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Abstract. The rise of multi-core systems has necessitated the need for concurrent
programming. However, developing correct, efficient concurrent programs is
notoriously difficult. Software Transactional Memory Systems (STMs) are a
convenient programming interface for a programmer to access shared memory
without worrying about concurrency issues. Another advantage of STMs is that
they facilitate compositionality of concurrent programs with great ease. Different
concurrent operations that need to be composed to form a single atomic unit is
achieved by encapsulating them in a single transaction.
Most of the STMs proposed in the literature are based on read/write primitive
operations on memory buffers. We denote them as Read-Write STMs or RWSTMs.
On the other hand, there have been some STMs that have been proposed (trans-
actional boosting and its variants) that work on higher level operations such as
hash-table insert, delete, lookup, etc. We call them Object STMs or OSTMs.
It was observed in databases that storing multiple versions in RWSTMs provides
greater concurrency. In this paper, we combine both these ideas for harnessing
greater concurrency in STMs - multiple versions with objects semantics. We
propose the notion of Multi-version Object STMs or MVOSTMs. Specifically, we
introduce and implement MVOSTM for the hash-table object, denoted as HT-
MVOSTM and list object, list-MVOSTM. These objects export insert, delete and
lookup methods within the transactional framework. We also show that both these
MVOSTMs satisfy opacity and ensure that transaction with lookup only methods
do not abort if unbounded versions are used.
Experimental results show that list-MVOSTM outperform almost two to twenty
fold speedup than existing state-of-the-art list based STMs (Trans-list, Boosting-
list, NOrec-list, list-MVTO, and list-OSTM). Similarly, HT-MVOSTM shows a
significant performance gain of almost two to nineteen times over the existing
state-of-the-art hash-table based STMs (ESTM, RWSTMs, HT-MVTO, and HT-
OSTM).
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1 Introduction

The rise of multi-core systems has necessitated the need for concurrent programming.
However, developing correct concurrent programs without compromising on efficiency
is a big challenge. Software Transactional Memory Systems (STMs) are a convenient
programming interface for a programmer to access shared memory without worrying
about concurrency issues. Another advantage of STMs is that they facilitate composi-
tionality of concurrent programs with great ease. Different concurrent operations that
need to be composed to form a single atomic unit is achieved by encapsulating them in a
single transaction. Next, we discuss different types of STMs considered in the literature
and identify the need to develop multi-version object STMs proposed in this paper.
Read-Write STMs: Most of the STMs proposed in the literature (such as NOrec [1],
ESTM [2]) are based on read/write operations on transaction objects or t-objects. We
denote them as Read Write STMs or RWSTMs. These STMs typically export following
methods: (1) t begin: begins a transaction, (2) t read (or r): reads from a t-object, (3)
t write (or w): writes to a t-object, (4) tryC: validates and tries to commit the transaction
by writing values to the shared memory. If validation is successful, then it returns commit.
Otherwise, it returns abort.
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Fig. 1: Advantages of OSTMs over RWSTMs

Object STMs: Some STMs have been proposed that work on higher level operations
such as hash-table. We call them Object STMs or OSTMs. It has been shown that OSTMs
provide greater concurrency. The concept of Boosting by Herlihy et al. [3], the optimistic
variant by Hassan et al. [4] and more recently HT-OSTM system by Peri et al. [5] are
some examples that demonstrate the performance benefits achieved by OSTMs.
Benefit of OSTMs over RWSTMs: We now illustrate the advantage of OSTMs by
considering a hash-table based STM system. We assume that the operations of the hash-
table are insert (or ins), lookup (or lu) and delete (or del). Each hash-table consists of B
buckets with the elements in each bucket arranged in the form of a linked-list. Figure 1(a)
represents a hash-table with the first bucket containing keys 〈k2, k5, k7〉. Figure 1 (b)
shows the execution by two transaction T1 and T2 represented in the form of a tree. T1
performs lookup operations on keys k2 and k7 while T2 performs a delete on k5. The
delete on key k5 generates read on the keys k2, k5 and writes the keys k2, k5 assuming
that delete is performed similar to delete operation in lazy-list [6]. The lookup on k2
generates read on k2 while the lookup on k7 generates read on k2, k7. Note that in this
execution k5 has already been deleted by the time lookup on k7 is performed.



Multi-Version Object Based Transactional Systems 3

In this execution, we denote the read-write operations (leaves) as layer-0 and lu, del
methods as layer-1. Consider the history (execution) at layer-0 (while ignoring higher-
level operations), denoted as H0. It can be verified this history is not opaque [7]. This is
because between the two reads of k2 by T1, T2 writes to k2. It can be seen that if history
H0 is input to a RWSTMs one of the transactions between T1 or T2 would be aborted to
ensure opacity [7]. The Figure 1 (c) shows the presence of a cycle in the conflict graph
of H0.

Now, consider the history H1 at layer-1 consists of lu, and del methods, while
ignoring the read/write operations since they do not overlap (referred to as pruning
in [8, Chap 6]). These methods work on distinct keys (k2, k5, and k7). They do not
overlap and are not conflicting. So, they can be re-ordered in either way. Thus, H1 is
opaque [7] with equivalent serial history T1T2 (or T2T1) and the corresponding conflict
graph shown in Figure 1 (d). Hence, a hash-table based OSTM system does not have to
abort either of T1 or T2. This shows that OSTMs can reduce the number of aborts and
provide greater concurrency.

