
An Efficient Practical Non-Blocking PageRank

Algorithm for Large Scale Graphs

Hemalatha Eedi1 Sathya Peri1 Neha Ranabothu1 Rahul Utkoor1

PDP 2021

1Department of Computer Science & Engineering, IIT Hyderabad, India

∗This work is supported by Intel Grant: “Tools for Large-Scale Graph Analytics“.

Outline

1. Introduction

2. Related Work

3. Experimental Evaluation

4. Conclusion and Future Work

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 1 / 27

Outline

1. Introduction

2. Related Work

3. Experimental Evaluation

4. Conclusion and Future Work

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 1 / 27

Introduction: PageRank

• PageRank algorithm is a benchmark for many graph analytics

• It is an iterative algorithm that updates ranks of pages until

the value converges.

pr(u) =
1− d

n
+ d ∗

∑
(v ,u)∈E

pr(v)

q
(1)

where, n = number of pages, q = outdegree defining the

number of hyperlinks on page v and d is the dampening

parameter initialized to 0.85.

• In each step, the algorithm approximates the order of page

ranks till it reaches the solution.

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 2 / 27

Introduction: PageRank

• PageRank algorithm is a benchmark for many graph analytics

• It is an iterative algorithm that updates ranks of pages until

the value converges.

pr(u) =
1− d

n
+ d ∗

∑
(v ,u)∈E

pr(v)

q
(1)

where, n = number of pages, q = outdegree defining the

number of hyperlinks on page v and d is the dampening

parameter initialized to 0.85.

• In each step, the algorithm approximates the order of page

ranks till it reaches the solution.

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 2 / 27

Introduction: PageRank

• PageRank algorithm is a benchmark for many graph analytics

• It is an iterative algorithm that updates ranks of pages until

the value converges.

pr(u) =
1− d

n
+ d ∗

∑
(v ,u)∈E

pr(v)

q
(1)

where, n = number of pages, q = outdegree defining the

number of hyperlinks on page v and d is the dampening

parameter initialized to 0.85.

• In each step, the algorithm approximates the order of page

ranks till it reaches the solution.

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 2 / 27

Introduction: PageRank

• PageRank algorithm is a benchmark for many graph analytics

• It is an iterative algorithm that updates ranks of pages until

the value converges.

pr(u) =
1− d

n
+ d ∗

∑
(v ,u)∈E

pr(v)

q
(1)

where, n = number of pages, q = outdegree defining the

number of hyperlinks on page v and d is the dampening

parameter initialized to 0.85.

• In each step, the algorithm approximates the order of page

ranks till it reaches the solution.
Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 2 / 27

Introduction: System Model

• Our system consists of p threads running on multiprocessors

• These threads are logically divided into partitions and are

assigned to a specific processor

• Threads in each partition can use shared local memory and

communicate using thread APIs

• To deal with the issues raised during thread communication,

we implement atomic primitive - CAS(Compare-And-Swap).

Listing 1: CAS function

1 CAS(int expected , int updated) {
2 int prior = this.value
3 if(this.value == expected) {
4 this.value = update;
5 return true;
6 }
7 return false;
8 }

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 3 / 27

Introduction: Formal Definitions

• Blocking Synchronization

• Uses locks to allow one thread at a time to access a shared

object

• Prevents conflicts between the coordinating threads

• However, it results in busy waiting and deadlocks conditions

• Non-Blocking Synchronization

• The Wait-free approach guarantees that every thread finishes

its execution in a finite number of steps

• The Lock-free approach ensures that infinitely often, some

thread finishes in a finite number of steps

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 4 / 27

Outline

1. Introduction

2. Related Work

3. Experimental Evaluation

4. Conclusion and Future Work

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 4 / 27

Related Work

Parallel computation of the PageRank metric on graphs has been

studied extensively on shared memory architectures using many

different programming models in recent years.

