Post Correspondence Problem - Example

Here is an instance $\langle M, w\rangle$ of $A_{T M}$.

- input string $w=0100$
- machine M has set of states $Q=\left\{q_{0}, q_{1}, q_{2}, \ldots q_{7}, q_{a}\right\}$
- machine M has start state $q_{0} \in Q$ and accept state $q_{a} \in Q$
- machine M has tape alphabet $\Gamma=\{0,1,2,3, \sqcup\}$
- machine M has transition function δ. A few of the transitions of M are:

$$
\delta\left(q_{0}, 0\right)=\left(q_{7}, 2, R\right), \delta\left(q_{7}, 1\right)=\left(q_{2}, 3\right), \delta\left(q_{2}, 0\right)=\left(q_{a}, 0, R\right)
$$

- machine M cleans up after itself: if it reaches state q_{a} it cleans the tape and sits at the first tape-square.

Observation: The configurations of M on w are:

$$
\begin{aligned}
& C_{0}=\mathrm{q}_{0} 0100 \\
& C_{1}=2 \mathrm{q}_{7} 100 \\
& C_{2}=23 \mathrm{q}_{2} 00 \\
& C_{3}=230 \mathrm{q}_{\mathrm{a}} 0 \\
& C_{4}=230 \mathrm{q}_{\mathrm{a}} \\
& C_{5}=23 \mathrm{q}_{\mathrm{a}} \\
& C_{6}=2 \mathrm{q}_{\mathrm{a}} \\
& C_{7}=\mathrm{q}_{\mathrm{a}}
\end{aligned}
$$

Hence the (accepting) computation history of M on w is

$$
\# \mathrm{q}_{0} 0100 \# 2 \mathrm{q}_{7} 100 \# 23 \mathrm{q}_{2} 00 \# 230 \mathrm{q}_{\mathrm{a}} 0 \# 230 \mathrm{q}_{\mathrm{a}} \# 23 \mathrm{q}_{\mathrm{a}} \# 2 \mathrm{q}_{\mathrm{a}} \# \mathrm{q}_{\mathrm{a}} \# \#
$$

The instance of MPCP, P^{\prime} (which is a finite set of dominoes) is obtained by applying the 7 rules to $\langle M, w\rangle$.

1. Rule 1 adds $\left[\frac{\#}{\# q_{0} 0100 \#}\right]$ as the "first" domino of P^{\prime}
2. Rule 2 adds $\left[\frac{q_{0} 0}{2 q_{7}}\right],\left[\frac{q_{7} 1}{3 q_{2}}\right]$ and $\left[\frac{q_{2} 0}{0 q_{a}}\right]$
3. Rule 3 adds nothing (in our case)
4. Rule 4 adds $\left[\frac{0}{0}\right],\left[\frac{1}{1}\right],\left[\frac{2}{2}\right],\left[\frac{3}{3}\right]$ and $\left[\frac{\cup}{\cup}\right]$
5. Rule 5 adds $\left[\frac{\#}{\#}\right]$ and $\left[\frac{\#}{ப \#}\right]$
6. Rule 6 adds $\left[\frac{0 q_{a}}{q_{a}}\right],\left[\frac{q_{a} 0}{q_{a}}\right], \cdots\left[\frac{3 q_{a}}{q_{a}}\right]$ and $\left[\frac{q_{a} 3}{q_{a}}\right]$
7. Rule 7 adds $\left[\frac{q_{a} \# \#}{\#}\right]$

Thus in this example, we have

$$
P^{\prime}=\left\{\left[\frac{\#}{\# q_{0} 0100 \#}\right],\left[\frac{q_{0} 0}{2 q_{7}}\right],\left[\frac{q_{7} 1}{3 q_{2}}\right],\left[\frac{q_{2} 0}{0 q_{a}}\right],\left[\frac{0}{0}\right], \cdots,\left[\frac{\sqcup}{\square}\right],\left[\frac{\#}{\#}\right],\left[\frac{\#}{\sqcup \#}\right],\left[\frac{0 q_{a}}{q_{a}}\right], \cdots\left[\frac{q_{a} 3}{q_{a}}\right],\left[\frac{q_{a} \# \#}{\#}\right]\right\}
$$

Claim: Given M, w, construct P^{\prime} using the rules. Then
P^{\prime} has a match beginning with first domino $\Leftrightarrow M$ has an accepting computation history on w.

In our example, M does accept w. The match in P^{\prime} is just the accepting computation history:

which is essentially

$$
\left[\frac{\#}{\# q_{0} 0100 \#}\right]\left[\frac{q_{0} 0}{2 q_{7}}\right]\left[\frac{1}{1}\right]\left[\frac{0}{0}\right]\left[\frac{0}{0}\right]\left[\frac{\#}{\#}\right]\left[\frac{2}{2}\right]\left[\frac{q_{7} 1}{3 q_{2}}\right]\left[\frac{0}{0}\right] \cdots\left[\frac{q_{a} \# \#}{\#}\right]
$$

Conversely, if a match beginning with first domino does exist in P^{\prime} then it must be the accepting computation history.

