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Abstract. Several popular blockchains such as Ethereum execute complex trans-
actions through user-defined scripts. A block of the chain typically consists of
multiple smart contract transactions (SCTs). To append a block into the blockchain,
a miner executes these SCTs. On receiving this block, other nodes act as validators,
who re-execute these SCTs as part of the consensus protocol to validate the block.
In Ethereum and other blockchains that support cryptocurrencies, a miner gets an
incentive every time such a valid block is successfully added to the blockchain.
When executing SCTs sequentially, miners and validators fail to harness the power
of multiprocessing offered by the prevalence of multi-core processors, thus degrad-
ing throughput. By leveraging multiple threads to execute SCTs, we can achieve
better efficiency and higher throughput. Recently, Read-Write Software Transac-
tional Memory Systems (RWSTMs) were used for concurrent execution of SCTs. It
is known that Object-based STMs (OSTMs), using higher-level objects (such as
hash-tables or lists), achieve better throughput as compared to RWSTMs. Even
greater concurrency can be obtained using Multi-Version OSTMs (MVOSTMs),
which maintain multiple versions for each shared data item as opposed to Single-
Version OSTMs (SVOSTMs).
This paper proposes an efficient framework to execute SCTs concurrently based on
object semantics, using optimistic SVOSTMs and MVOSTMs. In our framework, a
multi-threaded miner constructs a Block Graph (BG), capturing the object-conflicts
relations between SCTs, and stores it in the block. Later, validators re-execute the
same SCTs concurrently and deterministically relying on this BG.
A malicious miner can modify the BG to harm the blockchain, e.g., to cause
double spending. To identify malicious miners, we propose Smart Multi-threaded
Validator (SMV). Experimental analysis shows that proposed multi-threaded miner
and validator achieve significant performance gains over state-of-the-art SCT
execution framework.

Keywords: Blockchain · Smart Contract · Concurrency · Object-based Software
Transactional Memory · Multi-Version · Opacity · Conflict-Opacity.

1 Introduction

Blockchains like Bitcoin [15] and Ethereum [2] have become very popular. Due to their
usefulness, they are now considered for automating and securely storing user records
? Author sequence follows the lexical order of last names.
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such as land sale documents, vehicle, and insurance records. Clients, external users of
the system, send requests to nodes to execute on the blockchain, as smart contracts
transactions (SCTs). An SCT is similar to the methods of a class in an object-oriented
langugage, which encode business logic relating to the contract [4,8]. Listing 1 shows
a smart contract function, transfer() of coin contract from Solidity [4]. It transfers the
amount from sender to receiver if the sender has a sufficient balance.

Listing 1: Transfer function
1 transfer(s_id, r_id, amt){
2 if(amt > bal[s_id])
3 throw;
4 bal[s_id] -= amt;
5 bal[r_id] += amt;
6 }

Blocks are added to the blockchain by block-
creator nodes also known as miners. A miner m packs
several SCTs received from (possibly different) clients,
to form a block B. Then, m executes the SCTs of
the block sequentially to obtain the final state of the
blockchain, which it stores in the block. To maintain
the chain structure, m adds the hash of the previous block to the new block B and
proposes B to be added to the blockchain.

On receiving the block B, other nodes act as validators that execute a global con-
sensus protocol to decide the order of B in the blockchain. As part of the consensus
protocol, validators re-execute all the SCTs of B sequentially to obtain the final state of
the blockchain, assuming that B will be added to the blockchain. If the computed final
state matches the one stored in B by the miner m then B is accepted by the validators. In
this case, the miner m gets an incentive for adding B to the blockchain (in Ethereum and
other cryptocurrency-based blockchains). Otherwise, B is rejected, and m does not get
any reward. This execution is known as order-execute model [5] adapted by Ethereum
and several other blockchains such as Bitcoin [15], EOS [1].
Previous Work: Dickerson et al. [8] observed that both miner and validators can execute
SCTs concurrently to exploit multi-core processors. They observed another interesting
advantage of concurrent execution of SCTs in Ethereum, where only the miner receives
an incentive for adding a valid block while all the validators execute the SCTs in the
block. Given a choice, it is natural for a validator to pick a block that supports concurrent
execution and hence obtain higher throughput.

Concurrent execution of SCTs poses a challenge. Consider a miner m that executes
the SCTs in a block concurrently. Later, a validator v may re-execute same SCTs
concurrently, in an order that may yield a different final state than given by m in B. In
this case, v incorrectly rejects the valid block B proposed by m. We denote this as False
Block Rejection (FBR), noting that FBR may negate the benefits of concurrent execution.

Dickerson et al. [8] proposed a multi-threaded miner algorithm that is based on a
pessimistic Software Transactional Memory (STM) and uses locks for synchronization
between threads executing SCTs. STM [14,18] is a convenient concurrent programming
interface for a programmer to access the shared memory using multiple threads. To avoid
FBR, the miner identifies the dependencies between SCTs in the block while executing
them by multiple threads. Two SCTs are dependent if they are conflicting, i.e., both of
them access the same data item and at least one of them is a write. These dependencies
among SCTs are recorded in the block as a Block Graph (BG). Two SCTs that have
a path in the BG are dependent on each other and cannot be executed concurrently.
Later, a validator v relies on the BG to identify dependencies between the SCTs, and
concurrently execute SCTs only if there is no path between them in the BG. In the course
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of the execution by v, the size of BG dynmically decreases and the dependencies change.
Dickerson et al. [8] use a fork-join approach to execute the SCTs, where a master thread
allocates independent SCTs to different slave threads to execute.

