
CS 4510 : Automata and Complexity

NL = coNL

Subrahmanyam Kalyanasundaram

April 19, 2010

Today we see the result that nondeterministic logspace, NL is closed under complement. The result
was proved by Neil Immerman and Róbert Szelepcsényi in 1987.

Theorem 1 NL = coNL.

Towards this end, we show that the coNL-complete language PATH is contained in NL. Why is this
enough? We have seen that PATH is an NL-complete language. This implies that the complement
of the language PATH is the complete language of the complement class coNL.

We shall see today that PATH ∈ NL. This implies that coNL ⊆ NL. Also we have

PATH ∈ NL⇒ PATH ∈ coNL⇒ NL ⊆ coNL

Together we get the required result NL = coNL.

PATH = {⟨G, s, t⟩∣G has no directed s− t path}

We show PATH ∈ NL in two parts. First, we look at a simpler problem. Given c, the number
of vertices that in G can be reached from s, can you show that t is not reachable from s?. We
shall see an NL machine which accepts, when t is not reachable from s, and which rejects when t
is reachable from s. Second, we show how one can use an NL machine to compute the value of c
correctly.

First part 1.

∙ Given G, s, t, c.

∙ A certificate that t is not reachable from s is the list of c vertices which are reachable from s,
a list which does not contain t.

∙ The NL machine M needs to guess this list and verify.

∙ The NL machine goes through all vertices in G, and nondeterministically chooses if each one
is reachable from s.

1



∙ When u is guessed to be reachable from s, M guesses a path from s to u and verifies the
existence of this path. M rejects if the path does not exist.

∙ If t is guessed to be reachable, M rejects.

∙ M accepts if the list contains exactly c reachable vertices from s which have been verified.

Algorithm 1 NL algorithm to which accepts if t is not reachable from s, given c

1: Let d = 0.
2: for each vertex u ∈ G do
3: Nondeterministically either perform or skip the following steps:
4: Call the function CHECKPATH(G, s, u, ∣V ∣).
5: If u = t, then reject.
6: d← d + 1
7: if d = c then
8: Accept.
9: else

10: Reject.

Notice that the algorithm uses space only to store the counters d, u and to pass the parameters
s, u, ∣V ∣ to CHECKPATH. This can be done using logarithmic space. Also, here CHECKPATH(G, s, u, ∣V ∣)
is the NL computation that accepts if there is a path from s to u in G: this happens if there is such
a path of length ∣V ∣ or less. All we need to do is the following : guess a path nondeterministically
from s to u of length ∣V ∣ or less, and check the validity of this path. This is done by maintaining
a counter j, and for each j = 1, . . . , ∣V ∣, guess a vertex w reachable from s by a path of length j.
For j + 1, guess an edge w′ from w, and reject if the edge (w′, w) is not present in G. Finally, when
j = ∣V ∣, reject if w ∕= u. If w = u, the machine has guessed and verified the existence of a path of
length ≤ ∣V ∣ from s to u, and proceeds with the main algorithm.

Algorithm 2 CHECKPATH(G, s, u, k)

1: w′ = s.
2: for j = 1 to k do
3: Nondeterministically guess a w, and reject if [((w′, w) /∈ E(G))AND(w ∕= w′)].
4: if w = u then
5: Accept and return.
6: w′ ← w.
7: j ← j + 1.
8: Reject.

Here we need to store only j, w,w′, each of which requires logarithmic space.

Now part 2. How do we compute c in NL? Before that we need to define how a nondeterministic
machine can compute a function.

We say that a nondeterministic algorithm computes c, if it either rejects, or completes
the computation and returns the correct value of c. In other words, every non-rejecting
path computes c correctly.

2



The value of c is calculated by recursively computing ci = ∣Ai∣ for all i = 0, . . . , ∣V ∣. Here Ai is
the set of all vertices reachable from s using a path of length i or less. We calculate ci+1 from ci.
Notice that Ai can have O(n) elements, so we cannot hope to store Ai fully. The clever method
to solve this is to pass on just ci to the next loop of the computation. A0 = {s}, so c0 = 1. The
inductive step computes ci+1 from ci.

The idea is similar to the first part. To find ci+1, the machine checks for each candidate v ∈ Ai+1.
For each v, there would be at least one computation which verifies it to be in Ai+1. How does M
do it? For each v, M tries to reconstruct all the elements of Ai. v ∈ Ai+1 if there is one u ∈ Ai

such that (u, v) ∈ E(G). Once again, M can never reconstruct the whole set Ai at once, because
of the space constraint. Instead it has to do it serially, one by one, and then use the knowledge of
ci to check if the computation was correct. This is done by maintaining a count, and rejecting if
M did not see enough elements of Ai. v ∈ Ai+1 if M discovers a path of length ≤ i + 1 to v. If
Ai has been verified to be correctly computed, and v has not yet been shown to be a neighbor of a
vertex in Ai, we can conclude that v /∈ Ai+1. Then we go to the next v.

Algorithm 3 To compute c, given G, s

1: Let c0 = 1.
2: for i = 0 to ∣V ∣ − 1 do
3: Let ci+1 = 1.
4: for each node v ∕= s in G do
5: Let d = 0.
6: for each node u in G do
7: Nondeterministically either perform or skip the following steps.
8: Call the function CHECKPATH(G, s, u, i).
9: d← d + 1.

10: if (u, v) ∈ E(G) then
11: ci+1 ← ci+1 + 1
12: Go to Stage 5 with the next v.
13: if d ∕= ci then
14: Reject.
15: return c∣V ∣

This needs to store counters for i, d, u, v and also ci and ci+1. All of these numbers are bounded by
n, so each one of these takes logarithmic space at most.

3


