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Abstract—PageRank algorithm is a benchmark for many graph
analytics and is the underlying kernel for link predictions, rec-
ommendation systems. It is an iterative algorithm that updates
ranks of pages until the value converges. Implementation of
PageRank algorithm on a shared memory architecture while
taking advantage of fine-grained parallelism using large-scale
graphs is a challenging task. In this paper, We present parallel
algorithms for computing the PageRank suitable to the shared
memory systems. Initially, we present parallel implementations
of page-rank algorithms using barrier and lock variants. Later,
we propose new approaches which are lock-free and are
barrier-less synchronization to overcome the issues of lock
based methods.

A detailed experimental analysis of our approach is carried
out using real-world web graphs from SNAP and Synthetic
Graphs from RMAT on an Intel(R) Xeon E5-2660 v4 processor
architecture with 56 threads using the POSIX thread library.

Index Terms—Shared Memory Architecture, PageRank Al-
gorithm, Fine-Grained Parallelism, No Synchronization and
Wait-Free.

1. Introduction

Graphs have ubiquitous for representing data in various
fields such as Biology, Genomics, Astrophysics, Transporta-
tion Networks, Web and Social Network Analysis, Scientific
Computing [1]. In general many of these graphs are huge
and scale with billions of nodes and edges with irregular
and intricate structures. As a result, there have been several
efforts for developing graph frameworks, and graph libraries
to address these issues.

Performance is still a big issue in processing graphs and
graph applications, especially in shared memory architec-
tures. On many of these large graphs, it is also required to
exploit the nature and understanding of these graphs by ap-
plying some metrics for deriving meaningful analytics. The
PageRank is one such property to find the quality of nodes
in a web graph. Page et al. [2] devised this algorithm for
Google Search Engine. The PageRank computation proceeds
iteratively over and over again to estimate the significance
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of a web page. The primary understanding of the algorithm
derives the rank of a page based on its incoming channels. If
the incoming link is from a highly ranked page, it is evident
that the current page also has a high rank [2]. The rank pr
of node u in Graph G is formally defined as:

pr(u) =
1− d

n
+ d ∗

∑
(v,u)∈E

pr(v)

q
(1)

where, n = number of pages, q = outdegree defining the
number of hyperlinks on page v and d is the dampening
parameter initialized to 0.85.

The first part of the equation denotes a random proba-
bility of reaching a node v from some other point. In this
case, d represents the probability of selecting the node u
from a complete set of n nodes. The second part of the
equation describes the factors contributed by all incoming
nodes arriving at a node v. The summation of the PageRank
values from the incoming nodes of v is multiplied by the
learning factor d.

The convergence of PageRank iterations and address-
ing dangling vertices are primary concerns in computing
PageRank. The convergence of PageRank is guaranteed
only provided the Web graph is strongly connected and is
aperiodic [3].

Pages with no outgoing links must also be resolved to
patch the computation issues of PageRank. Because there
is no possible distribution of ranks between other vertices,
these pages act as a rank sink. As pendant vertices do not
affect other vertices’ page rank, in a study, it was formally
proposed to iteratively drop the vertices with no out-links
from the graph to resolve this computational issue [2].

PageRank is an iterative algorithm. In each step, the
algorithm approximates the order of page ranks till it reaches
the solution. The rank of the node implies its importance in
the graph. Computing PageRank of a single node depends on
the incoming edges and out-degree of the respective node.

Non-blocking (lock-freedom or wait-freedom) is an im-
portant progress property, which ensures that the system
makes progress regardless of how some thread in the system
has become slow or even has crashed [4]. As a result, to
achieve non-blocking progress, the threads executing cannot
acquire locks since a thread that has acquired a lock can po-



tentially block other threads from progressing by becoming
slow or crashing.

Achieving non-blocking progress on iterative algorithms
is a challenging task [5]. In this work, we enabled Page
Rank iterative algorithm to achieve lock-freedom and wait-
freedom property.

Designing a parallel algorithm has to solve many issues
and challenges that deal with performance and memory
bottlenecks. Concurrent execution by the threads to har-
ness the underlying multi-core architecture, is an essen-
tial component that handles these challenges. In iterative
algorithms, the computations of current iteration depend
on the values computed from the previous iteration. Till
now, barrier based solutions are considered to be useful
for achieving better parallelism on iterative algorithms.
However, these solutions do not guarantee non-blocking
progress guarantees lock-freedom/wait-freedom properties.
Spotting independence across the iterations of the page-rank
algorithm is non-trivial. Till date, the approaches proposed
for achieving better parallelism on the page-rank algorithm
focuses on graph-optimization/adjacency-matrix optimiza-
tion* techniques. Our technique is unique, which guarantees
non-blocking progress property on a page-rank algorithm.
We used piece-wise concurrent programming by removing
barrier constraint from an iterative algorithm and eliminates
the dependency between the iterations.