Multi-Version Object STMs: Having seen the advantage achieved by OSTMs (which
was exploited in some works such as [3], [4], [5]), in this paper we propose and evaluate
Multi-version Object STMs or MVOSTMs. Our work is motivated by the observation
that in databases and RWSTMs by storing multiple versions for each t-object, greater
concurrency can be obtained [9]. Specifically, maintaining multiple versions can ensure
that more read operations succeed because the reading operation will have an appropriate
version to read. Our goal is to evaluate the benefit of MVOSTMs over both multi-version
RWSTMs as well as single version OSTMs.
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Fig. 2: Advantages of multi-version over single version OSTM

Potential benefit of MVOSTMs over OSTMs and multi-version RWSTMs: We now
illustrate the advantage of MVOSTMs as compared to single-version OSTMs (SV-OSTMs)
using hash-table object having the same operations as discussed above: ins, lu, del.
Figure 2 (a) represents a history H with two concurrent transactions T1 and T2 operating
on a hash-table ht. T1 first tries to perform a lu on key k2. But due to the absence of key
k2 in ht, it obtains a value of null. Then T2 invokes ins method on the same key k2 and
inserts the value v2 in ht. Then T2 deletes the key k1 from ht and returns v0 implying
that some other transaction had previously inserted v0 into k1. The second method of
T1 is lu on the key k1. With this execution, any SV-OSTM system has to return abort
for T1’s lu operation to ensure correctness, i.e., opacity. Otherwise, if T1 would have
obtained a return value v0 for k1, then the history would not be opaque anymore. This is
reflected by a cycle in the corresponding conflict graph between T1 and T2, as shown
in Figure 2 (c). Thus to ensure opacity, SV-OSTM system has to return abort for T1’s
lookup on k1.
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In an MVOSTM based on hash-table, denoted as HT-MVOSTM, whenever a trans-
action inserts or deletes a key k, a new version is created. Consider the above example
with a HT-MVOSTM, as shown in Figure 2 (b). Even after T2 deletes k1, the previous
value of v0 is still retained. Thus, when T1 invokes lu on k1 after the delete on k1 by T2,
HT-MVOSTM return v0 (as previous value). With this, the resulting history is opaque
with equivalent serial history being T1T2. The corresponding conflict graph is shown in
Figure 2 (d) does not have a cycle.

Thus, MVOSTM reduces the number of aborts and achieve greater concurrency than
SV-OSTMs while ensuring the compositionality. We believe that the benefit of MVOSTM
over multi-version RWSTM is similar to SV-OSTM over single-version RWSTM as
explained above.

MVOSTM is a generic concept which can be applied to any data structure. In this
paper, we have considered the list and hash-table based MVOSTMs, list-MVOSTM and
HT-MVOSTM respectively. Experimental results of list-MVOSTM outperform almost
two to twenty fold speedup than existing state-of-the-art STMs used to implement
a list: Trans-list [10], Boosting-list [3], NOrec-list [1] and SV-OSTM [5] under high
contention. Similarly, HT-MVOSTM shows significant performance gain almost two to
nineteen times better than existing state-of-the-art STMs used to implement a hash-table:
ESTM [2], NOrec [1] and SV-OSTM [5]. To the best of our knowledge, this is the
first work to explore the idea of using multiple versions in OSTMs to achieve greater
concurrency.

HT-MVOSTM and list-MVOSTM use an unbounded number of versions for each key.
To address this issue, we develop two variants for both hash-table and list data structures
(or DS): (1) A garbage collection method in MVOSTM to delete the unwanted versions
of a key, denoted as MVOSTM-GC. Garbage collection gave a performance gain of
15% over MVOSTM without garbage collection in the best case. Thus, the overhead of
garbage collection is less than the performance improvement due to improved memory
usage. (2) Placing a limit ofK on the number versions in MVOSTM, resulting in KOSTM.
This gave a performance gain of 22% over MVOSTM without garbage collection in the
best case.
Contributions of the paper:

– We propose a new notion of multi-version objects based STM system, MVOSTM.
Specifically develop it for list and hash-table objects, list-MVOSTM and HT-MVOSTM
respectively.

– We show list-MVOSTM and HT-MVOSTM satisfy opacity [7], standard correctness-
criterion for STMs.

– Our experiments show that both list-MVOSTM and HT-MVOSTM provides greater
concurrency and reduces the number of aborts as compared to SV-OSTMs, single-
version RWSTMs and, multi-version RWSTMs. We achieve this by maintaining
multiple versions corresponding to each key.

– For efficient space utilization in MVOSTM with unbounded versions we develop
Garbage Collection for MVOSTM (i.e. MVOSTM-GC) and bounded version MVOSTM
(i.e. KOSTM).
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2 Building System Model

The basic model we consider is adapted from Peri et al. [5]. We assume that our system
consists of a finite set of P processors, accessed by a finite number of n threads that
run in a completely asynchronous manner and communicate using shared objects. The
threads communicate with each other by invoking higher-level methods on the shared
objects and getting corresponding responses. Consequently, we make no assumption
about the relative speeds of the threads. We also assume that none of these processors
and threads fail or crash abruptly.