Solution
PageRank

Approach
Barriers

Conclusions

Drawn

Garg et al. 1 STICD Yes Redundant computations are removed and , the preprocessing techniques used in this work are not parallelized

Beamer et al.2 Propagation Blocking Yes Reduced Memory Bound Computations and Improves Spatial Locality

Ajay Panyala et al. 3 loop perforation Yes Imporved performance and uses extra memory

Zhen Peng et al . 4 GraphPhi Yes Benifited with data-locality, effective scheduling, and load balancing

1
P. Garg, K. Kothapall: STIC-D: algorithmic techniques forefficient parallel pagerank computation on real-world

graphs. ICDCN, 2016.
2

S. Beamer, K. Asanovi, D. A. Patters : “Reducingpagerank communication via propagation blocking. IPDPS,

2017
3

A. Panyala, O. Subasi, M. Halappanavar, A. Kalyanaraman, D. G.Chavarr ıa-Miranda, S.

Krishnamoorthy:Approximate computin gtechniques for iterative graph algorithms. HiPC, 2017.
4

Z. Peng, A. Powell, B. Wu, T. Bicer, B. Re: “Graphphi:efficient parallel graph processing on emerging

throughput-oriented architectures. PACT, 2018.

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 5 / 27

Description of Algorithms

• Most of the research on PageRank computation is on Graph

pre-processing step

• Most of these algorithms use a Barrier synchronization after

each iteration

• Using a Barrier has drawbacks as every thread needs to wait

at each iteration without making any progress

• Our main motive is to increase the computational speed by

avoiding barriers and allowing the threads to run

independently throughout the execution

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 5 / 27

Baseline Barrier Synchronization Algorithm

• In each iteration every thread is allocated with equal amount

of work

• Threads after computing the PageRank of their allocated

vertices has to wait for other threads at the end of the

iteration
• Pseudo Code

1: for all u ∈ threadVertices(Ti) do

2: pr(u)←
(1− d)

n
3: for all u ∈ V such that (v,u) ∈ E do

4: pr(u) = pr(u) +
prPrev(v)

outDeg(v)
∗ d

5: end for

6: thrErr [Ti] = max(thrErr [Ti], |prPrev(u)− pr(u)|)
7: end for

8:

9: Barrier checkpoint

10: for all threads Ti |i ∈ {1, ..., p} do

11: error = max(error, thrErr [Ti])

12: end for

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 6 / 27

Parallel PageRank using Locks

Fine-Grain Lock Variant 1

Threads are allowed to compute at any iteration without Barrier

• Read-Write conflicts are handled by using locks

• The vertices in each partition are categorized into internal and

boundary vertices.

• Thread acquires the locks on all incoming vertices to compute

PR for boundary vertices

• Thread error is updated locally and a global lock is used at

the end of each iteration to update the Thread error to max

of all thread errors

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 7 / 27

Fine-Grain Lock Variant 1

1: for all u ∈ internalVertices(Ti) do

2: pr(u)← ComputePR(u)

3: end for

4: for all u ∈ boundaryVertices(Ti) do

5: for all v ∈ V such that (v, u) ∈ E ∪ u do

6: v.lock()

7: end for

8: pr(u)← ComputePR(u)

9: for all v ∈ V such that (v, u) ∈ E ∪ u do

10: v.unlock()

11: end for

12: end for

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 8 / 27

Fine-Grain Lock Variant 2

Threads are allowed to compute any iteration without Barrier

• Instead of locking all incoming nodes at once

• Lock each incoming node

• Read its value(add to pr(u)) and release the lock

• Repeat this process for all incoming nodes

Figure 1: Internal

Representation

Figure 2: Internal

Representation

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 9 / 27

Fine-Grain Lock Variant 2

Algorithm 1 Lock variant 2

1: for all v ∈ V such that (v , u) ∈ E do

2: v.lock()

3: temp = temp +
pr(v)

outDeg(v)
∗ d

4: v.unlock()

5: end for

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 10 / 27

Non-Blocking Algorithms

• No-Synch Algorithm eliminates locks and computes PR values

using atomic operations.

• Approximate version of Barrier

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 11 / 27

Non-Blocking Algorithms

1: procedure ComputePR(node u)

2: temp =
(1− d)

n
3: for all v ∈ V such that (v, u) ∈ E do

4: temp = temp +
pr(v).load()

outDeg(v)
∗ d

5: end for

6: return temp

7: end procedure

1: for all u ∈ threadVertices(Ti) do

2: prev ← pr(u)

3: temp ← ComputePR(u)

4: pr(u).store(temp)

5: thrlocErr = max(thrlocErr, |temp − prev|)
6: end for

7: thErr [Ti].store(thrlocErr)

8: localError ← 0

9: for all tid ∈ threads(1, p) do

10:

localError = max(localError, thErr [tid].load())