1.1. System Model

In this work, we assume that our system consists of
p threads running on multiprocessors. These threads are
logically divided into partitions and are assigned to a specific
processor. Threads in each partition can use shared local
memory and communicate using thread APIs. To deal with
the issues raised during thread communication, we imple-
ment atomic primitives - CAS(Compare-And-Swap).

1.2. Formal Definitions

This section gives a formal description of synchroniza-
tion approaches [4] for designing shared data objects and
algorithms used in this paper.

The Blocking synchronization approach uses locks to
allow one thread at a time to access a shared object and thus
prevents conflicts between the coordinating threads. How-
ever, it results in busy waiting and deadlocks conditions.

The Non-Blocking synchronization approach uses lock-
free and Wait-free methods to deal with the conflicts between
the coordinating threads. When multiple threads access a
shared object, the Wait-free approach guarantees that every
thread finishes its execution in a finite number of steps.
The lock-free approach ensures that infinitely often, some
thread finishes in a finite number of steps. To implement
synchronization using lock-free and wait-free approaches,
the most prominent atomic primitive used is Compare-And-
Swap. [4]

2. Related Work

PageRank is Google’s first and previously used algo-
rithm to rank websites in their search engine results. Page
et al. [2] devised this algorithm for computing the ranks of
web pages iteratively until the PageRank values converge.
As it is a popular and extensively used metric to calculate
the importance of web pages, there has been a lot of research
interest in the past decades. Parallel computation of the
PageRank metric on graphs has been studied extensively on
shared memory architectures using many different program-
ming models in recent years [1], [6], [7], [8], to mention a
few.

Parallel PageRank algorithm proposed by Berry er al.
[6], in their Multi-Threaded Graph Library (MTGL), runs
on Cray XMT (Multi-Threaded Architecture extended with
128 threads) used QThreads APIs for processing threads
and implementing synchronization among them. Each thread
computes the PR value of a node by accumulating the
votes of its incoming edges of a given vertex. However, the
parallel implementation of the PageRank algorithm using
Q-Threads was not optimized and results in performance
bottlenecks.

GraphLab - a vertex-centric programming model pro-
posed initially on the shared-memory architecture by Low
et al. [9] evolved into distributed systems for implementing
parallel machine learning algorithms. GraphLab framework
was implemented in C++ using Pthreads and supports an
asynchronous programming approach for computing the ver-
tices’ PageRank values by using schedulers and aggressively
tuning the parameters. [10] However, in each iteration, the
PageRank computations in parallel are carried out by using
synchronization locks and barriers.

Wang et al. [11] in their paper titled Asynchronous
Large-Scale Graph Processing Made Easy, proposed Grace
- a programming platform designed for shared memory
systems. Grace supports synchronous iterative graph pro-
gramming approach along with asynchronous features. A
driver thread coordinates a group of worker threads to com-
pute PageRank of the scheduled vertices in parallel using
Barriers.

Galois is a vertex-centric data-parallel programming
model on shared memory systems, proposed by Nguyen et
al. [12], that uses a coordinated scheduling approach where
the computations are breakdown into supersteps. At each
superstep, a barrier synchronization is invoked. Galois does
not satisfy the lock-free and wait-free properties.

Parallel PageRank algorithm implemented using Ligra
proposed by Shun and Blelloch [7] uses simple routines. It
takes advantage of Frontier Based computations where an
active set of vertices and edges are dynamically changing
through the duration of execution. To achieve parallelism,
Ligra uses Clik Plus parallel codes.

Garg et al. [8] proposed four algorithmic techniques
- STICD for Strongly connected components, Topological
sort, Identical nodes - nodes with the same set of incoming
neighbor nodes, Chain nodes - nodes with one incoming
and one outgoing node, and Dead nodes to optimize the



PageRank computation by looking at the graph properties
and structure. The algorithm techniques adopted in this
paper exploits the nature of real-world graphs and reduces
the PageRank computation by removing redundancies in
edges and nodes of the graph. This kind of optimizations can
speed-up the computations when compared with the baseline
parallel version. However, the preprocessing techniques used
in this work are not parallelized and still need performance
improvements.