Events and Methods: We assume that the threads execute atomic events and the events
by different threads are (1) read/write on shared/local memory objects, (2) method
invocations (or inv) event and responses (or rsp) event on higher level shared-memory
objects.

Within a transaction, a process can invoke layer-1 methods (or operations) on a
hash-table t-object. A hash-table(ht) consists of multiple key-value pairs of the form
〈k, v〉. The keys and values are respectively from sets K and V . The methods that a
thread can invoke are: (1) t begini: begins a transaction and returns a unique id to the
invoking thread. (2) t inserti(ht, k, v): transaction Ti inserts a value v onto key k in ht.
(3) t deletei(ht, k, v): transaction Ti deletes the key k from the hash-table ht and returns
the current value v for Ti. If key k does not exist, it returns null. (4) t lookupi(ht, k, v):
returns the current value v for key k in ht for Ti. Similar to t delete, if the key k does not
exist then t lookup returns null. (5) tryCi: which tries to commit all the operations of Ti
and (6) tryAi: aborts Ti. We assume that each method consists of an inv and rsp event.

We denote t insert and t delete as update methods (or upd method) since both of
these change the underlying data structure. We denote t delete and t lookup as return-
value methods (or rv method) as these operations return values from ht. A method may
return ok if successful or A (abort) if it sees an inconsistent state of ht.

Transactions: Following the notations used in database multi-level transactions [8], we
model a transaction as a two-level tree. The layer-0 consist of read/write events and
layer-1 of the tree consists of methods invoked by a transaction.

Having informally explained a transaction, we formally define a transaction T as
the tuple 〈evts(T ), <T 〉. Here evts(T ) are all the read/write events at layer-0 of the
transaction. <T is a total order among all the events of the transaction.

We denote the first and last events of a transaction Ti as Ti.firstEvt and Ti.lastEvt.
Given any other read/write event rw in Ti, we assume that Ti.firstEvt <Ti rw <Ti

Ti.lastEvt. All the methods of Ti are denoted as methods(Ti).

Histories: A history is a sequence of events belonging to different transactions. The
collection of events is denoted as evts(H). Similar to a transaction, we denote a history
H as tuple 〈evts(H), <H〉 where all the events are totally ordered by <H . The set of
methods that are in H is denoted by methods(H). A method m is incomplete if inv(m)
is in evts(H) but not its corresponding response event. Otherwise, m is complete in H .

Coming to transactions in H , the set of transactions in H are denoted as txns(H).
The set of committed (resp., aborted) transactions in H is denoted by committed(H)
(resp., aborted(H)). The set of live transactions in H are those which are neither
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committed nor aborted. On the other hand, the set of terminated transactions are those
which have either committed or aborted.

We denote two histories H1, H2 as equivalent if their events are the same, i.e.,
evts(H1) = evts(H2). A history H is qualified to be well-formed if: (1) all the methods
of a transaction Ti in H are totally ordered, i.e. a transaction invokes a method only
after it receives a response of the previous method invoked by it (2) Ti does not invoke
any other method after it received an A response or after tryC(ok) method. We only
consider well-formed histories for OSTM.

A method mij (jth method of a transaction Ti) in a history H is said to be isolated
or atomic if for any other event epqr (rth event of method mpq) belonging to some other
method mpq of transaction Tp either epqr occurs before inv(mij) or after rsp(mij).
Sequential Histories: A history H is said to be sequential (term used in [11, 12]) if all
the methods in it are complete and isolated. From now onwards, most of our discussion
would relate to sequential histories.

Since in sequential histories all the methods are isolated, we treat each method as
a whole without referring to its inv and rsp events. For a sequential history H , we
construct the completion of H , denoted H , by inserting tryAk(A ) immediately after the
last method of every transaction Tk ∈ live(H). Since all the methods in a sequential
history are complete, this definition only has to take care of completed transactions.
Real-time Order and Serial Histories: Given a history H , <H orders all the events in
H . For two complete methods mij ,mpq in methods(H), we denote mij ≺MR

H mpq if
rsp(mij) <H inv(mpq). Here MR stands for method real-time order. It must be noted
that all the methods of the same transaction are ordered. Similarly, for two transactions
Ti, Tp in term(H), we denote (Ti ≺TRH Tp) if (Ti.lastEvt <H Tp.firstEvt). Here
TR stands for transactional real-time order.

We define a history H as serial [13] or t-sequential [12] if all the transactions in H
have terminated and can be totally ordered w.r.t ≺TR, i.e. all the transactions execute
one after the other without any interleaving. Intuitively, a history H is serial if all its
transactions can be isolated. Formally, 〈(H is serial) =⇒ (∀Ti ∈ txns(H) : (Ti ∈
term(H)) ∧ (∀Ti, Tp ∈ txns(H) : (Ti ≺TRH Tp) ∨ (Tp ≺TRH Ti))〉. Since all the
methods within a transaction are ordered, a serial history is also sequential.
Legal Histories: A rv method mij on key k is legal if it returns the value updated the
latest committed transaction that updated key k. A history H is said to be legal, if all the
rv methods of H are legal. More details on legality are explained in the accompanying
technical report [14].
Opacity: It is a correctness-criteria for STMs [7]. A sequential history H is said to
be opaque if there exists a serial history S such that: (1) S is equivalent to H , i.e.,
evts(H) = evts(S) (2) S is legal and (3) S respects the transactional real-time order of
H , i.e., ≺TRH ⊆≺TRS .

