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Abstract. Recent development of deep reinforcement learning models
has impacted many fields, especially decision based control systems. Ur-
ban traffic signal control minimizes traffic congestion as well as overall
traffic delay. In this work, we use a decentralized multi-agent reinforce-
ment learning model represented by a novel state and reward function.
In comparison to other single agent models reported in literature, this
approach uses minimal data collection to control the traffic lights. Our
model is assessed using traffic data that has been synthetically generated.
Additionally, we compare the outcomes to those of existing models and
employ the Monaco SUMO Traffic (MoST) Scenario to examine real-time
traffic data.
Finally, we use statistical model checking (specifically, the MultiVeStA)
to check performance properties. Our model works well in all synthetic
generated data and real time data.

Keywords: Multi agent systems · Deep Reinforcement learning · Sta-
tistical Model checking · Traffic controller.

1 Introduction

Traffic management is one of the most important and challenging tasks in ur-
ban areas. Efficient operation of traffic lights is crucial in reducing congestion,
improving road safety, and enhancing the overall mobility of the city. Conven-
tional traffic light control methods, such as fixed-time [8], [14] and actuated con-
trol [7], [13], [5], have been widely used for many years. However, these methods
suffer from several limitations, including suboptimal performance, inflexibility,
and sensitivity to unexpected events. Traditional centralized approaches to traf-
fic light control have several limitations. For example, large grid sizes hamper the
effectiveness of the centralized control strategy they often result in sub-optimal
solutions due to the difficulty of modeling complex traffic dynamics.
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To address these limitations, decentralized multi-agent reinforcement learn-
ing (RL) has emerged as a promising approach for traffic light control [20]. The
RL framework consists of multiple traffic signals acting as independent agents
based on the information shared by its neighbours, each of which is responsible
for controlling the timing of its own traffic lights. Moreover, multi-agent RL en-
ables the traffic lights to learn to coordinate their actions, taking into account
the impact of their decisions on the flow of vehicles in their vicinity and the net-
work as a whole. These decentralized approaches allow for local decision-making
and adaptation to changing traffic conditions, leading to improved traffic flow
and reduced congestion.

Despite its potential, the application of decentralized multi-agent RL to traf-
fic light control is still in its infancy, with limited work on the subject to date.
For example, the linear weighted function [18] used to optimize an agent’s reward
may not fully capture the nonlinear throughput relationship between neighboring
intersections. This limitation could potentially lead to biased optimal solutions.
Moreover, the properties of the trained agent may not be satisfied. For instance,
it is challenging to ensure that the maximum waiting time of vehicles does not
exceed a certain threshold value.

In this paper, we propose employing Statistical Model Checking (SMC) [9]
techniques in conjunction with RL for better traffic policies. The gap that RL
leaves in terms of checking properties (like fairness) of a traffic policy is filled by
SMC. These properties are established through SMC and the output is fed to the
RL reward function. We present a comprehensive and decentralized multi-agent
RL framework integrated with MultiVeStA [12] for traffic light control tested
in both with synthetic and real world traffic scenario. The other problem we
address in this paper is of large state representation in the RL model. Not only
are such models computationally expensive, they require a lot of data as well.
We develop models that use smaller state representation and reward functions
that use only traffic delays only as in input. We experiment with our models
and show that they compare favorably against the traditional single agent RL,
actuated and fixed traffic light controllers. The idea of using RL coupled with
SMC can be generalized to other domains through checking properties of models
and including the results in the feedback.

The remainder of this paper is organized as follows: Section 2 briefly discusses
some prerequisites for the paper. Section 3 reviews related work in the field
of decentralized multi-agent RL for traffic light control. Section 4 presents the
proposed decentralized multi-agent RL framework with MultiVeStA. Section 5
describes the simulation environment and experimental setup and Results and
analysis. Section 6 concludes the paper with a discussion of future directions.

