
CS 4510 : Automata and Complexity

Using Nondeterministic Machines as Subroutines

Subrahmanyam Kalyanasundaram

April 25, 2010

I noticed the same incorrect solution repeated in many of your submissions for Homework 5. I think
this is because of some subtleties involved in the usage of nondeterministic machines as subroutines.

The problem asks to show that STRONG-CONN is NL-complete. There are two parts to the
solution–first showing that it is in NL and then showing that it is NL-hard. The incorrect solutions
that I referred to were in the solution for the first part.

The correct proof that STRONG-CONN is in NL is the following algorithm. Loop over all choices
of u ∈ V (G) and v ∈ V (G). Guess a path from u to v, nondeterministically, and reject if the guess
does not form a path. Else continue till all choices of u, v are exhausted. Accept if not rejected
yet. If G is strongly connected, then there exists a set of nondeterministic choices such that all
guesses accept. If G is not strongly connected, then certain pairs u, v have no path from u to v, so
all guesses would lead to a reject.

The first wrong proof that I saw was the following. Instead of looping over all u, v, why not guess a
pair u, v ∈ V (G) nondeterministically? If G is strongly connected, for any pair of u, v, there exists
a guess sequence that would accept. So this algorithm will accept all G ∈ STRONG-CONN . But
when G is not strongly connected, even then the algorithm might guess a pair u, v such that G has
a path from u to v. In this case, the algorithm has an accepting computation even when G is not
strongly connected. So this algorithm is incorrect.

The second, and the more common, incorrect proof that I came across was the following: since
NL = co-NL, it is enough to show that STRONG-CONN has an NL algorithm, let us call this
algorithm A. If G ∕∈ STRONG-CONN , then there exists u, v ∈ V (G) such that there is no path
from u to v. So A nondeterministically guesses the pair u, v and uses CHECKPATH, the NL
algorithm which checks whether there is a path from u to v. A flips the output of CHECKPATH.
That is, if CHECKPATH accepts, A rejects and vice versa. The idea is that if there is no path
from u to v, then CHECKPATH would reject and A shall accept. Again, this does not work, but
the reason is more subtle. We cannot flip the output of CHECKPATH. To understand why, we
need to see the whole algorithm as one piece. Remember, we are shooting for an algorithm for
STRONG-CONN . Suppose G is strongly connected. Algorithm A would still accept. A guesses
u, v. Since G is strongly connected, there is a path from u to v. But CHECKPATH would make
numerous wrong guesses, and would have several rejecting computations. This would correspond to
numerous accepting computations for A, even though A must accept only when G is not strongly

1



connected.

However, there is way to fix this. Use the NL algorithm for PATH as a subroutine1. So if G is
not strongly connected, then there exists u, v for which there is no path from u to v, and the NL
algorithm for PATH would accept this u, v. So we accept. If G is strongly connected, any pair u, v
are connected, and the algorithm for PATH would reject. So all nondeterministic guesses would
lead to reject.

So while using nondeterministic algorithms as subroutines, try to view the “big picture” and imagine
whether the algorithm has the desired behavior.

1We can do this since NL = co-NL, so PATH has an NL algorithm as well

2


