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1 Ambiguity

Definition 1 (Leftmost Derivation). A leftmost derivation of a string w in a grammar G is when
at every step of the derivation, the leftmost variable is the one which is replaced.

Consider the following CFG.

⟨EXPR⟩ → ⟨EXPR⟩+ ⟨EXPR⟩ ∣ ⟨EXPR⟩ × ⟨EXPR⟩ ∣ (⟨EXPR⟩) ∣ a

The set of variables is V = {⟨EXPR⟩} and the set of terminals is Σ = {a,+,×, (, )}. Below we see
two different ways that the grammar can generate the string a + a× a. These correspond to the
figure 2.6 in page 106 in the text book. First

∙ ⟨EXPR⟩ → ⟨EXPR⟩(1) × ⟨EXPR⟩(2)
∙ ⟨EXPR⟩(1) → ⟨EXPR⟩(3) + ⟨EXPR⟩(4)
∙ ⟨EXPR⟩(3) → a

∙ ⟨EXPR⟩(4) → a

∙ ⟨EXPR⟩(2) → a

Notice that I am using superscript (1), (2) etc. to just differentiate between the different variables
in different lines. Now the second derivation.

∙ ⟨EXPR⟩ → ⟨EXPR⟩(1) + ⟨EXPR⟩(2)
∙ ⟨EXPR⟩(1) → a

∙ ⟨EXPR⟩(2) → ⟨EXPR⟩(3) × ⟨EXPR⟩(4)
∙ ⟨EXPR⟩(3) → a

∙ ⟨EXPR⟩(4) → a

Both of these are leftmost derivations (since we are interpreting the leftmost variable first in all
cases), and notice that they really correspond to two different derivations. They look like they
were supposed to mean two different things, but they have ended up being the same because the
grammar was not very well created. The first one seems to mean (a + a)× a while the second one
seems to mean a + (a× a). The two derivations are not the result of changing the order of one to
get the other. Hence they are ambiguous.
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Definition 2 (Ambiguity). A string w is derived ambiguously in a context free grammar G if it
has two or more different leftmost derivations. Grammar G is ambiguous if it generates some string
ambiguously.

Certain languages can be created only using ambiguous grammars. These languages are called
inherently ambiguous.

Please read example 2.4 (page 103) in the book to see how the above grammar issue is fixed by
using more variables and adding more structure to the language, to get the same language, but
with a grammar with no ambiguities.

⟨EXPR⟩ → ⟨EXPR⟩+ ⟨TERM⟩ ∣ ⟨TERM⟩
⟨TERM⟩ → ⟨TERM⟩ × ⟨FACTOR⟩ ∣ ⟨FACTOR⟩

⟨FACTOR⟩ → (⟨EXPR⟩) ∣ a

2 Loops, Unit Rules and " Rules

In this section, I hope to give a small motivation for the need for having no " rules, or unit rules.
The computer, or machine has to parse and interpret the rules to check if a string is in a language
or not. So how would a machine do it? Suppose the rules generating the language are the following.

S → 0S1 ∣ 1S0S1 ∣ T
T → S ∣ "

The machine has to check if a given string, say x = 101100 is in the language or not. One way to
do it would be to keep constructing all the strings that we could from the grammar. The machine
checks if the string x is generated. If the string is generated, the machine can conclude that it is in
the language. But if it is not in the language, how long should it run before it decides otherwise?
The machine could stop once it starts getting strings which are longer than ∣x∣ = 6. Now, this
would be a problem if the language had empty rules. The machine cannot enforce a stop rule,
because the string could get shorter in length because of the empty rules. This is why empty rules
are undesirable.

Another issue is looping. We know about infinite loops in programs. In the above grammar, we
have two rules S → T and T → S. The machine runs the risk of running into an infinite loop with
these two rules. This is why unit rules are undesirable. Without any increase in the length of the
resulting string, the machine might go on indefinitely interpreting the above rules.

The Chomsky normal form gives us a grammar which has neither empty rules nor unit rules. This
makes it possible to create an algorithm, with a guaranteed stop rule, that can determine if a string
is in the given grammar or not. We shall see the Cocke-Younger-Kasami algorithm which does this,
in the future classes.
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