3 HT-MVOSTM Design and Data Structure

HT-MVOSTM is a hash-table based MVOSTM that explores the idea of using multiple
versions in OSTMs for hash-table object to achieve greater concurrency. The design of
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HT-MVOSTM is similar to HT-OSTM [5] consisting of B buckets. All the keys of the
hash-table in the range K are statically allocated to one of these buckets.

Each bucket consists of linked-list of nodes along with two sentinel nodes head and
tail with values -∞ and +∞ respectively. The structure of each node is as 〈key, lock,
marked, vl, nnext〉. The key is a unique value from the set of all keys K . All the
nodes are stored in increasing order in each bucket as shown in Figure 3 (a), similar to
any linked-list based concurrent set implementation [6, 15]. In the rest of the document,
we use the terms key and node interchangeably. To perform any operation on a key, the
corresponding lock is acquired. marked is a boolean field which represents whether
the key is deleted or not. The deletion is performed in a lazy manner similar to the
concurrent linked-lists structure [6]. If the marked field is true then key correspond-
ing to the node has been logically deleted; otherwise, it is present. The vl field of the
node points to the version list (shown in Figure 3 (b)) which stores multiple versions
corresponding to the key. The last field of the node is nnext which stores the address
of the next node. It can be seen that the list of keys in a bucket is as an extension
of lazy-list [6]. Given a node n in the linked-list of bucket B, we denote its fields as
n.key(k.key), n.lock(k.lock), n.marked(k.marked), n.vl(k.vl), n.nnext(k.nnext).

1

2

3

(a) Underlying hash−table

vl(version list)

(b) Data structure for maintaining versions

ts val rvl vnext

−∞ k5 k7 k8 +∞k1 k1 . . .

0 v0 v515

5 127 16 20 23

rvl(return value list)

. . .

ts

B

key lock marked vl nnext
T/F

Fig. 3: HT-MVOSTM design

The structure of each version in the vl of a key k is 〈ts, val, rvl, vnext〉 as shown
in Figure 3 (b). The field ts denotes the unique timestamp of the version. In our algorithm,
every transaction is assigned a unique timestamp when it begins which is also its id.
Thus ts of this version is the timestamp of the transaction that created it. All the versions
in the vl of k are sorted by ts. Since the timestamps are unique, we denote a version,
ver of a node n with key k having ts j as n.vl[j].ver or k.vl[j].ver. The corresponding
fields in the version as k.vl[j].ts, k.vl[j].val, k.vl[j].rvl, k.vl[j].vnext.

The field val contains the value updated by an update transaction. If this version
is created by an insert method t inserti(ht, k, v) by transaction Ti, then val will be v.
On the other hand, if the method is t deletei(ht, k) with the return value v, then val
will be null. In this case, as per the algorithm, the node of key k will also be marked.
HT-MVOSTM algorithm does not immediately physically remove deleted keys from the
hash-table. The need for this is explained below. Thus a rv method (t delete or t lookup)
on key k can return null when it does not find the key or encounters a null value for k.

The rvl field stands for return value list which is a list of all the transactions that
executed rv method on this version, i.e., those transactions which returned val. The field
vnext points to the next available version of that key.

Number of versions in vl (the length of the list) as per HT-MVOSTM can be bounded
or unbounded. It can be bounded by having a limit on the number of versions such as
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K. Whenever a new version ver is created and is about to be added to vl, the length
of vl is checked. If the length becomes greater than K, the version with lowest ts (i.e.,
the oldest) is replaced with the new version ver and thus maintaining the length back
to K. If the length is unbounded, then we need a garbage collection scheme to delete
unwanted versions for efficiency.

Marked Nodes: HT-MVOSTM stores keys even after they have been deleted (nodes
which have marked field as true). This is because some other concurrent transactions
could read from a different version of this key and not the null value inserted by the
deleting transaction. Consider for instance the transaction T1 performing t lookup(ht, k)
as shown in Figure 2 (b). Due to the presence of previous version v0, HT-MVOSTM could
return this earlier version v0 for t lookup(ht, k) method. Whereas, it is not possible for
HT-OSTM to return the version v0 because k has been removed from the system after the
delete by T2. In that case, T1 would have to be aborted. Thus as explained in Section 1,
storing multiple versions increases the concurrency.

To store deleted keys along with live keys (or unmarked node) in a lazy-list will
increase the traversal time to access unmarked nodes. Consider the Figure 4, in which
there are four keys 〈k5, k8, k9, k12〉 present in the list. Here 〈k5, k8, k9〉 are marked
(or deleted) nodes while k12 is unmarked. Now, consider an access the key k12 as
by HT-MVOSTM as a part of one of its methods. Then HT-MVOSTM would have to
unnecessarily traverse the marked nodes to reach key k12.

k8 k9−∞ k5 k12 +∞

2

1

B

Fig. 4: Searching k12 over lazy-list

k9

−∞

k5 k8

k12 +∞

2

1

B

Fig. 5: Searching k12 over lazyrb-list

This motivated us to modify the lazy-list structure of nodes in each bucket to form a
skip list based on red and blue links. We denote it as red-blue lazy-list or lazyrb-list. This
idea was earlier explored by Peri et al. in developing OSTMs [5]. lazyrb-list consists
of nodes with two links, red link (or RL) and blue link (or BL). The node which are
not marked (or not deleted) are accessible from the head via BL. While all the nodes
including the marked ones can be accessed from the head via RL. With this modification,
let us consider the above example of accessing unmarked key k12. It can be seen that
k12 can be accessed much more quickly through BL as shown in Figure 5. Using the
idea of lazyrb-list, we have modified the structure of each node as 〈 key, lock, marked,
vl, RL, BL 〉. Further, for a bucket B, we denote its linked-list as B.lazyrb-list.