Anjana et al. [6] used an optimistic Read-Write STM (RWSTM), which identifies the
conflicts between SCTs using timestamps. Those are used by miner threads to build the
BG. A validator processes a block using the BG in a completely decentralized manner
using multiple threads, unlike the centralized fork-join approach of [8]. Each validator
thread identifies an independent SCT and executes it concurrently with other threads.
The decentralized approach yields significant performances gain over fork-join.

Saraph and Herlihy [17] used a speculative bin approach to execute SCTs of
Ethereum in parallel. A miner uses lock to store SCTs into two bins, concurrent bin
stores non-conflicting SCTs while the sequential bin stores the remaining SCTs. If an
SCT Ti requests a lock held by an another SCT Tj then Ti is rolled back and placed
in the sequential bin. Otherwise, Ti is placed in the concurrent bin. To save the cost of
rollback and retries of SCTs, they have used static conflict prediction which identifies
conflicting SCTs before executing them speculatively. The multi-threaded validator in
this approach executes all the SCTs of the concurrent bin concurrently and then executes
the SCTs of the sequential bin sequentially. We call this the Static Bin approach.

Zhang and Zhang [20] proposed a pessimistic approach to execute SCTs concurrently
in which the miner can use any concurrency control protocol while the validator uses
multi-version timestamp order.
Exploiting Object-Based Semantics: Prior STM-based solutions of [6,20], rely on
read-write conflicts (rwconflicts) for synchronization. In contrast, object-based STMs
(OSTMs) track higher-level, more advanced conflicts between operations like insert,
delete, lookup on a hash-table, enqueue/dequeue on queues, push/pop on the stack
[11,12,16]. It has been shown that OSTMs provide greater concurrency than RWSTMs
(see Fig. 1 in [7]). This is particularly important since Solidity [4], the langugage used for
writing SCTs for Ethereum, extensively uses hash-tables. This indicates that a hash-table
based OSTM is a natural candidate for concurrent execution of these SCTs.1

The pessimistic lock-based solution of [8] uses abstract locks on hash-table keys,
exploiting the object semantics. In this paper, we want to exploit the object semantics of
hash-tables using optimistic STMs to improve the performance obtained.

To capture the dependencies between the SCTs in a block, miner threads construct the
BG concurrently and append it to the block. The dependencies between the transactions
are given by the object-conflicts (oconflicts) (as opposed to rwconflicts) which ensure that
the execution is correct, i.e., satisfies conflict-opacity [16]. It has been shown [11,12,16]
that there are fewer oconflicts than rwconflicts. Since there are fewer oconflicts, the BG
has fewer edges which in turn, allows validators to execute more SCTs concurrently.
This also reduces the size of the BG leading to a smaller communication cost.

Multi-version object-based STMs (MVOSTMs) [13] maintain multiple versions for
each shared data item (object) and provide greater concurrency relative to traditional
single-version OSTMs (SVOSTMs). Fig. 1 illustrates the benefits of concurrent execution
of SCTs using MVOSTM over SVOSTM. A BG based on MVOSTM will have fewer

1 For clarity, we denote smart contract transactions as SCTs and an STM transaction as a
transaction in the paper.
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Fig. 1: (a) Transaction T1 gets the balance of two accounts A1 and A2 (both initially $10), while
transaction T2 transfers $10 from A1 to A2 and T1 aborts. Since, its conflict graph has a cycle
(see (c)); (b) When T1 and T2 are executed by MVOSTM, T1 can read the old versions of A1 and
A2. This can be serialized, as shown in (d).

edges than an SVOSTM-based BG, and will further reduce the size of the BG. These
advantages motivated us to use MVOSTMs for concurrent execution of SCTs by miners.

Concurrent executions of SCTs may cause inconsistent behaviors such as infinite
loops, divide by zero, crash failures. Some of these behaviors, such as crash failures and
infinite loops can be mitigated when SCTs are executed in a controlled environment, for
example, the Ethereum Virtual Machine (EVM) [2]. However, not all environments can
prevent all anomalies. The inconsistent executions can be prevented by ensuring that
the executions produced by the STM system satisfy opacity [9] or one of its variants
such as co-opacity [16]. Our MVOSTM satisfies opacity, while our SVOSTM satisfies
co-opacity.
Handling a Malicious Miner: A drawback of the approaches mentioned above is that
a malicious miner can make the final state of the blockchain be inconsistent. In the BG
approach, the miner can send an incorrect BG, missing some edges. In the bin-based
approach [17], the miner can place the conflicting transactions in the concurrent bin. This
can result in inconsistent states in the blockchain due to double spending, e.g., when two
concurrent transactions incorrectly transfer the same amount of money simultaneously
from a source account to two different destination accounts. If a malicious miner does
not add an edge between these two transactions in the BG [6] or puts them in the
concurrent bin [17], then both SCTs can execute concurrently by validators. If a majority
of validators accept the block containing these two transactions, then the state of the
blockchain becomes inconsistent. We denote this problem as edge missing BG (EMB) for
the BG approach [6] and faulty bin (FBin) for the bin-based approach [17]. In Section 4,
we show the effect of malicious miners through experiments on the blockchain system.