2 Preliminaries

In this section, we provide an overview of the preliminary concepts and math-
ematical frameworks required to understand the proposed decentralized multi-
agent Reinforcement Learning (RL) framework for traffic light control.
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2.1 Machine Learning Background

Reinforcement Learning: RL is a machine learning framework for learning
from interaction with an environment [15] over a sequence of time steps, where
at each time step t, the agent observes the state st of the environment and selects
an action at based on its policy π. The policy π is a function mapping the state
to action. The action at then influences the state of the environment, resulting
in a new state st+1 and a reward rt+1. The goal of the agent is to learn a policy
π that maximizes the expected cumulative reward, defined as:

J(π) = Eπ

[ ∞∑
t=0

γtrt+1

]
= Eπ

[
r1 + γr2 + γ2r3 + . . .

]
(1)

where γ ∈ [0, 1] is the discount factor, which determines the importance
of future rewards. The expectation is taken over the distribution of states and
actions induced by the policy π. Markov Decision Processes (MDPs) provide a
mathematical framework for modeling [1].

Q-Learning: Q-learning [19] is a popular reinforcement learning (RL) algo-
rithm that is used for solving problems in which an agent must learn to make
decisions in an environment. In Q-learning, the agent learns a Q-function, which
calculates the expected reward for taking an action in a given state.

The Q-function is typically represented as a table or a function that takes
the current state and action as inputs and outputs a predicted reward. During
training, the agent interacts with the environment, observing the current state,
taking an action, receiving a reward, and transitioning to a new state.

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
(2)

Here, Q(s, a) is the estimated value after taking an action a in state s, α is
the learning rate, r is the reward received by taking action a in state s, γ is the
discount factor, s′ is the next state, and a′ is the next action. The maxa′ Q(s′, a′)
term represents the maximum expected future reward from that next state s′.

Multi-Agent Reinforcement Learning: Multi-Agent RL [16] refers to a
scenario where multiple agents interact with each other and with the environment
to achieve their goals. In such scenarios, the actions of one agent can affect the
state of the environment and the rewards received by other agents.

Decentralized Control: Decentralized control refers to a control system
where multiple agents make decisions independently and locally, without relying
on a central controller. Decentralized control can improve the scalability and
robustness of control systems, as well as reduce the computational burden of
centralized controllers.

With these concepts in mind, we now proceed to present the proposed decen-
tralized multi-agent reinforcement learning framework for traffic light control.
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2.2 Statistical Model Checking:

Statistical Model Checking (SMC) is a formal methods paradigm that provides
a tool for a rapid analysis of properties expected out of (stochastic) systems [9].
The systems can be modeled as some appropriate variant of a transition system,
or even a Discrete Event Simulator and the expected properties are expressed
as queries written in an appropriate formal logic.

2.3 Tools

SUMO: Simulation of Urban MObility [11] is a microscopic traffic simulator
widely used in the field of traffic engineering and transportation research. In
addition to its standalone simulator, SUMO also offers a TraCI (Traffic Control
Interface) interface, which allows external programs to interact with SUMO sim-
ulations in real-time. This is particularly useful for reinforcement learning (RL)
applications, where agents need to observe the state of the simulation and take
actions in response. The simulation then updates its state based on the agent’s
action, and the process repeats for the next step.

MultiVeStA: MultiVeStA [12] is a powerful statistical analysis tool that
simplifies the integration of automated statistical analysis techniques from the
Statistical Model Checking family with existing discrete-event simulators and
agent-based models. It supports the use of temporal logic queries, including
Probabilistic Computation Tree Logic (PCTL) and Continuous Stochastic Logic
(CSL), as well as quantitative temporal expression queries such as Multiquatex.
It also supports various analyses, including transient analysis, Counterfactual
analysis etc. Integration of SUMO and MultiVeStA is done in [17], which we use
in this work.

3 Previous Work

Li et al. [10] proposes a decentralized deep reinforcement learning (RL) approach
for optimizing traffic signal timing. The authors present a novel method for
using deep neural networks to approximate the Q-values of each traffic light in a
decentralized RL framework,where each traffic light is treated as an independent
agent that makes decisions based on local observations. This allows the system
to operate in a distributed manner, making it suitable for large-scale networks
with multiple traffic lights. But deep reinforcement learning algorithms can be
sensitive to changes in the environment, and may not perform well in uncertain
or dynamic traffic conditions. This can make it difficult to achieve robust and
reliable performance in real-world traffic management systems.

