demonstrating that our upper bound is tight.

1 Introduction

Given a graph G = (V,E), a conflict-free coloring is an assignment of colors to every vertex
of G such that there exists a uniquely colored vertex in the open neighborhood of each vertex.
This problem was motivated by the frequency assignment problem in cellular networks [6],
where base stations and clients communicate with each other. It has also found applications
in coding theory [9] and sensor networks [7, 10]. It is required that there exists a base
station with a unique frequency in the neighborhood of each client. We formally define the
problem as follows.

Definition 1 (Conflict-Free Coloring). A CFON coloring of a graph G = (V,E) using k
colors is an assignment C : V (G)→ {1, 2, . . . , k} such that for every v ∈ V (G), there exists
an i ∈ {1, 2, . . . , k} such that |N(v) ∩ C−1(i)| = 1. The smallest number of colors required
for a CFON coloring of G is called the CFON chromatic number of G, denoted by χON (G).

This problem has been studied from both algorithmic and structural perspectives [1, 2,
3, 4, 8, 11, 13]. For a detailed account, see the survey by Smorodinsky [13]. Combinatorial
bounds on this problem have been studied with respect to vertex cover, treewidth, path-
width, feedback vertex set and neighborhood diversity [3, 4, 8]. In this paper, we study the
relation between CFON chromatic number and the distance to cluster parameter, which is
formally defined as follows.
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Definition 2 (Distance to Cluster). Let G = (V,E) be a graph. The distance to cluster of
G, denoted dc(G), is the size of a smallest set X ⊆ V such that G[V \X] is a disjoint union
of cliques.

Reddy [12] showed that 2dc(G) + 1 colors are sufficient to CFON color a graph G. This
bound has been improved to dc(G) + 3 in [3]. In this paper, we further improve the bound
to dc(G) + 1.

Theorem 3. For any graph G, we have χON (G) ≤ max{3, dc(G) + 1}.

Further, we show graphs for which dc(G) colors are not sufficient, thereby demonstrating
that the above bound is tight.

Theorem 4. For each value d ≥ 1, there exist graphs G such that dc(G) = d and χON (G) >
d.

Theorem 4 is first proved in Section 2. The rest of the paper is devoted to the proof of
Theorem 3.

1.1 Preliminaries

In this paper, we consider only simple, finite, undirected and connected graphs that have at
least two vertices. If the graph has more than one connected component, Theorem 3 follows
by its application to each component independently. Moreover, we assume that G does not
have any isolated vertices as there is no CFON coloring for such graphs. We denote the
set {1, 2, · · · , d} by [d]. We use the function C : V → [d + 1] to denote the color assigned
to a vertex. The open neighborhood of a vertex v, denoted by N(v), is the set of vertices
adjacent to v. The degree of a vertex v, denoted deg(v) is defined as |N(v)|. Sometimes, we
use the notation degA(v) = |N(v) ∩A|, where A ⊆ V . We use the notation G[A] to denote
the induced graph on the vertex set A. We use standard graph theoretic terminology from
the textbook by Diestel [5].

During the coloring process, for each vertex v, we will designate a vertex as the uniquely
colored neighbor of v, denoted by U(v). The vertex U(v) is a vertex w ∈ N(v) such that
C(w) 6= C(x), ∀x ∈ N(v)\{w}. Sometimes, we will use the phrase “vertex v sees the vertex
w as its uniquely colored neighbor” to refer to the same. We will also use the phrase “vertex
v sees the color i” instead of saying there exists a neighbor of v that is assigned the color i.

We will also frequently refer to a set X such that G[V \X] is a disjoint union of cliques.
For the sake of brevity, instead of referring to a component or maximal clique K of G[V \X],
we will say “K is a clique in G[V \X]”.

2 Lower Bound

In this section, we prove Theorem 4. We will see the existence of graphs G for which
χON (G) > dc(G).
Construction of graph G: Given a positive integer d, we construct the graph G such that
dc(G) = d. It consists of three parts as described below.

• The set X is an independent set of d vertices v1, v2, · · · , vd. Note that |X| = d, and
G[V \X] will be a disjoint union of cliques.

• Singleton cliques K(i,j), ∀1 ≤ i < j ≤ d. For each K(i,j), we have N(K(i,j)) = {vi, vj}.
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• A clique K̂ that has (d + 1)2d vertices. The vertices of the clique K̂ consist of 2d

disjoint sets TW , one corresponding to each subset W ⊆ X. For each v ∈ TW , we
have N(v) ∩X = W . Moreover, we have |TW | = d+ 1, for each W ⊆ X.

Proof of Theorem 4. It can easily be noted that dc(G) = d. We will now see that χON (G) >
d.

The singleton cliquesK(i,j) force each vertex inX to be assigned a distinct color. WLOG,
let C(vi) = i for each vi ∈ X. The colors 1, 2, · · · , d are used exactly once in X. Now, we

prove that d colors are not sufficient to color the clique K̂.
We first consider a vertex u1 ∈ T ∅. The vertex u1 does not have any neighbors in X and

hence has its uniquely colored neighbor from K̂. Let the vertex w1 ∈ K̂ be the uniquely
colored neighbor of u1. WLOG, let C(w1) = 1. Now, consider the vertices in T {v1}. At
least d vertices in T {v1} see both v1 and w1 as their neighbors, and hence these vertices
cannot have 1 as the unique color in their neighborhood. Let u2 be such a vertex. WLOG,
let w2 ∈ K̂ be the vertex such that C(w2) = 2 and w2 acts as the uniquely colored neighbor
for u2. Of the vertices in T {v1,v2}, at least d− 1 of them see w1, w2 in addition to v1, v2 as
neighbors. Hence these vertices cannot have the colors 1 or 2 as the unique color in their
neighborhood.

We continue this reasoning and show that there exists at least one vertex, say ud+1 ∈ TX ,
that sees all the colors {1, 2, . . . , d} at least twice in its neighborhood. Hence ud+1 cannot
have any of the colors 1, 2, . . . , d as the unique color in its neighborhood. Hence we require
a new color to CFON color G.

3 Upper Bound

In this section, we prove Theorem 3. Since it involves several cases and detailed analyses,
we first present an overview of the proof, before getting into the details.

3.1 Overview of the Proof

Given a graph G = (V,E), and a set of vertices X ⊆ V such that |X| = d, we have that
G[V \X] is a disjoint union of cliques. We require d colors, one for each vertex in X. This
is because G[V \X] may contain

(
d
2

)
singleton cliques, such that each of these cliques has

degree 2, and adjacent to a pair of vertices in X. Since a clique can be CFON colored using
at most 3 colors, it is easy to see that d+3 colors are sufficient to CFON color G when G[X]
is connected. Though it is less straightforward, the bound of d+ 3 can be extended to the
case when G[X] is not connected as well [3]. It is a challenge to further improve the bound
to d + 1. Our proof requires several cases and subcases since there does not seem to be a
universal approach that leads to a desired coloring. The detailed case analysis is necessary
because of the different forms the induced graph G[X] can take.

Except for some special cases, we will color each vertex in X with a distinct color from
[d]. Our coloring algorithm consists of two phases, an initial phase and a completion phase.
In the initial phase, we color all the vertices of X, and identify uniquely colored neighbors
for some vertices in X. The key requirement of this phase is to identify a free color f , which
is a color in [d] that will not serve as a unique color in the neighborhood of any vertex in
X. This is straightforward in some cases, like when G[X] has a component of size at least
3. The cases where all the vertices of G[X] have degree 1 (Lemma 12), or all the vertices of
G[X] have degree 0 or 1 (Lemma 13) prove to be particularly challenging. In some of the
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cases, this is accomplished by coloring one or two of the cliques in G[V \X]. The full set of
conditions that are to be satisfied by the initial phase is listed as the Rules of Lemma 9.

After the initial phase, we are ready to run the completion phase, which is executed in
Lemma 9. The goal of the completion phase is to color the rest of the graph while retaining
the uniquely colored neighbors of those vertices that had been identified in the intial phase.
In the completion phase, we first identify uniquely colored neighbors for those vertices in
X, for which it has not been identified. This involves coloring some of the vertices in V \X,
and hence may partially color some of the cliques in G[V \ X]. The cliques in G[V \ X]
are colored one by one. We have to use different approaches to color them, based on the
number of vertices that are already colored in the clique. The general results are presented
for the case when d = |X| ≥ 3, and the cases d = 1 and d = 2 need to be treated differently.

The case d = 1 is straightforward, but the case d = 2 is somewhat involved in itself.
These cases are presented first in Section 3.2 as they serve as “warm-ups” for the pattern
and the type of arguments that will be used in the general d ≥ 3 case. However, we reiterate
that the general case involves a lot of cases and sub-cases that need to be treated separately
and carefully.

3.2 The case when |X| < 3

We handle the cases |X| = 1 and |X| = 2 separately.

Lemma 5. Let G = (V,E) be a graph and X ⊆ V be a set of vertices such that |X| = 1
and G[V \X] is a disjoint union of cliques. Then χON (G) ≤ 3.

Proof. We explain how to assign C : V → {1, 2, 3} such that C is a CFON coloring of G.
Let X = {v1}. We assign C(v1) = 1.
Initial phase: We first choose a clique K in G[V \X]. Since G is connected, there exists
v ∈ K such that v1 ∈ N(v). There are two cases.

• |K| = 1.

That is, K = {v}. We assign C(v) = 2. We have U(v1) = v and U(v) = v1.

• |K| ≥ 2.

