CS 4510 : Automata and Complexity Randomized Communication Complexity

Subrahmanyam Kalyanasundaram

April 26, 2010

We shall see a randomized algorithm for equality, which has an $O(\log n)$ communication complexity. We need the following basic theorem from algebra.

Theorem 1. A univariate polynomial of degree d over \mathbb{F} has at most d roots, unless it is the zero polynomial.

We saw in class that any deterministic algorithm requires a communication complexity of n to compute the equality function. Here we use a randomized algorithm. What this means is that the algorithm would perform differently for the same inputs. You could think of the computer tossing a coin, and deciding between several possible computation paths. Unlike in nondeterminism, here we want a good probability of success, we want that the algorithm succeeds on most inputs.
Alice and Bob have two numbers $a, b \in\{0,1\}^{n}$ respectively. They need to check if $a=b$. For the algorithm, they decide ${ }^{1}$ on a prime number p such that $n^{2} \leq p \leq 2 n^{2}$. Alice and Bob may view their numbers in the following manner. Let $a=a_{0} a_{1} a_{2} \ldots a_{n-1}$ and $b=b_{0} b_{1} b_{2} \ldots b_{n-1}$ be the bit expansions of a, b. Define polynomials $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}$ and $B(x)=b_{0}+b_{1} x+\ldots+b_{n-1} x^{n-1}$ over \mathbb{F}_{p}. (Evaluating a polynomial over \mathbb{F}_{p} can be thought of as evaluating over integers and then taking modulo p.) The protocol is the following:

- Alice picks a random r from \mathbb{F}_{p}, the finite field with p elements.
- Alice computes $A(r)$ and sends $r, A(r)$ to Bob.
- Bob computes $B(r)$ and checks if $A(r)=B(r)$.
- If they are equal, Bob sends 1 back to Alice, else he sends a 0 back.

Notice that if $a=b$, then $A(x)=B(x)$ and hence $A(r)=B(r)$. So the protocol always succeeds, irrespective of the choice of r. However, when $a \neq b$, there is a chance that $A(r)$ and $B(r)$ evaluates to the same number. But we shall show that this is not that likely to happen. That is

$$
\operatorname{Prob}[A(r)=B(r) \mid a \neq b] \leq \frac{1}{n}
$$

[^0]If $a \neq b$, then the polynomials $A(x) \neq B(x)$, so the polynomial $C(x)=A(x)-B(x) \not \equiv 0$. By theorem 1, $C(x)$ has at most $n-1$ roots. That is, there are at most $n-1$ choices for r which would have made $A(r)=B(r)$. The total number of choices for r is $p=O\left(n^{2}\right)$. So the probability of choosing a bad r is at most $1 / n$. Hence when $a \neq b$, the protocol succeeds with probability $\geq 1-1 / n$. This concludes the proof of correctness.
Note that all that needs to be communicated is $r, A(r)$ and a $0 / 1$ bit. $r, A(r)$ are elements of \mathbb{F}_{p} and can be communicated using $\log p \leq 2 \log n$ bits. So the total communication required is $\leq 4 \log n+1$ which is $O(\log n)$.

Next, we state a generalization of Theorem 1.
Theorem 2. (Schwartz Lemma) Let $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a nonzero polynomial over n variables with degree at most d over a finite field \mathbb{F}. Then for any set $S \subseteq \mathbb{F}$, there are at most $d|S|^{n-1}$ n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in S^{n}$ which satisfy $P\left(a_{1}, a_{2}, \ldots, a_{n}\right)=0$.

This theorem is stated in Sipser as Lemma 10.15 (page 379). Refer to Sipser for the proof.

[^0]: ${ }^{1}$ Primes always exist between a number and twice that number.

