
Turing Machine Computation History Verification by a PDA

Let M = (Q,Σ,Γ, δM , qs, qa, qr) be a deterministic Turing machine and w be an input to M . Let ∆ = Q ∪ Γ ∪ {#}.
Assume that # /∈ Q and # /∈ Γ. Given a string U#V ∈ ∆∗, we design a PDA P that accepts iff V is not a valid
immediate successor configuration of U on input w.
If U or V is not a valid configuration of M on w then P accepts. (A DFA can be used to test that a string U (or V ) is not
a valid configuration of M on w.)
Suppose U and V are valid configurations. Let U = u1u2 . . . ur and V = v1v2 . . . vs. For i ≥ 1, consider the 2 × 3

windows:

[
ui ui+1 ui+2

vi vi+1 vi+2

]
.

The idea is to consider the windows one by one and nondeterministically do either: (a) compare the first symbols of the two
rows and accept if they differ; or (b) go to the next window. In doing this, we have to take care of the possibility that the
symbols around the state may differ (as dictated by the transition function δM ). To take care of this situation we define a
window to be a critical window if ui+1 is the state symbol in U and process critical windows differently. If u1 is the state

symbol in U then the first 2 × 2 window

[
u1 u2

v1 v2

]
is called the critical window. Note that there is only one critical

window.

Note that in the description below it is enough to push some symbol X onto the stack (since the stack is used to get to the
right position in V ).

The description of the PDA P below uses a procedure COMPARE(CurrentSymbol, i) that accepts iff CurrentSymbol 6= vi.
The procedure COMPARE is described later. We will assume that the stack has a bottom marker, say, Z.

STEP 1: Let u1 ∈ Q. (R/W head is pointing to the first symbol of the tape of M . The first 2 × 2 window is the critical
window.)

Let δM (u1, u2) = (p, a, L). (The correct critical window is

[
u1 u2

p a

]
. Handle the Right move similarly.)

Nondeterministically do one of the following two actions:

1. CurrentSymbol = p; COMPARE(CurrentSymbol, 1);

2. Push p onto the Stack; Nondeterministically do one of the following two actions:

(a) CurrentSymbol = a; COMPARE(CurrentSymbol, 2);

(b) Push a onto the Stack; i = 3; Go to Step 3 to process the post-critical-window part of U ;

STEP 2: Let u1 6∈ Q; (R/W head is not pointing to the first symbol of the tape of M . Processing takes place in three
stages:(a) pre-critical-window, (b) critical-window, and (c) post-critical-window.)

i = 1;

STEP 2.1: (pre-critical-window stage)

REPEAT as long as ui+1 6∈ Q (pre-critical-window stage)

Non-deterministically do one of the following two actions:

1. CurrentSymbol = ui; COMPARE(CurrentSymbol, i);

2. Push CurrentSymbol onto the stack; i = i + 1;

1



STEP 2.2: (ui+1 ∈ Q: critical-window stage)

Let δM (ui+1, ui+2) = (p, a, L). (The correct critical-window is:

[
ui ui+1 ui+2

p ui a

]
. Handle the Right and Station-

ary moves similarly.)

Non-deterministically do one of the following two actions:

1. CurrentSymbol = p; COMPARE(CurrentSymbol, i);

2. Push p onto the Stack; i = i + 1; Nondeterministically do one of the following two actions:

(a) CurrentSymbol = ui−1; COMPARE(CurrentSymbol, i);

(b) Push ui−1 onto the Stack; i = i + 1; Non-deterministically do one of the following two actions:

i. CurrentSymbol = a; COMPARE(CurrentSymbol, i);

ii. Push a onto the Stack; i = i + 1; Go to Step 3 to process the post-critical-window part of U ;

STEP 3: (Post-critical-window stage)

REPEAT as long as (ui 6= #):

Non-deterministically do one of the following two actions:

1. CurrentSymbol = ui; COMPARE(CurrentSymbol, i);

2. Push ui onto the Stack; i = i + 1;

(ui = #): CurrentSymbol = #; COMPARE(CurrentSymbol, i);

Procedure COMPARE(CurrentSymbol, i).
(Accept iff CurrentSymbol 6= vi; The stack has i− 1 symbols.)

IF (CurrentSymbol 6= #) THEN Read and ignore symbols until and including the # mark;

(The Read head of the PDA should now be pointing to the first symbol of V .)

WHILE (Stacktop 6= Z) DO: Read the next symbol of V and pop the stack;

(The Read head of the PDA should be pointing to vi.)

IF vi = CurrentSymbol THEN reject ELSE accept.

2