To handle EMB and FBin errors, the validator must reject a block when edges
are missing in the BG or when conflicting SCTs are in the concurrent bin, since their
execution can lead to an inconsistent state. To detect this situation, validator threads
monitor transactions performing conflicting access to the same data items while executing
concurrently. In Section 3, we propose a Smart Multi-threaded Validator (SMV) which
uses counters to detect this condition and rejects the corresponding blocks.

Dickerson et al. [8] suggest a lock-based solution to handle EMB errors. The miner
generates and stores the lock profile required to execute the SCTs of a block along
with the BG. The validator then records a trace of the locks each of its thread would
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have acquired, had it been executing speculatively independent of the BG. The validator
would then compare the lock profiles it generated with the one provided by the miner
present in the block. If the profiles are different then the block is rejected. This check
is in addition to the check of the final state generated and the state in the block. This
solution is effective in handling EMB errors caused by malicious miners. However, it is
lock-based and cannot be used for preventing EMB issue in optimistic approaches such
as [6]. The advantage of our SMV solution is that it works well with both optimistic and
lock-based approaches.
Our Contributions: This paper develops an efficient framework to execute SCTs con-
currently by a miner using an optimistic hash-table (both single and multi-version)
OSTM. We use two methodologies to re-execute the SCTs concurrently by validators:
the fork-join approach [8] and a decentralized approach [6]. To handle EMB and FBin
errors, we propose a decentralized smart multi-threaded validator. To summarize:

– We introduce an efficient object-based framework for the concurrent execution of
SCTs by miners (Section 3.2). We propose a way to execute SCTs efficiently using
optimistic SVOSTM by the miner while ensuring co-opacity [16], a way to execute
SCTs by the miner using optimistic MVOSTM [13] while satisfying opacity [9]

– We propose the concurrent execution of SCTs by validators using the BG provided
by the miner to avoid FBR errors (Section 3.3), using either the fork-join or the
decentralized approach.

– We propose a Smart Multi-threaded Validator to handle EMB and FBin errors caused
by malicious miners (Section 3.4).

– Extensive simulations (Section 4) show that concurrent execution of SCTs by
SVOSTM and MVOSTM miner provide an average speedup of 3.41× and 3.91×
over serial miner, respectively. SVOSTM and MVOSTM based decentralized valida-
tor provide on average of 46.35× and 48.45× over serial validator, respectively.

2 System Model

As in [10,14], in each miner/validator there are n threads, p1, . . . , pn in a system that
access shared data items (or objects/keys) in a completely asynchronous fashion. We
assume that none of the threads/processes will crash or fail unexpectedly.
Events: A thread invokes the transactions and the transaction calls object-level methods
that internally invoke read/write atomic events on the shared data items to communi-
cate with other threads. Method invocations (or inv) and responses (or rsp) are also
considered as events.
History: It is a sequence of invocations and responses of different transactional methods.
We consider sequential history in which invocation on each transactional method follows
the immediate matching response. We consider well-formed histories in which a new
transaction does not begin until the invocation of previous transaction has not been
committed or aborted.
Object-based Software Transactional Memory (OSTM): OSTM exports higher-level
methods: (1) STM begin(): begins a transaction with unique id. (2) STM lookup(k)
(or l(k)): does a lookup on data item k from shared memory. (3) STM insert(k, v) (or
i(k, v)): inserts the value of data item k as v in its local log. (4) STM delete(k) (or
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d(k)): deletes the data item k. (5) STM tryC(): validates the transaction. After successful
validation, the actual effects of STM insert() and STM delete() will be visible in the
shared memory and transaction returns commit (C). Otherwise, it will return abort (A).
We represent STM lookup(), and STM delete() as return-value (rv) methods because
both methods return the value from hash-table. We represent STM insert(), and STM -
delete() as update (upd) methods as on successful STM tryC() both methods update the
shared memory. Methods rv() and STM tryC() may return A. For a transaction Ti, we
denote all the objects accessed by its rvi() and updi() methods as rvSeti and updSeti,
respectively.

Listing 2: Transfer function using STM
7 transfer(s_id, r_id, amt){
8 t_id = STM_begin();
9 s_bal = STM_lookup(s_id);

10 if(amt => s_bal) {
11 abort(t_id);
12 throw;
13 }
14 STM_delete(s_id, amt);
15 STM_insert(r_id, amt);
16 if(STM_tryC(t_id)!= SUCCESS)
17 goto Line 8;//Trans aborted
18 }

Listing 2 shows the concurrent execution of
transfer() (from Listing 1 in the Section 1) using
STM. On the invocation of transfer(), STM as-
signs the unique id using STM begin() to each
SCT (Line 8). Then, it reads the balance of the
sender using STM lookup() (Line 9) and vali-
dates it (Line 10). If the sender does not have
a sufficient balance, then it aborts the SCT and
throws an exception. Otherwise, it withdraws the
amount from the sender account using STM -
delete() (Line 14) and deposits the amount in the receiver account using STM insert()
(Line 15). With an optimistic STM, the effect of the STM delete() and STM lookup() will
take place after successful validation of the SCT in STM tryC() (Line 16). If validation
is successful, then the SCT commits, and the amount is transferred from the sender to
the receiver account. Otherwise, the SCT is aborted and re-execute from Line 8.
Valid and Legal History: If the successful rvj(k, v) (i.e., v 6= A) method of a trans-
action Tj returns the value from any of previously committed transaction Ti that has
performed upd() on key k with value v then such rvj(k, v) method is valid. If all the
rv() methods of history H are valid then H is valid history [16].