4 Working of HT-MVOSTM

As explained in Section 2, HT-MVOSTM exports t begin, t insert, t delete, t lookup,
tryC methods. t delete, t lookup are rv methods while t insert, t delete are upd methods.
We treat t delete as both rv method as well as upd method. The rv methods return the
current value of the key. The upd methods, update to the keys are first noted down in local
log, txLog. Then in the tryC method after validations of these updates are transferred
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to the shared memory. We now explain the working of rv method and upd method.
Additional details including pseudocode is in the accompanying technical report [14].

t begin() : A thread invokes a new transaction Ti using this method. This method returns
a unique id to the invoking thread by incrementing an atomic counter. This unique id
is also the timestamp of the transaction Ti. For convenience, we use the notation that
i is the timestamp (or id) of the transaction Ti. The transaction Ti local log txLogi is
initialized in this method.

rv methods - t deletei(ht, k, v) and t lookupi(ht, k, v) : Both these methods return the
current value of key k. Algo 1 gives the high-level overview of these methods. First, the
algorithm checks to see if the given key is already in the local log, txLog of Ti (Line 2).
If the key is already there then the current rv method is not the first method on k and is a
subsequent method of Ti on k. So, we can return the value of k from the txLogi.

If the key is not present in the txLogi, then HT-MVOSTM searches into shared
memory. Specifically, it searches the bucket to which k belongs to. Every key in the
range K is statically allocated to one of the B buckets. So the algorithms search
for k in the corresponding bucket, say Bk to identify the appropriate location, i.e.,
identify the correct predecessor or pred and current or curr keys in the lazyrb-list
of Bk without acquiring any locks similar to the search in lazy-list [6]. Since each
key has two links, RL and BL, the algorithm identifies four node references: two
pred and two curr according to red and blue links. They are stored in the form of an
array with preds[0] and currs[1] corresponding to blue links; preds[1] and currs[0]
corresponding to red links. If both preds[1] and currs[0] nodes are unmarked then the
pred, curr nodes of both red and blue links will be the same, i.e., preds[0] = preds[1]
and currs[0] = currs[1]. Thus depending on the marking of pred, curr nodes, a total
of two, three or four different nodes will be identified. Here, the search ensures that
preds[0].key ≤ preds[1].key < k ≤ currs[0].key ≤ currs[1].key.

Next, the re-entrant locks on all the pred, curr keys are acquired in increasing order
to avoid the deadlock. Then all the pred and curr keys are validated by rv Validation()
in Line 7 as follows: (1) If pred and curr nodes of blue links are not marked, i.e,
(¬preds[0].marked) && (¬currs[1].marked). (2) If the next links of both blue and
red pred nodes point to the correct curr nodes: (preds[0].BL = currs[1]) && (preds[1].
RL = currs[0]).

If any of these checks fail, then the algorithm retries to find the correct pred and curr
keys. It can be seen that the validation check is similar to the validation in concurrent
lazy-list [6].

Next, we check if k is in Bk.lazyrb-list. If k is not in Bk, then we create a new
node for k as: 〈key = k, lock = false,marked = false, vl = v, nnext = φ〉 and
insert it into Bk.lazyrb-list such that it is accessible only via RL since this node is
marked (Line 14). This node will have a single version v as: 〈ts = 0, val = null, rvl =
i, vnext = φ〉. Here invoking transaction Ti is creating a version with timestamp 0 to
ensure that rv methods of other transactions will never abort. As we have explained
in Figure 2 (b) of Section 1, even after T2 deletes k1, the previous value of v0 is still
retained. Thus, when T1 invokes lu on k1 after the delete on k1 by T2, HT-MVOSTM
will return v0 (as previous value). Hence, each rv methods will find a version to read
while maintaining the infinite version corresponding to each key k. In rvl, Ti adds the
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timestamp as i in it and vnext is initialized to empty value. Since val is null and the n,
this version and the node is not technically inserted into Bk.lazyrb-list.

If k is in Bk.lazyrb-list then, k is the same as currs[0] or currs[1] or both. Let n
be the node of k in Bk.lazyrb-list. We then find the version of n, verj which has the
timestamp j such that j has the largest timestamp smaller than i (timestamp of Ti). Add
i to verj’s rvl (Line 22). Then release the locks, update the local log txLogi in Line 24
and return the value stored in verj .val in Line 26).

Algorithm 1 rv method: Could be either t deletei(ht, k, v) or t lookupi(ht, k, v) on key
k that maps to bucket Bk.