11: end for

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 12 / 27

Lemma-1

The algorithm eventually terminates in finite steps

• As a base case, threads can be considered to be present in two

consecutive iterations at a particular instant

• According to Base Algorithm Equation 2 is

prui =
1− d

n
+ d ∗

∑
(v,u)∈E

pr vi−1

outDeg(v)
(2)

errui = |prui − prui−1| (3)

• At any given instant prui−1:i always lies between prui and prui−1.

|prui−1:i − prui−1| ≤ |prui − prui−1| ⇒ errui−1:i ≤ errui (4)

prui−1:i =
1− d

n
+ d ∗

∑
v∈Su

i

pr vi−1

outDeg(v)
+ d ∗

∑
v∈Su

i−1

pr vi−2

outDeg(v)
(5)

Error in Eq(2) can also be modified accordingly.

errui−1:i = |prui−1:i − prui−1| (6)

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 13 / 27

Lemma-2

The algorithm leads to a similar result as that of Sequential

• The algorithm continues until the error of every node is less than the

threshold, so the PageRank values of all nodes reach an almost constant

value

p̂rui =
1− d

n
+ d ∗

I∑
l=1

∑
v∈Su

l

p̂r vl
outDeg(v)

(7)

p̂ru =
1− d

n
+ d ∗

∑
v∈Su

p̂r v

outDeg(v)
(8)

• The PageRank values from the algorithm are also similar to that of the

Sequential output with an error which is less than the threshold

|pru − p̂ru| ≤ threshold

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 14 / 27

Non-Blocking Algorithms

Wait-Free Algorithm

• Ensures algorithm correctness. Gives exact PR values as that

of base algorithm

• Threads are not allowed to enter into the next iteration until

all nodes are computed

• Any thread which finishes the computation of its allocation

will help any other random thread to complete its assignment

before proceeding into the next iteration

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 15 / 27

Non-Blocking Algorithms-Wait-Free Algorithm

struct ThCASOb {
int itr;

int currNode;

double thErr;

};
struct GlbCASOb {

int itr; double err;

vector<bool> check;

bool intermediate;

};
struct PrCasOb {

int itr;

double rank;

};

• Thread Object to store current iteration,

current node till which PR computation is

done and thread error until current node.

Useful for helper thread to continue the

computation of left over nodes for the

partition

• Global Object to store current iteration

(incremented only if all nodes are computed),

error from all threads for itr. All threads

update this global object with their max error

• Node Object to store the PR value and

iteration number. Itr is incremented after

updating the rank. Useful to know for helper

threads whether to compute the PR for the

node

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 16 / 27

Non-Blocking Algorithms-Wait-Free Algorithm

1: procedure updatePR(u, nodePr, thdVar)
2: z ← pr(u)
3: if z.itr == thdVar.itr then
4: casOb ← newPrCasOb(thVar.itr + +, nodePr)
5: CAS(pr(u), z, casOb)
6: end if
7: z ← prevPr(u)
8: if z.itr == thdVar.itr then
9: casOb ← newPrCasOb(thVar.itr + +, nodePr)
10: CAS(prevPr [u], z, casOb)
11: end if
12: end procedure

1: z = glbThInfo[hlpId]
2: if z.itr == thdVar.itr then
3: er ← max(z.er, |nodePr − prevPr|)
4: casOb ← newThCASOb(z.itr, next(u, hepId), er)
5: CAS(glbThInfo[hlpId], z, casOb)
6: end if

1: procedure UpdateGlbVar((thId,hlpId,thdVar)
2: while true do
3: z ← glbVar
4: if z.itr == thdVar.itr then
5: casOb ← copy(z)
6: casOb.check[helpId]← true
7:

casOb.er ← max(casOb.er, glbThInfo[hlpId].er)
8: CAS(glbVar, z, casOb)break
9: end if
10: end while
11: while true do
12: z ← glbThInfo[hlpId]
13: if z.itr == thdVar.itr then
14: casOb ← newThCASOb(z.itr + +, thdId, 0)
15: CAS(glbThInfo[hlpId], z, casOb)break
16: end if
17: end while
18: end procedure

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 17 / 27

Outline

1. Introduction

2. Related Work

3. Experimental Evaluation

4. Conclusion and Future Work

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 17 / 27

Experimental Evaluation

• Platform.