Chen et al. [3] demonstrates the scalability and efficiency of the proposed
algorithm in handling the complexity and heterogeneity of large-scale urban
traffic systems. Although the authors evaluate the performance of the proposed
algorithm using a large-scale simulation environment and real-world traffic data,
its implementation in real-world traffic systems remains a challenge due to the
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complexity and heterogeneity of urban traffic systems. But this paper uses a
relatively simple state representation that only considers the current traffic flow
and the waiting time of vehicles at each intersection. This may not be sufficient
to capture the complex interactions and dependencies between traffic signals in
large-scale traffic systems and uses a simple reward function that only consid-
ers the average waiting time of vehicles at each intersection. This may not be
sufficient to capture the complex objectives and trade-offs of traffic signal con-
trol, such as balancing the smooth flow of vehicles and reducing congestion and
emissions.

Chen et al. [2] proposes a decentralized deep RL approach for traffic sig-
nal control, where each traffic signal is treated as an independent agent that
learns its optimal control policy through deep RL. The approach is based on
deep Q-network (DQN) algorithms. The authors evaluate the performance of
the proposed algorithm using a large-scale simulation environment with real-
world traffic data and compare the results with conventional methods such as
fixed-time and actuated control. The proposed algorithm was evaluated using a
large-scale simulation environment with real-world traffic data, but there is no
real-world implementation of the algorithm reported in the paper. This limits the
ability to assess the scalability and robustness of the algorithm in real-world sce-
narios and the traffic patterns can change over time, and the proposed algorithm
does not take into account the potential for non-stationary traffic patterns.

A deep reinforcement Q-learning model [6] is suggested for enhancing traffic
flow at an isolated intersection. The model takes into account partial observation
of the environment and its outcomes are compared with those of full detection.
However, the experiment’s results are derived from a simulated traffic scenario
from single intersection and do not reflect real-time traffic conditions.

An existing approaches try to maximize the reward of the agent without
checking the properties of the agent. Since agent learns through experiences
it is important to check the reliability of the decision. Our approach provides a
solution for verifying the properties of an agent while it learns by interacting with
statistical model checking (SMC). Subsequently, we evaluate the performance of
our model by comparing an agent trained through SMC with an agent trained
using the standard approach.

4 RL and SMC based Approach

This section provides an overview of our approach. We use MultiVeStA for train-
ing and evaluating the RL agent model. In the training phase an RL agent
collects data from SUMO and maximizes its expected reward. Additionally, it
collects the output of a MultiQuatex query from MultiVeStA. The query typi-
cally would concern an important property of the RL agent’s current state. In
this work, we illustrate this using two queries. For a reward structure that is
based on the change in cumulative waiting time between steps (minimal green
time or action), the final reward is calculated as a weighted sum of SUMO data
and MultiVeStA.
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Reward without considering MultiVeStA output is given by:

T∑
i=T−minGT

N∑
j=1

WTi,j −
T+minGT∑

i=T

N∑
j=1

WTi,j

where T is the current step, minGT is the minimal Green Time, N is the
number of incoming lanes and WT is the waiting time.
We modify the reward function as follows:

T∑
i=T−minGT

N∑
j=1

WTi,j −
T+minGT∑

i=T

N∑
j=1

WTi,j − x× (output from MultiVesTA)

where x is a multiplicative factor that decides the importance of the query.
Finally, the MultiVeStA is again employed in the testing phase to evaluate

the solution. Fig 1 illustrates this approach.

Fig. 1. Interconnection among SUMO, RL Agent and MultiVeStA

4.1 Multi Agent DQN Model for Traffic Signal Controller

Agent actions and Action space: The agent’s actions in this context would
involve deciding which traffic light phases to activate, based on the current state
of the intersection, namely, the number of vehicles and pedestrians waiting at
each approach. A phase is defined as a green signal to allow to move vehicles in
some directions. For a pictorial illustration of phases, refer to Fig 2. For example,
in a four-legged intersection, P1 (phase 1) decides to allow vehicle movement from
the north to all other directions (east, south, and west). P5 (phase 5) controls
pedestrian movement. When P5 is green, all pedestrians at the intersection are
allowed to move in any direction, while all other phases are red.