1: procedure rv methodi(ht, k, v)
2: if (k ∈ txLogi) then
3: Update the local log and return val.
4: else
5: Search in lazyrb-list to identify the preds[] and currs[] for k using BL and RL in bucketBk .
6: Acquire the locks on preds[] and currs[] in increasing order.
7: if (! rv V alidation(preds[], currs[])) then
8: Release the locks and goto Line 5.
9: end if

10: if (k /∈ Bk.lazyrb-list) then
11: Create a new node n with key k as: 〈 key = k, lock = false, marked = false, vl = v, nnext = φ〉.
12: /* The vl consists of a single element v with ts as i */
13: Create the version v as: 〈ts = 0, val = null, rvl = i, vnext = φ〉.
14: Insert n intoBk.lazyrb-list such that it is accessible only via RLs. /* n is marked */
15: Release the locks; update the txLogi with k.
16: return null.
17: end if
18: Identify the version verj with ts = j such that j is the largest timestamp smaller than i.
19: if (verj == null) then
20: goto Line 11.
21: end if
22: Add i into the rvl of verj .
23: retV al = verj .val.
24: Release the locks; update the txLogi with k and retV al.
25: end if
26: return retV al.
27: end procedure

upd methods - t insert and t delete: Both the methods create a version corresponding
to the key k. The actual effect of t insert and t delete in shared memory will take place
in tryC. Algo 2 represents the high-level overview of tryC.

Initially, to avoid deadlocks, algorithm sorts all the keys in increasing order which
are present in the local log, txLogi. In tryC, txLogi consists of upd methods (t insert or
t delete) only. For all the upd methods (opni) it searches the key k in the shared memory
corresponding to the bucket Bk. It identifies the appropriate location (pred and curr) of
key k using BL and RL (Line 25) in the lazyrb-list of Bk without acquiring any locks
similar to rv method explained above.

Next, it acquires the re-entrant locks on all the pred and curr keys in increasing
order. After that, all the pred and curr keys are validated by tryC Validation in Line 27
as follows: (1) It does the rv Validation() as explained above in the rv method. (2) If
key k exists in the Bk.lazyrb-list and let n as a node of k. Then algorithm identifies
the version of n, verj which has the timestamp j such that j has the largest timestamp
smaller than i (timestamp of Ti). If any higher timestamp k of Tk than timestamp i of Ti
exist in verj .rvl then algorithm returns Abort in Line 28.
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If all the above steps are true then each upd methods exist in txLogi will take the
effect in the shared memory after doing the intraTransValidation() in Line 33. If two
upd methods of the same transaction have at least one common shared node among its
recorded pred and curr keys, then the previous upd method effect may overwrite if the
current upd method of pred and curr keys are not updated according to the updates
done by the previous upd method. Thus to solve this we have intraTransValidation()
that modifies the pred and curr keys of current operation based on the previous operation
in Line 33.

Algorithm 2 tryC(Ti): Validate the upd methods of the transaction and then commit
20: procedure tryC(Ti)
21: /*Operation name (opn) which could be either t insert or t delete */
22: /*Sort the keys of txLogi in increasing order.*/
23: for all (opni ∈ txLogi) do
24: if ((opni == t insert) || (opni == t delete)) then
25: Search in lazyrb-list to identify the preds[] and currs[] for k of opni using BL and RL in bucketBk .
26: Acquire the locks on preds[] and currs[] in increasing order.
27: if (! tryC V alidation()) then
28: returnAbort.
29: end if
30: end if
31: end for
32: for all (opni ∈ txLogi) do
33: intraTransV alidation() modifies the preds[] and currs[] of current operation which would have been

updated by the previous operation of the same transaction.
34: if ((opni == t insert) && (k /∈ Bk.lazyrb-list)) then
35: Create new node n with k as: 〈 key = k, lock = false, marked = false, vl = v, nnext = φ 〉.
36: Create two versions v as: 〈 ts=i, val=v, rvl=φ, vnext=φ 〉.
37: Insert node n intoBk.lazyrb-list such that it is accessible via RL as well as BL /* lock sets true */.
38: else if (opni == t insert) then
39: Add the version v as: 〈 ts = i, val = v, rvl = φ, vnext = φ 〉 into Bk.lazyrb-list such that it is accessible

via RL as well as BL.
40: end if
41: if (opni == t delete) then
42: Add the version i as: 〈 ts=i, val=null, rvl=φ, vnext=φ 〉 intoBk.lazyrb-list such that it is accessible only

via RL.
43: end if
44: Update the preds[] and currs[] of opni in txLogi.
45: end for
46: Release the locks; return Commit.
47: end procedure

Next, we check if upd method is t insert and k is inBk.lazyrb-list. If k is not inBk,
then create a new node n for k as: 〈key = k, lock = false,marked = false, vl =
v, nnext = φ〉. This node will have a single version v as: 〈ts = i, val = v, rvl =
φ, vnext = φ〉. Here i is the timestamp of the transaction Ti invoking this method;
rvl and vnext are initialized to empty values. We set the val as v and insert n into
Bk.lazyrb-list such that it is accessible via RL as well as BL and set the lock field to
be true (Line 37). If k is in Bk.lazyrb-list then, k is the same as currs[0] or currs[1]
or both. Let n be the node of k in Bk.lazyrb-list. Then, we create the version v as:
〈ts = i, val = v, rvl = φ, vnext = φ〉 and insert the version into Bk.lazyrb-list such
that it is accessible via RL as well as BL (Line 39).