1. Intel(R) Xeon(R) E5-2660 v4 processor architecture, 2.06 GHz

core frequency, 56 cores, 32GB RAM

2. Compiler - g++ 7.5.0 with POSIX MultiThreaded library

support

• Datasets:

1. Synthetic datasets(#vertices: 221 ∼ 223, 1 ∼ 7× 106)

2. Real-world datasets from snap(vertices: 1∼ 7× 106)

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 18 / 27

Results: PageRank Speed-Up w.r.t Identical Nodes

Figure 3: Speed-Up on Real-World, Synthetic Datasets

• No Sync provide an average speed up of 5.1x over Barrier

• Our proposed approach on Web-graphs, Social-networks,

Road-networks, Synthetic datasets follows similar pattern when

incorporated with Identical nodes optimization from STICD

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 19 / 27

Results: PageRank Speed-Up w.r.t chain of nodes

Figure 4: Real-World Datasets Figure 5: Synthetic Datasets

• No Sync provide an average speed up of 4.3x over Barrier

• Our proposed approach on Social-networks, Road-networks,

Synthetic datasets follows similar pattern when incorporated with

Chain nodes optimization from STICD

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 20 / 27

Results: PageRank Time with Random Thread Sleep

Figure 6: PageRank Time with Random Thread Sleep

• Deterministically added sleeps to the threads in selected iteration

• Execution time of Barrier and No Sync variants increases with

increase in sleep time, whereas wait-free execution time is consistent
Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 21 / 27

Results: PageRank with Thread Failures

Figure 7: PageRank with Thread Failures

• Barrier helper parallel variant handle thread failures

• Other variants fail to handle this property

• Increase in number of thread failures, increases program execution

timeHemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 22 / 27

Outline

1. Introduction

2. Related Work

3. Experimental Evaluation

4. Conclusion and Future Work

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 22 / 27

Conclusion

• We developed barrier-less implementations of PageRank

algorithm

• On average our No Sync variant is 4x times faster than barrier

• We developed Wait-free(Barrier helper) variant of PageRank

algorithm, which handles thread-failures

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 23 / 27

Future Work

• Currently we incorporated techniques from STICD, adding

more such optimization techniques is our primary goal

• Our wait-free(Barrier helper) performance is poor compared

to barrier. Improving wait-free algorithm is our secondary goal

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 24 / 27

References

[1] Page et al.“The PageRank Citation Ranking: Bringing

Order to the Web.”Accessed: November, 1999.

http://ilpubs.stanford.edu:8090/422/

[2] Garg et al. “STIC-D: algorithmic techniques for efficient

parallel pagerank computation on real-world graphs” in

Proceedings of the 17th International Conference on

Distributed Computing and Networking, pp. 15:1–15:10. ACM,

2016. https://doi.org/10.1145/2833312.2833322

[3] Beamer et al. Reducing pagerank communication via

propagation blocking,” in 2017 IEEE International Parallel and

Distributed Processing Symposium, IPDPS 2017, pp. 820–831.

IEEE, 2017.

https://ieeexplore.ieee.org/document/7967173

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 25 / 27

http://ilpubs.stanford.edu:8090/422/
https://doi.org/10.1145/2833312.2833322
https://ieeexplore.ieee.org/document/7967173

References

[4] A. Panyala et al., “Approximate computing techniques for

iterative graph algorithms,” in 24th IEEE International

Conference on High Performance Computing, HiPC 2017,

Jaipur, India, December 18-21, 2017. IEEE Computer Society,

2017, (pp.23–32). Springer, Cham.

https://ieeexplore.ieee.org/document/8287732

[5] Z. Peng et al., “Graphphi: efficient parallel graph

processing on emerging throughput-oriented architectures,” in

Proceedings of the 27th International Conference on Parallel

Architectures and Compilation Techniques, PACT 2018,

Limassol, Cyprus, November 01-04, 2018, S. Evripidou, P.

Stenstrom, and M. F. P. O’Boyle, Eds. ACM, 2018, pp.

9:1–9:14.

https://dl.acm.org/doi/10.1145/3243176.3243205
Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 26 / 27

https://ieeexplore.ieee.org/document/8287732
https://dl.acm.org/doi/10.1145/3243176.3243205

Thank You

Hemalatha et al. An Efficient Practical Non-Blocking PageRank Algorithm for Large Scale Graphs 27 / 27

	Introduction
	Related Work
	Experimental Evaluation
	Conclusion and Future Work