In this study, we focus on intersection scenarios with three and four legs.
Specifically, for three-legged intersections, we analyze four distinct phases, while
for four-legged intersections, we consider five phases. The agent responsible for
selecting the subsequent phases uses a minimum green interval (also called a
step). If the agent selects the ongoing phase, the current green interval is ex-
tended by the minimum green interval. On the other hand, if a different phase is
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chosen, the agent switches to the next phase with an intermediate yellow phase
that has a minimal yellow interval. Consequently, the agent not only determines
the next phase but also controls the duration of the ongoing phase by repeatedly
selecting the same phase.

The action space is defined as the set of possible phases in a traffic pro-
gram. As mentioned earlier in Fig 2, a three-legged intersection has four possi-
ble actions, while a four-legged intersection has five possible actions. A phase is
controlled by an action.

For a three-legged intersection, the action space is
A = [(W→ EN), (E→WN), (N→ EW), (all pedestrian crossing)]. Note that

|A| = 4.
For a four-legged intersection, the action space is
A = [(N→ SEW), (E→WNS), (S→ NWE), (W→ ENS), (all pedestrian crossing)],

with |A| = 5.

Fig. 2. An intersection with three/four legs with corresponding phases

State representation: We encode the state representation of an intersection’s
traffic light controller as an array of numbers, which encompasses various vari-
ables. These variables consist of the number of waiting vehicles and pedestrians
approaching the intersection, the number of vehicles and pedestrians arriving at
the intersection. Two observable categories exist, one within a 100-meter radius
and the other within a 400-meter radius of the intersection. The state is array
of size 20 representing waiting and arriving vehicle’s list at an intersection.

Reward function: We use the reward function as described in the beginning
of the section, taking SUMO data and MultiVeStA output as input parameters.
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Neural Network Architecture: In this approach, the neural network is
trained on a dataset of traffic flow information, as per the state representa-
tion discussed previously. The neural network is designed to learn patterns in
this data and predict the optimal timing of traffic lights for each intersection.
By using a neural network to optimize the timing of traffic lights, it is possible
to reduce delays and congestion at intersections, as well as improve the flow of
traffic. However, it is important to note that the effectiveness of this approach
depends on the quality of the data used to train the neural network, as well as
the architecture and parameters of the neural network itself. We use the follow-
ing parameters for our architecture. In the simplest setting, we train a single
agent on a single intersection and test the model on multiple intersections. We
call this setting the Single-RL. For such a scenario, the neural network architec-
ture comprises an input size of 20 (state representation), and an output size of 4
(actions) for three-legged intersections and 5 (actions) for four-legged intersec-
tions. The network comprises 4 hidden layers, each containing 400 neurons, with
ReLU activation function. The optimizer used is Adam, with a learning rate of
0.001, and a batch size of 100. The discount factor used for future rewards is
0.75. The replay buffer size is set to 50000, allowing the network to learn from
previous experiences. These hyperparameters are crucial in determining the per-
formance of the neural network in the reinforcement learning task, and they can
be fine-tuned to improve the learning efficiency and the overall performance of
the network.

4.2 Decentralized Multi Agent Model

In decentralized Multi Agent systems agents can transfer their local data to
neighboring agents. These agents then make decisions based on all the available
data. We classify the agents into two categories: bordered and non-bordered.
Bordered agents can receive data from only one neighbor, while non-bordered
agents can obtain data from two neighbors located on the major or arterial road.

In our approach, we include additional data in the reward function of the
model, as well as in the state representation. The state of the model consists of
information on the current phase of neighboring agents, its geographical location,
and the time elapsed during that phase. This state representation is adequate for
independent model training and decision-making without requiring a centralized
system. The reward includes delays from other intersections as well.