If the successful rvj(k, v) (i.e., v 6= A) method of a transaction Tj returns the value
from previous closest committed transaction Ti that k ∈ updSeti (Ti can also be T0) and
updates the k with value v then such rvj(k, v) method is legal. If all the rv() methods of
history H are legal then H is legal history [16]. A legal history is also valid.

Two histories H and H′ are equivalent if they have the same set of events. H and H′

are multi-version view equivalent [19, Chap. 5] if they are valid and equivalent. H and H′

are view equivalent [19, Chap. 3] if they are legal and equivalent. Additional definitions
appear in [7].

3 Proposed Mechanism

This section describes the construction, data structures, and methods of concurrent BG,
concurrent execution of SCTs by multi-threaded miner using optimistic object-based
STMs, multi-threaded validator, and detection of a malicious miner.

3.1 The Block Graph

The multi-threaded miner executes the SCTs concurrently and stores their dependencies
in a BG. Each committed transaction corresponding to an SCT is a vertex in the BG
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while edges capture the dependencies, based on the STM protocol. Multi-threaded miner
uses SVOSTM or MVOSTM to execute the SCTs concurrently, using timestamps. The
challenge here is to construct the BG concurrently without missing any dependencies.
We modified SVOSTM and MVOSTM to capture oconflicts and multi-version oconflicts
(mvoconflicts) in the BG.

SVOSTM-based miner maintains three types of edges based on oconflicts be-
tween the transactions. An edge Ti → Tj between two transaction is defined when:
(1) rvi(k, v) - STM tryCj() edge : If rvi(k, v) on key k by Ti completed before
STM tryCj() on k by a committed transaction Tj in history H such that Ti returns
a value v 6= A. Formally, rvi(k, v) <H STM tryCj(), k ∈ updSet(Tj) and v 6= A;
(2) STM tryCi() - rvj(k, v) edge : If STM tryCi() on k by a committed trans-
action Ti completed before rvj(k, v) on key k by Tj in history H such that Tj re-
turns a value v 6= A. Formally, STM tryCi() <H rvj(k, v), k ∈ updSet(Ti) and
v 6= A; (3) STM tryCi() - STM tryCj() edge : If STM tryCi() on k by a commit-
ted transaction Ti completed before STM tryCj() on k by a committed transaction
Tj in history H . Formally, STM tryCi() <H STM tryCj() and (updSet(Ti) ∩
updSet(Tj) 6= ∅).

MVOSTM-based miner maintains two types of edges based on mvoconflicts [13].
(1) return value from (rvf) edge: If STM tryCi() on k by a committed transaction Ti

completed before rvj(k, v) on key k by Tj in history H such that Tj returns a value v 6=
A then there exist an rvf edge from Ti to Tj , i.e., Ti → Tj ; (2) multi-version (mv) edge:
consider a triplet, STM tryCi(), rvm(k, v), STM tryCj() in which (updSet(Ti) ∩
updSet(Tj) ∩ rvSet(Tm) 6= ∅), (two committed transactions Ti and Tj update the key
k with value v and u respectively) and (u, v 6= A); then there are two types of mv edge:
(a) if STM tryCi() <H STM tryCj() then there exist a mv edge from Tm to Tj . (b)
if STM tryCj() <H STM tryCi() then there exist a mv edge from Tj to Ti.
Data Structure for the Block Graph: To maintain a block graph BG(V,E), the set of
vertices (or SCTs) V is stored as a vertex list and the set of edges (conflicts between
SCTs) E is stored as an adjacency list. Two lock-free methods build the BG (see details
in [7]): addVertex() adds a vertex and addEdge() adds an edge in BG. To execute the
SCTs, validator threads use three methods: globalSearch() identifies an independent
vertex with indegree 0 to execute it concurrently, remExNode() decrements the indegree
of conflicting vertices and keeps it into thread local log if its indegree becomes 0, and
localSearch() identifies the vertex with indegree 0 in thread local log to execute it
concurrently.

3.2 Multi-threaded Miner

A miner m receives requests to execute SCTs from different clients. It forms a block with
several SCTs (the precise number of SCTs depend on the blockchain), and executes these
SCTs while executing the non-conflicting SCTs concurrently to obtain the final state of
the blockchain. Identifying the non-conflicting SCTs statically is not straightforward
because smart contracts are written in a turing-complete language [8] (e.g., Solidity [4]
for Ethereum). We use optimistic STM to execute the SCTs concurrently as in [6] but
adapted to object-based STMs on hash-tables to identify conflicts.
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Algorithm 1 Multi-threaded Miner(sctList[], STM): n threads concurrently execute the
SCTs from sctList with STMs.
19: procedure Multi-threaded Miner (sctList[], STM)
20: curInd = gIndex.get&Inc(); // Atomically read the index and increment it.
21: while (curInd < sctList.length) do // Execute until all SCTs have not been executed
22: curTrn = sctList[curInd]; // Get the current SCT to execute
23: Ti = STM begin(); // Begins a new transaction. Here i is unique id
24: for all (curStep ∈ curTrn.scFun) do // scFun is a list of steps
25: switch(curStep)
26: case lookup(k):
27: v← STM lookup(k); // Lookup data item k from a shared memory
28: if(v == A) then goto Line 23;end if break;
29: case insert(k, v): // Insert data item k into Ti local memory with value v
30: STM insert(k, v); break;
31: case delete(k):
32: v← STM delete(k); // Actual deletion of data item k happens in STM tryC()
33: if(v == A) then goto Line 23; end if break;
34: default: Execute the step normally // Any step apart from lookup, insert, delete
35: endswitch
36: end for
37: v← STM tryC(); // Try to commit the transaction Ti

