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Myhill-Nerode theorem gives a necessary and sufficient condition for a language to be regular. The
pumping lemma gives only a necessary condition for a language to be regular, and Myhill-Nerode
theorem does one better in that respect. The theorem was proved by John Myhill and Anil Nerode
in 1958. We state the necessary definitions and the theorem below, and explain the proof in a
top-down manner.

Definition 1 (Distinguishable by a language). Let x, y be strings and L be a language over the
same alphabet Σ. x, y are said to be distinguishable by L if ∃z ∈ Σ∗ such that xz ∈ L and yz /∈ L
or vice versa.

Also, if x and y are not distinguishable by L, they are said to be indistinguishable by L. This is
denoted by x ≡L y.

Exercise 1
Show that ≡L is an equivalence relation.

Definition 2 (Pairwise Distinguishable). Let L be a language and X be a set of strings. X is
pairwise distinguishable by L if every two distinct strings x, y ∈ X are distinguishable by L.

Definition 3 (Index). The index of a language L is the size of the largest set X of strings which
is pairwise distinguishable by L.

These are the definitions we need. The theorem is stated below.

Theorem 1 (Myhill-Nerode Theorem). Language L is regular if and only if it has a finite index.
Moreover, the index of L is equal to the size of the smallest DFA which recognizes L.

The proof of the theorem follows by the following two lemmas.

Lemma 1. If L is recognized by a DFA with k states, then index(L) ≤ k.

Lemma 2. If index(L) = k <∞, then there exists a DFA with k states that recognizes L.

The proof of the theorem follows very easily once we assume the above two lemmas.
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Proof of Myhill-Nerode Theorem. We have by definition, L is regular⇐⇒ there exists a DFA which
recognizes L.

Suppose L is regular. Choose the smallest (least number of states) DFA that recognizes L. Let k
be the number of states of this DFA. By lemma 1, index(L) ≤ k. In particular

index(L) ≤ Size of the smallest DFA that recognizes L

This also implies that L has finite index as well. This shows one direction of the theorem.

For the other direction, let index(L) = k <∞. Then by lemma 2 there exists a DFA with k states
that recognizes L. This shows the other direction of the theorem, that L is regular. This also shows
that

Size of the smallest DFA that recognizes L ≤ index(L)

By the above two inequalities, we can conclude that index(L) = the size of the smallest DFA that
recognizes L.

Now let us see the proofs of the lemmas. Note that we use the notation �(q, x) for strings x ∈ Σ∗.
�(q, x) denotes the state that the DFA reaches starting from q after reading the string x.

Proof of Lemma 1. We prove this by contradiction. We have a language L recognized by a DFA
with k states. We assume, for the sake of contradiction, that index(L) > k. This means that there
is a set X, ∣X∣ > k, such that X is pairwise distinguishable by L.

Let M be the DFA with k states that recognizes L. Let q0 be the start state of M . We have ∣X∣ > k.
Then by pigeonhole principle, there exist two distinct x, y ∈ X such that �(q0, x) = �(q0, y).

Now we shall assert that x, y are pairwise indistinguishable, thus contradicting our assumption that
index(L) > k. Consider any z ∈ Σ∗.

�(q0, xz) = �(�(q0, x), z) = �(�(q0, y), z) = �(q0, yz)

So xz ∈ L⇐⇒ yz ∈ L. x, y are pairwise indistinguishable, and hence by contradiction, index(L) ≤
k.

Proof of Lemma 2. Suppose index(L) = k. We have to show the existence of a DFA with k states
that recognizes L. We shall in fact, construct such a DFA. Let X = {x1, x2, . . . , xk} be a largest
set which is pairwise distinguishable by L (the existence of X follows by the definition of index).

We build DFA M = (Q,Σ, �, q0, F ). Σ is chosen to be the same as the alphabet of L. We choose
Q = {q1, q2, . . . , qk}. It would be useful to think of each qi as corresponding to the string xi ∈ X.

For each a ∈ Σ, we define �(qi, a) as follows. Consider the string xia. We have xia ≡L xj for some
xj ∈ X. This follows from the fact that X is a largest pairwise distinguishable set by L. If xi ∕≡L xj
for any xj , this would mean that X ∪ {xia} would be a bigger pairwise distinguishable set by L.
Now define �(qi, a) = qj .

Similarly, we have the empty string " ≡L qm for some qm. Set qm = q0 as the starting state.

We claim (and shall prove soon) that �(qi, w) = qj ⇐⇒ xiw ≡L xj .

Define F = {qi ∣ xi ∈ L}. We have defined all the components of the DFA M now. All that remains
is to show that this DFA recognizes L. Suppose x ∈ L. Then x ≡L xi for some xi, such that xi ∈ L
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(Why?). By the above claim,

x = "x ≡L xi =⇒ �(q0, x) = qi

But qi ∈ F since xi ∈ L. So x is recognized by M .

If x /∈ L, then x ≡L xi for some xi /∈ L. Like above, we get that �(q0, x) = qi. Again qi /∈ F since
xi /∈ L. So in this case M does not recognize x. So M recognizes exactly the language L.

The only part that we are yet to prove is the claim above.

Proof of Claim. The claim is that �(qi, w) = qj ⇐⇒ xiw ≡L xj .

We prove this by induction on ∣w∣, the length of w.

∙ When ∣w∣ = 0, w = ". In this case �(qi, w) = �(qi, ") = qi. The claim is true since xi" = xi.

∙ When ∣w∣ = 1, the claim is true by the definition of the transition function �.

∙ When ∣w∣ > 1, we use induction. Suppose the claim holds for all w such that ∣w∣ ≤ l. Let w
be such that ∣w∣ = l + 1. Let w = va where ∣v∣ = l and ∣a∣ = 1, a ∈ Σ. We have

�(qi, w) = �(qi, va) = �(�(qi, v), a) = �(qj1 , a) = qj2

where qj1 = �(qi, v) and qj2 = �(qj1 , a). This means that xj1 ≡L xiv and xj2 ≡L xj2a (this
follows by induction hypothesis). The claim is true since

xiw = xiva ≡L xj1a ≡L xj2
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