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We shall see a randomized algorithm for equality, which has an O(log n) communication complexity.
We need the following basic theorem from algebra.

Theorem 1. A univariate polynomial of degree d over F has at most d roots, unless it is the zero
polynomial.

We saw in class that any deterministic algorithm requires a communication complexity of n to
compute the equality function. Here we use a randomized algorithm. What this means is that the
algorithm would perform differently for the same inputs. You could think of the computer tossing
a coin, and deciding between several possible computation paths. Unlike in nondeterminism, here
we want a good probability of success, we want that the algorithm succeeds on most inputs.

Alice and Bob have two numbers a, b ∈ {0, 1}n respectively. They need to check if a = b. For
the algorithm, they decide1 on a prime number p such that n2 ≤ p ≤ 2n2. Alice and Bob may
view their numbers in the following manner. Let a = a0a1a2 . . . an−1 and b = b0b1b2 . . . bn−1 be
the bit expansions of a, b. Define polynomials A(x) = a0 + a1x + a2x

2 + . . . + an−1x
n−1 and

B(x) = b0 + b1x + . . . + bn−1x
n−1 over Fp. (Evaluating a polynomial over Fp can be thought of as

evaluating over integers and then taking modulo p.) The protocol is the following:

• Alice picks a random r from Fp, the finite field with p elements.

• Alice computes A(r) and sends r, A(r) to Bob.

• Bob computes B(r) and checks if A(r) = B(r).

• If they are equal, Bob sends 1 back to Alice, else he sends a 0 back.

Notice that if a = b, then A(x) = B(x) and hence A(r) = B(r). So the protocol always succeeds,
irrespective of the choice of r. However, when a 6= b, there is a chance that A(r) and B(r) evaluates
to the same number. But we shall show that this is not that likely to happen. That is

Prob[A(r) = B(r) | a 6= b] ≤ 1
n

1Primes always exist between a number and twice that number.
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If a 6= b, then the polynomials A(x) 6= B(x), so the polynomial C(x) = A(x) − B(x) 6≡ 0. By
theorem 1, C(x) has at most n − 1 roots. That is, there are at most n − 1 choices for r which
would have made A(r) = B(r). The total number of choices for r is p = O(n2). So the probability
of choosing a bad r is at most 1/n. Hence when a 6= b, the protocol succeeds with probability
≥ 1− 1/n. This concludes the proof of correctness.

Note that all that needs to be communicated is r, A(r) and a 0/1 bit. r, A(r) are elements of Fp and
can be communicated using log p ≤ 2 log n bits. So the total communication required is ≤ 4 log n+1
which is O(log n).

Next, we state a generalization of Theorem 1.

Theorem 2. (Schwartz Lemma) Let P (x1, x2, . . . , xn) be a nonzero polynomial over n variables
with degree at most d over a finite field F. Then for any set S ⊆ F, there are at most d|S|n−1

n-tuples (a1, a2, . . . , an) ∈ Sn which satisfy P (a1, a2, . . . , an) = 0.

This theorem is stated in Sipser as Lemma 10.15 (page 379). Refer to Sipser for the proof.
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