We choose a vertex v′ ∈ K \ {v}. We assign C(v) = 2, C(v′) = 3, and the vertices (if
any) in K \{v, v′} are assigned 1. We have U(v1) = U(v′) = v, and for all y ∈ K \{v′},
we have U(y) = v′.

Completion phase: The lone vertex v1 of X is already colored 1 and sees 2 as the unique
color in its neighborhood. We have also colored one clique in G[V \X]. For all the uncolored
cliques K in G[V \X], we color K as per the applicable case.

• All the vertices in K see v1 as their neighbor.

For all y ∈ K, assign C(y) = 3. The vertex v1 acts as the uniquely colored neighbor
for all y ∈ K.

• There exists v ∈ K such that v1 /∈ N(v).

Notice that if |K| = 1, then the lone vertex in K has to necessarily see v1 as a neighbor.
Hence in this case, we have |K| ≥ 2. Choose a vertex v′ ∈ K \ {v}. Assign C(v) = 2,
C(v′) = 3, and the vertices (if any) in K \ {v, v′} the color 1.

We have U(v′) = v and for all y ∈ K \ {v′}, we have U(y) = v′.
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Lemma 6. Let G = (V,E) be a graph and X ⊆ V be a set of vertices such that |X| = 2
and G[V \X] is a disjoint union of cliques. Then χON (G) ≤ 3.

Proof. Let X = {v1, v2}. We explain how to assign C : V → {1, 2, 3} to get a CFON
coloring of G. There are two cases depending on whether X is an independent set or not.
Case 1: X is an independent set. That is, {v1, v2} /∈ E(G). We have two subcases.

• Every vertex in V \X has at most one neighbor in X.

Initial phase: Since G is connected, there exists a clique K in G[V \ X] such that
N(v1) ∩K 6= ∅ and N(v2) ∩K 6= ∅. Let v ∈ N(v1) ∩K and v′ ∈ N(v2) ∩K. Notice
that v 6= v′, otherwise we would be violating the subcase we are in.

We assign C(v1) = C(v2) = 3, C(v) = 1, C(v′) = 2 and the remaining vertices (if any)
in K \ {v, v′} the color 3.

We get that U(v1) = v and U(v2) = v′. Also U(v) = v′ and for each y ∈ K \ {v},
U(y) = v.

Completion phase: Now we color the remaining cliques in G[V \X]. Let K be an
uncolored clique. There are two possibilities.

– Each vertex y ∈ K has degX(y) = 1.

For each vertex y ∈ K, if v1 ∈ N(y), assign C(y) = 2. Else, assign C(y) = 1.
The uniquely colored neighbor of each vertex in K is its lone neighbor in X.

– There exists v ∈ K such that degX(v) = 0.

Since G is connected, there exists v′ ∈ K such that degX(v′) 6= 0. WLOG let
v1 ∈ N(v′). We assign C(v) = 1, C(v′) = 2 and the vertices (if any) in K \{v, v′}
the color 3.

We get that U(v) = v′ and for each y ∈ K \ {v}, U(y) = v.

• There exists a vertex v ∈ V \X such that degX(v) = 2.

Initial phase: Let v ∈ K, where K is a clique in G[V \X]. We first assign C(v1) = 1
and C(v2) = 2.

If |K| = 1, we assign C(v) = 1 and we get that U(v1) = U(v2) = v and U(v) = v1.

Else |K| ≥ 2 and we have the following cases.

– There exists a vertex v′ ∈ K \ {v} such that v2 /∈ N(v′).

We assign C(v) = 2, C(v′) = 3 and the vertices (if any) in K \ {v, v′} the color
1. We get that U(v1) = U(v2) = v, U(v′) = v and U(y) = v′ for all y ∈ K \ {v′}.

– Else, for each y ∈ K, we have v2 ∈ N(y).

We assign C(v) = 1 and the remaining vertices in K \ {v} with the color 3. We
get that U(v1) = U(v2) = v and U(y) = v2 for all y ∈ K.

In each of the above case, both v1 and v2 have the same unique colors from {1, 2}.
The other color in {1, 2} does not serve as the unique color of v1 and v2 and we refer
to it as the free color1.

1The notion of free color is used crucially in the proof of the general |X| ≥ 3 case.
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Completion phase: WLOG let v1 and v2 have the color 1 as the unique color, and
2 is the free color.

Now, we extend this coloring to the cliques K ⊆ G[V \X].

– There exists a vertex v ∈ K such that v1 ∈ N(v).

Assign C(v) = 3 and the vertices (if any) in K \ {v} the color 2. We have
U(v) = v1 and for all y ∈ K \ {v}, U(y) = v.

– None of the vertices in K see v1 as a neighbor.

∗ All the vertices in K see v2 as a neighbor.
Assign the color 3 to all the vertices in K. For each vertex y ∈ K, we have
U(y) = v2.

∗ There exists v, v′ ∈ K such that v2 ∈ N(v) and v2 /∈ N(v′).
Assign C(v) = 3, C(v′) = 1 and the vertices (if any) in K \ {v, v′} the color
2. We get that U(v) = v′ and y ∈ K \ {v}, U(y) = v.

Case 2: X is not an independent set. That is, {v1, v2} ∈ E(G).
Before we explain how we CFON color the graph, we need to set up notation. A clique

K ⊆ G[V \ X] is called v1-seeing (v2-seeing) if for all vertices y ∈ K, we have v1 ∈ N(y)
(v2 ∈ N(y)).

• Each vertex v ∈ V \X that has degX(v) = 1 appears in a clique K that is v1-seeing
or v2-seeing.

In other words, each clique K in G[V \X] satisfies one of the two conditions: (i) K is
v1-seeing or v2-seeing, or (ii) each vertex v ∈ K has either degX(v) = 0 or degX(v) = 2.

Initial phase: There are two cases.

– There is a vertex v ∈ V \X such that degX(v) = 2.

Let v ∈ K, where K is a clique in G[V \X]. We assign C(v1) = 1, C(v2) = 2,
C(v) = 3 and the vertices (if any) in K \ {v} the color 2. We have U(v1) =
U(v2) = v, U(v) = v1 and for the vertices (if any) y ∈ K \ {v}, U(y) = v.

– For all y ∈ V \X, we have degX(y) < 2.

Since G is connected, there is a vertex v in each of the cliques in G[V \ X]
such that degX(v) = 1. By the case definition, we have that each of the cliques
must be v1-seeing or v2-seeing. If all the cliques were v1-seeing, it follows that
N(v2) = {v1}. This means that dc(G) = 1 and this case has been addressed in
Lemma 5. By an analogous argument, all the cliques cannot be v2-seeing as well.
Hence there are cliques K1,K2 ⊆ G[V \X] such that K1 is v1-seeing and K2 is
v2-seeing.

By the case definition, we have that for all vertices y ∈ K1, degX(y) < 2. Since
K1 is v1-seeing, it follows that for all y ∈ K1, we have N(y) ∩ X = {v1}. We
choose a vertex v ∈ K1. We assign C(v1) = 1, C(v) = 3, and the vertices (if any)
in K1 \ {v}, the color 2. We have U(v1) = v, U(v) = v1, and for the vertices (if
any) y ∈ K \ {v}, U(y) = v.

Similarly, for all y ∈ K2, we have N(y) ∩X = {v2}. We choose a vertex v′ ∈ K2

and assign C(v2) = 2, C(v′) = 3, and the vertices (if any) in K \ {v}, the color
1. We have U(v2) = v′, U(v′) = v2, and for the vertices (if any) y ∈ K \ {v′},
U(y) = v′.
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In each of the above cases, we have C(v1) = 1, C(v2) = 2, and the unique color seen
by v1 and v2 is 3.

Completion phase: Now we color the remaining cliques in G[V \X]. Let K be an
uncolored clique. There are two possibilities.

– For each y ∈ K, we have degX(y) ≥ 1.

If K is v1-seeing, then for each vertex y ∈ K, assign C(y) = 2 and we get
U(y) = v1. If K is v2-seeing, then for each vertex y ∈ K, assign C(y) = 1 and
we get U(y) = v2. (If degX(y) = 2 for each y ∈ K, then either of the above
assignments work.)

– There exists a vertex v ∈ K such that degX(v) = 0.

Since G is connected, K has a vertex v′ such that degX(v′) > 0. Since K is
not v1-seeing or v2-seeing, it must be the case that degX(v′) = 2. We assign
C(v) = 3, C(v′) = 1 and the vertices (if any) in K \ {v, v′} the color 2. We get
that U(v) = v′ and for each y ∈ K \ {v}, U(y) = v.

• There exists a vertex v ∈ V \X that has degX(v) = 1 that appears in a clique K that
is neither v1-seeing nor v2-seeing.

Initial phase: WLOG, let N(v) ∩X = {v1}. Since K is not v1-seeing, there exists
v′ ∈ K such that v1 /∈ N(v′).

We assign C(v1) = 1, C(v2) = 2, C(v) = 1, C(v′) = 3, and the vertices (if any) in
K \ {v, v′} the color 2. We have U(v1) = v, U(v2) = v1, U(v′) = v, and for each
y ∈ K \ {v′}, U(y) = v′. Note that the unique color seen by both v1 and v2 is 1.

Completion phase: Now we color the remaining cliques in G[V \X]. Let K be an
uncolored clique. We have the following cases.

– There exists a vertex v ∈ K such that v1 ∈ N(v).

Assign C(v) = 3, and the vertices (if any) in K \ {v} the color 2. We have
U(v) = v1, and for any y ∈ K \ {v}, U(y) = v.