38: if(v == A) then goto Line 23; end if
39: addVertex(i); // Create vertex node for Ti with scFun
40: BG(i, STMs); // Add the conflicts of Ti to block graph
41: curInd = gIndex.get&Inc(); // Atomically read the index and increment it.
42: end while
43: build-block(); // Here the miner builds the block.
44: end procedure

Algorithm 1 shows how SCTs are executed by an n-threaded miner. The input is
an array of SCTs, sctList and a object-based STM, (SVOSTM or MVOSTM), both
supporting the BG methods described above. The multi-threaded miner uses a global
index into the sctList gIndex which is accessed by all the threads. A thread Thx first
reads the current value of gIndex into a local value curInd and increments gIndex
atomically (Line 20).

Having obtained the current index in curInd, Thx gets the corresponding SCT,
curTrn from sctList[] (Line 22), and begins a STM transaction corresponding to
curTrn (Line 23). For every hash-table insert, delete and lookup encountered while
executing the scFun of curTrn, Thx invokes the corresponding STM methods: STM -
lookup(), STM insert(), STM delete(), either on an SVOSTM or on an MVOSTM. Oth-
erwise, it simply executes the step. If any of these steps fail, Thx begins a new STM
transaction (Line 23) and re-executes these steps.

Upon successful completion of transaction Ti, Thx creates a vertex node for Ti in
the block graph (Line 39). Then, Thx obtains the transactions (SCTs) with which Ti is
conflicting from the OSTM, and adds the corresponding edges to the BG (Line 40). Thx

then gets the index of the next SCT to execute (Line 41).
An important step here is how the underlying OSTMs (either SVOSTM or MVOSTM)

maintain the conflicts among the transactions which is used by Thx (see [7]). Both
SVOSTM and the MVOSTM use timestamps to identify the conflicts.

Once all the SCTs of sctList have been executed successfully and the BG is con-
structed concurrently, it is stored in the proposed block. The miner then stores the final
state of the blockchain (which is the state of all shared data items), resulting from the
execution of SCTs of sctList in the block. The miner then computes the operations
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related to the blockchain. For Ethereum, this would constitute the hash of the previous
block. Then the multi-threaded miner proposes a block which consists of all the SCTs,
BG, final state of all the shared data items and hash of the previous block (Line 43). The
block is then broadcast to all the other nodes in the blockchain.

We prove the next properties (see [7]):
Theorem 1. The BG captures all the dependencies between the conflicting nodes.

Theorem 2. A history Hm generated by the multi-threaded miner with SVOSTM satisfies
co-opacity.

Theorem 3. A history Hm generated by multi-threaded miner with MVOSTM satisfies
opacity.

3.3 Multi-threaded Validator

The validator re-executes the SCTs deterministically relying on the BG provided by
the miner in the block. BG consists of dependency among the conflicting SCTs and
restrict validator threads to execute them serially to avoid the FBR errors while non-
conflicting SCTs execute concurrently to obtain greater throughput. The validator uses
globalSearch(), localSearch(), and remExNode() methods of the BG library as described
in Section 3.1.

After successful execution of the SCTs, validator threads compute the final state of
the blockchain which is the state of all shared data items. If it matches the final state
provided by the miner then the validator accepts the block. If a majority of the validators
accept the block, then it is added to the blockchain. Detailed description and proofs of
the next theorems appear in [7].

Theorem 4. A history Hm generated by the multi-threaded miner with SVOSTM and a
history Hv generated by a multi-threaded validator are view equivalent.

Theorem 5. A history Hm generated by the multi-threaded miner with MVOSTM and a
history Hv generated by a multi-threaded validator are multi-version view equivalent.

3.4 Detection of Malicious Miners by Smart Multi-threaded Validator (SMV)

We propose a technique to handle edge missing BG (EMB) and Faulty Bin (FBin) caused
by the malicious miner as explained in Section 1. A malicious miner mm can remove
some edges from the BG and set the final state in the block accordingly. A multi-threaded
validator executes the SCTs concurrently relying on the BG provided by the mm and
results the same final state. Hence, incorrectly accepts the block. Similarly, if a majority
of the validators accept the block then the state of the blockchain becomes inconsistent.
For example, due to double spending.

A similar inconsistency can be caused by a mm in bin-based approach: mm can
maliciously add conflicting SCTs to the concurrent bin resulting in FBin error. This may
cause a multi-threaded validator v to access shared data items concurrently leading to
synchronization errors. To prevent this, an SMV checks to see if two concurrent threads
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end up accessing the same shared data item concurrently. If this situation is detected,
then the miner is malicious.