The authors in the paper [13] applied an optimization
technique called propagation blocking to the PageRank algo-
rithm to reduce the memory communication bound compu-
tations, thereby improving spatial locality on DRAM. This
technique is specialized to use an edge-centric representation
of input data. However, the implementation is bounded by
barrier synchronization.

Ajay Panyala et al. [14] presents several approximate
computing techniques like loop perforation and data caching
to improve the PageRank algorithm’s performance. The per-
formance results show 7-10 times better improvement when
compared with an efficient algorithm STICD [8]. However,
the approximate PageRank computation uses extra memory
for storing the sorted edge-list in computing the PageRank
of the target vertex. The parallel implementation still uses
barriers to synchronize the computation.

GraphPhi framework proposed by Zhen Peng et al. [15]
mainly focuses on optimizing graph representations and uses
a hybrid vertex-centric and edge-centric execution design
on Intel Xeon Phi-like architectures. GraphPhi framework
leverages the benefits of data-locality, effective scheduling,
and load balancing. However, inspite of the advantages, the
implementation is still bounded by barrier synchronization.

3. Description of Algorithms

Most of the research on PageRank computation is on
the pre-processing step, i.e., processing the graph (STICD,
Ligra) [7] [8], equal distribution of load to the threads
[16], etc. In the end, all these algorithms use a Barrier
synchronization after each iteration. Using a Barrier has
drawbacks as every thread needs to wait at each iteration
without making any progress. Our main motive is to increase
the computational speed by avoiding barriers and allowing
the threads to run independently throughout the execution.
In this section, we explain the baseline parallel algorithm
using Barrier synchronization. Later we propose Blocking
and Non-Blocking algorithms by eliminating the Barrier
synchronization.

3.1. Baseline Barrier Synchronization Algorithm

Given a graph G = (V, E) is partitioned into p equal-sized
partitions where p is the number of threads and partition Pi
contains all the vertices with id ∈ {i∗k|k ∈ (1, n/p) and i ∈
(1, p)}. The barrier synchronization algorithm given in Al-
gorithm 1 starts with initializing error, threshold, and initial
PageRank values of all the graph nodes. The parallel al-
gorithm (at Line 3) then computes the PageRank of nodes

by creating p number of threads. Each thread is responsible
for computing the new PageRank value of its allocation Pi
by reading and summing up the previous PageRank values
of its incoming neighbor nodes. pr and prPrev variables
store the PageRank values of all vertices from current and
previous iteration. Each thread stores the error obtained from
its allocation to a thread local variable thErr[Ti]. After every
iteration the main thread computes the max error from all
the thErr variables. This process iterates in parallel until it
converges (error < threshold).

Algorithm 1 Using Barrier
1: Input: p ← # of threads
2: Graph G ← (V, E) . CSR representation
3: procedure PARALLELPAGERANK(G = (V,E), p)
4: error ← 1

5: threshold←
0.01

#ofV ertices

6: for all nodes ui |i ∈ {1, ..., n} do
7: pr(ui)← 0
8: prPrev(ui)← 1

n
9: end for

10: thrErr[p]← 0 . Initialize thread’s error
11: while error < threshold do
12: for all threads Ti |i ∈ {1, ..., p} do
13: for all u ∈ threadV ertices(Ti) do

14: pr(u)←
(1− d)

n
15: for all u ∈ V such that (v,u) ∈ E do

16: pr(u) = pr(u) +
prPrev(v)

outDeg(v)
∗ d

17: end for
18: thrErr[Ti] = max(thrErr[Ti], |prPrev(u)− pr(u)|)
19: end for
20: end for
21: Barrier checkpoint
22: for all threads Ti |i ∈ {1, ..., p} do . Update Global Error
23: error = max(error, thrErr[Ti])
24: end for
25: prPrev = pr
26: Barrier checkpoint
27: end while
28: end procedure