– None of the vertices in K see v1 as a neighbor.

∗ For all y ∈ K, we have N(y) ∩X = {v2}.
Assign the color 3 to all the vertices in K. All the vertices in K see v2 as
their uniquely colored neighbor.

∗ There is a vertex v ∈ K such that degX(v) = 0.
Since G is connected, |K| ≥ 2. Choose a vertex v′ ∈ K \ {v}. Assign
C(v) = 1, C(v′) = 3, and the vertices (if any) in K \ {v, v′} the color 2. We
have U(v′) = v, and for y ∈ K \ {v′}, U(y) = v′.

3.3 The case when |X| ≥ 3 and X is an independent set

We start handling the general case of |X| ≥ 3. In this section, we prove the upper bound
for the case when X is an independent set.

Theorem 7. Let G(V,E) be a graph and X ⊆ V be a set of vertices such that |X| = d ≥ 3
and G[V \X] is a disjoint union of cliques. If X is an independent set, then χON (G) ≤ d+1.

7



In order to show the above theorem, we first prove Lemma 8, where we handle the case
when every vertex in V \ X has at most one neighbor in X. After this, we prove Lemma
10, where there is a vertex v ∈ V \X that has at least two neighbors in X. The proof of
Lemma 10 uses Lemma 9, which also serves as the completion phase for all the remaining
cases (including those where X is not an independent set).

Lemma 8. Let G = (V,E) be a graph and X ⊆ V be a set of vertices such that |X| = d ≥ 3
and G[V \X] is a disjoint union of cliques. If X is an independent set and every vertex in
V \X has at most one neighbor in X, then χON (G) ≤ d+ 1.

Proof. We explain how to assign C : V → [d+ 1] such that C is a CFON coloring of G. Let
X = {v1, v2, . . . , vd}.
Initial phase: For each vi ∈ X, assign C(vi) = d+ 1. For each vi ∈ X, choose an arbitrary
neighbor wi ∈ V \X and assign C(wi) = i. We get that U(vi) = wi. Now, each vertex in
X is colored and has a uniquely colored neighbor.
Completion phase: Each uncolored singleton clique in G[V \X] is assigned the color d+1.
Note that all the singleton cliques have exactly one neighbor in X, and this neighbor is the
uniquely colored neighbor. What remains to be addressed are cliques of size at least 2.

• Clique K ⊆ G[V \ X] with at least two colored vertices. Color the uncolored
vertices with the color d + 1. Let v, v′ ∈ K be two of the vertices that were colored
prior to this step. Hence it follows that C(v), C(v′) ∈ [d] and C(v) 6= C(v′).

Since degX(y) ≤ 1 for all y ∈ G[V \X], one of v and v′ will be the uniquely colored
neighbor of all vertices in K.

• Clique K ⊆ G[V \X] with exactly 1 colored vertex v. Let C(v) = j and hence
vj ∈ N(v).

– If |K| = 2. Let K = {v, v′}.
∗ If vj /∈ N(v′), we assign C(v′) = j. We get that U(v) = v′ and U(v′) = v.

∗ Else, we have N(v) ∩ X = N(v′) ∩ X = {vj}. We assign C(v′) arbitrarily
from [d] \ {j}. We get that U(v) = v′ and U(v′) = v.

– Else if |K| ≥ 3.

Let v′ be arbitrarily chosen from K \ {v}. Since |X| ≥ 3 and degX(v′) ≤ 1, there
exists a vertex v` ∈ X, v` 6= vj such that v` /∈ N(v′) ∩X. Assign C(v′) = ` and
color the rest of the vertices in K \ {v, v′} with the color d+ 1. We get that for
all vertices w ∈ K, either v or v′ is a uniquely colored neighbor.

• Clique K ⊆ G[V \ X] with no colored vertices. We first select two vertices
v, v′ ∈ K.

Since degX(v) ≤ 1, we can choose j ∈ [d] such that vj /∈ N(v)∩X. Since degX(v′) ≤ 1
and |X| ≥ 3, we can choose ` ∈ [d] such that ` 6= j and v` /∈ N(v′) ∩X.

Assign C(v) = j, C(v′) = ` and the rest of the vertices in K \ {v, v′} the color d+ 1.
For all vertices w ∈ K, either v or v′ is a uniquely colored neighbor.
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We first state Lemma 9, which will serve as the completion phase for almost all the
remaining cases (even for those where X is not an independent set). This lemma states that
the graph can be CFON colored provided it has been partially colored satisfying certain
rules.

We say that C is a partial coloring of V if C is an assignment of colors to a subset of
vertices in V .

Lemma 9. Let G = (V,E) be a graph with X = {v1, v2, . . . , vd} ⊆ V such that d ≥ 3
and G[V \ X] is a disjoint union of cliques. Further, Y = {vi ∈ X : degX(vi) ≥ 1} and
C : V → [d+ 1] be a partial coloring that satisfies the below rules.

Then, C can be extended to a CFON coloring Ĉ : V → [d+ 1] of all the vertices in V .

Rules

(i) For all vi ∈ X, C(vi) = i.

(ii) For some number of cliques K in G[V \X], all the vertices in K are colored using
colors from [d+ 1]. For the remaining cliques, none of the vertices are colored.

(iii) All the vertices in Y and all the colored vertices in V \X have a uniquely colored
neighbor. Moreover, some vertices in X \ Y have a uniquely colored neighbor.
Further, none of the vertices in X see d+ 1 as the unique color in their neighbor-
hood.

(iv) The uniquely colored neighbor is identified for all the vertices in X whose entire
neighborhood is colored.

(v) There exists 1 ≤ f ≤ d, such that (a) vf ∈ X has a uniquely colored neighbor and
(b) for each vertex in X, the color f is not the unique color in its neighborhood.
We refer to f as the free color.

(vi) If a vertex vi ∈ X \ Y does not have a uniquely colored neighbor, then the color
i is not assigned to any vertex in V \X yet.

(vii) The colors in [d] \ {f} are used at most at once in V \X.

Before proving Lemma 9, we prove the upper bound when X is an independent set and
there is a vertex v ∈ V \X that has at least two neighbors in X.

Lemma 10. Let G(V,E) be a graph and X ⊆ V be a set of vertices such that |X| = d ≥ 3
and G[V \ X] is a disjoint union of cliques. If X is an independent set and there exists a
vertex v ∈ V \X, such that degX(v) ≥ 2, then χON (G) ≤ d+ 1.

Proof. The goal here is to partially color some vertices of G so that the rules of Lemma
9 are satisfied. We then use Lemma 9 to extend the partial coloring and obtain a CFON
coloring of G.

Let X = {v1, v2, . . . , vd}. We explain how to assign C : V → [d + 1] such that C is a
partial coloring that satisfies the rules of Lemma 9. For each vertex vi ∈ X, we assign a
distinct color C(vi) = i. There are two cases depending on the neighborhood of vertices in
V \X.

• There exists a singleton clique K = {v} such that degX(v) ≥ 2.

Let N(v) ∩X = {vi1 , vi2 , . . . , vim}, with m ≥ 2. We assign C(v) = i1.

We get that U(v) = vi1 and for all 1 ≤ j ≤ m, U(vij ) = v. The color i2 will not be
the unique color of any vertex in X and will be the free color.
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• All singleton cliques have degree equal to 1. By assumption, there is a vertex
v ∈ V \ X, such that degX(v) ≥ 2. It follows that v ∈ K where K is a clique in
G[V \X] and |K| ≥ 2. Let N(v) ∩X = {vi1 , vi2 , . . . , vim}, with m ≥ 2.

Now we have two cases depending on whether there exist vertices in X whose neighbors
belong to only K. We refer to these vertices as SK . Formally, SK = {vi ∈ X : N(vi) ⊆
K}\N(v). The vertices in N(v)∩X rely on v for their uniquely colored neighbor and
hence does not require special attention.

– SK 6= ∅.
First, we assign C(v) = i1 and choose i2 as the free color. For each vertex
vj ∈ SK , we choose a vertex wj ∈ N(vj). Note that by the definition of SK , it
follows that wj ∈ K. We assign C(wj) = j if it is not already assigned (wj could
have been the chosen neighbor for some other vertex vj′ as well). Now all the
vertices in SK have a uniquely colored neighbor.

∗ If all vertices in K are colored because of the above coloring, every vertex
in K has a uniquely colored neighbor. We get that U(v) = vi1 . Each vertex
w ∈ K \ {v} is assigned a distinct color, say j, because it is adjacent to
vj ∈ SK , which serves as its uniquely colored neighbor.

∗ There exists at least one uncolored vertex in K.

· If there exists a uniquely colored neighbor for each uncolored vertex in
K, assign the color d + 1 to all the uncolored vertices. We get that
U(v) = vi1 . The vertices wj ∈ K \ {v} rely on the corresponding vj ’s as
mentioned above.

· Else, let v′ ∈ K be an uncolored vertex that does not see a uniquely
colored neighbor. This implies that N(v′) ∩ {vi1 , vi2 , · · · , vim} = {vi1}.
We reassign C(v) = i2, assign C(v′) = d+ 1, and designate i1 as the free
color instead of i2. We assign the color i1 to the remaining uncolored
vertices in K. We have U(v′) = v and U(w) = v′, for all w ∈ K \ {v′}.

– SK = ∅.
In this case, there is no vertex in X \ {vi1 , vi2 , · · · , vim} that was relying on K
for its uniquely colored neighbor. We first assign C(v) = i1 and choose i2 as the
free color. We have the following cases.