Subsequently, we check if upd method is t delete and k is in Bk.lazyrb-list. Let
n be the node of k in Bk.lazyrb-list. Then create the version v as: 〈ts = i, val =
null, rvl = φ, vnext = φ〉 and insert the version into Bk.lazyrb-list such that it is
accessible only via RL (Line 42).
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Finally, at Line 44 it updates the pred and curr of opni in local log, txLogi. At
Line 46 releases the locks on all the pred and curr in increasing order of keys to avoid
deadlocks and return Commit.
Now, we have the following properties about HT-MVOSTM.

Theorem 1. Any history generated by HT-MVOSTM is opaque.

Theorem 2. HT-MVOSTM with unbounded versions ensures that rv methods do not
return abort.

Theorem 2 gives us a nice property a transaction with t lookup only methods will not
abort.
5 Experimental Evaluation

In this section, we present our experimental results. We have two main goals in this
section: (1) evaluating the benefit of multi-version object STMs over the single-version
object STMs, and (2) evaluating the benefit of multi-version object STMs over multi-
version read-write STMs. We use the HT-MVOSTM described in Section 4 as well as
the corresponding list-MVOSTM which implements the list object. We also consider
extensions of these multi-version object STMs to reduce the memory usage. Specifically,
we consider a variant that implements garbage collection with unbounded versions and
another variant where the number of versions never exceeds a given threshold K.
Experimental system: The Experimental system is a large-scale 2-socket Intel(R)
Xeon(R) CPU E5-2690 v4 @ 2.60GHz with 14 cores per socket and two hyper-threads
(HTs) per core, for a total of 56 threads. Each core has a private 32KB L1 cache and
256 KB L2 cache (which is shared among HTs on that core). All cores on a socket
share a 35MB L3 cache. The machine has 32GB of RAM and runs Ubuntu 16.04.2 LTS.
All code was compiled with the GNU C++ compiler (G++) 5.4.0 with the build target
x86 64-Linux-gnu and compilation option -std=c++1x -O3.

STM implementations: We have taken the implementation of NOrec-list [1], Boosting-
list [3], Trans-list [10], ESTM [2], and RWSTM directly from the TLDS framework3.
And the implementation of OSTM and MVTO published by Sathya Peri, one of the
author of this paper. We implemented our algorithms in C++. Each STM algorithm first
creates N-threads, each thread, in turn, spawns a transaction. Each transaction exports
the following methods as follows: t begin, t insert, t lookup, t delete and tryC.
Methodology:4 We have considered two types of workloads: (W1) Li - Lookup intensive
(90% lookup, 8% insert and 2% delete) and (W2) Ui - Update intensive(10% lookup,
45% insert and 45% delete). The experiments are conducted by varying number of
threads from 2 to 64 in power of 2, with 1000 keys randomly chosen. We assume that
the hash-table of HT-MVOSTM has five buckets and each of the bucket (or list in case
of list-MVOSTM) can have a maximum size of 1000 keys. Each transaction, in turn,
executes 10 operations which include t lookup, t delete and t insert operations. We take
an average over 10 results as the final result for each experiment.

3https://ucf-cs.github.io/tlds/
4Code is available here: https://github.com/PDCRL/MVOSTM
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Results: Figure 6 shows HT-MVOSTM outperforms all the other algorithms(HT-MVTO,
RWSTM, ESTM, HT-OSTM) by a factor of 2.6, 3.1, 3.8, 3.5 for workload type W1 and
by a factor of 10, 19, 6, 2 for workload type W2 respectively. As shown in Figure 6,
List based MVOSTM (list-MVOSTM) performs even better compared with the existing
state-of-the-art STMs (list-MVTO, NOrec-list, Boosting-list, Trans-list, list-OSTM) by
a factor of 12, 24, 22, 20, 2.2 for workload type W1 and by a factor of 169, 35, 24, 28, 2
for workload type W2 respectively. As shown in Figure 7 for both types of workloads,
HT-MVOSTM and list-MVOSTM have the least number of aborts.
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MVOSTM-GC and KOSTM: For efficient memory utilization, we develop two vari-
ations of MVOSTM. The first, MVOSTM-GC, uses unbounded versions but performs
garbage collection. This is achieved by deleting non-latest versions whose times-
tamp is less than the timestamp of the least live transaction. MVOSTM-GC gave a
performance gain of 15% over MVOSTM without garbage collection in the best case.
The second, KOSTM, keeps at most K versions by deleting the oldest version when
(K + 1)th version is created by a current transaction. As KOSTM has limited number
of versions while MVOSTM-GC can have infinite versions, the memory consumed by
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KOSTM is 21% less than MVOSTM. (Implementation details for both are in the technical
report [14].)

We have integrated these variations in both hash-table based (HT-MVOSTM-GC and
HT-KOSTM) and linked-list based MVOSTMs (list-MVOSTM-GC and list-KOSTM), we
observed that these two variations increase the performance, concurrency and reduces
the number of aborts as compared to MVOSTM.

Experiments show that these variations outperform the corresponding MVOSTMs.
Between these two variations, KOSTM perform better than MVOSTM-GC as shown in
Figure 6 and Figure 7. HT-KOSTM helps to achieve a performance speedup of 1.22 and
1.15 for workload type W1 and speedup of 1.15 and 1.08 for workload type W2 as
compared to HT-MVOSTM and HT-MVOSTM-GC respectively. Whereas list-KOSTM
(with four versions) gives a speedup of 1.1, 1.07 for workload type W1 and speedup
of 1.25, 1.13 for workload type W2 over the list-MVOSTM and list-MVOSTM-GC
respectively.