4.3 MultiVeStA with Reinforcement Learning

Simple Query: What is the probability that the green time of a particular
phase has crossed the threshold when there are vehicles waiting in the other
direction at an intersection? This query is useful to check the fairness/liveness
property of the RL agent. Since the RL agent tries to maximize the reward, if
there are very less number of vehicles waiting in one direction and more number
of vehicles waiting in another direction, the RL agent chooses to extend the
current phase for heavy traffic side. This makes the side with less traffic to wait
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Fig. 3. Monaco SUMO Traffic (MoST) Scenario

more, which is undesirable. Result of the query is shown in Table 2, from the
table we can see that the model trained with MultiVeStA yields less probability
than the one without MultiVeStA, in both Low and High traffic scenarios. But
at the same time it compromises the average waiting time. The ratio of the query
satisfied between model trained with and model not trained with MultiVeStA is
more in High than Low traffic scenario because normal RL agent tries to reduce
the delay:

EMG(st) = if ( s.rval("step") <= st ) then
( if (s.rval(" gtExceed ") == 1 then (1)

else (0) fi)
else #EMG((st)) fi ;

eval E[ EMG(st) ] ;

Listing 1.1. Probability of MAX −GREEN crossed in particular phase.

t1Ut2(st ,th ,cp) = if( s.rval("step") <= st) then
if ( s.rval("diff") > th ) then (1)
else if ( s.rval(" curPhase ") == cp ) then

#t1Ut2((st),(th),(cp))
else (0) fi fi else (0) fi ;

eval E[t1Ut2(st ,th ,cp)];

Listing 1.2. Probability query using the Until Operator

Complex Query
What is the probability that the current phase will be prolonged, provided

that the absolute difference between the number of vehicles waiting in the cur-
rent phase and the other phases is a specified threshold (say 5)? This query
assesses the potential for grouping vehicles in a single direction, enabling drivers
approaching the traffic signal to make informed decisions about whether to slow
down or speed up.
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5 Experimental Results

In our experiments, we consider the two kind of traffic scenarios, one is synthetic
and another one is real time data from Monaco city [4]. For synthetic generated
traffic data, we use a six intersections grid road network with length of 550m.
For training the model, we use Weibul distribution for vehicle generation of
1000 (500) per hour for High (Low). We compare the result of all the algorithms
in terms of cumulative Waiting Time (WT) in seconds, averaged over the six
intersections and cumulative Queue Length (QL).

5.1 Decentralized Multi-Agent Model

In this experiment, we evaluate our reward function structure for the decentral-
ized RL formulation. Table 1 shows the results.

Decentralized RL performs well, because it learns relationships among neigh-
bours and takes action which leads to overall minimisation of delay and queue
length.

The results for Monaco city are shown in Fig 4. The cumulative delay at
intersection level varies because the decentralized RL controller aims to reduce
overall waiting time of all intersections. This can be seen through the mean
waiting time (the dashed line of the controller).

Table 1. Waiting time and Queue length of all controllers in Grid Road Network

Fixed-Time Actuated Single-RL Decentralized-RL

WT(s) QL WT(s) QL WT(s) QL WT(s) QL

Low 8498 48314 6375 34343 4206 23810 3728 19678

High 20887 134988 14404 91790 10273 64878 8340 58965

5.2 Reinforcement Learning With MultiVeStA

We use only one intersection in this case, to focus on the effect of employing
inputs from MultiVeStA to the RL agent. Table 2 shows the results. Prob indi-
cates the probability that the corresponding MultiQuatex query is satisfied. The
multiplicative factor x used is -1 for the first query and +1 for the second query.
Considering the queries, the signs are a natural choice; we choose the magnitude
after some trials. The results indicate an advantage of incorporating Statistical
Model Checking tools into RL systems.
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Fig. 4. Average Waiting Time at Intersections in the MOST (Monaco city) Scenario

Table 2. Result of Evaluation of Queries

Model Trained Without MultiVeStA Model Trained With MultiVeStA

Query-1 Query-2 Query-1 Query-2

Prob WT(s) Prob WT(s) Prob WT(s) Prob WT(s)

Low 0.06 1.042 0.68 1.054 0.03 1.398 0.72 1.042

High 0.025 2.258 0.76 1.364 0.008 2.481 0.88 1.174

6 Future Directions

Our results indicate an encouraging new direction for using decentralized multi
agent systems in conjunction with statistical model checking tools for traffic
analysis. We believe that the following questions are interesting directions to
pursue. What properties (MultiQuatex queries in our case) of the RL agent
are best for fast convergence? We arrived at the multiplicative factor for the
MultiVeStA input through trial and error. Is there a systematic approach to
converge to the best value? How does our technique scale to large cities?
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