∗ There exists a vertex v′ ∈ K \ {v} such that vi1 /∈ N(v′).
Assign C(v′) = d + 1 and assign the remaining vertices of K \ {v, v′} the
color i2.
For every vertex w ∈ K \ {v′}, U(w) = v′. Finally, we have U(v′) = v.

∗ Else, for every vertex w ∈ K, we have vi1 ∈ N(w) ∩X.
Reassign C(v) = i2 and assign the color d+ 1 to all the vertices in K \ {v}.
The color i1 is the redesignated free color.
And for each w ∈ K, U(w) = vi1 .

Now C is a partial color assignment satisfying all the conditions in the rules of Lemma
9. Hence by Lemma 9, we can extend C to a full CFON coloring of G that uses at most
d+ 1 colors.

We conclude this section with the proof of Lemma 9.
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Proof of Lemma 9. For each colored vertex w ∈ G, Ĉ(w) = C(w). We explain how to extend

Ĉ : V → [d+1] to all vertices such that Ĉ is a CFON coloring of G. Let X = {v1, v2, . . . , vd}
and Y = {vi ∈ X : degX(vi) ≥ 1}.
Process to identify uniquely colored neighbors for X \ Y : For every vj ∈ X \ Y ,
that does not have a uniquely colored neighbor, choose an uncolored neighbor of vj , say

wj ∈ V \X and assign Ĉ(wj) = j. Rules (iv) and (vi) of Lemma 9 allow us to do this. Since
vj does not have a uniquely colored neighbor, rule (iv) implies that vj has an uncolored
neighbor, and as per rule (vi), no vertex in V \X is assigned the color j.
Observation: It is possible that all the neighbors of vj ∈ X \ Y may be colored by the
above coloring process on other vertices vi ∈ X \ Y even before applying the process on
vj . In such a case, we choose an arbitrary neighbor of vj that was already colored by this
process and assign it as the uniquely colored neighbor for vj . This neighbor acts as the
uniquely colored neighbor for at least 2 vertices in X \ Y . This fact will be useful later.

Now, every vertex in X \ Y has a uniquely colored neighbor. We now look at the
previously uncolored cliques K in G[V \X]. For each such clique K, we color K as per the
applicable case below.
Case 1: K has no colored vertices

• |K| = 1. Let K = {w}.

We assign Ĉ(w) = d + 1. As all the neighbors of w are distinctly colored, we assign
one of the neighbors as U(w).

• |K| ≥ 2. We have two subcases here.

– There exists a vertex w ∈ K, such that N(w) ∩X = ∅.
Choose another vertex w′ ∈ K \ {w} such that N(w′) ∩ X 6= ∅. We have two
subcases.

∗ N(w′) ∩X = {vf}, where vf ∈ X is the vertex that corresponds to the free
color f .
Assign Ĉ(w′) = d+ 1 and Ĉ(w) = c, where c ∈ [d] \ {f}, chosen arbitrarily.

For all the vertices (if any) x ∈ K \ {w,w′}, assign Ĉ(x) = f .
We have U(w′) = w and for all vertices x ∈ K \ {w′}, we have U(x) = w′.

∗ There exists a vertex vi ∈ N(w′) ∩X, where vi 6= vf .

Assign Ĉ(w′) = d+ 1. For all the vertices x ∈ K \ {w′}, assign Ĉ(x) = f .
We have U(w′) = vi and for all vertices x ∈ K \ {w′}, we have U(x) = w′.

– For all w ∈ K, N(w) ∩X 6= ∅.
Assign all the vertices in K the color d+ 1. For all the vertices in K, we assign
one of the neighbors in X as the respective uniquely colored neighbor.

Case 2: K has exactly one colored vertex
WLOG, let v ∈ K be such that Ĉ(v) = j. This implies that vj ∈ N(v) ∩X.

• |K| = 1.

We have U(v) = vj and U(vj) = v (as was already assigned).

• |K| = 2. Let K = {v, v′}.

– N(v′) ∩X = ∅.
We assign Ĉ(v′) = d+ 1. We get that U(v) = v′, U(v′) = v and U(vj) = v.
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– v′ has a neighbor other than vj in X. That is, ∃vk ∈ N(v′) ∩X, with vk 6= vj .

We assign Ĉ(v′) = d+ 1. We get that U(v) = v′, U(v′) = vk and U(vj) = v.

– N(v′) ∩X = {vj}.
∗ There exists a vertex v` ∈ X \ Y , v` 6= vj such that U(v`) = v.

Note that in this case, no vertex in V \ X is assigned the color `. This is
as noted in the observation at the beginning of the proof of this lemma. We
reassign Ĉ(v) = ` and Ĉ(v′) = d+1. We have that U(v) = v′ and U(v′) = v.
Note that U(vj) = U(v`) = v, as before.

∗ No vertex in X other than vj sees v as its uniquely colored neighbor and v
has another neighbor in X besides vj , say vk.

We reassign Ĉ(v) = d + 1 and assign Ĉ(v′) = j. We get that U(v′) = v,
U(v) = vk and we reassign U(vj) = v′.

∗ N(v) ∩X = N(v′) ∩X = {vj}.
We argue this case based on whether vj sees another uniquely colored vertex

w ∈ V \ X, distinct from v, such Ĉ(w) ∈ [d] \ {j, f}. Rule (vii) of Lemma
9 and the coloring processes followed in the rest of Lemma 9 ensure the
following: If vj sees w ∈ V \ X, such that Ĉ(w) ∈ [d] \ {j, f}, then it does

not see any other w′ ∈ V \X such that Ĉ(w) = Ĉ(w′).

If there exists such a vertex w, then reassign Ĉ(v) = d+1 and assign Ĉ(v′) =
d+ 1. We have U(vj) = w, U(v′) = v and U(v) = v′.

Else, reassign Ĉ(v) to an arbitrarily chosen value from [d] \ {j, f}. Note that

such a value exists since d ≥ 3. We assign Ĉ(v′) = d + 1. We get that
U(v) = v′, U(v′) = v and U(vj) = v, as before.

• |K| ≥ 3.

– There exists a vertex v′ ∈ K \ {v} such that vj /∈ N(v′).

We assign Ĉ(v′) = d+ 1 and the vertices in K \ {v, v′} are colored with the free
color f .

We get that U(v′) = v and for all w ∈ K \{v′}, U(w) = v′. As before, U(vj) = v.

– Every vertex in K is adjacent to vj .

∗ There exists a vertex v′ ∈ K \ {v} such that (N(v′)∩X) \ {vj , vf} 6= ∅. Let
vk ∈ N(v′) ∩X, where vk 6= vj and vk 6= vf .

Assign Ĉ(v′) = d+ 1 and rest of the vertices in K \ {v, v′} are colored with
the free color f . We get that U(v′) = vk and for all w ∈ K \{v′}, U(w) = v′.
As before, U(vj) = v.

∗ For all w ∈ K \ {v}, N(w) ∩X ⊆ {vj , vf}.
We have the following cases.

· There exists a vertex v′ ∈ K such that vf /∈ N(v′).
Choose k ∈ [d] \ {j, f} arbitrarily. Note that such a value exists since
d ≥ 3. Choose two vertices v′, v′′ arbitrarily from K \ {v} and assign

Ĉ(v′) = k, Ĉ(v′′) = d + 1 and the remaining vertices in K \ {v, v′, v′′}
are colored with f .
We get that U(v′′) = v′, and for all w ∈ K \ {v′′}, U(w) = v′′. As before
U(vj) = v.
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· For all w ∈ K \ {v}, we have N(w) ∩X = {vj , vf}.
For all w ∈ K \ {v}, assign Ĉ(w) = d+ 1. For all w ∈ K \ {v}, we have
that U(w) = vf . We have U(v) = vj and as before, U(vj) = v.

Case 3: K has at least two colored vertices and there exists a vertex in K that
is a uniquely colored neighbor for at least two vertices in X \ Y

Let v′ ∈ K be such that U(vj) = U(vk) = v′, where vj , vk ∈ X \ Y . The vertex v′ was
colored in the process to identify uniquely colored neighbors for vertices in X \ Y . WLOG,
we may assume that v′ was colored when assigning a unique colored neighbor for vj . That

is, Ĉ(v′) = j. This also implies that no vertices in K are colored k. There are two cases
here.

• All vertices in K are colored.

In this case, every vertex in K will have a uniquely colored neighbor. This is because
every vertex in K would have been assigned a distinct color. If w ∈ K is such that
Ĉ(w) = `, then U(w) = v` ∈ X \ Y .

• There exists an uncolored vertex v ∈ K. There are two subcases.

– v is adjacent to vk.

We assign Ĉ(v) = d + 1 and the remaining uncolored vertices in K (if any) are
assigned the free color f .

We get that U(v) = vk, and for all w ∈ K \ {v}, U(w) = v. Note that U(vj) =
U(vk) = v′, as before.

– v is not adjacent to vk.

Reassign Ĉ(v′) = k, assign Ĉ(v) = d+ 1 and the remaining uncolored vertices in
K (if any) are assigned the free color f .

We get that U(v) = v′, and for all w ∈ K \ {v}, U(w) = v. Note that U(vj) =
U(vk) = v′, as before.

Case 4: K has at least two colored vertices and every colored vertex in K is the
uniquely colored neighbor for exactly one vertex in X \ Y

Let v, v′ ∈ K be two colored vertices such that Ĉ(v) = j and Ĉ(v′) = k. The colors j
and k are assigned because they are adjacent to vj and vk respectively, where vj , vk ∈ X \Y .
We have cases depending on the neighborhood of K.