3.2. Lock-based PageRank Algorithm

In the lock-based algorithm, we eliminate the previous
PageRank variable (prPrev) and allow the threads to read-
write to the same single PageRank variable. Locks avoid
read-write conflicts that arise when threads are making
progress in different iterations simultaneously. For example,
thd1 is trying to compute the page rank of node u in kth

iteration by accessing the PageRank of v in (k-1)th iteration
where (u,v)∈ E. There is a possibility that v belongs to thd2
and its (k-1)th iteration is updated at the same time. We
eliminate these read-write conflicts by introducing locks.
The vertices in each partition are classified into Boundary
vertices and Internal Vertices to reduce the time spent in
attaining the locks. Boundary vertices are those vertices for
which at least one incoming neighbor vertex belongs to other
partitions. Internal vertices are those vertices for which all
incoming neighbor vertices belong to the same partition.
This partition of vertices into internal and boundary is
helpful as there won’t be any conflicts while computing the



PageRank of internal vertices. We propose two variant of
fine-grained locking methods to attain locks on boundary
vertices.

3.2.1. Fine-Grained-Lock-Variant1. In the locking algo-
rithm, we attain locks on all incoming neighbor vertices of
the node before computing the PageRank. In each iteration
and for each node that belongs to Boundary Vertices, the
thread acquires the each lock on all its incoming neighboring
nodes, computes the PageRank, updates the newly computed
PageRank value by accessing shared values inside its critical
section and release the locks. The vertices are always locked
in the increasing order of their Ids to avoid deadlock-free.
The selected node is also locked in the order along with its
incoming neighbor vertices. Similarly, release the locks in
the decreasing order of their Ids.

Algorithm 2 Algorithm Fine-Grained-Lock-Variant1 Pager-
ank(G)
1: procedure COMPUTEPR(node u)
2: prev ← pr(u)

3: temp =
(1− d)

n
4: for all v ∈ V such that (v, u) ∈ E do

5: temp = temp +
pr(v)

outDeg(v)
∗ d

6: end for
7: thrlocErr = max(thrlocErr, |temp− prev|)
8: return temp
9: end procedure

10: procedure MAIN(Graph G = (V,E))
11: G = CovertCsr(V,E)
12: internalVertices, boundaryVertices = CategorizeVertices(V,E)
13: Initialize Variables
14: for all Ti ∈ threads(1, p) do
15: while localError < threshold do
16: thrlocErr ← 0
17: for all u ∈ internalV ertices(Ti) do
18: pr(u)← ComputePR(u)
19: end for
20: for all u ∈ boundaryV ertices(Ti) do
21: for all v ∈ V such that (v, u) ∈ E ∪ u do
22: v.lock()
23: end for
24: pr(u)← ComputePR(u)
25: for all v ∈ V such that (v, u) ∈ E ∪ u do
26: v.unlock()
27: end for
28: end for
29: glb.lock()
30: thErr[Ti]← thrlocErr
31: localError ← 0
32: for all tid ∈ threads(1, p) do
33: localError ← max(localError, thErr[tid].load())
34: end for
35: glb.unlock()
36: end while
37: end for
38: end procedure

3.2.2. Fine-Grained-Lock-Variant2. In the fine-
grained Locking mechanism, instead of locking all its
incoming nodes at once each thread locks the incoming
node one after the other, reads the value, adds the sum to
its local variable and it releases the lock. The same process
continues for all the other incoming neighbour nodes in its
partition. In this algorithm there won’t be any problem of

deadlock as the threads are not allowed to attain more than
one lock at the same time.

Algorithm 3 Algorithm Fine-Grained-Lock-Variant2 Pager-
ank(G)
1: procedure COMPUTEPRINTERNAL(node u)
2: prev ← pr(u)

3: temp =
(1− d)

n
4: for all v ∈ V such that (v, u) ∈ E do

5: temp = temp +
pr(v)

outDeg(v)
∗ d

6: end for
7: thrlocErr = max(thrlocErr, |temp− prev|)
8: return temp
9: end procedure

10: procedure COMPUTEPRBOUNDARY(node u)
11: prev ← pr(u)

12: temp =
(1− d)

n
13: for all v ∈ V such that (v, u) ∈ E do
14: v.lock()

15: temp = temp +
pr(v)

outDeg(v)
∗ d

16: v.unlock()
17: end for
18: thrlocErr = max(thrlocErr, |temp− prev|)
19: return temp
20: end procedure
21: procedure MAIN(Graph G = (V,E))
22: G = CovertCsr(V,E)
23: internalVertices, boundaryVertices = CategorizeVertices(V,E)
24: Initialize Variables
25: for all Ti ∈ threads(1, p) do
26: while localError < threshold do
27: thrlocErr ← 0
28: for all u ∈ internalV ertices(Ti) do
29: pr(u)← ComputePRInteral(u)
30: end for
31: for all u ∈ boundaryV ertices(Ti) do
32: pr(u)← ComputePRBoundary(u)
33: end for
34: glb.lock()
35: thErr[Ti]← thrlocErr
36: localError ← 0
37: for all tid ∈ threads(1, p) do
38: localError ← max(localError, thErr[tid].load())
39: end for
40: glb.unlock()
41: end while
42: end for
43: end procedure