6 Conclusion and Future Work

Multi-core systems have become very common nowadays. Concurrent programming
using multiple threads has become necessary to utilize all the cores present in the system
effectively. But concurrent programming is usually challenging due to synchronization
issues between the threads.

In the past few years, several STMs have been proposed which address these syn-
chronization issues and provide greater concurrency. STMs hide the synchronization
and communication difficulties among the multiple threads from the programmer while
ensuring correctness and hence making programming easy. Another advantage of STMs
is that they facilitate compositionality of concurrent programs with great ease. Different
concurrent operations that need to be composed to form a single atomic unit is achieved
by encapsulating them in a single transaction.

In literature, most of the STMs are RWSTMs which export read and write operations.
To improve the performance, a few researchers have proposed OSTMs [3–5] which
export higher level objects operation such as hash-table insert, delete etc. By leveraging
the semantics of these higher level operations, these STMs provide greater concurrency.
On the other hand, it has been observed in STMs and databases that by storing multiple
versions for each t-object in case of RWSTMs provides greater concurrency [9, 16].

This paper presents the notion of multi-version object STMs and compares their
effectiveness with single version object STMs and multi-version read-write STMs. We
find that multi-version object STM provides a significant benefit over both of these
for different types of workloads. Specifically, we have evaluated the effectiveness of
MVOSTM for the list and hash-table data structure as list-MVOSTM and HT-MVOSTM.
Experimental results of list-MVOSTM provide almost two to twenty fold speedup over ex-
isting state-of-the-art list based STMs (Trans-list, Boosting-list, NOrec-list, list-MVTO,
and list-OSTM). Similarly, HT-MVOSTM shows a significant performance gain of almost
two to nineteen times better than existing state-of-the-art hash-table based STMs (ESTM,
RWSTMs, HT-MVTO, and HT-OSTM).
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HT-MVOSTM and list-MVOSTM and use unbounded number of versions for each
key. To limit the number of versions, we develop two variants for both hash-table and
list data-structures: (1) A garbage collection method in MVOSTM to delete the unwanted
versions of a key, denoted as MVOSTM-GC. (2) Placing a limit of k on the number
versions in MVOSTM, resulting in KOSTM. Both these variants gave a performance gain
of over 15% over MVOSTM.

References

1. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: Streamlining STM by Abolishing Own-
ership Records. In Govindarajan, R., Padua, D.A., Hall, M.W., eds.: PPOPP, ACM (2010)
67–78

2. Felber, P., Gramoli, V., Guerraoui, R.: Elastic Transactions. J. Parallel Distrib. Comput.
100(C) (February 2017) 103–127

3. Herlihy, M., Koskinen, E.: Transactional boosting: a methodology for highly-concurrent
transactional objects. In: Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPOPP 2008, Salt Lake City, UT, USA, February
20-23, 2008. (2008) 207–216

4. Hassan, A., Palmieri, R., Ravindran, B.: Optimistic transactional boosting. In: PPoPP. (2014)
387–388

5. Peri, S., Singh, A., Somani, A.: Efficient means of Achieving Composability using Transac-
tional Memory. NETYS ’18 (2018)

6. Heller, S., Herlihy, M., Luchangco, V., Moir, M., III, W.N.S., Shavit, N.: A Lazy Concurrent
List-Based Set Algorithm. Parallel Processing Letters 17(4) (2007) 411–424

7. Guerraoui, R., Kapalka, M.: On the Correctness of Transactional Memory. In: PPoPP, ACM
(2008) 175–184

8. Weikum, G., Vossen, G.: Transactional Information Systems: Theory, Algorithms, and the
Practice of Concurrency Control and Recovery. Morgan Kaufmann (2002)

9. Kumar, P., Peri, S., Vidyasankar, K.: A TimeStamp Based Multi-version STM Algorithm. In:
ICDCN. (2014) 212–226

10. Zhang, D., Dechev, D.: Lock-free Transactions Without Rollbacks for Linked Data Structures.
SPAA ’16, New York, NY, USA, ACM (2016) 325–336

11. Kuznetsov, P., Peri, S.: Non-interference and local correctness in transactional memory. Theor.
Comput. Sci. 688 (2017) 103–116

12. Kuznetsov, P., Ravi, S.: On the cost of concurrency in transactional memory. In: OPODIS.
(2011) 112–127

13. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM 26(4) (1979)
631–653

14. Juyal, C., Kulkarni, S., Kumari, S., Peri, S., Somani, A.: An Innovative Approach for
Achieving Composability in Concurrent Systems using Multi-Version Object Based STMs.
CoRR abs/1712.09803 (2017)

15. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: Distributed
Computing, 15th International Conference, DISC 2001, Lisbon, Portugal, October 3-5, 2001,
Proceedings. (2001) 300–314

16. Perelman, D., Fan, R., Keidar, I.: On Maintaining Multiple Versions in STM. In: PODC.
(2010) 16–25


	An Innovative Approach to Achieve Compositionality Efficiently using Multi-Version Object Based Transactional Systems  
	Introduction
	Building System Model
	HT-MVOSTM Design and Data Structure
	Working of HT-MVOSTM
	Experimental Evaluation
	Conclusion and Future Work