• There exists a colored vertex in K that is adjacent to both vj and vk.

– At least one of v or v′ is adjacent to both vj and vk.

WLOG let that vertex be v. Reassign Ĉ(v′) = d + 1 and assign the color f to
the remaining uncolored vertices (if any).

We have that U(v′) = vk, and for all vertices w ∈ K \ {v′}, U(w) = v′. We
reassign U(vk) = v, while U(vj) = v as before.

– There exists a colored vertex v′′ ∈ K \ {v, v′} such that {vj , vk} ⊆ N(v′′).

Let Ĉ(v′′) = ` because it was the chosen neighbor for v` ∈ X \ Y in the coloring

process stated in the beginning of this proof. We reassign Ĉ(v) = d + 1 and

Ĉ(v′) = f . It is important to note that because of the Case 4 definition, this
reassignment does not affect the uniquely colored neighbors of vertices in X \
{vj , vk}.
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The remaining uncolored vertices in K (if any) are assigned the color f .

We have U(v) = vj , and for every vertex w ∈ K \ {v}, U(w) = v. We reassign
U(vj) = U(vk) = v′′, while U(v`) = v′′ as before.

• There exists an uncolored vertex v′′ ∈ K such that {vj , vk} ⊆ N(v′′).

We reassign Ĉ(v) = d+ 1, Ĉ(v′) = f and assign Ĉ(v′′) = k. The remaining uncolored
vertices in K (if any) are assigned the color f .

We have U(v) = vj , and for every vertex w ∈ K \ {v}, U(w) = v. We reassign
U(vj) = U(vk) = v′′.

• No vertex in K is adjacent to both vj and vk.

Assign the color f to the remaining uncolored vertices (if any). Every vertex in
K \ {v, v′} will see either v or v′ as its uniquely colored neighbor. Also U(v) = vj and
U(v′) = vk, while U(vj) = v and U(vk) = v′, as before.

3.4 The case when |X| ≥ 3 and X is not an independent set

In this section, we prove the upper bound when |X| ≥ 3 and X is not an independent set.

Theorem 11. Let G = (V,E) be a graph and X ⊆ V be a set of vertices such that
|X| = d ≥ 3 and G[V \ X] is a disjoint union of cliques. If X is not an independent set,
then χON (G) ≤ d+ 1.

The proof of Theorem 11 involves a lot of cases. The cases when G[X] is 1-regular and
all the vertices in G[X] have degree 0 or 1 needs particular care. We state these two cases
below. The proofs of Lemmas 12 and 13, are proved in Sections 3.5 and 3.6 respectively.
All the proofs in this section and subsequent sections will only deal with the initial phase,
i.e., to achieve a partial coloring of the graph that satisfies the Rules of Lemma 9. The
completion phase follows by Lemma 9.

Lemma 12. LetG = (V,E) be a graph andX ⊆ V be a set of vertices such that |X| = d ≥ 3
and G[V \ X] is a disjoint union of cliques. If G[X] is 1-regular (perfect matching), then
χON (G) ≤ d+ 1.

Lemma 13. Let G = (V,E) be a graph and X ⊆ V be a set of vertices, such that
|X| = d ≥ 3 and G[V \X] is a disjoint union of cliques. Moreover all the vertices in G[X]
have degree at most 1 and at least one vertex has degree 0. Then χON (G) ≤ d+ 1.

We first prove Theorem 11 assuming the above lemmas.

Proof of Theorem 11. Let X = {v1, v2, . . . , vd} and Y = {vi ∈ X : degX(vi) ≥ 1}. Also, let
A be the set of connected components of G[X].

For each vertex vi ∈ X, we assign a distinct color C(vi) = i. We have the following cases
depending on the components in G[X].

• There exists a component A ∈ A such that |A| ≥ 3, and ∃vj ∈ A with degX(vj) = 1.

Let N(vj) ∩X = {vk}. Since |A| ≥ 3, there exists v` ∈ N(vk) ∩X such that v` 6= vj .
Every vertex in A \ {vk} chooses an arbitrary neighbor in A as its uniquely colored
neighbor while we assign U(vk) = v`. The color j is not the unique color for any vertex
in X. Hence we use j as the free color for the rest of the coloring.
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For all A′ ∈ A \ A, where |A′| ≥ 2, a vertex chooses one of its neighbors in A′ as its
uniquely colored neighbor. Thus all the vertices in Y have a uniquely colored neighbor.

At this point, we have partially colored G satisfying the rules of Lemma 9. Using
Lemma 9, we can extend this to a full CFON coloring of G that uses d+ 1 colors.

• There exists a A ∈ A such that |A| ≥ 3, and all the vertices in A have degree at least
2 in G[X].

Choose a vertex vj ∈ A. Since every vertex in A has degree at least 2, it can be
ensured that every vertex in A is assigned a uniquely colored neighbor other than vj .
We use the color j as the free color.

For all A′ ∈ A \ A, where |A′| ≥ 2, a vertex chooses one of its neighbors in A′ as its
uniquely colored neighbor. Thus all the vertices in Y have a uniquely colored neighbor.

Since the rules of Lemma 9 are satisfied, we can extend this coloring to a CFON
coloring of G that uses d+ 1 colors.

• For all the components A ∈ A, we have |A| = 2.

In this case, we have X \Y = ∅. All the vertices vi ∈ X have degX(vi) = 1. We apply
Lemma 12 to CFON color G with d+ 1 colors.

• For all the components A ∈ A, we have |A| ≤ 2. Moreover there exists A′ ∈ A such
that |A′| = 1.

That is X \ Y 6= ∅. By assumption, X is not an independent set. Hence Y 6= ∅ as
well. We apply Lemma 13 to CFON color G with d+ 1 colors.

3.5 Proof of Lemma 12

Let X = {v1, v2, . . . , vd}. Since each vertex vi ∈ X has degX(vi) = 1, we have that d = |X|
is an even number. This implies that d ≥ 4. WLOG, we may assume that the edges in G[X]
are {v1, v2}, {v3, v4}, . . . , {vd−1, vd}. We explain how to assign C : V → [d+ 1] such that C
is a partial coloring that satisfies the rules of Lemma 9.

For each vertex vi ∈ X, we assign the color C(vi) = i. We have the following cases.
Case 1: There exists a vertex v ∈ V \X such that degX(v) = |X|.

Let v ∈ K1, where K1 is a clique in G[V \X].
Subcase 1.1: K1 is the only clique in G[V \X].

For all vi ∈ X \ {v1}, we reassign C(vi) = d + 1. Assign C(v) = 2 and the remaining
vertices (if any) in K1 \ {v} are assigned the color d+ 1.

We get that U(v) = v1 and for all x ∈ V \ {v}, U(x) = v. Thus the entire graph is
CFON colored.
Subcase 1.2: There exists a clique K2 6= K1, such that K2 = {w} and degX(w) ≥ 2.

• N(w) ∩X contains a pair of adjacent vertices.

WLOG, let v1, v2 ∈ N(w). We have cases based on the size of the clique K1.

– |K1| = 1.

We assign C(w) = 3 and C(v) = 1. We have that U(v) = U(w) = v1. Also,
U(v2) = w and for each vi ∈ X \ {v2}, U(vi) = v. We have color 4 as the free
color.
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– |K1| ≥ 2.

We consider an arbitrary vertex v′ ∈ K1 \ {v}. We have three cases based on the
neighborhood of v′.

∗ v1 /∈ N(v′).
We assign C(w) = 3, C(v) = 1, C(v′) = d + 1 and the vertices (if any) in
K1 \ {v, v′} the color 4.
We have that U(w) = v2, U(v2) = w, and for each vi ∈ X \ {v2}, U(vi) = v.
Also U(v′) = v and for each y ∈ K1 \ {v′}, U(y) = v′. We have color 4 as
the free color.

∗ v1 ∈ N(v′).
We assign C(w) = 3, C(v) = 2, C(v′) = d + 1 and the vertices (if any) in
K1 \ {v, v′} the color 4.
We have that U(w) = v2, U(v1) = w and for each vi ∈ X \ {v1}, U(vi) = v.
Also U(v′) = v1 and for each y ∈ K1 \ {v′}, U(y) = v′. We have color 4 as
the free color.

• None of the vertices in N(w) ∩X are adjacent to each other.

WLOG, let v1, v3 ∈ N(w). We have cases based on the size of the clique K1.

– |K1| = 1.

We assign C(v) = 4 and C(w) = 1. We have U(w) = U(v) = v1. Also, U(v3) =
w, and for each vi ∈ X \ {v3}, U(vi) = v. We have color 3 as the free color.

– |K1| ≥ 2.

We consider an arbitrary vertex v′ ∈ K1 \ {v}. We have two cases based on the
neighborhood of v′.

∗ v2 /∈ N(v′).
We assign C(w) = 3, C(v) = 2, C(v′) = d + 1 and the vertices (if any) in
K1 \ {v, v′} the color 4.
We have that U(w) = v1, U(v1) = w, and for each vi ∈ X \ {v1}, U(vi) = v.
Also U(v′) = v and for each y ∈ K1 \ {v′}, U(y) = v′. Color 4 is the free
color.