3.3. Non-Blocking Algorithm

Lock-based algorithms are easy to implement. When a
thread holding a lock cannot make progress, other threads
waiting for a long time may not progress and lead to starva-
tion or deadlock. Non-blocking algorithms are alternatives
to lock-based algorithms that are immune to starvation and
deadlock problems. Non-blocking algorithms use low-level
machine instructions such as CAS (Compare-And-Swap) to
guarantee data consistency and correctness under concurrent
shared data access.

3.3.1. No-Sync . In this Non Synchronization algorithm, at
least one thread should compute and update the PageRank
values of its partition. Each node’s PageRank variable is



updated using atomic CAS operations to attain the No-
Sync property.

In Algorithm 4, from lines 11 to 26 are executed in
parallel by all threads. We store the PageRank value associ-
ated with each node in atomic variables. The update of the
PageRank value of a node is done on line 17 using CAS
operations. Each thread updates the local variable localError
with the max value from global variable thErr from line 22
to 24 and uses it to check if it can proceed to the next
iteration in line 12. The update of localError is done after
computing of pagerank of all nodes in its own partition (i.e)
single iteration of the thread.

Algorithm 4 Algorithm No-Sync Pagerank(G)
1: procedure COMPUTEPR(node u)

2: temp =
(1− d)

n
3: for all v ∈ V such that (v, u) ∈ E do

4: temp = temp +
pr(v).load()

outDeg(v)
∗ d

5: end for
6: return temp
7: end procedure
8: procedure MAIN(Graph G = (V,E))
9: G = CovertCsr(V,E)

10: Initialize Variables
11: for all Ti ∈ threads(1, p) do
12: while localError < threshold do
13: thrlocErr ← 0
14: for all u ∈ threadV ertices(Ti) do
15: prev ← pr(u)
16: temp← ComputePR(u)
17: pr(u).store(temp)
18: thrlocErr = max(thrlocErr, |temp− prev|)
19: end for
20: thErr[Ti].store(thrlocErr)
21: localError ← 0
22: for all tid ∈ threads(1, p) do
23: localError = max(localError, thErr[tid].load())
24: end for
25: end while
26: end for
27: end procedure

Lemma 1. The algorithm eventually terminates in finite
steps.

Proof. According to the algorithm, all threads will terminate
when the error value of all the threads is less than the
threshold. So it is enough to prove that the error value
of every thread decreases in every iteration. Error value
of every thread is the maximum of the error value of all
the vertices that are allocated to the thread. So the problem
statement boils down to prove that the error value of every
vertex decreases in each iteration.

According to base algorithm, PageRank and error of
vertex u in the ith iteration is given by Eq(1) and Eq(2)
respectively.

prui =
1− d

n
+ d ∗

∑
(v,u)∈E

prvi−1
outDeg(v)

(2)

errui =
∣∣prui − prui−1

∣∣ (3)

In the No-Sync algorithm, as the threads are allowed to
compute in different iterations simultaneously, at a particular

instant the PageRank value of a vertex can belong to any
iteration (1st to max iteration). As a base case, threads can
be considered to be present in two consecutive iterations
at a particular instant. Eq(1) can be modified to Eq(3)
considering that the threads are present in ith and (i-1)th

iterations. Let Si
u be a set of vertices where (v,u) ∈ E and

PageRank of v is from ith iteration.

prui−1:i =
1− d

n
+ d∗

∑
v∈Su

i

prvi−1
outDeg(v)

+ d∗
∑

v∈Su
i−1

prvi−2
outDeg(v)

(4)
Error in Eq(2) can also be modified accordingly.

errui−1:i =
∣∣prui−1:i − prui−1

∣∣ (5)

At any given instant prui−1 ≤ prui−1:i ≤ prui if prui−1 ≤
prui which means prui−1:i always lies between prui and
prui−1.∣∣prui−1:i − prui−1

∣∣ ≤ ∣∣prui − prui−1
∣∣⇒ errui−1:i ≤ errui (6)

errui from the base algorithm is always expected to
decrease in every iteration, so errui−1:i also decreases with
every iteration.