To identify such situations, an SMV uses counters, inspired by the basic timestamp
ordering (BTO) protocol in databases [19, Chap. 4]. It tracks each global data item that
can be accessed across multiple transactions by different threads. Specifically, the SMV
maintains two global counters for each key of hash-table (shared data item) k (a) k.gUC
- global update counter (b) k.gLC - global lookup counter. These, respectively, track the
number of updates and lookups that are concurrently performed by different threads on
k. Both counters are initially 0.

When an SMV thread Thx is executing an SCT Ti it maintains two local variables
corresponding to each global data item k which is accessible only by Thx (c) k.lUCi -
local update counter (d) k.lLCi - local lookup counter. These respectively keep track
of number of updates and lookups performed by Thx on k while executing Ti. These
counters are initialized to 0 before the start of Ti.

Having described the counters, we will explain the SMV Algorithm 2 at a high level.
Suppose the next step to be performed by Thx is:
1. lookup(k): Thread Thx will check for equality of the global and local update

counters, i.e., (k.gUC == k.lUCi) (Line 49). If they are not same then SMV
will report the miner as malicious (Line 53). Otherwise, (i) Thx will atomically
increment k.gLC (Line 50). (ii) Thx will increment k.lLCi (Line 51). (iii) Perform
the lookup on the key k from shared memory (Line 52).

2. update(k, val): Here, Thx wants to update (insert/delete) k with value val. So,
Thx will check for the equality of both global, local update and lookup counters,
i.e., (k.gUC == k.lUCi) and (k.gLC == k.lLCi) (Line 56 or Line 63). If they
are not same then SMV will report the miner as malicious (Line 60 or Line 67).
Otherwise, (i) Thx will atomically increment k.gUC (Line 57 or Line 64). (ii) Thx

will increment k.lUCi (Line 58 or Line 65). (iii) Update key k with value val in the
shared memory (Line 59 or Line 66).

Once Ti terminates, Thx will atomically decrements k.gUC, k.gLC by the value of
k.lUCi, k.lLCi, respectively (Line 73). Then Thx will reset k.lUCi, k.lLCi to 0.

The reason for performing these steps and the correctness of the algorithm is as
follows: if Thx is performing a lookup on k then no other thread should be performing
an update on k. Here, k.gUC represents the number of updates to k currently executed
by all the threads while k.lUCi represents the number of updates to k on behalf of Ti by
Thx. Thus the value of gUC should be same as lUC. Otherwise, some other thread is
also concurrently performing the updates to k. Similarly, if Thx is performing an update
on k, then no other thread should be performing an update or lookup on k. This can be
verified by checking if lLC, lUC are respectively same as gLC, gUC.

Theorem 6. Smart Multi-threaded Validator rejects malicious blocks with BG that allow
concurrent execution of dependent SCTs.

The same SMV technique can be applied to identify the faulty bin error as explained in
Section 1. See proof of Theorem 6 in [7].
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Algorithm 2 SMV(scFun): Execute scFun with atomic global lookup/update counter.
45: while (scFun.steps.hasNext()) do //scFun is a list of steps
46: curStep = scFun.steps.next(); //Get the next step to execute
47: switch (curStep) do
48: case lookup(k):
49: if (k.gUC == k.lUCi) then //Check for update counter (uc) value
50: Atomically increment the global lookup counter, k.gLC;
51: Increment k.lLCi by 1. //Maintain k.lLCi in transaction local log
52: Lookup k from a shared memory;
53: else return 〈Miner is malicious〉;
54: end if
55: case insert(k, v):
56: if ((k.gLC == k.lLCi) && (k.gUC == k.lUCi)) then //Check lookup/update counter value
57: Atomically increment the global update counter, k.gUC;
58: Increment k.lUCi by 1. //Maintain k.lUCi in transaction local log
59: Insert k in shared memory with value v;
60: else return 〈Miner is malicious〉;
61: end if
62: case delete(k):
63: if ((k.gLC == k.lLCi) && (k.gUC == k.lUCi)) then //Check lookup/update counter value
64: Atomically increment the global update counter, k.gUC;
65: Increment k.lUCi by 1. //Maintain k.lUCi in transaction local log
66: Delete k in shared memory.
67: else return 〈Miner is malicious〉;
68: end if
69: case default:
70: curStep is not lookup, insert and delete;
71: execute curStep;
72: end while
73: Atomically decrement the k.gLC and k.gUC corresponding to each shared data-item key k.

4 Experimental Evaluation

This section demonstrates the performance gains by proposed multi-threaded miner and
validator against state-of-the-art miners and validators. To evaluate our approach, we
considered Ethereum smart contracts. The virtual environment of Ethereum, EVM, does
not support multi-threading [2,8]. So, we converted the smart contracts of Ethereum as
described in Solidity documentation [4] into C++ multi-threaded contracts similar to [6].
Then we integrated them into object-based STM framework (SVOSTM and MVOSTM)
for concurrent execution of SCTs by the miner.

We chose a diverse set of smart contracts described in Solidity [4] as benchmarks to
analyze the performance of our proposed approach as was done in [6,8]. The selected
benchmark contracts are (1) Coin: a financial contract, (2) Ballot: an electronic voting
contract, (3) Simple Auction: an auction contract, and (4) a Mix contract: combination of
three contracts mentioned above in equal proportion in which block consists of multiple
SCTs belonging to different smart contracts.