∗ v2 ∈ N(v′).
We assign C(w) = 1, C(v) = 4, C(v′) = d + 1 and the vertices (if any) in
K1 \ {v, v′} the color 3.
We have that U(w) = v1, U(v3) = w, and for each vi ∈ X \ {v3}, U(vi) = v.
Also U(v′) = v2 and for each y ∈ K1 \ {v′}, U(y) = v′. Color 3 is the free
color.

Subcase 1.3: There exists a clique K2 6= K1, such that K2 = {w} and degX(w) = 1.
WLOG let N(w) = {v1}. We have cases based on the size of the clique K1.

• |K1| = 1.

We assign C(v) = 2 and C(w) = 3. We have U(v) = U(w) = v1. Also, U(v1) = w,
and for each vi ∈ X \ {v1}, U(vi) = v. Color 4 is the free color.

• |K1| ≥ 2.
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– There exists a vertex v′ ∈ K1 \ {v}, such that v2 /∈ N(v′).

We assign C(v) = 2, C(w) = 3, C(v′) = d + 1 and the vertices (if any) in
K1 \ {v, v′} the color 4.

We have that U(w) = v1, U(v1) = w, and for each vi ∈ X \{v1}, U(vi) = v. Also
U(v′) = v and for each y ∈ K1 \ {v′}, U(y) = v′. Color 4 is the free color.

– All the vertices in K1 are adjacent to v2.

Choose a vertex v′ ∈ K1 \ {v}. Assign C(w) = 4, C(v) = 1, C(v′) = 3 and the
vertices (if any) in K1 \ {v, v′} the color d+ 1.

We have that U(w) = v1, U(v2) = v′, and for each vi ∈ X \ {v2}, U(vi) = v.
Also for each y ∈ K1, U(y) = v2. Color 4 is the free color.

Subcase 1.4: There exists a clique K2 6= K1, such that |K2| ≥ 2.
Since G is connected, there is an edge between X and K2. WLOG, we assume that v1

is adjacent to w ∈ K2. We now divide the cases based on the size of the clique K1.

• |K1| = 1.

– There exists a vertex w′ ∈ K2 \ {w} such that v3 /∈ N(w′).

We assign C(v) = 2, C(w) = 3, C(w′) = d + 1, and the vertices (if any) in
K2 \ {w,w′} the color 4.

We have that U(w′) = w, and for each y ∈ K2\{w′}, U(y) = w′. Also U(v) = v1,
U(v1) = w, and for each vi ∈ X \ {v1}, U(vi) = v. Color 4 is the free color.

– All the vertices in K2 \ {w} are adjacent to v3.

We assign C(v) = 2, C(w) = 4, and the vertices in K2 \ {w} the color d+ 1.

We have that U(v) = U(w) = v1 and for each y ∈ K2 \ {w}, U(y) = v3. Also
U(v1) = w, and for each vi ∈ X \ {v1}, U(vi) = v. Color 1 is the free color.

• |K1| ≥ 2.

– There exists a vertex v′ ∈ K1 \ {v} such that v2 /∈ N(v′).

There are two subcases based on the neighborhood of the vertices in K2.

∗ There exists a vertex w′ ∈ K2 \ {w} such that v3 /∈ N(w′).
We assign C(v) = 2, C(v′) = d+1, C(w) = 3, C(w′) = d+1 and the vertices
(if any) in K1 \ {v, v′} and K2 \ {w,w′} the color 4.
We have that U(v′) = v, and for each y ∈ K1 \ {v′}, U(y) = v′. Also
U(w′) = w, and for each y ∈ K2 \ {w′}, U(y) = w′. Moreover, U(v1) = w,
and for each vi ∈ X \ {v1}, U(vi) = v. Color 4 is the free color.

∗ All the vertices in K2 \ {w} are adjacent to v3.
We assign C(v) = 2, C(v′) = d + 1, C(w) = 4, the vertices (if any) in
K1 \ {v, v′} the color 1 and the vertices in K2 \ {w} the color d+ 1.
We have that U(v′) = v, and for each y ∈ K1 \ {v′}, U(y) = v′. Also
U(w) = v1, and for each y ∈ K2 \ {w}, U(y) = v3. Moreover, U(v1) = w,
and for each vi ∈ X \ {v1}, U(vi) = v. Color 1 is the free color.

– All the vertices in K1 are adjacent to v2.

We choose v′ ∈ K1 \ {v} arbitrarily. We assign C(v) = 1, C(v′) = 3 and the
vertices (if any) in K1 \ {v, v′} the color 4. We leave the clique K2 uncolored for
now.

17



We have that for each y ∈ K1, U(y) = v2. Moreover, U(v2) = v′, and for each
vi ∈ X \ {v2}, U(vi) = v. Color 4 is the free color.

Case 2: For all y ∈ V \X, we have degX(y) < |X|. And there is a vertex v ∈ V \X such
that degX(v) ≥ 2.

Let v ∈ K where K is a clique in G[V \X]. Recall that since G[X] is 1-regular, it follows
that |X| ≥ 4. We have the following cases depending on the neighborhood of v.

• N(v) ∩X contains a pair of adjacent vertices.

WLOG, let v3, v4 ∈ N(v). Since degX(v) < |X|, WLOG we assume v1 /∈ N(v).

– |K| = 1.

We assign C(v) = 2. We get that U(v) = v3 and U(v3) = U(v4) = v. For each
vi ∈ X \ {v3, v4}, the uniquely colored neighbor is the lone neighbor of vi in X.
The color 3 is the free color.

– |K| ≥ 2.

∗ There exists a vertex v′ ∈ K \ {v} such that v2 /∈ N(v′).
We assign C(v) = 2, C(v′) = d + 1 and the vertices (if any) in K \ {v, v′}
the color 4.
We have that U(v′) = v, and for all y ∈ K \ {v′}, U(y) = v′. Also U(v3) =
U(v4) = v, and for each vi ∈ X \ {v3, v4}, the uniquely colored neighbor is
the lone neighbor of vi in X. We have color 4 as the free color.

∗ All vertices in K \ {v} are adjacent to v2.
Let v′ be arbitrarily chosen from K \ {v}. We assign C(v) = 1, C(v′) = 3
and the vertices (if any) in K \ {v, v′} the color d+ 1.
We have that U(v) = v4, and for all y ∈ K \{v}, U(y) = v2. Also U(v2) = v′,
U(v3) = U(v4) = v, and for all vi ∈ X \ {v2, v3, v4}, the uniquely colored
neighbor is the lone neighbor of vi in X. We have color 4 as the free color.

• None of the vertices in N(v) ∩X are adjacent to each other.

WLOG v2, v4 ∈ N(v) which implies v1, v3 /∈ N(v).

– |K| = 1.

We assign C(v) = 2. We get that U(v) = v2 and U(v2) = U(v4) = v. For each
vi ∈ X \ {v2, v4}, the uniquely colored neighbor is the lone neighbor of vi in X.
The color 3 is the free color.

– |K| ≥ 2.

∗ There exists a v′ ∈ K \ {v} such that v2 /∈ N(v′).
We assign C(v) = 2, C(v′) = d + 1 and the vertices (if any) in K \ {v, v′}
the color 3.
We get that U(v′) = v and for all y ∈ K \ {v′}, U(y) = v′. Moreover,
U(v2) = U(v4) = v, and for each vi ∈ X \ {v2, v4}, the uniquely colored
neighbor is the lone neighbor of vi in X. The color 3 is the free color.

∗ Every vertex in K is adjacent to v2.
We assign C(v) = 4 and the vertices in K \ {v} the color d+ 1.
We get that for all y ∈ K, U(y) = v2. Moreover, U(v2) = U(v4) = v, and for
each vi ∈ X \ {v2, v4}, the uniquely colored neighbor is the lone neighbor of
vi in X. The color 3 is the free color.
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Case 3: Every vertex v ∈ V \X has degX(v) ≤ 1.
Since G is connected, there is a v ∈ V \X such that degX(v) = 1. Let v ∈ K where K

is a clique in G[V \X]. WLOG let N(v) ∩X = {v1}.

• |K| = 1.

We assign C(v) = 1. We get that U(v) = v1. Also, U(v1) = v and for each vi ∈
X \ {v1}, the uniquely colored neighbor is the lone neighbor of vi in X. The color 2
is the free color.

• |K| ≥ 2.

– There exists a vertex v′ ∈ K \ {v} such that v1 /∈ N(v′).

We assign C(v) = 1, C(v′) = d + 1 and the vertices (if any) in K \ {v, v′} the
color 2.

We get that U(v′) = v and for all y ∈ K \ {v′}, U(y) = v′. Moreover, U(v1) = v,
and for each vi ∈ X \ {v1}, the uniquely colored neighbor is the lone neighbor of
vi in X. The color 2 acts as the free color.

– All vertices in K are adjacent to v1.

We assign C(v) = 3 and the vertices in K \ {v} the color d+ 1.

We get that for all y ∈ K, U(y) = v1. Moreover, U(v1) = v, and for each
vi ∈ X \ {v1}, the uniquely colored neighbor is the lone neighbor of vi in X. The
color 2 acts as the free color.

In Subcase 1.1, G has been assigned a full CFON coloring using d + 1 colors. In all
the other cases (and subcases therein), G has been partially colored satisfying the rules of
Lemma 9. The uncolored cliques K ∈ G[V \ X] can be colored with the application of
Lemma 9, yielding a full CFON coloring of G that uses d+ 1 colors.

3.6 Proof of Lemma 13

Let X = {v1, v2, . . . , vd} and Y = {vi ∈ X : degX(vi) ≥ 1}. By the conditions in the
statement of the lemma, we have X \ Y 6= ∅ and for each vertex v ∈ Y , degX(v) =
degY (v) = 1. For each vertex vi ∈ X, we assign the color C(vi) = i.