Lemma 2. The algorithm leads to a similar result as that
of Sequential.

Proof. PageRank of a vertex is computed from the PageR-
ank of all its incoming vertices. As the threads are allowed to
compute in different iterations simultaneously, the PageRank
of a vertex can be computed from the PageRank of incoming
vertices which may belong to any iteration. Eq(3) can be
modified for the threads to be present in 1st to Ith iteration.

p̂rui =
1− d

n
+ d ∗

I∑
l=1

∑
v∈Su

l

p̂rvl
outDeg(v)

(7)

The algorithm continues until the error of every node is
less than the threshold, so the PageRank values of all nodes
reach an almost constant value. With the given termination
condition the Eq(6) can be modified as Eq(7) where Su =
I⋃

l=1

Su
l = {v|(v, u) ∈ E}.

p̂ru =
1− d

n
+ d ∗

∑
v∈Su

p̂rv

outDeg(v)
(8)

The error obtained from the modified PageRank values is
less than the threshold based on the termination condition.
Hence, the PageRank values from the algorithm are also
similar to that of the Sequential output with an error which is
less than the threshold. Eq(7) is exactly same as Eq(1) where
|pru− p̂ru| ≤ threshold is satisfied only at the termination
condition. This Lemma is also proved experimentally and
the L1 norm of the PageRank values is less than 1/10th of
the threshold for all the experiments.



3.3.2. Wait-free. In this Wait-free algorithm, we address
thread delay/failure scenarios by ensuring the algorithm’s
correctness. Here the threads are not allowed to enter
into the next iteration until the PageRank computed for
all nodes in that particular iteration. Any thread which
finishes the computation of its allocation will help any
other random thread to complete its assignment before
proceeding into the next iteration. The threads continue to
help other threads in progress until PageRank of all nodes
gets computed.

struct ThCASOb {
int itr;
int currNode;
double thErr;

}
struct GlbCASOb {

int itr;
double err;
vector<bool> check;
bool intermediate;

};
struct PrCasOb {

int itr;
double rank;

};
In algorithm 5, all available threads executed the
ThreadPageRank () procedure in line 47. Each thread
computes the PageRank of nodes in its partition by calling
ComputePR() in line 51. After finishing its partition,
threads are allowed to help incomplete threads from lines
53 and 54. Updating global variables like iteration number,
error, and PageRank of Sink nodes is done from lines 56 to
59. Each thread has a global atomic variable (glbThdInfo),
which stores the info like iteration number, latest computed
node, thread error, and thread PageRank of sink nodes.
This thread variable is global and accessible by every other
thread. Thd1 helping Thd2 updates the information in the
Thd2 global variable. This update of GlbThdInfo is done
from lines 24 to 28 in ComputePR( ) procedure. UpdatePR(
) method from lines 1 to 12 is used to update the PageRank
value along with the iteration number using CAS operation.
Every variable is associated with an iteration number to
avoid any wrong updates by a slow thread present in
previous iterations, as some helper thread would already do
the latest update.

3.4. STICD

We extended our proposed approaches by considering
two optimizations from paper [8] - Identical Nodes and
Chain Nodes.

To show our implementation’s scalability and robust-
ness, we extended the No-Sync variant to support Identical
nodes and Chain nodes optimizations defined in the paper
and named them No-Sync-STICD-IN and No-Sync-STICD-
CN respectively. In paper [8], the authors have shown
the results on four different datasets based on the graph’s

Algorithm 5 Wait-Free
1: procedure UPDATEPR(u, nodePr, thdVar)
2: z ← pr(u)
3: if z.itr == thdV ar.itr then
4: casOb← newPrCasOb(thV ar.itr + +, nodePr)
5: CAS(pr(u), z, casOb)
6: end if
7: z ← prevPr(u)
8: if z.itr == thdV ar.itr then
9: casOb← newPrCasOb(thV ar.itr + +, nodePr)