We compared the proposed SVOSTM and MVOSTM miner with state-of-the-art
multi-threaded: BTO [6], multi-version timestamp order (MVTO) [6], Speculative Bin
(or SpecBin) [17], Static Bin (or StaticBin) [17], and Serial miner.2 We could not
compare our work with Dickerson et al. [8] as their source code is not available in public
domain. We converted the code of StaticBin and SpecBin [17] from Java to C++ for
comparing with our algorithms.

2 Code is available in: https://github.com/PDCRL/ObjSC
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Fig. 2: Multi-threaded and SMVs Speedup over Serial Miner and Validator for Mix
Contract on W1 and W2

Concurrent execution of SCTs by the validator does not use any STM protocol;
however it uses the BG provided by the multi-threaded miner, which does use STM.
To identify malicious miners and prevent any malicious block from being added to
the blockchain, we proposed Smart Multi-threaded Validator (SMV) for SVOSTM,
MVOSTM as SVOSTM SMV, MVOSTM SMV. Additionally, we proposed SMV for
state-of-the-art validators as BTO SMV, MVTO SMV, SpecBin SMV, and StaticBin
SMV and analysed the performance.
Experimental Setup: The experimental system consists of two sockets, each comprised
of 14 cores 2.60 GHz Intel (R) Xeon (R) CPU E5-2690, and each core supports 2
hardware threads. Thus the system supports a total of 56 hardware threads. The machine
runs Ubuntu 16.04.2 LTS operating system and has 32GB RAM.

To analyze the performance, we evaluated the speedup achieved by each contract
on two workloads. In the first workload (W1), the number of SCTs varied from 50 to
300 while the number of threads fixed is at 50. The maximum number of SCTs in a
block of Ethereum is approximately 250 [3,8], but is growing over time. In the second
workload (W2), the number of threads varied from 10 to 60, while the number of SCTs
is fixed at 100. The average number of SCTs in a block of Ethereum is around 100
[3]. The hash-table size and shared data items are fixed to 30 and 500 respectively for
both workloads. For accuracy, results are averaged over 26 runs in which the first run is
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discarded and considered as a warm-up run. The results of serial execution is treated as
the baseline for evaluating the speedup. This section describes the detailed analysis for
the Mix contract and analysis of Coin, Ballot and Simple Auction benchmark contracts
are in [7].
Experimental Results: Fig. 2 (a) and Fig. 2 (b) show the speedup of MVOSTM,
SVOSTM, MVTO, BTO, SpecBin, and StaticBin miner over serial miner for Mix
contract on workloads W1 and W2, respectively.3 The average speedup achieved by
MVOSTM, SVOSTM, MVTO, BTO, SpecBin, and StaticBin miner over serial miner is
3.91×, 3.41×, 1.98×, 1.5×, 3.02×, and 1.12×, respectively.

As shown in Fig. 2 (a), increasing the number of SCTs leads to high contention
(because shared data items are fixed to 500). So the speedup of multi-threaded miner
reduces. MVOSTM and SVOSTM miners outperform SpecBin miner because MVOSTM
and SVOSTM miners use optimistic object-based STMs to execute SCTs concurrently
and construct the BG whereas SpecBin uses locks to execute SCTs concurrently and
constructs two bins using the pessimistic approach. SpecBin miner does not release
the locks until the construction of the concurrent bin, which gives less concurrency.
However, for the smaller numbers of SCTs in a block, SpecBin is slightly better than

3 In the figures, legend items in bold.
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MVOSTM and SVOSTM miners, which can be observed in the Fig. 2 (a) at 50 SCTs.
MVOSTM and SVOSTM miners outperform MVTO and BTO miners because both of
them are consider rwconflicts. It can also be observed that MVOSTM miner outperforms
all other STM miners as it has fewer conflicts, which gets reflected (see Fig. 4) as the
least number of dependencies in the BG as compared to other STM miners. For the
multi-version (MVOSTM and MVTO) miners, we did not limit the number of versions
because the number of SCTs in a block is finite. The speedup by StaticBin miner is
worse than serial miner for more than 100 SCTs because it takes time for static conflict
prediction before executing SCTs.

Fig. 2 (b) shows that speedup achieved by multi-threaded miner increases while
increasing the number of threads, limited by the number of hardware threads available on
the underlying experimental setup. Since, our system has 56 logical threads, the speedup
decreases beyond 56 threads. MVOSTM miner outperforms all other miners with similar
reasoning, as explained for Fig. 2 (a). Another observation is that when the number of
threads is less, the serial miner dominates BTO and MVTO miner due to the overhead of
the STM system.

The average number of dependencies in BG by all the STM miners presented in
Fig. 4. It shows that BG constructed by the MVOSTM has the least number of edges for
all the contracts on both workloads. However, there is no BG for bin-based approaches
(both SpecBin and StaticBin). So, from the block size perspective, bin-based approaches
are efficient. But the speedup of the validator obtained by the bin-based approaches is
significantly lesser than STM validators.

Fig. 2 (c) and Fig. 2 (d) show the speedup of Smart Multi-threaded Validators (SMVs)
over serial validator on the workloads W1 and W2, respectively. The average speedup
achieved by MVOSTM, SVOSTM, MVTO, BTO, SpecBin, and StaticBin decentralized
SMVs are 48.45×, 46.35×, 43.89×, 41.44×, 5.39×, and 4.81× over serial validator,
respectively.