High Level Idea: We have four cases depending on how the vertices in V \X interact
with X \ Y and Y . In each case, we choose a vertex v ∈ K for some clique K ⊆ G[V \X].
We assign colors to the vertices in K such that all the vertices in K and N(v) ∩X have a
uniquely colored neighbor, while satisfying the rules of Lemma 9. In particular, we identify
a free color from the above partial coloring. We use Lemma 9 to color the remaining vertices
and obtain a CFON coloring of G.

The key obstacle here is that while coloring the clique K, we could end up assigning the
free color or the color d+ 1 to multiple vertices of K. There could exist vertices vi ∈ X \Y ,
such that N(vi) ⊆ K and all the vertices in N(vi) are assigned the free color and the color
d + 1. This may leave the vertex vi without a uniquely colored neighbor. Hence, while
coloring K, we need to handle these vertices separately. Let SK be the set of such vertices.

Formally, SK = {vi ∈ X \ Y : N(vi) ⊆ K} \N(v). The vertices in N(v) ∩ (X \ Y ) rely
on v for their uniquely colored neighbor and hence does not require special attention.

Lemma 14 shows that we can color K in such a way that all the vertices in SK have
a uniquely colored neighbor, and satisfying all the rules of Lemma 9. Lemma 14 will be
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proved after completing the proof of Lemma 13. For now, we shall assume Lemma 14 and
proceed.

Lemma 14. Let G = (V,E), X, Y be as above. Let v ∈ K where K is a clique in G[V \X]
such that |K| ≥ 2. Let C(vi) = i for all vi ∈ X and all the vertices in K \{v} are uncolored.
Suppose C(v) is assigned and the free color f is identified, in such a way that v relies on a
color other than f as the unique color in its neighborhood. Then K can be colored in such
a way that all the vertices in SK have a uniquely colored neighbor, and satisfying all the
rules of Lemma 9.

It will be convenient to denote an application of Lemma 14 by the 4-tuple, (v, C(v), f,K).
For example, we will say “applying Lemma 14 to (v, 1, 3,K)” to denote an application of
Lemma 14 where v ∈ K, C(v) = 1 and 3 is the free color.

We have four cases based on the neighborhoods of the vertices in V \X.
Case 1: There exists a vertex v ∈ V \X such that |N(v) ∩ (X \ Y )| ≥ 2.

Let v ∈ K, where K is a clique in G[V \ X]. WLOG let v1, v2 ∈ X \ Y such that
v1, v2 ∈ N(v).

• |K| = 1.

We assign C(v) = 1 and we get that U(v) = v1, U(v1) = U(v2) = v. We get the color
2 as the free color.

• |K| ≥ 2.

– SK 6= ∅.
We assign C(v) = 1 and we get that U(v) = v1 and for all vi ∈ N(v) ∩ (X \ Y ),
we have U(vi) = v. We now apply Lemma 14 to (v, 1, 2,K) ensuring that K is
colored, while taking the remaining vertices of SK into account. Color 2 is the
free color.

– SK = ∅.
∗ There exists a vertex v′ ∈ K \ {v} such that v1 /∈ N(v′).

Assign C(v) = 1, C(v′) = d + 1 and the vertices (if any) in K \ {v, v′} the
color 2.
We get that U(v′) = v and for all y ∈ K \ {v′}, U(y) = v′. Also U(v1) =
U(v2) = v. Color 2 is the free color.

∗ Every vertex in K is adjacent to v1.
Assign C(v) = 2 and the vertices in K \ {v} the color d+ 1.
We get that U(y) = v1 for all y ∈ K. Also U(v1) = U(v2) = v. Color 1 is
the free color.

In all the above cases, for each vi ∈ Y , the uniquely colored neighbor is the lone neighbor
of vi in X.
Case 2: There exists a vertex v ∈ V \X such that |N(v)∩ (X \Y )| = 1 and N(v)∩Y
contains a pair of vertices that are adjacent to each other.

Since Case 1 is already addressed, we assume for all y ∈ V \X, we have |N(y)∩(X\Y )| ≤
1.

Let v ∈ K, where K is a clique in G[V \X]. WLOG let N(v) ∩ (X \ Y ) = {v1}, and let
v2, v3 ∈ N(v) ∩ Y such that {v2, v3} ∈ E(G).

20



• |K| = 1.

We assign C(v) = 1. We get that U(v) = v1 and U(v1) = U(v2) = U(v3) = v. We
have the color 2 as the free color.

• |K| = 2.

Let K = {v, v′}. We have the following cases.

– SK 6= ∅.
We assign C(v) = 1 and we get that U(v) = v1, U(v1) = U(v2) = U(v3) = v. We
apply Lemma 14 to (v, 1, 2,K). We have the color 2 as the free color.

– SK = ∅.
Subcase 1: v1 /∈ N(v′).

We assign C(v) = 1 and C(v′) = d + 1. We get that U(v) = v1, U(v′) = v and
U(v1) = U(v2) = U(v3) = v. We have color 2 as the free color.

Subcase 2: v1 ∈ N(v′). That is, N(v′) ∩ (X \ Y ) = {v1}.
We first check if there exists a clique K̂ ⊆ G[V \X] such that N(v2) ∩ K̂ 6= ∅ or

N(v3) ∩ K̂ 6= ∅.
If there is no such clique K̂, we reassign C(v3) = 2, assign C(v) = 3 and C(v′) =
d+ 1. We get that U(v) = v1 and U(v1) = U(v2) = U(v3) = U(v′) = v. Color 2
is the free color.

Else, there exists a clique K̂ such that N(v2)∩ K̂ 6= ∅ or N(v3)∩ K̂ 6= ∅. WLOG

let N(v3) ∩ K̂ 6= ∅. We assign C(v) = 2 and C(v′) = d + 1. Now the vertex v3
does not have a uniquely colored neighbor. Let w ∈ N(v3) ∩ K̂.

If SK̂ 6= ∅, we assign C(w) = 3. We have U(v) = U(v′) = v1, U(v1) = U(v2) = v,
U(v3) = w and U(w) = v3. Due to the case definition, |N(w)∩ (X \Y )| ≤ 1. For
the lone vertex vi ∈ N(w) ∩ (X \ Y ) (if it exists), we have U(vi) = w. We now

apply Lemma 14 to (w, 3, 1, K̂) to color the remaining vertices K̂ taking care of
the vertices in SK̂ . We have color 1 as the free color.

Else if SK̂ = ∅, we do the following2.

∗ There exists a vertex w′ ∈ K̂ \ {w}, such that v3 /∈ N(w′).

We assign C(w) = 3, C(w′) = d+ 1 and the vertices (if any) in K̂ \ {w,w′}
the color 1.
We get that U(v) = U(v′) = v1, U(v1) = U(v2) = v, U(v3) = w, U(w′) = w

and for all vertices x ∈ K̂ \ {w′}, U(x) = w′. We have the color 1 as the free
color.

∗ For each x ∈ K̂, we have v3 ∈ N(x).

We assign C(w) = 1 and the rest of the vertices (if any) in K̂ \ {w} the color
d+ 1.
We get that U(v) = U(v′) = v1, U(v1) = U(v2) = v, U(v3) = w, and for all

vertices x ∈ K̂, U(x) = v3. Color 3 is the free color.

• |K| ≥ 3.

2One may wonder about the possibility of vertices vi ∈ X \Y such that N(vi) ⊆ K∪K̂, and be concerned
that these vertices vi do not feature in SK or S

K̂
. We note that there are no such vertices vi. This is because,

we have N(v) ∩ (X \ Y ) = N(v′) ∩ (X \ Y ) = {v1} in order to be in Subcase 2.
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– SK 6= ∅.
We assign C(v) = 1 and we get that U(v) = v1, U(v1) = U(v2) = U(v3) = v. We
apply Lemma 14 to (v, 1, 2,K). We have the color 2 as the free color.

– SK = ∅.
∗ There exists a vertex v′ ∈ K \ {v} such that v1 /∈ N(v′).

We assign C(v) = 1, C(v′) = d+ 1 and the vertices in K \ {v, v′} the color 3.
We get that U(v′) = v and for all y ∈ K \ {v′}, U(y) = v′. Also U(v1) =
U(v2) = U(v3) = v. We have the color 3 as the free color.

∗ Every vertex in K is adjacent to v1.
Choose two vertices v′, v′′ ∈ K \ {v} and assign C(v) = 1, C(v′) = 2,
C(v′′) = d+ 1 and the vertices (if any) in K \ {v, v′, v′′} the color 3.
We get that U(v′′) = v′ and for all y ∈ K \ {v′′}, U(y) = v′′. Also U(v1) =
U(v2) = U(v3) = v. We have the color 3 as the free color.

In each of the above cases, for each vi ∈ Y \ {v2, v3}, the uniquely colored neighbor is the
lone neighbor of vi in X.
Case 3: There exists a vertex v ∈ V \ X such that |N(v) ∩ (X \ Y )| = 1 and
|N(v) ∩ Y | ≥ 1. Moreover, none of the vertices in N(v) ∩ Y are adjacent to each
other.

Let v ∈ K for a clique K ⊆ G[V \X]. WLOG let v1 ∈ N(v)∩(X \Y ) and v2 ∈ N(v)∩Y .
Let v3 be the lone neighbor of v2 in Y . It follows that v3 /∈ N(v).

• |K| = 1.