10: CAS(prevPr[u], z, casOb)
11: end if
12: end procedure
13: procedure COMPUTEPR(thdId, hlpId, thdVar)
14: thInfo← glbThInfo[hlpId].load()
15: while u ∈ ThreadV ertices and glbV ar.itr == thdV ar.itr do
16: nodePr ← (1−d)

n
17: for all v ∈ V such that (v, u) ∈ E do

18: nodePr+ =
glbPrevPr[v]

outDeg(v)
∗ d

19: end for
20: Invoke updatePr(u,nodePr,thdVar)
21: z = glbThInfo[hlpId]
22: if z.itr == thdV ar.itr then
23: er ← max(z.er, |nodePr − prevPr|)
24: casOb← newThCASOb(z.itr, next(u, hepId), er)
25: CAS(glbThInfo[hlpId], z, casOb)
26: end if
27: end while
28: end procedure
29: procedure UPDATEGLBVAR((thId,hlpId,thdVar)
30: while true do
31: z ← glbV ar
32: if z.itr == thdV ar.itr then
33: casOb← copy(z)
34: casOb.check[helpId]← true
35: casOb.er ← max(casOb.er, glbThInfo[hlpId].er)
36: CAS(glbV ar, z, casOb)break
37: end if
38: end while
39: while true do
40: z ← glbThInfo[hlpId]
41: if z.itr == thdV ar.itr then
42: casOb← newThCASOb(z.itr + +, thdId, 0)
43: CAS(glbThInfo[hlpId], z, casOb)break
44: end if
45: end while
46: end procedure
47: procedure THREADPAGERANK(thdId)
48: while glbV ar.load().er > threshold do
49: Invoke ComputePR(thdId,thdId,thdVar)
50: for all thr ∈ threads and thr! = thdId and notCompletePR(thr)

do
51: Invoke ComputePR(thr,thdId,thdVar)
52: end for
53: Intialize error value to 0 for next iteration in glbVar using CAS
54: Invoke UpdateGlbVar(thdId,thdId,thdVar)
55: for all thr ∈ threads and thr! = thdId and notCompleteGlb-

Var(thr) do
56: Invoke UpdateGlbVar(thr,thdId,thdVar)
57: end for
58: Intialize itr in glbVar using CAS
59: thdV ar ← glbV ar.load()
60: Invoke Swap()
61: end while
62: end procedure

properties. We have evaluated our algorithms on some real-
time datasets [17], [18] to show performance improvement
compared with our proposed methods.



4. Experiments Evaluation

4.1. Platform

We conducted our simulations on a 56 core Intel(R)
Xeon(R) E5-2660 v4 processor architecture running at 2.06
GHz core frequency. Each core supports two logical threads
and two CPU socket(s) with 14 cores per socket. Every
core’s L1 - 32K, L2 - 256K cache memory is private to
that core, and L3 - 35840K cache memory is shared across
the cores . All the simulations were coded in C/C++ and
compiled using g++ 7.5.0 and using the POSIX Multi-
Threaded library.

4.2. Datasets

We use synthetic datasets and four categories of real-
world datasets in our simulations, as listed in Table 1. The
Datasets are chosen, ensuring the related studies [7], [8],
[19] in providing a fair comparison. We conduct initial
experiments on randomly generated synthetic graphs in the
range of 1 ∗ 106to7 ∗ 106 with n vertices and (n-1) edges.
Later on, Web-Graphs, Social-Networks, Road-Networks,
and Collaboration-Networks from standard datasets repos-
itory [17], and three synthetic RMAT graph datasets [20]
with a scale-factor of 21 ,and 22 the existing studies. All
the [19] graph datasets sizes range from 0.05GB to 2.5GB
and are in Adjacency List format, which is later converted
to CSR (Compressed Sparse Row) format. We tested all the
proposed algorithms on given datasets.

TABLE 1. REAL-WORLD AND SYNTHETIC GRAPH DATASETS

Datasets #vertices #Edges Size
Web Graphs [17]