It can be observed that decentralized MVOSTM SMV is best among all other STM
validators due to fewer dependencies in the BG. Though the block size is less in bin-
based approaches as compared to STM based approaches due to the absence of BG,
however, STM validators outperform bin-based validators because STM validators
precisely determines the concurrent SCTs based on BG. In contrast, bin-based validator
gives less concurrency using a lock-based pessimistic approach.

The speedup of SMV is significantly higher than multi-threaded miner because the
miner has to execute the SCTs concurrently either using STMs (including the retries
of aborted transactions) and constructs the BG or prepare two bins (concurrent and
sequential bin using locks in SpecBin and static analysis in StaticBin). On the other
hand, the validator executes the SCTs concurrently and deterministically relying on BG
(without any retries) or bins provided by miner.

A malicious miner may cause either EMB or FBin errors in a block. Fig. 3 illustrates
the percentage of validators without SMV logic embedded, i.e., NonSMVs accepting
a malicious block on workloads W1 and W2, respectively. Here, we considered 50
validators and ran the experiments for the Mix contract. The Fig. 3 shows that less
than 50% of validators (except bin-based NonSMV) accept a malicious block. However,
SpecBin and StaticBin NonSMVs show more than 50% acceptance of malicious blocks.
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Though, it is to be noted that the acceptance of even a single malicious block result in
the blockchain going into inconsistent state.

To solve this problem, we developed a Smart Multi-threaded Validator (SMV), which
identifies the malicious miner (described in Section 3.4). We prove that the SMV detects
malicious block with the help of counter and rejects it. In fact all the validators shown
in Fig. 2 (c) & (d) are SMV based. Another advantage of SMV is that once it detects a
malicious miner during the concurrent execution of SCTs, it can immediately reject the
block and need not execute the remaining SCTs in the block thus saving time.
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To show the degree of parallelism, we con-
sider diameter of BG which shows the longest
path of the BG implies that a longest sequence
of transactions to be executed sequentially. To
observe the diameter of BG, we consider an-
other workload W3 in which the number of
shared data items varied from 100 to 600 while
the number of threads, SCTs, and hash-table
size is fixed to 50, 100, and 30, respectively. In
Figure 5, Y1 axis shows the speedup achieved
by SMV over serial and Y2 axis demonstrates
the diameter of the BG in considered STMs.
It shows that highest speedup achieved when
diameter of the BG is least.

We presents additional experiments that
cover the average number of dependencies in
the BG, additional space required to store the BG into the block, compared the time
taken by the SMV and NonSMV, and speedup of fork-join validator for all the workloads
in [7].

5 Conclusion and Future Directions

This paper presents an efficient framework for concurrent execution of smart contracts
by miners and validators based on object semantics. In blockchains that follow order-
execute model [5] such as Ethereum [2] and Bitcoin [15], SCT is executed in two
different contexts: first by the multi-threaded miner to propose a block and later by
the multi-threaded validator to verify the proposed block by the miner as part of the
consensus. To avoid FBR errors, the miner on concurrent execution of SCTs capture the
dependencies among them in the form of a BG as in [6,8]. The validator then re-executes
the SCTs concurrently while respecting the dependencies recorded in the BG to avoid
FBR errors.

The miner executes the SCTs concurrently using STMs that exploit the object
semantics: SVOSTM and MVOSTM. The dependencies among the SCTs are collected
during this execution and used by the miner threads to construct the BG concurrently.
Due to the use of object semantics, the number of edges in the BG is smaller, which
benefits both miners and validators by enabling them to execute SCTs quickly in a
concurrent setting.
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We also considered a malicious miner, which may proposes an incorrect BG that
does not have all the edges, resulting in EMB error. To handle malicious miners we have
proposed a SMV that can identify these errors and reject the corresponding blocks.

The proposed SVOSTM and MVOSTM miner achieve on average speedup of 3.41×
and 3.91× over a serial miner, respectively. Proposed SVOSTM and MVOSTM decen-
tralized validator outperform with an average speedup of 46.35× and 48.45× over serial
validator, respectively, on Ethereum smart contracts.

There are several directions for future work. A malicious miner can intentionally
append a BG in a block with additional edges for the purpose of delaying other miners.
Preventing such a malicious miner from doing this would be an immediate future work. A
natural question is whether the size of BG can become a significant overhead. Currently,
the average number of SCTs in a block is ≈ 100 in Ethereum. So, storing the BG
inside the block does not consume much space. The BG constructed by MVOSTMs has
fewer dependencies as compared with state-of-the-art SCT execution as shown in Fig. 4.
However, the number of SCTs in a block can increase over time and as a result storing the
BG will consume more space. Hence, constructing storage optimal BG is an interesting
challenge. Alternatively, it might be possible to concurrently execute SCTs correctly
without incurring any extra storage overhead, and without compromising speedup. This
opens up the question what the optimal storage required for achieving the best possible
speedup.

Another interesting research direction is optimizing power consumption, since,
multi-threading on the multi-core system consumes more power. Additional power is
consumed by the multiple miner and validator threads to propose and validate the blocks
concurrently. Hence, we would like to explore trade-off between harnessing the number
of cores and power consumption.

Finally, since EVM [2] does not support multi-threading, it is not possible to test
the proposed approach on Ethereum. So, another research direction is to design multi-
threaded EVM. We plan to test our proposed approach on other blockchains such as
Bitcoin [15], EOS [1] which follow the order-execute model and support multi-threading.
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