We assign C(v) = 1 and we get that U(v) = v1, U(v1) = U(v2) = v and U(v3) = v2.
Color 3 is the free color.

• |K| ≥ 2.

– SK 6= ∅.
We assign C(v) = 1 and we get that U(v) = v1, U(v1) = U(v2) = v and
U(v3) = v2. We apply Lemma 14 to (v, 1, 3,K). Color 3 is the free color.

– SK = ∅.
∗ There exists a vertex v′ ∈ K \ {v} such that v2 ∈ N(v′).

We assign C(v) = 1, C(v′) = d + 1 and the vertices (if any) in K \ {v, v′}
the color 3.
We get that U(v′) = v2 and for all y ∈ K \ {v′}, U(y) = v′. Also U(v1) =
U(v2) = v and U(v3) = v2. We have color 3 as the free color.

∗ None of the vertices in K \ {v} are adjacent to v2.
We assign C(v) = 2 and the vertices in K \ {v} the color d+ 1. We get that
U(v) = v1 and for all y ∈ K \ {v}, U(y) = v. Also U(v1) = U(v2) = v and
U(v3) = v2. We have color 3 as the free color.

In each of the above cases, for each vi ∈ Y \ {v2, v3}, the uniquely colored neighbor is the
lone neighbor of vi in X.
Case 4: For each y ∈ V \X such that |N(y) ∩ (X \ Y )| = 1, we have |N(y) ∩ Y | = 0.

Since Case 1 is addressed, we assume that each vertex in V \X has at most 1 neighbor
in X \ Y .

Since G is connected and since3 |X \ Y | ≥ 1, we can choose a clique K ⊆ G[V \X] with

3This is where we make use of the assumption that X \ Y is nonempty.
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distinct vertices4 v, v′ ∈ K such that N(v) ∩ (X \ Y ) 6= ∅ and N(v′) ∩ Y 6= ∅. WLOG let
v1 ∈ N(v) ∩ (X \ Y ) and v2 ∈ N(v′) ∩ Y . Let v3 be the lone neighbor of v2 in Y . It follows
that v2, v3 /∈ N(v).

• SK = ∅.
We assign C(v) = 3, C(v′) = d + 1 and the vertices (if any) in K \ {v, v′} the color
1. We get that U(v′) = v2 and for all y ∈ K \ {v′}, U(y) = v′. Also U(v1) = v,
U(v2) = v3 and U(v3) = v2. Color 1 is the free color.

• SK 6= ∅.
We assign C(v) = 3 and we have U(v1) = v, U(v2) = v3 and U(v3) = v2.

Recall that SK = {vi ∈ X \Y : N(vi) ⊆ K}\N(v). For each vi ∈ SK , choose a vertex
wi ∈ N(vi), assign C(wi) = i and let U(vi) = wi. Since each vertex in V \X has at
most 1 neighbor in X \ Y , it also follows that N(vi) ∩N(vi′) = ∅ for any two vertices
vi, vi′ ∈ SK .

Because of the condition of Case 4, N(v′) ∩ (X \ Y ) = ∅. Assign C(v′) = d + 1,
and assign the color 1 to all the remaining uncolored vertices (if any) in K. We have
U(v′) = v2 and for all y ∈ K \ {v′}, U(y) = v′. Color 1 is the free color5.

In each of the above cases, for each vi ∈ Y \ {v2, v3}, the uniquely colored neighbor is the
lone neighbor of vi in X.

We have concluded the four cases. In each of the cases we have a free color f . We use
Lemma 9 to get a uniquely colored neighbor for remaining vertices in X \ Y , the cliques in
G[V \X] and thereby obtain a CFON coloring.

Lemma 14 (Restated). Let G = (V,E) be a graph and X = {v1, v2, . . . , vd} ⊆ V be a set of
vertices such that G[V \X] is a disjoint union of cliques. Let Y = {vi ∈ X : degX(vi) ≥ 1}.
Let v ∈ K where K is a clique in G[V \X] such that |K| ≥ 2. Let C(vi) = i for all vi ∈ X
and all the vertices in K \ {v} are uncolored. Suppose C(v) is assigned and the free color
f is identified, in such a way that v relies on a color other than f as the unique color in
its neighborhood. Then K can be colored in such a way that all the vertices in SK have a
uniquely colored neighbor, and satisfying all the rules of Lemma 9.

Proof. Recall that SK = {vi ∈ X \Y : N(vi) ⊆ K}\N(v). Let SK = {vj1 , vj2 , · · · , vjm}, for
some m ≥ 1. For each vi ∈ SK , choose an uncolored vertex wi ∈ N(vi), assign C(wi) = i and
let U(vi) = wi. If all the vertices in N(vi) are colored, we arbitrarily choose a vertex in N(vi)
as U(vi). WLOG let the colors used in K because of the above process be {j1, j2, · · · , jm′}
where m′ ≤ m. Note that the vertex v is colored prior to the application of this lemma, and
has a uniquely colored neighbor as well. Hence we do not talk about C(v) and U(v) in this
proof.

We have the following cases based on the number of uncolored vertices in K.

• All the vertices in K are colored.

Each vertex in K \ {v} was colored because it was chosen as wi by some vi ∈ SK .
Hence U(wi) = vi.

4Because of the definition of Case 4, it follows that v 6= v′.
5One may wonder why we did not apply Lemma 14 to (v, 3, 1,K) in this situation. This is because

Lemma 14 requires v to rely on a color other than the free color as the unique color in its neighborhood.
There is no assignment that meets this requirement.

23



• K contains exactly one uncolored vertex.

Let the uncolored vertex in K be v′. If v′ has a uniquely colored neighbor, we assign
C(v′) = d+ 1. Now, every vertex in K has a uniquely colored neighbor.

If v′ does not have a uniquely colored neighbor, we have two cases depending on the
number of colors used in K.

– m = m′.

This means that each vertex vi ∈ SK chose a neighbor wi ∈ K and assigned
the color i to it. So v′ sees each of the the colors j1, j2, · · · , jm twice in its
neighborhood. This means that vj1 , vj2 , · · · , vjm ∈ N(v′). Recall that f is the
free color, where 1 ≤ f ≤ d, and hence vf ∈ X sees a color other than f as
the unique color in its neighborhood. We do the following to obtain a uniquely
colored neighbor for v′:

∗ There exists a vertex v′′ ∈ K \ {v, v′} such that vf ∈ N(v′′) ∩X.
Let C(v′′) = k due to a vertex vk ∈ N(v′′) ∩ SK . Assign C(v′) = k and
reassign C(v′′) = d + 1. We have that U(v′) = vk, U(v′′) = vf and we
reassign U(vk) = v′.

∗ None of the vertices in K \ {v, v′} is adjacent to vf .
Note that vf /∈ N(v′), else vf would have served as a uniquely colored neigh-
bor for v′.
Choose a vertex v′′ ∈ K \ {v, v′}. Suppose C(v′′) = k and this implies that
vk ∈ N(v′′) ∩ SK . We reassign C(v′′) = f and assign C(v′) = d + 1. We
have U(v′) = vk and we reassign U(vk) = v′. The assignment of d+ 1 as the
unique color in the neighborhood of vk is an exception. However, this is fine
as N(vk) is contained in K, and does not interact with any other cliques in
G[V \X].

– m > m′.

This implies that there exists a vertex vj ∈ SK such that the color j is not given
to any vertex in K. So vj must be seeing a vertex v′′ ∈ K \ {v′} as its uniquely
colored neighbor.

We claim that vj /∈ N(v′). If vj ∈ N(v′), then vj is the lone vertex in N(v′) that
is colored j, and hence is a uniquely colored neighbor for v′. As per the scope of
this case, v′ does not have a uniquely colored neighbor. This is a contradiction.

We reassign C(v′′) = j and assign C(v′) = d+ 1. We get that U(v′) = v′′.

• K contains at least two uncolored vertices.

We first check if there exists an uncolored vertex v′ in K such that v′ has a uniquely
colored neighbor other than vf . If such a v′ exists, then we assign C(v′) = d + 1
and the remaining uncolored vertices in K the free color f . For all w ∈ K such that
C(w) = f , we have U(w) = v′.

If such a vertex v′ does not exist, we have the following cases based on the relation
between m and m′.

– m = m′.

Choose a colored vertex w ∈ K \ {v} and an uncolored vertex v′ ∈ K. Suppose
C(w) = j, which means that vj ∈ N(w). Since v′ does not see a uniquely colored
neighbor other than vf , it is the case that vj ∈ N(v′).
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We reassign C(w) = f , assign C(v′) = d+1 and the remaining uncolored vertices
(if any) in K the free color f . We get that U(v′) = vj and U(vj) = v′. All the
vertices in K \ {v′} will have v′ as their uniquely colored neighbor.

The assignment of d + 1 as the unique color in the neighborhood of vj is an
exception. However, this is fine as N(vj) is contained in K, and does not interact
with any other cliques in G[V \X].

– m > m′.

This implies that there exists a vertex vj ∈ SK such that the color j was not
used in K. This also implies that none of the uncolored vertices in K have vj in
their neighborhood. This is because if vj had an uncolored neighbor in K, then
that neighbor would have been colored j in the coloring process performed at the
beginning of this proof.

We choose two uncolored vertices v′, v′′ ∈ K and assign C(v′) = d+ 1, C(v′′) = j
and the remaining uncolored vertices (if any) the color f .

We get that U(v′) = v′′ and for all other vertices w ∈ K\{v′} will have U(w) = v′.
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