web-Stanford 281903 2312497 30 MB

web-NotreDame 325729 1497134 20 MB

web-BerkStan 685230 7600595 20 MB

web-Google 875713 5105039 7 MB

Social Networks [18]
soc-Epinions1 75879 508837 5.7 MB

Slashdot0811 77360 905468 10.7 MB

Slashdot0902 82168 948464 11.3 MB

soc-LiveJournal1 4847571 68993773 1100 MB

Road Networks [18]
road-italy-osm 6686493 7013978 109.9 MB

great-britain-osm 7.7M 8.2M 28 MB

asia-osm 12M 12.7M 5.1 MB

germany-osm 11.5M 12.4M 98.5 MB

Collaborative Network [18]
co-AuthorsCiteseer 227.3K 814.1K 10.1 MB

ca-coauthors-dblp 540.5K 15.2M 200.6 MB

RMAT Graphs [20] [19]
RMAT 21 2097152 41943040 565.4 MB

RMAT 22 4194304 83886080 1.2GB

——————————————————————–

4.3. Results and Discussion

In this section we present the speedups achieved by
parallel variants of Pagerank algorithms. In this section, we
present the speed-up achieved by parallel variants of PageR-
ank algorithms. The ratio between Sequential execution time
and Parallel execution time is the metric for calculating the
algorithm’s speed-up. With a fixed number of threads(32) on
a different class of datasets, we execute the programs and
obtain the execution times. When incorporated with existing
graph processing methods, the proposed algorithms prove
prominence improvement at the hardware level.

Figure 1. Speed-Up on Real-World Datasets

The results of the speed-up of the Barrier and the
No-Sync implementations upon 32 threads are shown in
in Figure 1, Figure 2 and Figure 3. We observed that
No-Sync and No-Sync-STICD algorithms perform better
than other variants for almost all the datasets. For the
first three datasets (Stanford, BerkStan, and Epinions1),
Barriers-STICD-IN performs better than Barriers, and the
addition of our No-Sync algorithm to STICD-IN further
increases the performance. The performance improvements
proved are due to the piecewise parallel implementation
of non-blocking algorithms using atomic primitives. For
Livejournal1 and coauthors-dblp datasets, Barriers-STICD-
IN is incompetent than Barriers.

In Figure 2 and Figure 3, we show the speed-up obtained
between the parallel variants of Pagerank algorithms on a
few Standard Real-World and Synthetic Datasets respec-
tively. The datasets were selected in such a way as to
compare the performance of STICD and STICD-CN . No-
Sync and No-Sync-STICD-CN algorithms are performing
better than other variants for almost all the datasets. Similar
to Figure1, the performance trend between No-Sync and
No-Sync-STICD-CN is precisely the same as that of Bar-
riers and Barriers-STICD-CN . On average, No-Sync has a
speed-up of around 2.7 w.r.t base algorithm because of the
elimination of barrier constraint.

In Figure 4, we show the speed-ups obtained by parallel
variants by varying the threads on a fixed dataset(RMAT22).



Figure 2. Speed-Up on Real-world Graphs

Figure 3. Speed-Up on Synthetic Graphs

Figure 4. Speed-Up w.r.t RMAT 22 Dataset

Figure 5. Simulation results for the Sleeper Threads - Plot5

In this work, we are applying the static load balancing
technique in all parallel variants. Till 14 threads, we can
see the gradual increase in the speed-up as we increase the
threads. After a point, increasing the threads will not give a
better speed-up. We are achieving maximum parallelism at
14 threads.

Sleeping variants: To evaluate the impact of Wait-free
algorithm, we deterministically added sleep to the threads
in selected iterations. In the case of Barrier algorithm, each
thread has to wait until the completion of the sleeping
thread. In the case of No-sync, the work corresponds to
the sleeping thread will be resumed after thread awakes.
Our Wait-free (Barrier-helper) algorithm is robust enough
to handle the above two drawbacks. In the case of a Wait-
free algorithm, a thread will not wait for other thread and
helps other threads after completing the task assigned to it.
In Figure 5, we can see the execution times of Barriers and
No-sync algorithms are increasing with an increase in sleep
time, whereas Wait-free execution time is consistent.

Except for Wait-free, other parallel variants do not han-
dle thread failures. To evaluate its impact, we deterministi-
cally added failures to the threads after the end of the first
iteration. In Figure 6, we can see the increase in the program
execution time as we increase the number of thread failures.

5. Conclusion and Future Work

This paper proposed a No Synchronization and a Wait-
free synchronization mechanism to implement a parallel
PageRank algorithm on Shared Memory architectures. The
proposed methods replace the Lock-Based and Barrier syn-
chronization mechanism found in the state-of-the-art ap-
proaches. Our simulation results on various graphs found
that our approach will achieve better performance when
combined with the existing methods. The results shown in
this paper motivates that the non-blocking variants, when
applied for iterative algorithms, can lead to performance
improvements. As part of future work, we plan to integrate



Figure 6. Simulation results for the Failure Threads - Plot6

our proposed approach with the existing graph frameworks
(Ligra and Galois). We also plan to apply our approaches
for applications where iterative algorithms are the direction
for future work.
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