
Computation History of a Turing machine

Let M = (Q,Σ,Γ, δM , qs, qa, qr) be a deterministic Turing machine and w be an input to M .

Accepting Computation History of M on w: A sequence of configurationsC0, · · · , Ct such that:

1. C0 is the initial configuration of M on input w.

2. For all 1 ≤ i ≤ t, the machine M moves from Ci−1 to Ci.

3. Ct is an accepting configuration.

Represent an accepting computation history as a string over the alphabet ∆ = Q ∪ Γ ∪ {#} as:

C0#C1# · · ·#Ct.

1



Not accepting computation histories

Fix a DTM M and an input w.

Let NOT− ACHM,w = {z ∈ ∆∗ | z is not an accepting computationhistory of M on w}.

Claim: NOT− ACHM,w is context-free and there is an algorithm to construct a context-free grammar

GM,w for NOT− ACHM,w.

Corollary: The following language is undecidable:

ALLCFG = {〈G〉 | L(G) = ∆∗}.

Proof of Corollary: Reduction from ATM to ALLCFG using the claim above.

2



Reduction from ATM to ALLCFG

• Let z ∈ ∆∗. The string is either a valid sequence of configurations or not.

• If z is not a valid sequence of configurations, z ∈ NOT− ACHM,w.

• Suppose z is a valid sequence of configurations. If M does not accept w then z ∈ NOT− ACHM,w.

• Therefore, if M does not accept w then NOT− ACHM,w = ∆∗.

• If M accepts w then z 6∈ NOT− ACHM,w. In this case, NOT− ACHM,w 6= ∆∗.

• Let GM,w be the context-free grammar from the claim such that L(GM,w) = NOT− ACHM,w.

• Therefore, M accepts w if and only if L(GM,w) 6= ∆∗.

3



An algorithm to construct a context-free grammar for NOT− ACHM,w

A string z in ∆∗ is in NOT− ACHM,w if and only if it is the union of the following four languages:

1. z is not well-formed: does not start or end with a #, no state symbol between two # marks, more

than one state symbol between two # marks.

• Regular language.

2. z does not start correctly: the string between the first two # marks is not the initial configuration

qsw1w2 . . . wn of M on w = w1w2 . . . wn.

• Regular language.

3. z does not end correctly: the string between the last two # marks is not an accepting configuration

- the state symbol in this string is not qs.

• Regular language.

4. There exists i such that Ci+1 does not follow legally from Ci.

• Nondeterministically guess i such that Ci+1 does not follow legally from Ci.

• Use the PDA (from an earlier construction) that on input Ci#Ci+1 ∈ ∆∗ accepts iff Ci+1 is

not a valid immediate successor configuration of Ci on input w.

Construct a PDA P that non-deterministically checks for membership of z in one of the four context-free

languages above.

Construct a CFG GM,w that is equivalent to the PDA P .

4


